JP7277724B2 - electrical conductivity cell - Google Patents

electrical conductivity cell Download PDF

Info

Publication number
JP7277724B2
JP7277724B2 JP2019065146A JP2019065146A JP7277724B2 JP 7277724 B2 JP7277724 B2 JP 7277724B2 JP 2019065146 A JP2019065146 A JP 2019065146A JP 2019065146 A JP2019065146 A JP 2019065146A JP 7277724 B2 JP7277724 B2 JP 7277724B2
Authority
JP
Japan
Prior art keywords
electrode
outer cylinder
axial direction
electrical conductivity
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019065146A
Other languages
Japanese (ja)
Other versions
JP2020165743A (en
Inventor
諒介 水村
修司 菅原
わかな 橋本
芳晴 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2019065146A priority Critical patent/JP7277724B2/en
Publication of JP2020165743A publication Critical patent/JP2020165743A/en
Application granted granted Critical
Publication of JP7277724B2 publication Critical patent/JP7277724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、液体の電気伝導率を測定するための電気伝導率セルに関するものである。 The present invention relates to an electrical conductivity cell for measuring the electrical conductivity of liquids.

従来、河川水などの環境水、飲料水、産業などで使用される水溶液などの液体の電気伝導率を測定するために電気伝導率セルが用いられている(特許文献1)。図7は、従来の電気伝導率セル201の概略断面側面図である。電気伝導率セル201は、複数の電極203が設けられた略円柱状の電極部202と、電極部202を囲むように設けられた略円筒状の外筒205と、を有する。電極部202は、例えば略円柱状(又は円板状)の電極203と、電気絶縁体204と、が交互に繋げられて構成されている。外筒205は、電気絶縁体で形成され、電極部202の軸線方向(以下「電極軸線方向」ともいう。)における電極部202の先端部(以下「電極先端部」ともいう。)202a側の端部に開口部205cが設けられている。電気伝導率セル201を用いて電気伝導率を測定するには、電気伝導率セル201を被検液中に浸漬することで、電極部202と外筒205との間の略円筒状の空間(測定空間)Tに被検液を導入する。そして、電極部202の電極203を用いて測定空間T内の被検液に電流を流し、被検液の電気抵抗を測定することで、被検液の電気伝導率を測定する。電気伝導率セル201には、2極式、3極式、4極式、5極式などが知られているが、図7では3極式の例を示している。また、一般に、電気伝導率の測定には交流電流が用いられてインピーダンス(交流抵抗)が測定される。 Conventionally, electrical conductivity cells have been used to measure the electrical conductivity of liquids such as environmental water such as river water, drinking water, and aqueous solutions used in industry (Patent Document 1). FIG. 7 is a schematic cross-sectional side view of a conventional electrical conductivity cell 201. FIG. The electrical conductivity cell 201 has a substantially cylindrical electrode section 202 provided with a plurality of electrodes 203 and a substantially cylindrical outer cylinder 205 surrounding the electrode section 202 . The electrode portion 202 is configured by alternately connecting, for example, substantially cylindrical (or disk-shaped) electrodes 203 and electrical insulators 204 . The outer cylinder 205 is formed of an electrical insulator, and is positioned on the tip portion (hereinafter also referred to as the “electrode tip portion”) 202a side of the electrode portion 202 in the axial direction of the electrode portion 202 (hereinafter also referred to as the “electrode axial direction”). An opening 205c is provided at the end. In order to measure the electrical conductivity using the electrical conductivity cell 201, the electrical conductivity cell 201 is immersed in the test liquid to create a substantially cylindrical space ( A test solution is introduced into the measurement space T. Then, the electric conductivity of the test liquid is measured by applying a current to the test liquid in the measurement space T using the electrode 203 of the electrode section 202 and measuring the electrical resistance of the test liquid. Dipolar, tripolar, quadrupolar, pentapolar, etc. are known for the electric conductivity cell 201, but FIG. 7 shows an example of tripolar type. Also, in general, alternating current is used to measure electrical conductivity, and impedance (alternating current resistance) is measured.

外筒205は、例えば電気伝導率セル201が被検液を収容した容器の壁面付近で用いられた場合に壁面の材料や壁面と電極203との間の距離などによって測定値が変動することなどを抑制するために設けられる。しかし、例えば電気伝導率セル201を被検液に浸漬する際などに、測定空間T内に気泡を巻き込んでしまうことがある。測定空間T内に気泡があると、例えば電極203と外筒205との間に気泡が挟まるなどして、測定空間T内の被検液のインピーダンスが本来よりも大きく(電気伝導率が本来よりも小さく)測定されてしまう。 For example, when the electrical conductivity cell 201 is used near the wall surface of a container containing a test liquid, the measured value of the outer cylinder 205 fluctuates depending on the material of the wall surface, the distance between the wall surface and the electrode 203, and the like. provided to suppress However, for example, when the electrical conductivity cell 201 is immersed in the test liquid, air bubbles may be involved in the measurement space T. If there is an air bubble in the measurement space T, for example, the air bubble may be caught between the electrode 203 and the outer cylinder 205, and the impedance of the sample liquid in the measurement space T may be higher than it should be (the electric conductivity may be higher than it should be). smaller).

そこで、従来、外筒205には、測定空間T内の気泡を外筒205の外部へと排出するために、電極軸線方向における電極部202の基端部(以下「電極基端部」ともいう。)202bよりに、貫通孔(気泡抜き孔)206が設けられている。つまり、通常、電気伝導率セル201は、電極先端部202a側を下方、電極基端部202b側を上方に向けて被検液に浸漬されて用いられる。そのため、電気伝導率セル201を被検液に浸漬する際などに測定空間Tに入った気泡が上方へ移動し、上方に配置された貫通孔206を通して外筒205の外部に排出されることが企図されている。 Therefore, conventionally, in the outer cylinder 205, in order to discharge the bubbles in the measurement space T to the outside of the outer cylinder 205, a base end portion of the electrode portion 202 in the electrode axial direction (hereinafter also referred to as an "electrode base end portion") is provided. ) 202b, a through hole (bubble vent) 206 is provided. In other words, the electric conductivity cell 201 is normally used by being immersed in the test liquid with the electrode tip 202a side facing downward and the electrode base end 202b side facing upward. Therefore, when the electrical conductivity cell 201 is immersed in the liquid to be tested, the air bubbles that have entered the measurement space T may move upward and be discharged to the outside of the outer cylinder 205 through the through hole 206 arranged upward. It is intended.

特開平1-259249号公報JP-A-1-259249

しかしながら、従来の電気伝導率セル201の構成では、測定空間T内の気泡を十分に外筒205の外部に排出できないことがあった。 However, in the configuration of the conventional electrical conductivity cell 201 , the bubbles in the measurement space T may not be sufficiently discharged to the outside of the outer cylinder 205 .

外筒205の貫通孔206は、従来一般に、円形(真円や楕円)とされている。貫通孔206を通した気泡の排出(気泡抜き)をしやすくするために、単純に貫通孔206の大きさ(直径)を大きくすることが考えられる。しかし、貫通孔206の大きさを単純に大きくすると、気泡の排出はしやすくなるものの、測定空間T内の被検液のインピーダンスを正しく測定できなくなることがある。つまり、本来は図8(a)中の実線で示す電流による測定空間T内の被検液のインピーダンスが測定目的である。しかし、貫通孔206の大きさを単純に大きくすると、電極先端部202a側の外筒205の開口部205cと貫通孔206との間での、外筒205の外側の液体などを通る回路(図5(a)中の破線)のインピーダンスが小さくなる。その結果、外筒205の外側のインピーダンスの影響(外来の影響)が大きくなって、測定空間T内の被検液のインピーダンスを正しく測定できなくなることがある。 The through hole 206 of the outer cylinder 205 is conventionally generally circular (perfectly circular or elliptical). In order to facilitate the discharge of air bubbles through the through-holes 206 (bubble removal), simply increasing the size (diameter) of the through-holes 206 is conceivable. However, if the size of the through-hole 206 is simply increased, air bubbles can be easily discharged, but the impedance of the test liquid in the measurement space T may not be measured correctly. In other words, the original purpose of the measurement is to measure the impedance of the sample liquid within the measurement space T by the current indicated by the solid line in FIG. 8(a). However, if the size of the through-hole 206 is simply increased, a circuit (Fig. 5(a) dashed line) becomes smaller. As a result, the influence of the impedance outside the outer cylinder 205 (external influence) increases, and the impedance of the sample liquid in the measurement space T may not be measured correctly.

これに対して、次のような方法で、測定空間T内の被検液のインピーダンスに対する外筒205の外側の液体などを通る回路のインピーダンスを大きくし、外筒205の外側のインピーダンスの影響を低減することが考えられる。つまり、図8(b)に示すように最も電極先端部202a側の電極203よりもさらに電極先端部202a側に絶縁部を設けたり、図8(c)に示すように最も電極基端部202b側の電極203と貫通孔206との間の距離を大きくしたり、図8(d)に示すように電極先端部202a側の外筒205の長さを延長したりすることである。しかし、これらの方法で十分な効果を得ようとすると、電気伝導率セル201が大きくなるため、電気伝導率セル201の小型化を妨げる要因となる。 On the other hand, the following method is used to increase the impedance of the circuit passing through the liquid outside the outer cylinder 205 with respect to the impedance of the test liquid in the measurement space T, thereby reducing the influence of the impedance outside the outer cylinder 205. can be reduced. That is, as shown in FIG. 8(b), the insulating portion is provided closer to the electrode tip portion 202a than the electrode 203 closest to the electrode tip portion 202a, or as shown in FIG. It is to increase the distance between the electrode 203 on the side and the through hole 206, or to extend the length of the outer cylinder 205 on the side of the electrode tip 202a as shown in FIG. 8(d). However, if these methods are used to obtain a sufficient effect, the electrical conductivity cell 201 becomes large, which is a factor that hinders miniaturization of the electrical conductivity cell 201 .

また、上述のように、貫通孔206は、従来一般に円形とされ、外筒205の周方向に相互に間隔をあけて複数(例えば2~4個)設けられている。この貫通孔206は、電極基端部202b側、すなわち、上方に円弧形状の辺を有するため、隣接する貫通孔206の境界部分の特に上方に気泡が溜まりやすい(図4(d))。このように気泡が溜まると、更に気泡が溜まって電極203と外筒205との間に気泡が挟まったり、電極203と外筒205との間に気泡が挟まらない場合でも気泡の溜まり方が異なっていたりすることで、測定空間T内の被検液の本来のインピーダンスが測定されなくなることがある。 Further, as described above, the through-holes 206 are conventionally generally circular, and a plurality (for example, 2 to 4) of through-holes 206 are provided at intervals in the circumferential direction of the outer cylinder 205 . Since this through-hole 206 has an arc-shaped side on the electrode base end portion 202b side, that is, upward, air bubbles tend to accumulate particularly above the boundary portion between adjacent through-holes 206 (FIG. 4D). When the bubbles accumulate in this manner, the bubbles further accumulate and become trapped between the electrode 203 and the outer cylinder 205. Even when the bubbles are not trapped between the electrode 203 and the outer cylinder 205, the bubbles accumulate differently. If they are different, the original impedance of the sample liquid in the measurement space T may not be measured.

したがって、本発明の目的は、外筒の貫通孔を通した外筒の内部から外部への気泡の排出がしやすい電気伝導率セルを提供することである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an electrical conductivity cell in which air bubbles can be easily discharged from the inside of the outer cylinder to the outside through the through holes of the outer cylinder.

上記目的は本発明に係る電気伝導率セルにて達成される。要約すれば、本発明は、略円柱状の電極部であって、前記電極部の軸線方向に沿って相互に間隔をあけて複数の電極が設けられた電極部と、略円筒状の外筒であって、前記外筒の内周面と前記電極部の外周面との間に間隔をあけて前記電極部との間に略円筒状の空間を形成するように配置され、前記軸線方向における前記電極部の先端部側の端部が開口しており、前記軸線方向における前記電極部の基端部側の端部よりに前記外筒の周方向に沿って相互に間隔をあけて複数の貫通孔が形成されている外筒と、を有する電気伝導率セルにおいて、前記貫通孔は、前記軸線方向における前記基端部側の2つの隅部がそれぞれ略角形状を有し、前記軸線方向における前記先端部側の2つの隅部がそれぞれR形状を有するか又は前記軸線方向における前記先端部側に円弧形状の辺を有し、前記R形状の曲率半径は、少なくとも前記貫通孔の対向する2辺に内接する円の半径の12.5%以上、100%以下であることを特徴とする電気伝導率セルである。 The above objective is achieved with an electrical conductivity cell according to the present invention. In summary, the present invention provides a substantially cylindrical electrode portion, which includes a plurality of electrodes spaced apart from each other along the axial direction of the electrode portion, and a substantially cylindrical outer cylinder. A space is provided between the inner peripheral surface of the outer cylinder and the outer peripheral surface of the electrode portion to form a substantially cylindrical space between the electrode portion and the axial direction. The end of the electrode portion on the distal end side is open, and a plurality of electrodes are spaced apart from each other along the circumferential direction of the outer cylinder from the end on the proximal end side of the electrode portion in the axial direction. and an outer cylinder in which a through hole is formed, wherein the through hole has two corners on the base end side in the axial direction, each of which has a substantially rectangular shape. The two corners on the tip side of each have an R shape or have an arc-shaped side on the tip side in the axial direction, and the radius of curvature of the R shape is at least opposite to the through hole The electrical conductivity cell is characterized by being 12.5% or more and 100% or less of the radius of a circle inscribed on two sides .

本発明によれば、外筒の貫通孔を通した外筒の内部から外部への気泡の排出をしやすくすることができる。 According to the present invention, air bubbles can be easily discharged from the inside of the outer cylinder to the outside through the through holes of the outer cylinder.

電気伝導率測定用プローブの断面図である。1 is a cross-sectional view of an electrical conductivity measuring probe; FIG. 電気伝導率測定用プローブ及びセンサユニット(電気伝導率セル)の側面図である。FIG. 4 is a side view of the electrical conductivity measuring probe and the sensor unit (electrical conductivity cell); 電極部及び外筒の近傍の断面側面図である。It is a cross-sectional side view of the vicinity of an electrode part and an outer cylinder. 外筒の貫通孔の構成及び作用を説明するための模式図である。FIG. 4 is a schematic diagram for explaining the configuration and action of a through-hole of an outer cylinder; 電極部の根本の近傍の断面図である。FIG. 4 is a cross-sectional view of the vicinity of the base of the electrode portion; 外筒の貫通孔の配置を説明するための模式図である。It is a schematic diagram for demonstrating arrangement|positioning of the through-hole of an outer cylinder. 従来の電気伝導率セルの概略断面側面図である。1 is a schematic cross-sectional side view of a conventional electrical conductivity cell; FIG. 従来の課題を説明するための模式図である。It is a schematic diagram for demonstrating the conventional problem.

以下、本発明に係る電気伝導率セルを図面に則して更に詳しく説明する。 Hereinafter, the electrical conductivity cell according to the present invention will be described in more detail with reference to the drawings.

[実施例1]
1.電気伝導率測定用プローブの全体構成
図1は、本発明を適用した電気伝導率測定用プローブ(以下「ECプローブ」ともいう。)100の断面図である。また、図2(a)は、ECプローブ100の側面図であり、図2(b)は電気伝導率セルで構成された後述するセンサユニット1の側面図である。なお、図1は、図2(a)中のA-A線断面を示している。ここでは、上下は重力方向の上下であり、ECプローブ100は、通常、後述する電極先端部2a側を下方、電極基端部2b側を上方に向けて用いられるものとする。
[Example 1]
1. 1. Overall Configuration of Electrical Conductivity Measuring Probe FIG. 1 is a cross-sectional view of an electrical conductivity measuring probe (hereinafter also referred to as “EC probe”) 100 to which the present invention is applied. FIG. 2(a) is a side view of the EC probe 100, and FIG. 2(b) is a side view of a sensor unit 1, which will be described later, which is composed of electrical conductivity cells. 1 shows a cross section taken along the line AA in FIG. 2(a). Here, up and down are up and down in the gravitational direction, and the EC probe 100 is normally used with the electrode distal end portion 2a side directed downward and the electrode proximal end portion 2b side directed upward, which will be described later.

本実施例では、ECプローブ100は、電気伝導率セルで構成されたセンサユニット1と、測定ユニット110と、を有する。測定ユニット110は、センサユニット1から取得したアナログ信号をセンサユニット1の測定結果を示すデジタル信号に変換する測定回路111aを有している。本実施例では、測定ユニット110は、ケーブル120を介して計測装置本体(図示せず)に接続され、測定回路111aで変換したデジタル信号を計測装置本体に送信する。計測装置本体は、測定ユニット110から取得したデジタル信号を処理して測定結果の表示などを行う。また、本実施例では、計測装置本体に対してECプローブ100が着脱可能であると共に、測定ユニット110に対してセンサユニット1が着脱可能とされている。ECプローブ100と計測装置本体とによって電気伝導率計測装置が構成される。 In this embodiment, the EC probe 100 has a sensor unit 1 made up of an electrical conductivity cell and a measurement unit 110 . The measurement unit 110 has a measurement circuit 111a that converts an analog signal obtained from the sensor unit 1 into a digital signal indicating the measurement result of the sensor unit 1. FIG. In this embodiment, the measurement unit 110 is connected to a measuring device main body (not shown) via a cable 120, and transmits a digital signal converted by the measuring circuit 111a to the measuring device main body. The measurement device main body processes the digital signal acquired from the measurement unit 110 and displays the measurement result. In addition, in this embodiment, the EC probe 100 is detachable from the measurement device main body, and the sensor unit 1 is detachable from the measurement unit 110 . An electric conductivity measuring device is configured by the EC probe 100 and the measuring device body.

センサユニット1は、略円柱状の電極部2と、電極部2を囲むように設けられた略円筒状の外筒5と、を有する。電極部2には、電極部2の軸線方向(「電極軸線方向」)Vに沿って相互に間隔をあけて複数の電極3(3a、3b、3c)が設けられている。外筒5は、外筒5の内周面5aと電極部2の外周面2cとの間に間隔をあけて電極部2との間に略円筒状の空間(測定空間)Tを形成するように配置されている。また、外筒5は、電極軸線方向Vにおける電極部2の先端部(「電極先端部」)2a側の端部が開口している。すなわち、外筒5は、電極先端部2a側の端部に開口部5cを有する。さらに、外筒5は、電極軸線方向Vにおける電極部2の基端部(「電極基端部」)2b側の端部よりに、外筒5の周方向に沿って相互に間隔をあけて複数の貫通孔6が形成されている。本実施例では、センサユニット1は、3極式の電気伝導率セルで構成されている。 The sensor unit 1 has a substantially cylindrical electrode portion 2 and a substantially cylindrical outer cylinder 5 that surrounds the electrode portion 2 . A plurality of electrodes 3 (3a, 3b, 3c) are provided on the electrode portion 2 at intervals along the axial direction (“electrode axial direction”) V of the electrode portion 2 . The outer cylinder 5 is arranged to form a substantially cylindrical space (measurement space) T between the inner peripheral surface 5a of the outer cylinder 5 and the outer peripheral surface 2c of the electrode portion 2 with a space therebetween. are placed in Further, the outer cylinder 5 has an open end on the tip portion (“electrode tip portion”) 2a side of the electrode portion 2 in the electrode axial direction V. As shown in FIG. That is, the outer cylinder 5 has an opening 5c at the end on the electrode tip 2a side. Furthermore, the outer cylinders 5 are spaced apart from each other along the circumferential direction of the outer cylinders 5 from the end on the side of the proximal end (“electrode proximal end”) 2b of the electrode portion 2 in the electrode axial direction V. A plurality of through holes 6 are formed. In this embodiment, the sensor unit 1 is composed of a three-electrode electrical conductivity cell.

更に説明すると、センサユニット1は、支持部材10及び電極棒11を備えたセンサ本体1Aと、外筒5と、を有して構成される。支持部材10は、略円筒状とされ、電極軸線方向Vの電極先端部2a側の端部に、他の部分よりも小径とされた支持部10aが設けられている。また、電極棒11は、略円柱状とされ、電極軸線方向Vの電極基端部2b側の端部に、他の部分よりも小径とされた接続部11aが設けられている。そして、支持部材10の支持部10aに形成された開口部に電極棒11の接続部11aが嵌合されて、センサ本体1Aが構成される。センサユニット1は、全体として略細長円柱状とされている。支持部材10の支持部10aと、電極棒11の接続部11a以外の部分の外径と、は略同一とされている。本実施例では、電極棒11と、支持部材10の支持部(外筒5との接合部7よりも電極先端部2a側の部分)10aと、によって、略円柱状の電極部2が構成されるものとする。 More specifically, the sensor unit 1 includes a sensor main body 1A having a support member 10 and electrode rods 11, and an outer cylinder 5. As shown in FIG. The support member 10 has a substantially cylindrical shape, and is provided with a support portion 10a having a smaller diameter than the other portions at the end portion of the electrode axial direction V on the side of the electrode distal end portion 2a. Further, the electrode rod 11 has a substantially cylindrical shape, and is provided with a connecting portion 11a having a diameter smaller than that of other portions at the end portion of the electrode base end portion 2b side in the electrode axial direction V. As shown in FIG. The connection portion 11a of the electrode rod 11 is fitted into the opening formed in the support portion 10a of the support member 10 to form the sensor main body 1A. The sensor unit 1 has a substantially elongated cylindrical shape as a whole. The support portion 10a of the support member 10 and the portion of the electrode rod 11 other than the connection portion 11a have substantially the same outer diameter. In this embodiment, the electrode rod 11 and the support portion 10a of the support member 10 (the portion closer to the electrode distal end portion 2a than the joint portion 7 with the outer cylinder 5) 10a constitute the substantially cylindrical electrode portion 2. shall be

電極棒11は、略円柱状(又は円板状)の電極3と、電気絶縁体で形成された略円筒状のセパレータ4と、が交互に繋げられて構成されている。3個の電極3のうち最も電極先端部2a側の第1電極3aは、円板状とされ、円形の端面が電極先端部2aに露出し、環状の周面が電極部2の外周面2cから露出するように形成されて、セパレータ4に取り付けられている。また、3個の電極のうち中央の第2電極3b、及び最も電極基端部2b側の第3電極3cは、それぞれ環状の周面が電極部2の外周面2cから露出するように形成されて、セパレータ4に固定されている。各電極3は、電極棒11の内部でリード線8に接続され、このリード線8は、支持部材10へと引き出され、支持部材10の内部を通って、支持部材10に設けられた回路基板12に接続されている。本実施例では、各電極3は、チタンで形成されている。ただし、これに限定されるものではなく、電気伝導率セルの電極として適した、典型的には導電性材料で形成されていればよく、例えばSUS(ステンレス鋼)、ハステロイ(ニッケル基合金の商品名)、白金、グラッシーカーボンなどであってもよい。また、本実施例では、セパレータ4は、PP(ポリプロピレン)で形成されている。ただし、これに限定されるものではなく、典型的に樹脂材料とされる電気絶縁性材料で形成されていればよい。 The electrode rod 11 is configured by alternately connecting substantially cylindrical (or disk-shaped) electrodes 3 and substantially cylindrical separators 4 made of an electrical insulator. A first electrode 3a closest to the electrode tip portion 2a among the three electrodes 3 is disk-shaped, and has a circular end surface exposed at the electrode tip portion 2a and an annular peripheral surface serving as an outer peripheral surface 2c of the electrode portion 2. is formed so as to be exposed from and attached to the separator 4 . Of the three electrodes, the central second electrode 3b and the third electrode 3c closest to the electrode base end portion 2b are formed so that their annular peripheral surfaces are exposed from the outer peripheral surface 2c of the electrode portion 2. and fixed to the separator 4 . Each electrode 3 is connected to a lead wire 8 inside the electrode rod 11. The lead wire 8 is led out to the support member 10, passes through the inside of the support member 10, and is connected to the circuit board provided on the support member 10. 12 is connected. In this embodiment, each electrode 3 is made of titanium. However, it is not limited to this, as long as it is typically made of a conductive material suitable as an electrode of an electrical conductivity cell, such as SUS (stainless steel), Hastelloy (nickel-based alloy product) name), platinum, glassy carbon, and the like. Further, in this embodiment, the separator 4 is made of PP (polypropylene). However, it is not limited to this, and may be formed of an electrically insulating material, typically a resin material.

外筒5は、電極基端部2b側の端部の内周面に設けられたネジ部が、支持部材10の外周面に設けられたネジ部に螺合されることで、センサ本体1Aに固定される。外筒5は電極部2と略同軸的に配置される。外筒5の構成、及び外筒5と電極部2との位置関係などについては後述して更に詳しく説明する。 The outer cylinder 5 is attached to the sensor main body 1A by screwing a screw portion provided on the inner peripheral surface of the end portion on the side of the electrode proximal end portion 2b into a screw portion provided on the outer peripheral surface of the support member 10. Fixed. The outer cylinder 5 is arranged substantially coaxially with the electrode portion 2 . The configuration of the outer cylinder 5 and the positional relationship between the outer cylinder 5 and the electrode portion 2 will be described later in more detail.

支持部材10の、電極軸線方向Vにおける電極棒11が取り付けられる側とは反対側の端部近傍には、回路基板12が設けられており、上述のようにこの回路基板12に電極棒11から引き出されたリード線8が接続されている。また、この回路基板12には、センサユニット側コネクタ13が設けられており、後述する測定ユニット110の回路基板111に設けられた測定ユニット側コネクタ112と接続可能とされている。本実施例では、支持部材10は、PP(ポリプロピレン)で形成されているが、これに限定されるものではなく、上記セパレータ4の場合と同様の電気絶縁性材料で形成されることが好ましい。 A circuit board 12 is provided in the vicinity of the end of the supporting member 10 on the side opposite to the side on which the electrode rods 11 are attached in the electrode axial direction V. The drawn lead wire 8 is connected. Further, the circuit board 12 is provided with a sensor unit side connector 13, which can be connected to a measurement unit side connector 112 provided on a circuit board 111 of a measurement unit 110, which will be described later. In this embodiment, the support member 10 is made of PP (polypropylene), but it is not limited to this, and is preferably made of the same electrically insulating material as the separator 4 described above.

測定ユニット110には、測定回路111aを備えた回路基板111が設けられている。また、この回路基板111には、測定ユニット側コネクタ112が設けられており、上述のセンサユニット1の回路基板12に設けられたセンサユニット側コネクタ13と接続可能とされている。また、測定ユニット110は、センサユニット1の電極軸線方向Vにおける電極先端部2a側とは反対側の端部が挿入されて嵌合される凹部113を有する。そして、センサユニット1が測定ユニット110の凹部113に挿入され、センサユニット側コネクタ13と測定ユニット側コネクタ112とが着脱可能に接続されることで、センサユニット1と測定ユニット110とが一体化されて、ECプローブ100が構成される。 The measurement unit 110 is provided with a circuit board 111 having a measurement circuit 111a. Also, the circuit board 111 is provided with a measurement unit side connector 112 that can be connected to the sensor unit side connector 13 provided on the circuit board 12 of the sensor unit 1 described above. The measurement unit 110 also has a recess 113 into which the end of the sensor unit 1 opposite to the electrode tip 2a side in the electrode axial direction V is inserted and fitted. The sensor unit 1 and the measurement unit 110 are integrated by inserting the sensor unit 1 into the recess 113 of the measurement unit 110 and detachably connecting the sensor unit side connector 13 and the measurement unit side connector 112. Thus, the EC probe 100 is configured.

なお、本実施例では、支持部材10の電極軸線方向Vにおける電極棒11が取り付けられる側とは反対側の端部近傍の外周面と、測定ユニット110の凹部113の内周面と、の間に、封止部材としてのOリング14が配置されて、センサユニット1の内部が液密に保たれている。また、本実施例では、センサユニット1は、スライド移動させられて測定ユニット110の凹部113に嵌合される。そして、センサユニット1の外周を取り巻くように配置された固定部材としての袋ナット15が、測定ユニット110のセンサユニット1側の端部に螺合されることで、センサユニット1は測定ユニット110に対して固定されるようになっている。 In this embodiment, between the outer peripheral surface of the support member 10 near the end opposite to the side where the electrode rod 11 is attached in the electrode axial direction V and the inner peripheral surface of the concave portion 113 of the measurement unit 110, An O-ring 14 as a sealing member is arranged in the inner part of the sensor unit 1 to keep the inside of the sensor unit 1 liquid-tight. Further, in this embodiment, the sensor unit 1 is slid and fitted into the concave portion 113 of the measurement unit 110 . A cap nut 15 as a fixing member arranged to surround the outer periphery of the sensor unit 1 is screwed to the end of the measurement unit 110 on the sensor unit 1 side, whereby the sensor unit 1 is attached to the measurement unit 110. It is designed to be fixed against.

また、センサユニット1は、上記とは逆に測定ユニット110から取り外されて、交換することが可能とされている。また、測定ユニット110の回路基板111から引き出された配線は、ケーブル120としてまとめられて計測装置本体に接続される。本実施例では、測定ユニット110は、上記ケーブル120の端部に設けられたプローブ側コネクタ(図示せず)と、計測装置本体に設けられた本体側コネクタ(図示せず)と、によって、計測装置本体に対して着脱可能に接続される。 In addition, the sensor unit 1 can be removed from the measurement unit 110 and replaced, contrary to the above. Also, the wiring drawn out from the circuit board 111 of the measurement unit 110 is bundled as a cable 120 and connected to the main body of the measurement device. In this embodiment, the measurement unit 110 performs measurement by means of a probe-side connector (not shown) provided at the end of the cable 120 and a body-side connector (not shown) provided on the measuring apparatus body. It is detachably connected to the device main body.

ECプローブ100を用いて電気伝導率を測定するには、センサユニット1の電極先端部2a側を下方に向けて被検液中に浸漬することで、電極部2と外筒5との間の略円筒状の測定空間Tに被検液を導入する。そして、センサユニット1の電極3を用いて測定空間T内の被検液に交流電流を流し、被検液のインピーダンスを測定することで、被検液の電気伝導率を測定する。本実施例では、センサユニット1は、概略、第2電極3bと第1電極3aとの間、及び第2電極3bと第3電極3cとの間に交流電圧を印加して、測定空間T内の被検液に交流電流を流し、測定空間T内の被検液のインピーダンスを測定することで、測定空間T内の被検液の電気伝導率を測定する。 In order to measure the electrical conductivity using the EC probe 100, the sensor unit 1 is immersed in the sample liquid with the electrode tip 2a side facing downward, so that the space between the electrode part 2 and the outer cylinder 5 is A liquid to be tested is introduced into a substantially cylindrical measurement space T. As shown in FIG. Then, an alternating current is passed through the test liquid in the measurement space T using the electrodes 3 of the sensor unit 1, and the electrical conductivity of the test liquid is measured by measuring the impedance of the test liquid. In the present embodiment, the sensor unit 1 roughly applies an AC voltage between the second electrode 3b and the first electrode 3a and between the second electrode 3b and the third electrode 3c to The electrical conductivity of the test liquid in the measurement space T is measured by applying an alternating current to the test liquid in the measurement space T and measuring the impedance of the test liquid in the measurement space T.

2.外筒の構成、及び外筒と電極部との位置関係
次に、本実施例における外筒5について更に詳しく説明する。図3は、センサユニット(以下「電気伝導率セル」という。)1の電極部2及び外筒5の近傍を拡大して示す断面側面図である。
2. Configuration of Outer Cylinder and Positional Relationship Between Outer Cylinder and Electrode Part Next, the outer cylinder 5 in this embodiment will be described in more detail. FIG. 3 is a cross-sectional side view showing an enlarged vicinity of the electrode section 2 and the outer cylinder 5 of the sensor unit (hereinafter referred to as "electrical conductivity cell") 1. FIG.

電極部2には、上述のように、第1、第2、第3電極3a、3b、3cが設けられている。本実施例では、第1電極3aが、電極軸線方向Vにおいて複数の電極3のうち最も電極先端部2a側に配置された「先端電極」であり、第3電極3cが、最も電極基端部2b側に配置された「基端電極」であり、第2電極3bが、中央に配置された「中央電極」である。本実施例では、第1、第2、第3電極3a、3b、3cの電極軸線方向Vにおける幅Wは、略同一であり、3mmである。また、本実施例では、電極軸線方向Vにおける少なくとも電極先端部2aから貫通孔6に隣接する位置までの領域の電極部2の直径D1は、略同一であり、10mmである。また、本実施例では、第1、第2、第3電極3a、3b、3cの直径もこの直径D1と略同一であり、10mmである。また、本実施例では、第1、第2、第3電極3a、3b、3cは、電極軸線方向Vにおいて略等間隔に設けられている。なお、各電極3の位置は、電極軸線方向Vにおける各電極3の中央位置で代表するものとする。本実施例では、第1電極3aの位置と第2電極3bの位置との間の距離L1、第2電極3bの位置と第3電極3cの位置との間の距離L2は、それぞれ33mmである。 The electrode section 2 is provided with the first, second and third electrodes 3a, 3b and 3c as described above. In the present embodiment, the first electrode 3a is the "tip electrode" arranged closest to the electrode tip portion 2a among the plurality of electrodes 3 in the electrode axial direction V, and the third electrode 3c is the electrode tip portion closest to the base end. The second electrode 3b is the "central electrode" arranged in the center. In this embodiment, the widths W of the first, second, and third electrodes 3a, 3b, and 3c in the electrode axial direction V are substantially the same, which is 3 mm. Further, in this embodiment, the diameter D1 of the electrode portion 2 in at least the region from the electrode tip portion 2a to the position adjacent to the through hole 6 in the electrode axial direction V is substantially the same and is 10 mm. In this embodiment, the diameters of the first, second, and third electrodes 3a, 3b, and 3c are also substantially the same as the diameter D1, which is 10 mm. In this embodiment, the first, second, and third electrodes 3a, 3b, and 3c are provided at approximately equal intervals in the electrode axis direction V. As shown in FIG. In addition, the position of each electrode 3 shall be represented by the center position of each electrode 3 in the electrode axial direction V. As shown in FIG. In this embodiment, the distance L1 between the position of the first electrode 3a and the position of the second electrode 3b, and the distance L2 between the position of the second electrode 3b and the position of the third electrode 3c are each 33 mm. .

外筒5は、電極部2を取り囲むように配置され、電極軸線方向Vにおける電極基端部2b側の端部が、支持部材10に螺合されて接合される。本実施例では、この外筒5と支持部材10との螺合による接合部が、電極部2と外筒5との接合部7である。本実施例では、この接合部7に隣接して、外筒5の周方向に相互に間隔をあけて複数の貫通孔6が設けられている。本実施例では、外筒5には、複数の貫通孔6として、外筒5の周方向に沿って略等間隔に4つの貫通孔6が設けられている。つまり、外筒5の周方向において互いに対向する位置に配置された2つの貫通孔6の組が2組設けられている。なお、貫通孔6の数は4個に限定されるものではなく、典型的には2~4個である。 The outer cylinder 5 is disposed so as to surround the electrode portion 2 , and the end portion on the electrode proximal end portion 2 b side in the electrode axial direction V is screwed and joined to the support member 10 . In this embodiment, the joint portion between the outer cylinder 5 and the support member 10 by screwing is the joint portion 7 between the electrode portion 2 and the outer cylinder 5 . In this embodiment, a plurality of through-holes 6 are provided adjacent to the joint portion 7 and spaced apart from each other in the circumferential direction of the outer cylinder 5 . In this embodiment, the outer cylinder 5 is provided with four through-holes 6 as the plurality of through-holes 6 along the circumferential direction of the outer cylinder 5 at approximately equal intervals. That is, two sets of two through-holes 6 arranged at positions opposed to each other in the circumferential direction of the outer cylinder 5 are provided. The number of through-holes 6 is not limited to four, but is typically two to four.

なお、各電極3と外筒5の内周面5aとの間の距離L3は、1mm以上、3mm以下であることが好ましい。この距離L3が1mmより小さいと、気泡を排出しにくくなる。また、この距離L3が3mmより大きいと、測定値の直線性が低下しやすくなることがある。本実施例では、この距離L3は1.7mmである。また、本実施例では、外筒5の内径D2は、少なくとも第1電極3aと対向する位置から第3電極3cと対向する位置までの領域の内径は略同一であり、13.4mmである。また、本実施例では、電極軸線方向Vにおける第1電極3aの電極先端部2a側の端部(すなわち、電極先端部2a)から外筒5の電極先端部2a側の端部までの距離L4は0.5mm程度である。 A distance L3 between each electrode 3 and the inner peripheral surface 5a of the outer cylinder 5 is preferably 1 mm or more and 3 mm or less. When the distance L3 is less than 1 mm, it becomes difficult to discharge air bubbles. In addition, when the distance L3 is larger than 3 mm, the linearity of the measured values may tend to deteriorate. In this embodiment, this distance L3 is 1.7 mm. In this embodiment, the inner diameter D2 of the outer cylinder 5 is 13.4 mm, which is substantially the same in at least the region from the position facing the first electrode 3a to the position facing the third electrode 3c. In this embodiment, the distance L4 from the end of the first electrode 3a on the side of the electrode tip 2a (that is, the electrode tip 2a) to the end of the outer cylinder 5 on the side of the electrode tip 2a in the electrode axial direction V is about 0.5 mm.

そして、貫通孔6は、電極軸線方向Vにおける電極基端部2b側の2つの隅部がそれぞれ略角形状を有し、電極軸線方向Vにおける電極先端部2a側の2つの隅部がそれぞれR形状(円弧形状)を有するか(図4(a))又は電極軸線方向Vにおける電極先端部2a側に円弧形状の辺を有する(図4(b))形状とされる。本実施例では、上述のように、貫通孔6は、外筒5の周方向に沿って略等間隔に4つ設けられている。 Two corners of the through-hole 6 on the side of the electrode proximal end 2b in the electrode axial direction V are substantially rectangular, and two corners on the side of the electrode distal end 2a in the electrode axial direction V are rounded. It has a shape (arc shape) (FIG. 4(a)) or a shape having an arc-shaped side on the electrode tip portion 2a side in the electrode axial direction V (FIG. 4(b)). In this embodiment, as described above, the four through holes 6 are provided at approximately equal intervals along the circumferential direction of the outer cylinder 5 .

なお、略角形状とは、2辺が完全に直交する形状のみを意味するものではなく、製造上の理由などにより、90°に対して±5°程度の範囲の角度を有して交差する形状、あるいは十分に小さい曲率半径(典型的には0.5mm以下)の円弧形状とされている場合も含むものである。また、R形状、円弧形状とは、完全に円弧形状であることのみを意味するものではなく、製造上の理由などにより斯界にて一般に許容される程度に円弧形状からずれている場合も含むものである。 Note that the term “substantially angular shape” does not mean only a shape in which two sides are completely perpendicular to each other. It also includes a shape or an arc shape with a sufficiently small radius of curvature (typically 0.5 mm or less). Further, the R shape and the circular arc shape do not only mean a complete circular arc shape, but also include cases where the circular arc shape is deviated to the extent generally permitted in the field due to manufacturing reasons or the like. .

更に説明すると、図4(a)は、本実施例における各貫通孔6を示す模式図である。本実施例では、4つの貫通孔6の形状は実質的に同一である。本実施例では、貫通孔6の、電極軸線方向Vにおける電極基端部2b側の辺(上辺)6a、及び電極先端部2a側の辺(下辺)6bは、それぞれ平面視において電極軸線方向Vと略直交する方向に延びる。そして、これら上辺6aと下辺6bとが、平面視において電極軸線方向Vと略平行に延びる2つの辺(縦辺)6cで連結されている。ただし、図4(b)に示すように、貫通孔6の電極軸線方向Vにおける電極先端部2a側の辺(下辺)6bを円弧形状の辺としてもよい。 To explain further, FIG. 4(a) is a schematic diagram showing each through hole 6 in this embodiment. In this embodiment, the four through holes 6 have substantially the same shape. In this embodiment, the side (upper side) 6a of the through-hole 6 on the side of the electrode base end 2b and the side (lower side) 6b on the side of the electrode tip 2a in the electrode axial direction V extends in a direction substantially perpendicular to the The upper side 6a and the lower side 6b are connected by two sides (longitudinal sides) 6c extending substantially parallel to the electrode axial direction V in plan view. However, as shown in FIG. 4B, a side (lower side) 6b of the through hole 6 on the side of the electrode tip portion 2a in the electrode axial direction V may be an arc-shaped side.

このように、貫通孔6を、従来の円形から、四角形と円形とを組み合わせた形状とすることで、貫通孔6を通した気泡の排出をしやすくして、測定空間Tの上方に気泡が溜まる可能性を低減させると共に、必要以上に貫通孔6を大きくすることで電気伝導率の測定値に対する外筒5の外側のインピーダンスの影響が大きくなることを抑制することができる。つまり、図4(d)に示すように、貫通孔6が従来の円形の場合は、隣接する貫通孔6の境界部分の特に上方に気泡がたまりやすい。これに対して、図4(c)に示すように、貫通孔6の上方の2か所の隅部を略角形状とすることで、特に気泡が溜まりやすい隣接する貫通孔6の境界部分の上方において貫通孔6の開口面積を大きくして(すなわち、隣接する貫通孔6の境界部分を小さくして)、気泡の排出をしやすくすることができる。一方、貫通孔6の下方の2か所の隅部をR形状とする(又は下方の辺を円弧形状とする)ことで、貫通孔6の電極3(第3電極3c)に近い側を必要以上に大きくしてしまうことで測定値に対する外筒5の外側のインピーダンスの影響が大きくなることを抑制することができる。また、貫通孔6を必要以上に大きくしなくてよいため、外筒5の外側のインピーダンスの影響を低減するために図8(b)~(d)を参照して説明したような方法による対策が必要なくなり、電気伝導率セル1の小型化を図ることができる。 Thus, by changing the shape of the through-hole 6 from a conventional circular shape to a combination of a square and a circular shape, the air bubbles can be easily discharged through the through-hole 6, and the air bubbles are generated above the measurement space T. In addition to reducing the possibility of accumulation, by making the through hole 6 larger than necessary, it is possible to suppress an increase in the influence of the impedance outside the outer cylinder 5 on the measured value of electrical conductivity. That is, as shown in FIG. 4(d), when the through holes 6 are conventionally circular, air bubbles tend to accumulate particularly above the boundaries between the adjacent through holes 6. As shown in FIG. On the other hand, as shown in FIG. 4(c), by making the upper two corners of the through-hole 6 substantially rectangular, the boundary portion between the adjacent through-holes 6 where air bubbles are likely to accumulate is reduced. By increasing the opening area of the through-holes 6 on the upper side (that is, by decreasing the boundary portion between the adjacent through-holes 6), the air bubbles can be easily discharged. On the other hand, by forming the two lower corners of the through hole 6 into an R shape (or forming the lower side into an arc shape), the side of the through hole 6 closer to the electrode 3 (third electrode 3c) is required. By making it larger than this, it is possible to suppress an increase in the influence of the impedance outside the outer cylinder 5 on the measured value. In addition, since the through hole 6 does not need to be made larger than necessary, measures such as those described with reference to FIGS. becomes unnecessary, and the size of the electrical conductivity cell 1 can be reduced.

本実施例では、貫通孔6の、平面視における電極軸線方向Vと略直交する方向の幅W1は8mmであり、平面視における電極軸線方向Vと略平行な方向の幅W2は8mmである。そして、本実施例では、上辺6aと縦辺6cとで形成される2つの隅部6dはそれぞれ略角形状とされている。貫通孔6は、これに限定されるものではないが、電極軸線方向Vと略直交する方向及び電極軸線方向Vの幅W1、W2が、それぞれ6mm以上、8mm以下であることが好ましい。この幅W1、W2が6mmより小さいと、気泡の排出がしにくくなる。また、この幅W1、W2が8mmより大きくなると、測定値に対する外筒5の外側のインピーダンスの影響が大きくなる傾向がある。なお、この幅W1、W2は、外筒5の内周面側の貫通孔6の開口部の幅で代表するものとする。また、換言すると、この幅W1、W2は、外筒5の円周長さに対して10%以上、15%以下であることが好ましい。なお、この場合の外筒5の円周長さは、電極軸線方向Vにおける貫通孔6の略中央における外筒の内周の周長で代表するものとする。また、貫通孔6の下辺6b側の2つの隅部6eのR形状の曲率半径は、少なくとも貫通孔6の対向する2辺に内接する円の半径の12.5%以上、100%以下であることが好ましい。本実施例では、上記対向する2辺とは、上辺6aと下辺6b、又は2つの縦辺6cである。このR形状の曲率半径が上記範囲より小さい場合には、上述した隣接する貫通孔6の境界部分の特に上方に溜まりやすい気泡の排出をしやすくしつつ、測定値に対する外筒5の外側のインピーダンスの影響を抑制する効果が得にくくなる。より具体的には、これに限定されるものではないが、このR形状の曲率半径は、1mm以上、4mm以下が好ましい。 In this embodiment, the width W1 of the through hole 6 in the direction substantially perpendicular to the electrode axial direction V in plan view is 8 mm, and the width W2 in the direction substantially parallel to the electrode axial direction V in plan view is 8 mm. In this embodiment, two corners 6d formed by the upper side 6a and the vertical side 6c are each substantially angular. Although the through hole 6 is not limited to this, it is preferable that the widths W1 and W2 in the direction substantially orthogonal to the electrode axial direction V and in the electrode axial direction V are 6 mm or more and 8 mm or less, respectively. When the widths W1 and W2 are smaller than 6 mm, it becomes difficult to discharge air bubbles. Moreover, when the widths W1 and W2 are larger than 8 mm, the influence of the impedance outside the outer cylinder 5 on the measured values tends to increase. The widths W1 and W2 are represented by the width of the opening of the through hole 6 on the inner peripheral surface side of the outer cylinder 5 . In other words, the widths W1 and W2 are preferably 10% or more and 15% or less of the circumferential length of the outer cylinder 5 . The circumferential length of the outer cylinder 5 in this case is represented by the circumferential length of the inner circumference of the outer cylinder at substantially the center of the through hole 6 in the electrode axial direction V. As shown in FIG. Also, the radius of curvature of the two corners 6e on the lower side 6b side of the through hole 6 is at least 12.5% or more and 100% or less of the radius of the circle inscribed in the two opposing sides of the through hole 6. is preferred. In this embodiment, the two opposing sides are the upper side 6a and the lower side 6b, or the two vertical sides 6c. When the radius of curvature of this R shape is smaller than the above range, the impedance of the outside of the outer cylinder 5 with respect to the measured value can It becomes difficult to obtain the effect of suppressing the influence of More specifically, although not limited to this, the curvature radius of this R shape is preferably 1 mm or more and 4 mm or less.

また、本実施例における電気伝導率セル1は、以下に示すような追加の特徴を有している。 The electrical conductivity cell 1 in this embodiment also has additional features as follows.

本実施例では、図5(a)に示すように、貫通孔6を形成する縁部のうち、電極軸線方向Vにおける電極基端部2b側の一辺(上辺)6aの縁部6fは、外筒5の内周面5a側から外周面5b側に向かうにつれて貫通孔6の開口が広がるようにテーパーが設けられている。このように貫通孔6の上辺6aの縁部6fにテーパーを設けることで、貫通孔6を通した気泡の排出のしやすさを更に向上させることができる。気泡の排出のしやすさを更に向上させる観点から、この貫通孔6の縁部のテーパーは、5°以上、45°以下の角度αで形成されていることが好ましい。なお、この角度αは、電極軸線方向Vと略直交する方向に対してなす角度である。本実施例では、この角度αは30°である。 In the present embodiment, as shown in FIG. 5A, among the edges forming the through hole 6, an edge 6f of one side (upper side) 6a on the side of the electrode base end 2b in the electrode axial direction V is outside. A taper is provided so that the opening of the through hole 6 widens from the inner peripheral surface 5a side of the cylinder 5 toward the outer peripheral surface 5b side. By providing the edge 6f of the upper side 6a of the through-hole 6 with a taper in this way, it is possible to further improve the easiness of discharging air bubbles through the through-hole 6. FIG. From the viewpoint of further improving the ease of discharging air bubbles, the taper of the edge of the through hole 6 is preferably formed at an angle α of 5° or more and 45° or less. The angle α is an angle formed with respect to a direction substantially perpendicular to the axial direction V of the electrode. In the present example, this angle α is 30°.

また、本実施例では、図5(b)に示すように、電極軸線方向Vにおける、電極部2と外筒5との接合部7に隣接し、少なくとも一部が貫通孔6と対向する領域(これを電極部2の「根本」ともいう。)9の電極部2の外周面2cに、電極軸線方向Vに沿って電極先端部2a側から電極基端部2b側に向かうにつれて外径が大きくなるようにテーパーが設けられている。このように電極部2の根本9にテーパーを設けることで、測定空間T内の気泡を貫通孔6に向けて導きやすくなり、貫通孔6を通した気泡の排出のしやすさを更に向上させることができる。気泡の排出のしやすさを更に向上させる観点から、この電極部2の根本9のテーパーは、5°以上、60°以下の角度βで形成されていることが好ましい。なお、この角度βは、電極軸線方向Vと略直交する方向に対してなす角度である。本実施例では、この角度βは45°である。 Further, in this embodiment, as shown in FIG. 5(b), a region adjacent to the joint portion 7 between the electrode portion 2 and the outer cylinder 5 in the electrode axial direction V and at least a portion of which faces the through hole 6 (This is also referred to as the "root" of the electrode portion 2.) The outer peripheral surface 2c of the electrode portion 2 of 9 has an outer diameter that extends from the electrode distal end portion 2a side toward the electrode proximal end portion 2b side along the electrode axial direction V. It is tapered to make it bigger. By providing a taper at the base 9 of the electrode section 2 in this way, it becomes easier to guide the bubbles in the measurement space T toward the through hole 6, and the ease of discharging the bubbles through the through hole 6 is further improved. be able to. From the viewpoint of further improving the ease of discharging air bubbles, the taper of the base 9 of the electrode portion 2 is preferably formed at an angle β of 5° or more and 60° or less. The angle β is an angle formed with respect to a direction substantially perpendicular to the axial direction V of the electrode. In the present example, this angle β is 45°.

また、電極軸線方向Vにおいて、電極基端部2b側の貫通孔6の端部(上端)の位置は、電極部2と外筒5との接合部7と略同じ位置、又はこの接合部7に対して電極先端部2aとは反対側であることが好ましい。つまり、図6に示す距離L5が0mm以上であることが好ましい。このような位置関係とすることで、貫通孔6より上方に気泡が溜まるデッドスペースが形成されないようにすることができる。本実施例では、図3に示すように、貫通孔6の上端の位置を、電極部2と外筒5との接合部7と略同じ位置とした。なお、貫通孔6の上端の位置は、外筒5の内周面側の貫通孔6の開口部における上端の位置で代表するものとする。 In addition, in the electrode axial direction V, the position of the end (upper end) of the through hole 6 on the side of the electrode base end 2b is substantially the same as the joint 7 between the electrode section 2 and the outer cylinder 5, or is preferably on the side opposite to the electrode tip portion 2a. That is, it is preferable that the distance L5 shown in FIG. 6 is 0 mm or more. By setting such a positional relationship, it is possible to prevent the formation of a dead space in which air bubbles accumulate above the through hole 6 . In this embodiment, as shown in FIG. 3, the position of the upper end of the through-hole 6 is substantially the same as the joint 7 between the electrode portion 2 and the outer cylinder 5 . The position of the upper end of the through hole 6 is represented by the position of the upper end of the opening of the through hole 6 on the inner peripheral surface side of the outer cylinder 5 .

また、図6に示すように、電極軸線方向Vにおいて、最も電極基端部2b側に配置された第3電極(基端電極)3cの電極基端部2b側の端部から、電極先端部2a側の貫通孔6の端部(下端)までの距離L6は、0mm以上、2mm以下(貫通孔6の端部(下端)の方が電極基端部2b側)であることが好ましい。このような位置関係とすることで、電気伝導率セル1の小型化を図ることができる。本実施例では、貫通孔6の上方の隅部6dを略角形状、下方の隅部6eをR形状とすることで、貫通孔6の電極3(第3電極)に近い側を必要以上に大きくすることなく気泡の排出を良好に行うことができる。そのため、外筒5の外側のインピーダンスの影響による測定値の誤差を抑制しつつ、貫通孔6と電極3(第3電極3c)との間の距離を可及的に小さくすることができる。本実施例では、上記距離L6は0mmである。なお、貫通孔6の下端の位置は、外筒5の内周面側の貫通孔6の開口部における下端の位置で代表するものとする。 Further, as shown in FIG. 6, in the electrode axial direction V, from the end portion of the electrode base end portion 2b side of the third electrode (base end electrode) 3c arranged closest to the electrode base end portion 2b side, the electrode tip portion The distance L6 to the end (lower end) of the through hole 6 on the 2a side is preferably 0 mm or more and 2 mm or less (the end (lower end) of the through hole 6 is closer to the electrode base end 2b). By setting it as such a positional relationship, size reduction of the electrical conductivity cell 1 can be achieved. In this embodiment, the upper corner 6d of the through-hole 6 is formed into a substantially rectangular shape and the lower corner 6e is formed into a rounded shape, so that the side of the through-hole 6 closer to the electrode 3 (third electrode) is made more Air bubbles can be discharged well without increasing the size. Therefore, the distance between the through-hole 6 and the electrode 3 (the third electrode 3c) can be minimized while suppressing errors in the measured values due to the influence of the impedance outside the outer cylinder 5. FIG. In this embodiment, the distance L6 is 0 mm. The position of the lower end of the through hole 6 is represented by the position of the lower end of the opening of the through hole 6 on the inner peripheral surface side of the outer cylinder 5 .

3.セル定数に対する影響など
例えば、従来の電気伝導率セル1の外筒5に代えて本発明に従う外筒5を適用し、本発明に係る電気伝導率セル1を構成する場合、外筒5の違いにより測定値(セル定数)が大幅に変化することを避けることが望ましい。なお、電極間の抵抗をR、電極間の距離をL(m)、電極の面積をS(m)、電気伝導率をκ(S/m)とすると、次の関係が成り立つ。
R=L/S×1/κ
κ=L/S×1/R
上記式中のL/Sは電気伝導率セル1に固有の値でセル定数と呼ばれる。セル定数が大きければ大きいほど、同じ溶液でもインピーダンスの測定結果は大きくなる。電極間の距離L及び電極の面積Sが変わっていない場合に、セル定数L/Sが変われば、外筒5の外側のインピーダンスの影響を受けていることになる。そのため、所定の電気伝導率の被検液を用いてセル定数を測定する(あるいはセル定数を固定して所定の電気伝導率の被検液の電気伝導率を測定する)ことで、外筒5の外部のインピーダンスの影響の有無、程度を判断することができる。
3. Influence on cell constant, etc. For example, when the outer cylinder 5 according to the present invention is applied in place of the outer cylinder 5 of the conventional electrical conductivity cell 1 to configure the electrical conductivity cell 1 according to the present invention, the difference in the outer cylinder 5 It is desirable to avoid significant changes in the measured value (cell constant) due to The following relationship holds when R is the resistance between the electrodes, L (m) is the distance between the electrodes, S (m 2 ) is the area of the electrodes, and κ (S/m) is the electric conductivity.
R=L/S×1/κ
κ=L/S×1/R
L/S in the above formula is a value unique to the electrical conductivity cell 1 and is called a cell constant. The higher the cell constant, the higher the impedance measurement for the same solution. If the cell constant L/S changes when the distance L between the electrodes and the area S of the electrodes do not change, it means that the impedance outside the outer cylinder 5 has an effect. Therefore, by measuring the cell constant using a test liquid with a predetermined electrical conductivity (or by fixing the cell constant and measuring the electrical conductivity of the test liquid with a predetermined electrical conductivity), the outer cylinder 5 It is possible to determine the presence or absence and degree of influence of external impedance.

ここで、貫通孔6の形状が異なる外筒5について、測定値に対する影響について調べた。ここでは、比較例、本実施例の外筒5について調べた。比較例の外筒5では、本実施例の外筒5の貫通孔6に代えて、本実施例の外筒5の貫通孔6と実質的に同じ位置に、直径8mmの円形の貫通孔6が4つ設けられている。そして、比較例、本実施例の外筒5を同じ電気伝導率セル(東亜ディーケーケー株式会社製、CT-27112B)1に装着し、セル定数として同じ値である250m-1を用いて被検液としての標準液の電気伝導率の測定を行った。標準液としては、25℃に温調したKCl水溶液(0.01mol/L(旧JIS標準液C)、0.1mol/L(旧JIS標準液B)、1mol/L(旧JIS標準液A))を用いた。また、これら各標準液を用いて各例の電気伝導率セルを校正し、それぞれの標準液でのセル定数を求めた。 Here, the effects on the measured values were investigated for the outer cylinders 5 having different shapes of the through-holes 6 . Here, the outer cylinder 5 of the comparative example and the present embodiment was investigated. In the outer cylinder 5 of the comparative example, instead of the through hole 6 of the outer cylinder 5 of this embodiment, a circular through hole 6 having a diameter of 8 mm is formed at substantially the same position as the through hole 6 of the outer cylinder 5 of this embodiment. are provided. Then, the outer cylinder 5 of the comparative example and the present example is attached to the same electrical conductivity cell (CT-27112B manufactured by Toa DKK Co., Ltd.) 1, and the same cell constant of 250 m -1 is used. The electrical conductivity of the standard solution as was measured. As the standard solution, KCl aqueous solution temperature-controlled to 25 ° C. (0.01 mol / L (old JIS standard solution C), 0.1 mol / L (old JIS standard solution B), 1 mol / L (old JIS standard solution A) ) was used. In addition, the electrical conductivity cell of each example was calibrated using each of these standard solutions, and the cell constant for each standard solution was obtained.

なお、上述のように異なる構成の外筒5を用いた他は、比較例及び本実施例の電気伝導率セル1の構成は実質的に同じであり、同一の計測装置を用いて、実質的に同じ環境で測定を行った。また、いずれの測定も外筒5の内部には気泡が実質的に無い状態で行った。実験に用いた電気伝導率セル1の主要部(電極部2の電極の構成や配置など)は、前述の本実施例の電気伝導率セル1と同等のものである。 In addition, except for using the outer cylinder 5 having a different configuration as described above, the configurations of the electrical conductivity cells 1 of the comparative example and the present example are substantially the same. was measured in the same environment. All measurements were performed in a state in which there were substantially no air bubbles inside the outer cylinder 5 . The main parts of the electrical conductivity cell 1 used in the experiment (such as the configuration and arrangement of the electrodes of the electrode section 2) are equivalent to those of the electrical conductivity cell 1 of the present embodiment described above.

結果を表1、表2に示す。表1(a)は、各例について電気伝導率の測定値と、各標準液の電気伝導率の理論値と、を示す。また、表1(b)は、表1(a)の結果に基づく、比較例の電気伝導率の測定値に対する本実施例の電気伝導率の測定値の差(相対値(%):比較例の測定値を100%とした場合の本実施例の測定値の100分率)を示す。表2(a)は、各例の電気伝導率セルを各標準液で校正した場合のセル定数を示す。また、表2(b)は、表2(a)の結果に基づく、比較例の電気伝導率セルのセル定数に対する本実施例の電気伝導率セルのセル定数の差(相対値(%):比較例のセル定数を100%とした場合の本実施例のセル定数の100分率)を示す。 Tables 1 and 2 show the results. Table 1(a) shows the measured electrical conductivity for each example and the theoretical electrical conductivity for each standard solution. Further, Table 1(b) shows the difference (relative value (%): Comparative Example is 100% of the measured value of this example). Table 2(a) shows the cell constant when the electrical conductivity cell of each example is calibrated with each standard solution. In addition, Table 2(b) shows the difference in the cell constant of the electrical conductivity cell of the present example with respect to the cell constant of the electrical conductivity cell of the comparative example (relative value (%): 100% of the cell constant of the present embodiment when the cell constant of the comparative example is 100%.

Figure 0007277724000001
Figure 0007277724000001

Figure 0007277724000002
Figure 0007277724000002

表1、表2からわかるように、いずれの標準液についても、比較例の外筒5を用いた場合と本実施例の外筒5を用いた場合とで測定値、セル定数のずれは1%未満である。このように、外筒5の貫通孔6を従来の円形から本実施例の形状に変更したことによる電気伝導率の測定値に対する影響はないことがわかった。 As can be seen from Tables 1 and 2, for both standard solutions, there is a difference of 1 in the measured value and the cell constant between the case of using the outer cylinder 5 of the comparative example and the case of using the outer cylinder 5 of the present embodiment. %. Thus, it was found that changing the shape of the through hole 6 of the outer cylinder 5 from the conventional circular shape to the shape of the present embodiment does not affect the measured value of electrical conductivity.

4.効果
本実施例の電気伝導率セル1を様々な条件で被検液に浸漬して確認したところ、従来の円形の貫通孔6を備えた外筒5を有する電気伝導率セル1よりも気泡を排出しやすいことがわかった。
4. Effect When the electric conductivity cell 1 of the present example was immersed in a test solution under various conditions and confirmed, it was found that more air bubbles were generated than the conventional electric conductivity cell 1 having an outer cylinder 5 with a circular through hole 6. It turned out to be easy to remove.

以上説明したように、本実施例によれば、貫通孔6の上方の隅部6dを略角形状、下方の隅部6eをR形状(あるいは円弧形状の辺)とすることで、隣接する貫通孔6の境界部分の特に上方に気泡が溜まりやすくなることを抑制することができる。これにより、貫通孔6を必要以上に大きくすることで外筒5の外側のインピーダンスが測定値に影響することを抑制しつつ、外筒5の貫通孔6を通した外筒5の内部から外部への気泡の排出をしやすくすることができる。 As described above, according to the present embodiment, the upper corner 6d of the through-hole 6 is formed into a substantially rectangular shape, and the lower corner 6e is formed into an R shape (or a side of an arc), so that the adjacent through-holes It is possible to prevent air bubbles from accumulating particularly above the boundaries of the holes 6 . As a result, while suppressing the influence of the impedance on the outside of the outer cylinder 5 on the measurement value by making the through hole 6 larger than necessary, the impedance from the inside of the outer cylinder 5 through the through hole 6 of the outer cylinder 5 to the outside is suppressed. It is possible to make it easier to discharge air bubbles to.

[その他の実施例]
以上、本発明を具体的な実施例に即して説明したが、本発明は上述の実施例に限定されるものではない。
[Other Examples]
Although the present invention has been described with reference to specific examples, the present invention is not limited to the above-described examples.

上述の実施例では、電気伝導率セルは測定回路を備えた電気伝導率測定用プローブのセンサユニットとして構成されていたが、実質的に電気伝導率セルからなり、アナログ信号を計測装置本体に送り、計測装置本体が備えた測定回路によって電気伝導率が求められるものであってもよい。 In the above-described embodiment, the electric conductivity cell was configured as a sensor unit of an electric conductivity measuring probe equipped with a measuring circuit. Alternatively, the electrical conductivity may be determined by a measuring circuit provided in the main body of the measuring device.

また、上述の実施例では電気伝導率セルは3極式のものであったが、2極式、4極式、5極式などのものであってもよい。 Further, although the electrical conductivity cell in the above-described embodiment is of the three-electrode type, it may be of the two-electrode, four-electrode, or five-electrode type.

1 電気伝導率セル(センサユニット)
2 電極部
3 電極
5 外筒
100 電気伝導率測定用プローブ
110 測定ユニット
1 Electrical conductivity cell (sensor unit)
2 electrode part 3 electrode 5 outer cylinder 100 electrical conductivity measurement probe 110 measurement unit

Claims (6)

略円柱状の電極部であって、前記電極部の軸線方向に沿って相互に間隔をあけて複数の電極が設けられた電極部と、
略円筒状の外筒であって、前記外筒の内周面と前記電極部の外周面との間に間隔をあけて前記電極部との間に略円筒状の空間を形成するように配置され、前記軸線方向における前記電極部の先端部側の端部が開口しており、前記軸線方向における前記電極部の基端部側の端部よりに前記外筒の周方向に沿って相互に間隔をあけて複数の貫通孔が形成されている外筒と、
を有する電気伝導率セルにおいて、
前記貫通孔は、前記軸線方向における前記基端部側の2つの隅部がそれぞれ略角形状を有し、前記軸線方向における前記先端部側の2つの隅部がそれぞれR形状を有するか又は前記軸線方向における前記先端部側に円弧形状の辺を有し、前記R形状の曲率半径は、少なくとも前記貫通孔の対向する2辺に内接する円の半径の12.5%以上、100%以下であることを特徴とする電気伝導率セル。
a substantially cylindrical electrode portion having a plurality of electrodes spaced apart from each other along the axial direction of the electrode portion;
A substantially cylindrical outer cylinder, which is arranged so as to form a substantially cylindrical space between the inner peripheral surface of the outer cylinder and the outer peripheral surface of the electrode section with a gap provided therebetween. The ends of the electrode portions on the distal end side in the axial direction are open, and the ends of the electrode portions on the proximal end side in the axial direction are mutually aligned along the circumferential direction of the outer cylinder. an outer cylinder having a plurality of spaced through holes;
In an electrical conductivity cell having
In the through hole, two corners on the base end side in the axial direction each have a substantially rectangular shape, and two corners on the tip end side in the axial direction each have an R shape. It has an arc-shaped side on the tip end side in the axial direction, and the curvature radius of the R-shape is at least 12.5% or more and 100% or less of the radius of a circle inscribed in two opposing sides of the through hole. An electrical conductivity cell characterized by :
前記R形状の曲率半径は、1mm以上、4mm以下であることを特徴とする請求項に記載の電気伝導率セル。 2. The electrical conductivity cell according to claim 1 , wherein the radius of curvature of said R shape is 1 mm or more and 4 mm or less. 前記貫通孔を形成する縁部のうち、前記軸線方向における前記基端部側の一辺の縁部は、前記外筒の内周面側から外周面側に向かうにつれて前記貫通孔の開口が広がるようにテーパーが設けられていることを特徴とする請求項1又は2に記載の電気伝導率セル。 Of the edges forming the through-hole, the edge on the base end side in the axial direction is arranged so that the opening of the through-hole widens as it goes from the inner peripheral surface side to the outer peripheral surface side of the outer cylinder. 3. Electrical conductivity cell according to claim 1 or 2, characterized in that it is tapered at the . 前記軸線方向における、前記電極部と前記外筒との接合部に隣接し、少なくとも一部が前記貫通孔と対向する領域の前記電極部の外周面に、前記軸線方向に沿って前記先端部側から前記基端部側に向かうにつれて外径が大きくなるようにテーパーが設けられていることを特徴とする請求項1乃至のいずれか一項に記載の電気伝導率セル。 Adjacent to the joint portion between the electrode portion and the outer cylinder in the axial direction and at least partially facing the through-hole, on the outer peripheral surface of the electrode portion on the tip side along the axial direction. 4. The electrical conductivity cell according to any one of claims 1 to 3 , characterized in that the taper is provided so that the outer diameter increases toward the base end portion side. 前記軸線方向において、前記基端部側の前記貫通孔の端部の位置は、前記電極部と前記外筒との接合部と略同じ位置、又は前記接合部に対して前記先端部とは反対側であることを特徴とする請求項1乃至のいずれか一項に記載の電気伝導率セル。 In the axial direction, the position of the end of the through hole on the proximal end side is substantially the same as the joint between the electrode section and the outer cylinder, or opposite to the joint with respect to the distal end. 5. Electrical conductivity cell according to any one of claims 1 to 4 , characterized in that it is a side. 前記軸線方向において、前記複数の電極のうち最も前記基端部側に配置された基端電極の前記基端部側の端部から、前記先端部側の前記貫通孔の端部までの距離は、0mm以上、2mm以下であることを特徴とする請求項1乃至のいずれか一項に記載の電気伝導率セル。 In the axial direction, the distance from the proximal end of the proximal electrode arranged closest to the proximal end among the plurality of electrodes to the end of the through hole on the distal end side is , ≧0 mm and ≦ 2 mm.
JP2019065146A 2019-03-28 2019-03-28 electrical conductivity cell Active JP7277724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019065146A JP7277724B2 (en) 2019-03-28 2019-03-28 electrical conductivity cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065146A JP7277724B2 (en) 2019-03-28 2019-03-28 electrical conductivity cell

Publications (2)

Publication Number Publication Date
JP2020165743A JP2020165743A (en) 2020-10-08
JP7277724B2 true JP7277724B2 (en) 2023-05-19

Family

ID=72714489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065146A Active JP7277724B2 (en) 2019-03-28 2019-03-28 electrical conductivity cell

Country Status (1)

Country Link
JP (1) JP7277724B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291914A (en) 2004-03-31 2005-10-20 Miura Co Ltd Electric conductivity sensor equipped with temperature sensor
WO2007004583A1 (en) 2005-07-01 2007-01-11 Ngk Spark Plug Co., Ltd. Liquid state sensor
JP2008215954A (en) 2007-03-01 2008-09-18 Ngk Spark Plug Co Ltd Fluid state detection sensor
JP2009020063A (en) 2007-07-13 2009-01-29 Saginomiya Seisakusho Inc Electrode of resistivity meter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536206Y2 (en) * 1986-06-14 1993-09-13
JPH01254853A (en) * 1988-04-05 1989-10-11 Nikoku Kikai Kogyo Kk Electrode for measuring conductivity
JPH01259249A (en) * 1988-04-08 1989-10-16 Nikoku Kikai Kogyo Kk Electrode for conductivity measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291914A (en) 2004-03-31 2005-10-20 Miura Co Ltd Electric conductivity sensor equipped with temperature sensor
WO2007004583A1 (en) 2005-07-01 2007-01-11 Ngk Spark Plug Co., Ltd. Liquid state sensor
JP2008215954A (en) 2007-03-01 2008-09-18 Ngk Spark Plug Co Ltd Fluid state detection sensor
JP2009020063A (en) 2007-07-13 2009-01-29 Saginomiya Seisakusho Inc Electrode of resistivity meter

Also Published As

Publication number Publication date
JP2020165743A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP3759606B2 (en) Electrical impedance tomography
CN102539932B (en) Conductivity sensor
EP2725095A1 (en) Capacitance probe for measuring the concentration of live biomass
JPS6153659B2 (en)
JP7277724B2 (en) electrical conductivity cell
JP6074874B2 (en) Electrochemical measurement device
JP6949529B2 (en) Electrochemical sensor
JP2017026359A (en) Water quality sensor
JP7277723B2 (en) electrical conductivity cell
JP7277722B2 (en) electrical conductivity cell
JP4995260B2 (en) Unique pH probe
JP7080680B2 (en) Conductivity measurement structure and pure water production equipment
JP6653490B2 (en) Electrochemical measurement device
JP2013221892A (en) Method and apparatus for measuring electrical resistivity of concrete
US20220412716A1 (en) Strain gauge, force sensor and interventional medical catheter
EP1621876A1 (en) Conductivity sensor
KR101603762B1 (en) Measuring device human body impedance having strain sensor
JP2006208234A (en) Liquid concentration detector
WO2009113250A1 (en) Thin-film electrode, and measuring cell and inspecting device having the electrode
JPH01254853A (en) Electrode for measuring conductivity
JPH06194212A (en) Electrostatic capacitance sensor
JP2021162561A (en) Detection device, measurement device, and measurement method
CN210277164U (en) Electrical impedance imaging device
US12025436B2 (en) Strain gauge, force sensor and interventional medical catheter
WO2015108334A1 (en) Device for measuring density of liquid using magnetostriction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7277724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150