JP7275361B2 - Carrier core material, electrophotographic development carrier and electrophotographic developer using the same - Google Patents

Carrier core material, electrophotographic development carrier and electrophotographic developer using the same Download PDF

Info

Publication number
JP7275361B2
JP7275361B2 JP2022090566A JP2022090566A JP7275361B2 JP 7275361 B2 JP7275361 B2 JP 7275361B2 JP 2022090566 A JP2022090566 A JP 2022090566A JP 2022090566 A JP2022090566 A JP 2022090566A JP 7275361 B2 JP7275361 B2 JP 7275361B2
Authority
JP
Japan
Prior art keywords
core material
carrier core
carrier
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022090566A
Other languages
Japanese (ja)
Other versions
JP2022116287A (en
Inventor
優樹 金城
信也 佐々木
勇人 鎌井
啓太郎 赤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa IP Creation Co Ltd
Original Assignee
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019042472A external-priority patent/JP7085507B2/en
Application filed by Dowa IP Creation Co Ltd filed Critical Dowa IP Creation Co Ltd
Priority to JP2022090566A priority Critical patent/JP7275361B2/en
Publication of JP2022116287A publication Critical patent/JP2022116287A/en
Application granted granted Critical
Publication of JP7275361B2 publication Critical patent/JP7275361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、キャリア芯材並びにこれを用いた電子写真現像用キャリア及び電子写真用現像剤に関するものである。 TECHNICAL FIELD The present invention relates to a carrier core material, an electrophotographic development carrier and an electrophotographic developer using the same.

例えば、電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、感光体の表面に形成された静電潜像にトナーを付着させて可視像化し、この可視像を用紙等に転写した後、加熱・加圧して定着させている。高画質化やカラー化の観点から、現像剤としては、キャリアとトナーとを含むいわゆる二成分現像剤が広く使用されている。 For example, in image forming apparatuses such as facsimiles, printers, and copiers that use electrophotography, toner is applied to an electrostatic latent image formed on the surface of a photoreceptor to make it visible. etc., and then fixed by applying heat and pressure. A so-called two-component developer containing a carrier and a toner is widely used as a developer from the viewpoint of high image quality and colorization.

二成分現像剤を用いた現像方式では、キャリアとトナーとを現像装置内で撹拌混合し、摩擦によってトナーを所定量まで帯電させる。そして、回転する現像ローラに現像剤を供給し、現像ローラ上で磁気ブラシを形成させて、磁気ブラシを介して感光体へトナーを電気的に移動させて感光体上の静電潜像を可視像化する。トナー移動後のキャリアは現像ローラ上に残留し、現像装置内で再びトナーと混合される。このため、キャリアの特性として、磁気ブラシを形成する磁気特性と、所望の電荷をトナーに付与する帯電特性および繰り返し使用における耐久性が要求される。 In a developing method using a two-component developer, carrier and toner are stirred and mixed in a developing device, and the toner is charged to a predetermined amount by friction. A developer is supplied to a rotating developing roller, a magnetic brush is formed on the developing roller, and the toner is electrically moved to the photoreceptor via the magnetic brush to form an electrostatic latent image on the photoreceptor. Visualize. After the toner has moved, the carrier remains on the developing roller and is mixed with the toner again in the developing device. For this reason, the carrier is required to have magnetic properties for forming a magnetic brush, charging properties for imparting a desired charge to the toner, and durability in repeated use.

このようなキャリアとして、マグネタイトや各種フェライト等の磁性粒子の表面を樹脂で被覆したものが一般に用いられている。キャリア芯材としての磁性粒子には、良好な磁気的特性と共に、トナーに対する良好な摩擦帯電特性が要求される。このような特性を満たすキャリア芯材として種々の形状のものが提案されている。 As such a carrier, magnetic particles such as magnetite and various ferrites coated with a resin are generally used. Magnetic particles as a carrier core material are required to have good triboelectrification properties for toner as well as good magnetic properties. Various shapes have been proposed as carrier core materials satisfying such characteristics.

例えば、特許文献1では、Srを含有し、特定の形状を有し、粒子表面や空孔内表面に非磁性微粒子が付着した電子写真現像用フェライトキャリア芯材が提案されている。また特許文献2には、表面に凹凸及び細孔を有し、水銀圧入法によって得られる浸入細孔容積値と浸出細孔容積値との比が所定範囲であるキャリア芯材が提案されている。 For example, Patent Literature 1 proposes a ferrite carrier core material for electrophotographic development that contains Sr, has a specific shape, and has non-magnetic fine particles adhered to the particle surfaces and the inner surfaces of the pores. Further, Patent Document 2 proposes a carrier core material having unevenness and pores on the surface and having a ratio of the infiltration pore volume value and the leaching pore volume value obtained by mercury porosimetry within a predetermined range. .

特開2013-137456号公報JP 2013-137456 A 特開2011-8199号公報JP-A-2011-8199

キャリア芯材の表面を樹脂で被覆した樹脂被覆キャリアをトナーと混合して二成分現像剤とした場合、現像ローラの1周前の画像の影響を受けて画像濃度が低下する「現像メモリー」と呼ばれる不具合が生じることがあった。この現像メモリーは樹脂被覆キャリアの電気抵抗が高いことに起因するものと推測され、その対策の一つとして、キャリア芯材の表面を凹凸化して樹脂被覆キャリアの表面にキャリア芯材の一部を露出させて樹脂被覆キャリアの電気抵抗を下げることが考えられている。 When a two-component developer is produced by mixing a resin-coated carrier, in which the surface of a carrier core material is coated with a resin, with a toner, it is called a "development memory," in which the image density drops due to the influence of the image one round before the development roller. I had a problem calling. It is presumed that this development memory is caused by the high electrical resistance of the resin-coated carrier. It is considered to reduce the electric resistance of the resin-coated carrier by exposing.

しかしながら、樹脂被覆キャリアの電気抵抗が低くなると、現像領域において樹脂被覆キャリアに電荷が注入されて樹脂被覆キャリアが感光体ドラムに移動する「キャリア付着」が生じるおそれがある。 However, when the electric resistance of the resin-coated carrier becomes low, there is a risk of "carrier adhesion" in which electric charge is injected into the resin-coated carrier in the developing region and the resin-coated carrier moves to the photosensitive drum.

そこで、本発明の目的は現像メモリーが抑制でき、しかもキャリア付着も抑制できるキャリア芯材を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a carrier core material that can suppress development memory and also suppress carrier adhesion.

また本発明の他の目的は、長期間の使用においても安定して良好な画質画像を形成することができる電子写真現像用キャリア及び電子写真用現像剤を提供することにある。 Another object of the present invention is to provide a carrier for electrophotographic development and an electrophotographic developer capable of stably forming images of good quality even after long-term use.

前記目的を達成する本発明に係るキャリア芯材は、組成式(MFe3-x-y)O(但し、M及びNは、Mg,Mn,Ca,Ti,Zrからなる群から選ばれる金属であり、0≦x<3,0≦y<3-xである。)で表される材料を主成分とするキャリア芯材であって、Snが0.01mol%以上0.50mol%以下含有され、飽和磁化σが60Am/kg以上90Am/kg以下であることを特徴とする。 The carrier core material according to the present invention for achieving the above object has a composition formula (M x N y Fe 3-x-y )O 4 (wherein M and N are the group consisting of Mg, Mn, Ca, Ti and Zr) 0≦x<3, 0≦y<3−x), wherein Sn is 0.01 mol % or more and 0.01 mol % or more. The content is 50 mol % or less, and the saturation magnetization σ s is 60 Am 2 /kg or more and 90 Am 2 /kg or less.

前記構成のキャリア芯材において、Srが0.01mol%以上0.50mol%以下含有されているのが好ましい。 The carrier core material having the above structure preferably contains 0.01 mol % or more and 0.50 mol % or less of Sr.

また前記構成のキャリア芯材においてMがMnであってもよい。 Further, M may be Mn in the carrier core material having the above configuration.

また前記構成のキャリア芯材においてMがMnであり、y=0であってもよい。 Further, in the carrier core material having the above configuration, M may be Mn and y=0.

また前記構成のキャリア芯材において、下記測定方法で測定される異形率が45.0%以上100%以下であるのが好ましい。
(異形率の測定方法)
測定装置:注入型画像解析粒度分布計(ジャスコインタナショナル株式会社、型式:IF-3200)
測定サンプル:0.07g
ポリエチレングリコール400を9ml投入したスクリュー管瓶(容量9ml)中で分散後に測定を行った。
(測定条件)
スペーサー厚:150μm
サンプリング:20%
解析タイプ:相対測定
測定量:0.95ml
解析:ダーク検出
閾値:169(穴を埋める)
O-Roughnessフィルタ:0.5
フィルタ条件:
ISO Area Diametere:最小値5、最大値100、内側の範囲
(解析条件)
解析フィルタ条件I:
ISO Area Diametere:最小値25、最大値55、内側の範囲
解析フィルタ条件II:
ISO Area Diametere:最小値25、最大値55、内側の範囲
ISO Solidity:最小値0.98、最大値1、外側の範囲
Ell.Ratio:最小値0.8、最大値1、内側の範囲
解析フィルタ条件IIでカウントされた粒子数を解析フィルタ条件Iでカウントされた粒子数で割り返して異形率を算出する。
Further, in the carrier core material having the above configuration, it is preferable that the irregularity rate measured by the following measuring method is 45.0% or more and 100% or less.
(Method for measuring deformity rate)
Measuring device: Injection type image analysis particle size distribution meter (Jusco International Co., Ltd., model: IF-3200)
Measurement sample: 0.07g
Measurement was performed after dispersing in a screw vial (capacity 9 ml) containing 9 ml of polyethylene glycol 400.
(Measurement condition)
Spacer thickness: 150 μm
Sampling: 20%
Analysis type: relative measurement Measurement volume: 0.95 ml
Analysis: Dark Detection Threshold: 169 (fill in holes)
O-Roughness filter: 0.5
Filter condition:
ISO Area Diameter: minimum value 5, maximum value 100, inner range (analysis conditions)
Analysis filter condition I:
ISO Area Diameter: Minimum 25, Maximum 55, Inner Range Analysis Filter Condition II:
ISO Area Diameter: minimum value 25, maximum value 55, inner range ISO Solidity: minimum value 0.98, maximum value 1, outer range Ell. Ratio: minimum value 0.8, maximum value 1, the number of particles counted under the inner range analysis filter condition II is divided by the number of particles counted under the analysis filter condition I to calculate the deformity ratio.

また本発明によれば、前記のいずれかに記載のキャリア芯材の表面が樹脂で被覆されていることを特徴とする電子写真現像用キャリアが提供される。 Further, according to the present invention, there is provided a carrier for electrophotographic development, characterized in that the surface of the carrier core material according to any one of the above is coated with a resin.

そしてまた本発明によれば、前記記載の電子写真現像用キャリアとトナーとを含むことを特徴とする電子写真用現像剤が提供される。 Further, according to the present invention, there is provided an electrophotographic developer comprising the above-described electrophotographic developing carrier and toner.

本発明に係るキャリア芯材によれば高速の画像形成装置に用いた場合であっても現像メモリーが抑制できると共にキャリア付着も抑制できる。 According to the carrier core material of the present invention, development memory can be suppressed and carrier adhesion can be suppressed even when used in a high-speed image forming apparatus.

また本発明に係るキャリア芯材を含む現像剤を用いれば、長期間の使用においても安定して良好な画質画像を形成することができる。 Further, by using the developer containing the carrier core material according to the present invention, it is possible to stably form an image of good quality even after long-term use.

本発明に係るキャリアを用いた現像装置の一例を示す概説図である。1 is a schematic diagram showing an example of a developing device using a carrier according to the present invention; FIG.

本発明者らは現像メモリー及びキャリア付着が抑制可能なキャリア芯材を得るため鋭意検討を重ねた結果、所定組成のキャリア芯材にSn(スズ)を所定量含有させるとキャリア芯材の表面に所定の凹凸形状が形成されると共に、キャリア芯材の電気抵抗も低くなることを見出し本発明をなすに至った。すなわち本発明に係るキャリア芯材の大きな特徴の一つはSnが0.01mol%以上0.50mol%以下含有されていることにある。Snの含有量が0.01mol%未満であると、所期の効果すなわちキャリア芯材表面の凹凸化及び低抵抗化が図れない。一方、Snの含有量が0.50mol%を超えると、キャリア芯材の電気抵抗が低下し過ぎて所望の芯材抵抗を得ることが難しくなる。より好ましいSnの含有量は0.1mol%以上0.3mol%以下の範囲である。なお、本発明に係るキャリア芯材のSnを初めとする組成成分の含有量は成分原料の投入量によって制御可能であり化学分析によって確認可能である。 The inventors of the present invention conducted intensive studies to obtain a carrier core material capable of suppressing development memory and carrier adhesion. The inventors have found that the electrical resistance of the carrier core material is reduced as well as the formation of a predetermined uneven shape, and the present invention has been completed. That is, one of the major features of the carrier core material according to the present invention is that the Sn content is 0.01 mol % or more and 0.50 mol % or less. If the Sn content is less than 0.01 mol %, the desired effects, ie, roughening of the surface of the carrier core material and reduction in resistance cannot be achieved. On the other hand, when the Sn content exceeds 0.50 mol %, the electrical resistance of the carrier core material is too low, making it difficult to obtain the desired core material resistance. A more preferable Sn content is in the range of 0.1 mol % or more and 0.3 mol % or less. The content of compositional components including Sn in the carrier core material according to the present invention can be controlled by adjusting the input amount of component raw materials, and can be confirmed by chemical analysis.

また本発明に係るキャリア芯材のもう一つの大きな特徴は飽和磁化σが60Am/kg以上90Am/kg以下の範囲であることである。キャリア芯材の飽和磁化σがこの範囲であることによって感光体ドラムへキャリアが移動するキャリア付着の発生が抑制される。より好ましいキャリア芯材の飽和磁化σは70Am/kg以上85Am/kg以下の範囲である。 Another major feature of the carrier core material according to the present invention is that the saturation magnetization σ s is in the range of 60 Am 2 /kg or more and 90 Am 2 /kg or less. When the saturation magnetization σ s of the carrier core material is within this range, the occurrence of carrier adhesion, which is the movement of the carrier to the photosensitive drum, is suppressed. More preferably, the saturation magnetization σ s of the carrier core material is in the range of 70 Am 2 /kg or more and 85 Am 2 /kg or less.

本発明に係るキャリア芯材は、組成式(MFe3-x-y)O(但し、M及びNは、Mg,Mn,Ca,Ti,Zrからなる群から選ばれる金属であり、0≦x<3,0≦y<3-xである。)で表される材料を主成分とするものである。これらの中でもSr(ストロンチウム)を所定量含有するものが好ましい。Srが含有されることによって、焼成工程においてSrフェライトが一部生成され、マグネトプランバイト型の結晶構造が形成されてキャリア芯材表面の凹凸形状が促進されやすくなる。そして、SrとSnとが含有されていることによって、例えば焼成温度が従来よりも高い1200℃以上とした場合であっても材料成分の分解・溶融による球形化が抑制され表面の凹凸形状が維持促進される。Srの含有量としては0.01mol%以上0.50mol%以下の範囲が好ましい。 The carrier core material according to the present invention has a composition formula (M x N y Fe 3-xy )O 4 (where M and N are metals selected from the group consisting of Mg, Mn, Ca, Ti and Zr). and 0≤x<3, 0≤y<3-x) as a main component. Among these, those containing a predetermined amount of Sr (strontium) are preferable. When Sr is contained, Sr ferrite is partially generated in the firing process, and a magnetoplumbite type crystal structure is formed, thereby facilitating the uneven shape of the surface of the carrier core material. Further, since Sr and Sn are contained, even when the firing temperature is set to 1200° C. or higher, which is higher than the conventional temperature, spheroidization due to decomposition and melting of the material components is suppressed, and the uneven shape of the surface is maintained. Promoted. The Sr content is preferably in the range of 0.01 mol % or more and 0.50 mol % or less.

また本発明に係るキャリア芯材の主成分組成としてはMnフェライト及びMnMgフェライトが好ましく、より好ましくはSrが含有されたMnフェライト及びSrが含有されたMnMgフェライトである。 Mn ferrite and MnMg ferrite are preferable as the main component composition of the carrier core material according to the present invention, and Mn ferrite containing Sr and MnMg ferrite containing Sr are more preferable.

本発明に係るキャリア芯材の前記測定方法で測定される異形率は45.0%以上100%以下の範囲が好ましい。キャリア芯材の異形率が45.0%未満であると、キャリア芯材が樹脂被覆されてキャリアとされた際にキャリア表面にキャリア芯材の露出が少なくなりキャリア芯材に溜まったカウンターチャージが放出されにくくなって現像メモリーが生じやすくなる。より好ましいキャリア芯材の異形率は50%以上である。 The deformity rate of the carrier core material according to the present invention measured by the above measuring method is preferably in the range of 45.0% or more and 100% or less. When the carrier core material has a deformity rate of less than 45.0%, when the carrier core material is coated with a resin to form a carrier, the carrier core material is less exposed on the carrier surface, and the counter charge accumulated in the carrier core material is reduced. It becomes difficult to release, and development memory tends to occur. More preferably, the deformity rate of the carrier core material is 50% or more.

本発明のキャリア芯材の体積平均粒径としては、25μm以上50μm未満の範囲が好ましく、より好ましくは30μm以上40μm以下の範囲である。 The volume average particle diameter of the carrier core material of the present invention is preferably in the range of 25 μm or more and less than 50 μm, more preferably in the range of 30 μm or more and 40 μm or less.

本発明のキャリア芯材の製造方法に特に限定はないが、以下に説明する製造方法が好適である。 The method for producing the carrier core material of the present invention is not particularly limited, but the production method described below is suitable.

まず、Fe成分原料、M成分原料、N成分原料、Sn成分原料、そして必要によりSr成分などの添加剤を秤量する。Fe成分原料としては、Fe等が好適に使用される。M成分原料及びN成分原料としては、MgであればMgO、Mg(OH)、MgCOが好適に使用でき、MnであればMnCO、Mn等が使用でき、Ca成分原料としては、CaO、Ca(OH)、CaCO等が使用でき、TiであればTiO等が使用でき、ZrであればZrO等が使用できる。また、Sn成分原料としてはSnO、SnOが使用でき、Sr成分原料としては、SrCO、Sr(NOなどが好適に使用される。 First, Fe component raw material, M component raw material, N component raw material, Sn component raw material, and if necessary additives such as Sr component are weighed. Fe 2 O 3 or the like is preferably used as the Fe component raw material. As the raw material for the M component and the raw material for the N component, MgO, Mg(OH) 2 and MgCO 3 can be suitably used for Mg, and MnCO 3 and Mn 3 O 4 can be suitably used for Mn. CaO, Ca(OH) 2 , CaCO 3 and the like can be used, Ti can use TiO 2 and the like, and Zr can use ZrO 2 and the like. SnO 2 and SnO can be used as the Sn component material, and SrCO 3 , Sr(NO 3 ) 2 and the like are preferably used as the Sr component material.

次いで、原料を分散媒中に投入しスラリーを作製する。本発明で使用する分散媒としては水が好適である。分散媒には、前記仮焼成原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.1質量%~2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.1質量%~2質量%程度とするのが好ましい。その他、カーボンブラックなどの還元剤、アンモニアなどのpH調整剤、潤滑剤、焼結促進剤等を配合してもよい。スラリーの固形分濃度は50質量%~90質量%の範囲が望ましい。より好ましくは60質量%~80質量%である。60質量%以上であれば、造粒物中に粒子内細孔が少なく、焼成時の焼結不足を防ぐことができる。 Next, the raw material is put into the dispersion medium to prepare a slurry. Water is suitable as the dispersion medium used in the present invention. The dispersion medium may contain, if necessary, a binder, a dispersant, and the like, in addition to the temporary firing raw material. As the binder, for example, polyvinyl alcohol can be preferably used. As for the blending amount of the binder, it is preferable that the concentration in the slurry is about 0.1% by mass to 2% by mass. Moreover, as a dispersing agent, for example, ammonium polycarboxylate can be suitably used. It is preferable that the concentration of the dispersant in the slurry is about 0.1% by mass to 2% by mass. In addition, a reducing agent such as carbon black, a pH adjuster such as ammonia, a lubricant, a sintering accelerator, and the like may be blended. The solid content concentration of the slurry is desirably in the range of 50% by mass to 90% by mass. More preferably 60% by mass to 80% by mass. If it is 60% by mass or more, there are few intra-particle pores in the granules, and insufficient sintering during firing can be prevented.

なお、秤量した原料を混合し仮焼成し解粒した後、分散媒に投入しスラリーを作製してもよい。仮焼成の温度としては750℃~1000℃の範囲が好ましい。750℃以上であれば、仮焼による一部フェライト化が進み、焼成時のガス発生量が少なく、固体間反応が十分に進むため、好ましい。一方、1000℃以下であれば、仮焼による焼結が弱く、後のスラリー粉砕工程で原料を十分に粉砕できるので好ましい。また、仮焼成時の雰囲気としては大気雰囲気が好ましい。 Alternatively, the weighed raw materials may be mixed, calcined and pulverized, and then added to the dispersion medium to prepare a slurry. The calcination temperature is preferably in the range of 750°C to 1000°C. If the temperature is 750° C. or higher, partial ferrite formation by calcination proceeds, the amount of gas generated during firing is small, and the reaction between solids proceeds sufficiently, which is preferable. On the other hand, if it is 1000° C. or less, sintering by calcination is weak and the raw material can be sufficiently pulverized in the subsequent slurry pulverization process, which is preferable. In addition, an air atmosphere is preferable as the atmosphere during calcination.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は5μm以下が好ましく、より好ましくは1μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。 Next, the slurry prepared as described above is wet pulverized. For example, it is wet pulverized for a predetermined time using a ball mill or vibration mill. The average particle size of the pulverized raw material is preferably 5 μm or less, more preferably 1 μm or less. A vibration mill or a ball mill should preferably contain media having a predetermined particle size. Examples of media materials include iron-based chromium steel and oxide-based zirconia, titania, and alumina. The form of the pulverization process may be either a continuous type or a batch type. The particle size of the pulverized product is adjusted by the pulverization time, rotation speed, material and particle size of the media used, and the like.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球形に造粒する。噴霧乾燥時の雰囲気温度は100℃~300℃の範囲が好ましい。これにより、粒径10μm~200μmの球形の造粒物が得られる。次いで、必要により、得られた造粒物を振動篩を用いて分級し所定の粒径範囲の造粒物を作製する。 Then, the pulverized slurry is spray-dried and granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer, and sprayed into the atmosphere to form spherical granules. The ambient temperature during spray drying is preferably in the range of 100°C to 300°C. As a result, spherical granules having a particle size of 10 μm to 200 μm are obtained. Next, if necessary, the obtained granules are classified using a vibrating sieve to produce granules having a predetermined particle size range.

次に、前記の造粒物を所定温度に加熱した炉に投入して、フェライト粒子を合成するための一般的な手法で焼成することにより、フェライト粒子を生成させる。焼成温度としては1100℃~1350℃の範囲が好ましい。焼成温度が1100℃以下であると、相変態が起こりにくくなるとともに焼結も進みにくくなる。また、焼成温度が1350℃を超えると、過剰焼結による過大グレインの発生がするおそれがある。前記焼成温度に至るまでの昇温速度としては250℃/h~500℃/hの範囲が好ましい。焼成温度での保持時間は2時間以上が好ましい。フェライト粒子表面の凹凸は焼成工程における酸素濃度によっても調整可能である。具体的には酸素濃度を0.05%~10%とする。また、冷却時の酸素濃度を焼成時の酸素濃度よりも低くすることによって、フェライト相の酸化状態の調整を図ってもよい。具体的には酸素濃度を0.05%~1.5%の範囲とする。昇温・焼結・冷却における酸素濃度は0.05%~10%の範囲に制御するのが好ましい。 Next, the granules are put into a furnace heated to a predetermined temperature and fired by a general method for synthesizing ferrite particles, thereby producing ferrite particles. The firing temperature is preferably in the range of 1100°C to 1350°C. When the firing temperature is 1100° C. or less, phase transformation is less likely to occur and sintering is less likely to proceed. Also, if the firing temperature exceeds 1350° C., there is a possibility that excessively large grains may be generated due to excessive sintering. The heating rate up to the firing temperature is preferably in the range of 250° C./h to 500° C./h. The retention time at the firing temperature is preferably 2 hours or longer. The unevenness of the ferrite particle surface can also be adjusted by the oxygen concentration in the firing process. Specifically, the oxygen concentration is set to 0.05% to 10%. Also, the oxidation state of the ferrite phase may be adjusted by making the oxygen concentration during cooling lower than the oxygen concentration during firing. Specifically, the oxygen concentration is set in the range of 0.05% to 1.5%. The oxygen concentration during heating, sintering and cooling is preferably controlled within the range of 0.05% to 10%.

このようにして得られた焼成物を必要により解粒する。具体的には、例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。また解粒処理後、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。フェライト粒子の粒径としては25μm以上50μm未満が好ましい。 The baked product thus obtained is pulverized if necessary. Specifically, for example, the fired product is pulverized using a hammer mill or the like. The form of the pulverization step may be either a continuous type or a batch type. Further, after the pulverization treatment, if necessary, classification may be carried out in order to arrange the particle size within a predetermined range. As a classification method, conventionally known methods such as wind classification and sieve classification can be used. Further, after primary classification with an air classifier, the particle size may be adjusted to a predetermined range with a vibrating sieve or an ultrasonic sieve. Furthermore, after the classification process, non-magnetic particles may be removed by a magnetic field separator. The particle size of the ferrite particles is preferably 25 μm or more and less than 50 μm.

その後、必要に応じて、分級後のフェライト粒子を酸化性雰囲気中で加熱して、粒子表面に酸化被膜を形成してフェライト粒子の高抵抗化を図ってもよい(高抵抗化処理)。酸化性雰囲気としては大気雰囲気又は酸素と窒素の混合雰囲気のいずれでもよい。また、加熱温度は200℃以上800℃以下の範囲が好ましく、360℃以上550℃以下の範囲がさらに好ましい。加熱時間は0.5時間以上5時間以下の範囲が好ましい。なお、フェライト粒子の表面と内部とを均質化する観点からは加熱温度は低温であるのが望ましい。 After that, if necessary, the classified ferrite particles may be heated in an oxidizing atmosphere to form an oxide film on the particle surface to increase the resistance of the ferrite particles (high resistance treatment). The oxidizing atmosphere may be an air atmosphere or a mixed atmosphere of oxygen and nitrogen. Moreover, the heating temperature is preferably in the range of 200° C. or higher and 800° C. or lower, and more preferably in the range of 360° C. or higher and 550° C. or lower. The heating time is preferably in the range of 0.5 hours or more and 5 hours or less. From the viewpoint of homogenizing the surface and the inside of the ferrite particles, it is desirable that the heating temperature is low.

以上のようにして作製したフェライト粒子を本発明のキャリア芯材として用いる。そして、所望の帯電性等を得るために、キャリア芯材の外周を樹脂で被覆して電子写真現像用キャリアとする。 The ferrite particles produced as described above are used as the carrier core material of the present invention. Then, in order to obtain desired chargeability and the like, the outer circumference of the carrier core material is coated with a resin to obtain a carrier for electrophotographic development.

キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ-4-メチルペンテン-1、ポリ塩化ビニリデン、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。 Conventionally known resins can be used as the resin for coating the surface of the carrier core material. Examples include polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene ) resins, polystyrene, (meth)acrylic resins, polyvinyl alcohol resins, thermoplastic elastomers such as polyvinyl chloride, polyurethane, polyester, polyamide, and polybutadiene, and fluorosilicone resins.

キャリア芯材の表面を樹脂で被覆するには、樹脂の溶液又は分散液をキャリア芯材に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001質量%以上30質量%以下、特に0.001質量%以上2質量%以下の範囲内にあるのがよい。 In order to coat the surface of the carrier core material with a resin, a resin solution or dispersion may be applied to the carrier core material. Solvents for the coating solution include aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol and butanol. cellosolve solvents such as ethyl cellosolve and butyl cellosolve; ester solvents such as ethyl acetate and butyl acetate; amide solvents such as dimethylformamide and dimethylacetamide. . The concentration of the resin component in the coating solution is generally in the range of 0.001% by mass to 30% by mass, particularly 0.001% by mass to 2% by mass.

キャリア芯材への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。 As a method for coating the carrier core material with the resin, for example, a spray drying method, a fluidized bed method, a spray drying method using a fluidized bed, an immersion method, or the like can be used. Among these, the fluidized bed method is particularly preferred because it can be applied efficiently with a small amount of resin. The amount of resin coating can be adjusted, for example, in the case of a fluidized bed method, by adjusting the amount of resin solution to be sprayed and the spraying time.

キャリアの粒子径は、一般に、体積平均粒子径で25μm以上50μm未満の範囲、特に30μm以上40μm以下の範囲が好ましい。 The particle size of the carrier is generally in the range of 25 μm or more and less than 50 μm, particularly preferably in the range of 30 μm or more and 40 μm or less in terms of volume average particle size.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1質量%以上15質量%以下の範囲が好ましい。トナー濃度が1質量%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15質量%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3質量%以上10質量%以下の範囲である。 The electrophotographic developer according to the present invention is obtained by mixing the carrier prepared as described above and the toner. The mixing ratio of the carrier and the toner is not particularly limited, and may be appropriately determined depending on the developing conditions of the developing device to be used. In general, the toner concentration in the developer is preferably in the range of 1% by mass or more and 15% by mass or less. If the toner concentration is less than 1% by mass, the image density becomes too low. On the other hand, if the toner concentration exceeds 15% by mass, the toner scatters in the developing device and the toner adheres to the inside of the machine and the background of the transfer paper. This is because there is a possibility that a malfunction may occur. A more preferable toner concentration is in the range of 3% by mass or more and 10% by mass or less.

トナーとしては、重合法、粉砕分級法、溶融造粒法、スプレー造粒法など従来公知の方法で製造したものが使用できる。具体的には、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものが好適に使用できる。 As the toner, those produced by a conventionally known method such as a polymerization method, a pulverization classification method, a melt granulation method, a spray granulation method, or the like can be used. Specifically, a binder resin containing a thermoplastic resin as a main component and containing a colorant, a release agent, a charge control agent, etc. can be preferably used.

トナーの粒径は、一般に、コールターカウンターによる体積平均粒径で5μm以上15μm以下の範囲が好ましく、7μm以上12μm以下の範囲がより好ましい。 The particle size of the toner is preferably in the range of 5 μm to 15 μm, more preferably in the range of 7 μm to 12 μm, in terms of volume average particle size measured by a Coulter counter.

トナー表面には、必要により、改質剤を添加してもよい。改質剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用できる。 If necessary, a modifier may be added to the surface of the toner. Modifiers include, for example, silica, alumina, zinc oxide, titanium oxide, magnesium oxide, polymethyl methacrylate, and the like. These can be used singly or in combination of two or more.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。 A conventionally known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer or the like can be used.

本発明の現像剤を用いた現像方法に特に限定はないが、磁気ブラシ現像法が好適である。図1に、磁気ブラシ現像を行う現像装置の一例を示す概説図を示す。図1に示す現像装置は、複数の磁極を内蔵した回転自在の現像ローラ3と、現像部へ搬送される現像ローラ3上の現像剤量を規制する規制ブレード6と、水平方向に平行に配置され、互いに逆向きに現像剤を撹拌搬送する2本のスクリュー1,2と、2本のスクリュー1,2の間に形成され、両スクリューの両端部において、一方のスクリューから他方のスクリューに現像剤の移動を可能とし、両端部以外での現像剤の移動を防ぐ仕切板4とを備える。 The development method using the developer of the present invention is not particularly limited, but a magnetic brush development method is preferred. FIG. 1 is a schematic diagram showing an example of a developing device that performs magnetic brush development. The developing device shown in FIG. 1 includes a rotatable developing roller 3 containing a plurality of magnetic poles, and a regulating blade 6 for regulating the amount of developer on the developing roller 3 that is conveyed to the developing section, arranged horizontally in parallel. is formed between two screws 1 and 2 for agitating and conveying the developer in opposite directions to each other and between the two screws 1 and 2. At both ends of both screws, development is carried out from one screw to the other screw. A partition plate 4 is provided which allows movement of the developer and prevents movement of the developer except at both ends.

2本のスクリュー1,2は、螺旋状の羽根13,23が同じ傾斜角で軸部11,21に形成されたものであって、不図示の駆動機構によって同方向に回転し、現像剤を互いに逆方向に搬送する。そして、スクリュー1,2の両端部において一方のスクリューから他方のスクリューに現像剤が移動する。これによりトナーとキャリアからなる現像剤は装置内を常に循環し撹拌されることになる。 The two screws 1 and 2 have helical blades 13 and 23 formed on shaft portions 11 and 21 at the same inclination angle, and are rotated in the same direction by a drive mechanism (not shown) to drive the developer. Convey in opposite directions. At both ends of the screws 1 and 2, the developer moves from one screw to the other screw. As a result, the developer consisting of toner and carrier is constantly circulated and agitated within the device.

一方、現像ローラ3は、表面に数μmの凹凸を付けた金属製の筒状体の内部に、磁極発生手段として、現像磁極N、搬送磁極S、剥離磁極N、汲み上げ磁極N、ブレード磁極Sの5つの磁極を順に配置した固定磁石を有してなる。現像ローラ3の筒状体が矢印方向に回転すると、汲み上げ磁極Nの磁力によって、スクリュー1から現像ローラ3へ現像剤が汲み上げられる。現像ローラ3の表面に担持された現像剤は、規制ブレード6により層規制された後、現像領域へ搬送される。 On the other hand, the developing roller 3 has a magnetic pole generating means in which a developing magnetic pole N 1 , a conveying magnetic pole S 1 , a peeling magnetic pole N 2 , and a pumping magnetic pole N 3 are provided inside a metal cylindrical body having an uneven surface of several μm. , blade poles S2 having five poles arranged in sequence. When the cylindrical body of the developing roller 3 rotates in the direction of the arrow, the developer is drawn up from the screw 1 to the developing roller 3 by the magnetic force of the drawing magnetic pole N3 . The developer carried on the surface of the developing roller 3 is layer-regulated by the regulating blade 6 and then conveyed to the developing area.

現像領域では、直流電圧に交流電圧を重畳したバイアス電圧が転写電圧電源8から現像ローラ3に印加される。バイアス電圧の直流電圧成分は、感光体ドラム5表面の背景部電位と画像部電位との間の電位とされる。また、背景部電位と画像部電位とは、バイアス電圧の最大値と最小値との間の電位とされる。バイアス電圧のピーク間電圧は0.5kV~5kVの範囲が好ましく、周波数は1kHz~10kHzの範囲が好ましい。またバイアス電圧の波形は矩形波、サイン波、三角波などいずれであってもよい。これによって、現像領域においてトナー及びキャリアが振動し、トナーが感光体ドラム5上の静電潜像に付着して現像がなされる。 In the developing area, a bias voltage obtained by superimposing an AC voltage on a DC voltage is applied from the transfer voltage power source 8 to the developing roller 3 . The DC voltage component of the bias voltage is a potential between the background potential and the image potential on the surface of the photosensitive drum 5 . Also, the background portion potential and the image portion potential are potentials between the maximum value and the minimum value of the bias voltage. The peak-to-peak voltage of the bias voltage is preferably in the range of 0.5 kV to 5 kV, and the frequency is preferably in the range of 1 kHz to 10 kHz. Also, the waveform of the bias voltage may be rectangular, sine, or triangular. As a result, the toner and carrier vibrate in the development area, and the toner adheres to the electrostatic latent image on the photoreceptor drum 5 for development.

その後現像ローラ3上の現像剤は、搬送磁極Sによって装置内部に搬送され、剥離電極Nによって現像ローラ3から剥離して、スクリュー1,2によって装置内を再び循環搬送され、現像に供していない現像剤と混合撹拌される。そして汲み上げ極Nによって、新たに現像剤がスクリュー1から現像ローラ3へ供給される。 After that, the developer on the developing roller 3 is conveyed into the apparatus by the conveying magnetic pole S1 , separated from the developing roller 3 by the separating electrode N2 , and circulated and conveyed again in the apparatus by the screws 1 and 2 for development. Not mixed with developer and agitated. Then, the developer is newly supplied from the screw 1 to the developing roller 3 by the scooping pole N3 .

なお、図1に示した実施形態では現像ローラ3に内蔵された磁極は5つであったが、現像剤の現像領域での移動量を一層大きくしたり、汲み上げ性等を一層向上させるために、磁極を8極や10極、12極と増やしてももちろん構わない。 In the embodiment shown in FIG. 1, the developing roller 3 has five built-in magnetic poles. Of course, the number of magnetic poles may be increased to 8, 10, or 12 poles.

以下、本発明を実施例によりさらに詳しく説明するが本発明はこれらの例に何ら限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

実施例1
原料として、Fe(平均粒径:0.6μm)14.52kg、Mn(平均粒径:3.4μm)5.44kg、SrCO(平均粒径:0.6μm)111g、SnO(平均粒径:5.6μm)91gを純水6.9kg中に分散し、還元剤としてカーボンブラックを60.5g、分散剤としてポリカルボン酸アンモニウム系分散剤を121g、pH調整剤としてアンモニア水を14g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。
この造粒物を、電気炉に投入し1300℃まで酸素濃度1.0%で4.5時間かけて昇温した。その後1300℃で酸素濃度0.4%~1.0%で3時間保持することにより焼成を行った。その後酸素濃度0.4%で6時間かけて冷却した。
得られた焼成物をハンマーミル(三庄インダストリー社製「ハンマークラッシャーNH-34S」,スクリーン目開き:0.3mm)で解粒し、振動篩を用いて分級し体積平均粒径35μmのキャリア芯材を得た。その後、460℃の大気中で1.5時間高抵抗化処理を実施して、実施例1のキャリア芯材を得た。
得られたキャリア芯材の見掛け密度、流動度、体積平均粒径(平均粒径)、磁気特性、細孔容積、BET比表面積、静的電気抵抗、異形率を下記に示す方法で測定した。またキャリア芯材の組成は原料成分の投入量から算出した。測定結果を表1及び表2に示す。なお、以下の実施例及び比較例のキャリア芯材についても同様の方法で組成を算出すると共に物性を測定した。
Example 1
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 14.52 kg, Mn 3 O 4 (average particle size: 3.4 μm) 5.44 kg, SrCO 3 (average particle size: 0.6 μm) 111 g, 91 g of SnO 2 (average particle size: 5.6 μm) was dispersed in 6.9 kg of pure water. 14 g of aqueous ammonia was added to form a mixture. This mixture was pulverized by a wet ball mill (media diameter: 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 140° C. by a spray dryer to obtain dry granules having a particle size of 10 μm to 75 μm.
The granules were placed in an electric furnace and heated to 1300° C. under an oxygen concentration of 1.0% over 4.5 hours. After that, it was sintered by holding it at 1300° C. with an oxygen concentration of 0.4% to 1.0% for 3 hours. After that, it was cooled over 6 hours at an oxygen concentration of 0.4%.
The resulting fired product was pulverized with a hammer mill (“Hammer Crusher NH-34S” manufactured by Sansho Industry Co., Ltd., screen opening: 0.3 mm) and classified using a vibrating sieve to obtain a carrier core having a volume average particle size of 35 μm. got the wood. Thereafter, a high resistance treatment was performed in the air at 460° C. for 1.5 hours to obtain a carrier core material of Example 1.
The apparent density, fluidity, volume average particle size (average particle size), magnetic properties, pore volume, BET specific surface area, static electrical resistance, and deformation ratio of the obtained carrier core material were measured by the methods described below. In addition, the composition of the carrier core material was calculated from the input amount of the raw material components. Tables 1 and 2 show the measurement results. The compositions of the carrier core materials of the following examples and comparative examples were calculated in the same manner, and the physical properties were measured.

実施例2
原料として、Fe(平均粒径:0.6μm)14.52kg、Mn(平均粒径:3.4μm)5.44kg、SrCO(平均粒径:0.6μm)111g、SnO(平均粒径:5.6μm)114gを純水6.9kg中に分散し、還元剤としてカーボンブラックを60.5g、分散剤としてポリカルボン酸アンモニウム系分散剤を121g、pH調整剤としてアンモニア水を14g添加して混合物とした。この混合物を湿式ボールミル(メディア径3mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約210℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この像粒物から粒径25μm以下の微小な粒子を篩を用いて除去した。その後は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、460℃の大気中で1.5時間高抵抗化処理を実施して、実施例2のキャリア芯材を得た。
Example 2
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 14.52 kg, Mn 3 O 4 (average particle size: 3.4 μm) 5.44 kg, SrCO 3 (average particle size: 0.6 μm) 111 g, 114 g of SnO 2 (average particle size: 5.6 μm) was dispersed in 6.9 kg of pure water, 60.5 g of carbon black as a reducing agent, 121 g of ammonium polycarboxylate as a dispersant, and 121 g of ammonium polycarboxylate as a pH adjuster. 14 g of aqueous ammonia was added to form a mixture. This mixture was pulverized by a wet ball mill (media diameter: 3 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 210° C. by a spray dryer to obtain dry granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from the image particles using a sieve. Thereafter, in the same manner as in Example 1, a carrier core material having a volume average particle size of 35 μm was obtained. Thereafter, a high resistance treatment was performed in the air at 460° C. for 1.5 hours to obtain a carrier core material of Example 2.

実施例3
原料として、Fe(平均粒径:0.6μm)14.52kg、Mn(平均粒径:3.4μm)5.44kg、SrCO(平均粒径:0.6μm)111g、SnO(平均粒径:5.6μm)57gを純水6.9kg中に分散し、還元剤としてカーボンブラックを60.5g、分散剤としてポリカルボン酸アンモニウム系分散剤を121g、pH調整剤としてアンモニア水を14g添加して混合物とした。その後は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、440℃の大気中で1.5時間高抵抗化処理を実施して、実施例3のキャリア芯材を得た。
Example 3
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 14.52 kg, Mn 3 O 4 (average particle size: 3.4 μm) 5.44 kg, SrCO 3 (average particle size: 0.6 μm) 111 g, 57 g of SnO 2 (average particle size: 5.6 μm) was dispersed in 6.9 kg of pure water, 60.5 g of carbon black was used as a reducing agent, 121 g of ammonium polycarboxylate was used as a dispersant, and 121 g was used as a pH adjuster. 14 g of aqueous ammonia was added to form a mixture. Thereafter, in the same manner as in Example 1, a carrier core material having a volume average particle size of 35 μm was obtained. Thereafter, a high resistance treatment was performed in the air at 440° C. for 1.5 hours to obtain a carrier core material of Example 3.

実施例4
原料として、Fe(平均粒径:0.6μm)14.52kg、Mn(平均粒径:3.4μm)5.44kg、SrCO(平均粒径:0.6μm)111g、SnO(平均粒径:5.6μm)28gを純水6.9kg中に分散し、還元剤としてカーボンブラックを60.5g、分散剤としてポリカルボン酸アンモニウム系分散剤を121g、pH調整剤としてアンモニア水を14g添加して混合物とした。その後は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、440℃の大気中で1.5時間高抵抗化処理を実施して、実施例4のキャリア芯材を得た。
Example 4
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 14.52 kg, Mn 3 O 4 (average particle size: 3.4 μm) 5.44 kg, SrCO 3 (average particle size: 0.6 μm) 111 g, 28 g of SnO 2 (average particle size: 5.6 μm) was dispersed in 6.9 kg of pure water, 60.5 g of carbon black as a reducing agent, 121 g of ammonium polycarboxylate as a dispersant, and 121 g of ammonium polycarboxylate as a pH adjuster. 14 g of aqueous ammonia was added to form a mixture. Thereafter, in the same manner as in Example 1, a carrier core material having a volume average particle size of 35 μm was obtained. Thereafter, a high resistance treatment was performed in the atmosphere at 440° C. for 1.5 hours to obtain a carrier core material of Example 4.

実施例5
原料として、Fe(平均粒径:0.6μm)15.46kg、Mn(平均粒径:3.4μm)4.50kg、SrCO(平均粒径:0.6μm)111g、SnO(平均粒径:5.6μm)91gを純水6.9kg中に分散し、還元剤としてカーボンブラックを60.5g、分散剤としてポリカルボン酸アンモニウム系分散剤を121g、pH調整剤としてアンモニア水を14g添加して混合物とした。その後は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、480℃の大気中で1.5時間高抵抗化処理を実施して、実施例5のキャリア芯材を得た。
Example 5
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 15.46 kg, Mn 3 O 4 (average particle size: 3.4 μm) 4.50 kg, SrCO 3 (average particle size: 0.6 μm) 111 g, 91 g of SnO 2 (average particle size: 5.6 μm) was dispersed in 6.9 kg of pure water. 14 g of aqueous ammonia was added to form a mixture. Thereafter, in the same manner as in Example 1, a carrier core material having a volume average particle size of 35 μm was obtained. Thereafter, a high resistance treatment was performed in the air at 480° C. for 1.5 hours to obtain a carrier core material of Example 5.

実施例6
原料として、Fe(平均粒径:0.6μm)14.81kg、Mn(平均粒径:3.4μm)5.15kg、SrCO(平均粒径:0.6μm)111g、SnO(平均粒径:5.6μm)91gを純水6.9kg中に分散し、還元剤としてカーボンブラックを60.5g、分散剤としてポリカルボン酸アンモニウム系分散剤を121g、pH調整剤としてアンモニア水を14g添加して混合物とした。その後は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、440℃の大気中で1.5時間高抵抗化処理を実施して、実施例6のキャリア芯材を得た。
Example 6
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 14.81 kg, Mn 3 O 4 (average particle size: 3.4 μm) 5.15 kg, SrCO 3 (average particle size: 0.6 μm) 111 g, 91 g of SnO 2 (average particle size: 5.6 μm) was dispersed in 6.9 kg of pure water. 14 g of aqueous ammonia was added to form a mixture. Thereafter, in the same manner as in Example 1, a carrier core material having a volume average particle size of 35 μm was obtained. Thereafter, a high resistance treatment was performed in the air at 440° C. for 1.5 hours to obtain a carrier core material of Example 6.

実施例7
原料として、Fe(平均粒径:0.6μm)13.96kg、Mn(平均粒径:3.4μm)6.00kg、SrCO(平均粒径:0.6μm)111g、SnO(平均粒径:5.6μm)91gを純水6.9kg中に分散し、還元剤としてカーボンブラックを60.5g、分散剤としてポリカルボン酸アンモニウム系分散剤を121g、pH調整剤としてアンモニア水を14g添加して混合物とした。その後は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、440℃の大気中で1.5時間高抵抗化処理を実施して、実施例7のキャリア芯材を得た。
Example 7
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 13.96 kg, Mn 3 O 4 (average particle size: 3.4 μm) 6.00 kg, SrCO 3 (average particle size: 0.6 μm) 111 g, 91 g of SnO 2 (average particle size: 5.6 μm) was dispersed in 6.9 kg of pure water. 14 g of aqueous ammonia was added to form a mixture. Thereafter, in the same manner as in Example 1, a carrier core material having a volume average particle size of 35 μm was obtained. Thereafter, a high resistance treatment was performed in the air at 440° C. for 1.5 hours to obtain a carrier core material of Example 7.

実施例8
原料として、Fe(平均粒径:0.6μm)13.55kg、Mn(平均粒径:3.4μm)6.41kg、SrCO(平均粒径:0.6μm)111g、SnO(平均粒径:5.6μm)91gを純水6.9kg中に分散し、還元剤としてカーボンブラックを60.5g、分散剤としてポリカルボン酸アンモニウム系分散剤を121g、pH調整剤としてアンモニア水を14g添加して混合物とした。その後は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、460℃の大気中で1.5時間高抵抗化処理を実施して、実施例8のキャリア芯材を得た。
Example 8
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 13.55 kg, Mn 3 O 4 (average particle size: 3.4 μm) 6.41 kg, SrCO 3 (average particle size: 0.6 μm) 111 g, 91 g of SnO 2 (average particle size: 5.6 μm) was dispersed in 6.9 kg of pure water. 14 g of aqueous ammonia was added to form a mixture. Thereafter, in the same manner as in Example 1, a carrier core material having a volume average particle size of 35 μm was obtained. Thereafter, a high resistance treatment was performed in the air at 460° C. for 1.5 hours to obtain a carrier core material of Example 8.

実施例9
原料として、Fe(平均粒径:0.6μm)14.52kg、Mn(平均粒径:3.4μm)5.44kg、SrCO(平均粒径:0.6μm)111g、SnO(平均粒径:5.6μm)114gを純水6.9kg中に分散し、還元剤としてカーボンブラックを60.5g、分散剤としてポリカルボン酸アンモニウム系分散剤を121g、pH調整剤としてアンモニア水を14g添加して混合物とした。この混合物を湿式ボールミル(メディア径3mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約210℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この像粒物から粒径25μm以下の微小な粒子を篩を用いて除去した。
この造粒物を、電気炉に投入し1300℃まで酸素濃度1.0%で4.5時間かけて昇温した。その後1300℃で酸素濃度0.4%~1.0%で3時間保持することにより焼成を行った。その後酸素濃度0.5%で6時間かけて冷却した。その後は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、480℃の大気中で1.5時間高抵抗化処理を実施して、実施例9のキャリア芯材を得た。
Example 9
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 14.52 kg, Mn 3 O 4 (average particle size: 3.4 μm) 5.44 kg, SrCO 3 (average particle size: 0.6 μm) 111 g, 114 g of SnO 2 (average particle size: 5.6 μm) was dispersed in 6.9 kg of pure water, 60.5 g of carbon black as a reducing agent, 121 g of ammonium polycarboxylate as a dispersant, and 121 g of ammonium polycarboxylate as a pH adjuster. 14 g of aqueous ammonia was added to form a mixture. This mixture was pulverized by a wet ball mill (media diameter: 3 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 210° C. by a spray dryer to obtain dry granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from the image particles using a sieve.
The granules were placed in an electric furnace and heated to 1300° C. under an oxygen concentration of 1.0% over 4.5 hours. After that, it was sintered by holding it at 1300° C. with an oxygen concentration of 0.4% to 1.0% for 3 hours. After that, it was cooled over 6 hours at an oxygen concentration of 0.5%. Thereafter, in the same manner as in Example 1, a carrier core material having a volume average particle size of 35 μm was obtained. Thereafter, a high resistance treatment was performed in the air at 480° C. for 1.5 hours to obtain a carrier core material of Example 9.

実施例10
原料として、Fe(平均粒径:0.6μm)14.52kg、Mn(平均粒径:3.4μm)5.44kg、SrCO(平均粒径:0.6μm)111g、SnO(平均粒径:5.6μm)91gを純水6.9kg中に分散し、還元剤としてカーボンブラックを60.5g、分散剤としてポリカルボン酸アンモニウム系分散剤を121g、pH調整剤としてアンモニア水を14g添加して混合物とした。この混合物を湿式ボールミル(メディア径3mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約210℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この像粒物から粒径25μm以下の微小な粒子を篩を用いて除去した。その後は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、420℃の大気中で1.5時間高抵抗化処理を実施して、実施例10のキャリア芯材を得た。
Example 10
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 14.52 kg, Mn 3 O 4 (average particle size: 3.4 μm) 5.44 kg, SrCO 3 (average particle size: 0.6 μm) 111 g, 91 g of SnO 2 (average particle size: 5.6 μm) was dispersed in 6.9 kg of pure water. 14 g of aqueous ammonia was added to form a mixture. This mixture was pulverized by a wet ball mill (media diameter: 3 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air of about 210° C. by a spray dryer to obtain dry granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from the image particles using a sieve. Thereafter, in the same manner as in Example 1, a carrier core material having a volume average particle size of 35 μm was obtained. Thereafter, a high resistance treatment was performed in the air at 420° C. for 1.5 hours to obtain a carrier core material of Example 10.

実施例11
造粒物を、電気炉に投入し1270℃まで酸素濃度1.0%で4.5時間かけて昇温した。その後1270℃で酸素濃度0.4%~1.0%で3時間保持することにより焼成を行った。その後酸素濃度0.4%で6時間かけて冷却した以外は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、420℃の大気中で1.5時間高抵抗化処理を実施して、実施例11のキャリア芯材を得た。
Example 11
The granules were placed in an electric furnace and heated to 1270° C. over 4.5 hours at an oxygen concentration of 1.0%. After that, firing was carried out by holding at 1270° C. for 3 hours at an oxygen concentration of 0.4% to 1.0%. Thereafter, a carrier core material having a volume average particle diameter of 35 μm was obtained in the same manner as in Example 1, except that the carrier core material was cooled over 6 hours at an oxygen concentration of 0.4%. Thereafter, a high resistance treatment was performed in the air at 420° C. for 1.5 hours to obtain a carrier core material of Example 11.

実施例12
造粒物を、電気炉に投入し1250℃まで酸素濃度1.0%で4.5時間かけて昇温した。その後1250℃で酸素濃度0.4%~1.0%で3時間保持することにより焼成を行った。その後酸素濃度0.4%で6時間かけて冷却した以外は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、420℃の大気中で1.5時間高抵抗化処理を実施して、実施例12のキャリア芯材を得た。
Example 12
The granules were placed in an electric furnace and heated to 1250° C. over 4.5 hours at an oxygen concentration of 1.0%. After that, firing was carried out by holding at 1250° C. for 3 hours at an oxygen concentration of 0.4% to 1.0%. Thereafter, a carrier core material having a volume average particle diameter of 35 μm was obtained in the same manner as in Example 1, except that the carrier core material was cooled over 6 hours at an oxygen concentration of 0.4%. Thereafter, a high resistance treatment was performed in the air at 420° C. for 1.5 hours to obtain a carrier core material of Example 12.

実施例13
造粒物を、電気炉に投入し1240℃まで酸素濃度1.0%で4.5時間かけて昇温した。その後1240℃で酸素濃度0.4%~1.0%で3時間保持することにより焼成を行った。その後酸素濃度0.5%で6時間かけて冷却した以外は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、370℃の大気中で1.5時間高抵抗化処理を実施して、実施例13のキャリア芯材を得た。
Example 13
The granules were placed in an electric furnace and heated to 1240° C. over 4.5 hours at an oxygen concentration of 1.0%. After that, it was sintered by holding it at 1240° C. with an oxygen concentration of 0.4% to 1.0% for 3 hours. Thereafter, a carrier core material having a volume average particle diameter of 35 μm was obtained in the same manner as in Example 1, except that the carrier core material was cooled over 6 hours at an oxygen concentration of 0.5%. Thereafter, a high resistance treatment was performed in the air at 370° C. for 1.5 hours to obtain a carrier core material of Example 13.

実施例14
造粒物を、電気炉に投入し1230℃まで酸素濃度1.0%で4.5時間かけて昇温した。その後1230℃で酸素濃度0.4%~1.0%で3時間保持することにより焼成を行った。その後酸素濃度0.4%で6時間かけて冷却した以外は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、420℃の大気中で1.5時間高抵抗化処理を実施して、実施例14のキャリア芯材を得た。
Example 14
The granules were placed in an electric furnace and heated to 1230° C. over 4.5 hours at an oxygen concentration of 1.0%. After that, sintering was performed by holding at 1230° C. for 3 hours at an oxygen concentration of 0.4% to 1.0%. Thereafter, a carrier core material having a volume average particle diameter of 35 μm was obtained in the same manner as in Example 1, except that the carrier core material was cooled over 6 hours at an oxygen concentration of 0.4%. Thereafter, a high resistance treatment was performed in the air at 420° C. for 1.5 hours to obtain a carrier core material of Example 14.

比較例1
原料としてSnOを添加しなかった以外は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、440℃の大気中で1.5時間高抵抗化処理を実施して、比較例1のキャリア芯材を得た。
Comparative example 1
A carrier core material having a volume average particle size of 35 μm was obtained in the same manner as in Example 1, except that SnO 2 was not added as a raw material. Thereafter, a high resistance treatment was performed in the air at 440° C. for 1.5 hours to obtain a carrier core material of Comparative Example 1.

比較例2
原料としてSrCO及びSnOを添加しなかった以外は実施例1と同様にして、体積平均粒径35μmのキャリア芯材を得た。その後、420℃の大気中で1.5時間高抵抗化処理を実施して、比較例2のキャリア芯材を得た。
Comparative example 2
A carrier core material having a volume average particle size of 35 μm was obtained in the same manner as in Example 1, except that SrCO 3 and SnO 2 were not added as raw materials. Thereafter, a high resistance treatment was performed in the air at 420° C. for 1.5 hours to obtain a carrier core material of Comparative Example 2.

(見掛け密度)
キャリア芯材の見掛け密度はJIS Z 2504に準拠して測定した。
(apparent density)
The apparent density of the carrier core material was measured according to JIS Z2504.

(流動度)
キャリア芯材の流動度はJIS Z 2502に準拠して測定した。
(flow rate)
The fluidity of the carrier core material was measured according to JIS Z 2502.

(体積平均粒子径(平均粒径))
キャリア芯材の体積平均粒子径は、レーザー回折式粒度分布測定装置(日機装社製「マイクロトラックModel9320-X100」)を用いて測定した。
(Volume average particle size (average particle size))
The volume-average particle size of the carrier core material was measured using a laser diffraction particle size distribution analyzer ("Microtrac Model 9320-X100" manufactured by Nikkiso Co., Ltd.).

(磁気特性)
室温専用振動試料型磁力計(VSM)(東英工業社製「VSM-P7」)を用いて、外部磁場を0~79.58×10A/m(10000エルステッド)の範囲で1サイクル連続的に印加して、飽和磁化σ、残留磁化σ、保磁力H及び79.58×10A/m(1000エルステッド)の磁場における磁化σ1k(Am/kg)をそれぞれ測定した。
(Magnetic properties)
Using a room temperature vibrating sample magnetometer (VSM) (“VSM-P7” manufactured by Toei Kogyo Co., Ltd.), an external magnetic field was applied continuously for one cycle in the range of 0 to 79.58 × 10 4 A / m (10000 Oersted). σ s , remanent magnetization σ r , coercive force H c and magnetization σ 1k (Am 2 /kg) in a magnetic field of 79.58×10 3 A/m (1000 Oersted) were measured, respectively. .

(静的電気抵抗)
電極として表面を電解研磨した板厚2mmの真鍮板2枚を電極間距離が2mmとなるように配置し、2枚の電極板の間の空隙にキャリア芯材200mgを装入したのち、それぞれの電極板の背後に断面積240mmの磁石を配置して電極間に被測定粉体のブリッジを形成させた状態で電極間に100V、250V、500V、1000Vの直流電圧を印加し、キャリア芯材を流れる電流値を4端子法により測定した。その電流値と、電極間距離2mmおよび断面積240mmからキャリア芯材の静的電気抵抗を算出した。
(static electrical resistance)
As electrodes, two brass plates with a plate thickness of 2 mm whose surface was electropolished are arranged so that the distance between the electrodes is 2 mm, and 200 mg of a carrier core material is charged into the gap between the two electrode plates. A magnet with a cross-sectional area of 240 mm 2 is placed behind and a bridge of the powder to be measured is formed between the electrodes. Current values were measured by the four-probe method. The static electrical resistance of the carrier core material was calculated from the current value, the distance between the electrodes of 2 mm, and the cross-sectional area of 240 mm 2 .

(細孔容積)
評価装置は、Quantachrome社製のPOREMASTER-60GTを使用した。具体的には、測定条件としては、
Cell Stem Volume:0.5ml、
Headpressure:20PSIA、
水銀の表面張力:485.00erg/cm
水銀の接触角:130.00degrees、
高圧測定モード:Fixed Rate、
Moter Speed:1、
高圧測定レンジ:20.00~10000.00PSI
とし、サンプル1.500gを秤量して0.5ml(cc)のセルに充填して測定を行った。また、10000PSI時の容積B(ml/g)から60PSI時の容積A(ml/g)を差し引いた値を、細孔容積とした。
(pore volume)
As an evaluation device, POREMASTER-60GT manufactured by Quantachrome was used. Specifically, the measurement conditions are as follows.
Cell Stem Volume: 0.5ml,
Head pressure: 20PSIA,
Mercury surface tension: 485.00 erg/cm 2 ,
Mercury contact angle: 130.00 degrees,
High pressure measurement mode: Fixed Rate,
Motor Speed: 1,
High pressure measurement range: 20.00-10000.00PSI
A 1.500 g sample was weighed and filled in a 0.5 ml (cc) cell for measurement. The pore volume was obtained by subtracting the volume A (ml/g) at 60 PSI from the volume B (ml/g) at 10000 PSI.

(BET比表面積)
BET一点法比表面積測定装置(株式会社マウンテック製、型式:Macsorb HM model-1208)を用いて評価を行った。具体的には、サンプルは、5.000gを秤量して直径12mmの標準セルに充填し、200℃で、30分間脱気して測定を行った。
(BET specific surface area)
Evaluation was performed using a BET one-point specific surface area measuring device (manufactured by Mountec Co., Ltd., model: Macsorb HM model-1208). Specifically, 5.000 g of the sample was weighed, filled in a standard cell with a diameter of 12 mm, degassed at 200° C. for 30 minutes, and measured.

(異形率)
注入型画像解析粒度分布計(ジャスコインタナショナル株式会社、型式:IF-3200)を使用した。具体的には、サンプルは0.07gを秤量して、ポリエチレングリコール400を9cc投入したスクリュー管瓶(容量9cc)中で分散後に測定を行った。
(測定条件)
スペーサー厚:150μm
サンプリング:20%
解析タイプ:相対測定
測定量:0.95ml
解析:ダーク検出
閾値:169(穴を埋める)
O-Roughnessフィルタ:0.5
フィルタ条件:
ISO Area Diametere:最小値5、最大値100、内側の範囲
(解析条件)
解析フィルタ条件I:
ISO Area Diametere:最小値25、最大値55、内側の範囲
解析フィルタ条件II:
ISO Area Diametere:最小値25、最大値55、内側の範囲
ISO Solidity:最小値0.98、最大値1、外側の範囲
Ell.Ratio:最小値0.8、最大値1、内側の範囲
解析フィルタ条件IIでカウントされた粒子数を解析フィルタ条件Iでカウントされた粒子数で割り返して異形粒子の割合となる異形率を算出した。
(malformation rate)
An injection type image analysis particle size distribution meter (Jusco International Co., Ltd., model: IF-3200) was used. Specifically, 0.07 g of the sample was weighed and dispersed in a screw tube bottle (capacity: 9 cc) containing 9 cc of polyethylene glycol 400, and then measured.
(Measurement condition)
Spacer thickness: 150 μm
Sampling: 20%
Analysis type: relative measurement Measurement volume: 0.95 ml
Analysis: Dark Detection Threshold: 169 (fill in holes)
O-Roughness filter: 0.5
Filter condition:
ISO Area Diameter: minimum value 5, maximum value 100, inner range (analysis conditions)
Analysis filter condition I:
ISO Area Diameter: Minimum 25, Maximum 55, Inner Range Analysis Filter Condition II:
ISO Area Diameter: minimum value 25, maximum value 55, inner range ISO Solidity: minimum value 0.98, maximum value 1, outer range Ell. Ratio: minimum value 0.8, maximum value 1, inner range The number of particles counted under analysis filter condition II is divided by the number of particles counted under analysis filter condition I to calculate the deformity ratio, which is the ratio of irregularly shaped particles. bottom.

(現像メモリー)
得られたキャリア芯材の表面を樹脂で被覆してキャリアを作製した。具体的には、シリコーン樹脂450質量部と、(2-アミノエチル)アミノプロピルトリメトキシシラン9質量部とを、溶媒としてのトルエン450質量部に溶解してコート溶液を作製した。このコート溶液を、流動床型コーティング装置を用いてキャリア芯材50000質量部に塗布し、温度300℃の電気炉で加熱してキャリアを得た。以下、全ての実施例、比較例についても同様にしてキャリアを得た。
得られたキャリアと平均粒径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの重量/(トナーおよびキャリアの重量)=5/100となるように調整した。以下、全ての実施例、比較例についても同様にして現像剤を得た。得られた現像剤を、図1に示す構造の現像装置(現像スリーブの周速度Vs:406mm/sec,感光体ドラムの周速度Vp:205mm/sec,感光体ドラム-現像スリーブ間距離:0.3mm)に投入し、感光体ドラムの長手方向にベタ画像部と非画像部とが隣り合い、その後は広い面積の中間調が続く画像を初期と20万枚画像形成後に取得し、現像ローラ2周目の現像ローラ1周目のベタ画像が現像された領域とそうでない領域との画像濃度を反射濃度計(東京電色社製の型番TC-6D)を用いて測定し、その差を求め下記基準で評価した。結果を表2に示す。
「◎」:0.003未満
「○」:0.003以上0.006未満
「△」:0.006以上0.020未満
「×」:0.020以上
(development memory)
A carrier was produced by coating the surface of the obtained carrier core material with a resin. Specifically, 450 parts by mass of a silicone resin and 9 parts by mass of (2-aminoethyl)aminopropyltrimethoxysilane were dissolved in 450 parts by mass of toluene as a solvent to prepare a coating solution. This coating solution was applied to 50,000 parts by mass of a carrier core material using a fluidized bed coating apparatus, and heated in an electric furnace at a temperature of 300° C. to obtain a carrier. Carriers were obtained in the same manner for all Examples and Comparative Examples.
The obtained carrier and toner having an average particle diameter of about 5.0 μm were mixed for a predetermined time using a pot mill to obtain a two-component electrophotographic developer. In this case, the carrier and the toner were adjusted so that the weight of the toner/(the weight of the toner and the carrier)=5/100. Developers were obtained in the same manner for all Examples and Comparative Examples. The obtained developer was passed through a developing device having the structure shown in FIG. 3 mm), and a solid image portion and a non-image portion are adjacent to each other in the longitudinal direction of the photoreceptor drum, and after that, an image having a wide area of continuous halftone is acquired at the initial stage and after image formation of 200,000 sheets. The image density between the area where the solid image was developed and the area where the solid image was not developed on the first rotation of the developing roller was measured using a reflection densitometer (model number TC-6D manufactured by Tokyo Denshoku Co., Ltd.), and the difference was obtained. Evaluation was made according to the following criteria. Table 2 shows the results.
"◎": Less than 0.003 "○": 0.003 or more and less than 0.006 "△": 0.006 or more and less than 0.020 "×": 0.020 or more

(キャリア付着)
現像装置(現像ローラの周速度Vs:406mm/sec,感光体ドラムの周速度Vp:205mm/sec,感光体ドラム-現像ローラ間距離:0.3mm)に、作製した二成分現像剤を投入し、白紙画像を1000枚印刷した後、キャリア付着を下記基準で評価した。評価結果を表2に示す。
「○」:黒点の数が0~2個
「△」:黒点の数が3~10個
「×」:黒点の数が11個以上
(carrier adhesion)
The prepared two-component developer was put into the developing device (peripheral speed of the developing roller Vs: 406 mm/sec, peripheral speed of the photosensitive drum Vp: 205 mm/sec, distance between the photosensitive drum and the developing roller: 0.3 mm). After printing 1000 blank images, carrier adhesion was evaluated according to the following criteria. Table 2 shows the evaluation results.
“○”: 0 to 2 black dots “△”: 3 to 10 black dots “×”: 11 or more black dots

Figure 0007275361000001
Figure 0007275361000001

Figure 0007275361000002
Figure 0007275361000002

実施例4及び実施例8のキャリア芯材を用いた電子写真様現像剤では現像メモリーの評価は「○」で、それ以外の実施例のキャリア芯材を用いた電子写真様現像剤では現像メモリーの評価「◎」であった。
これに対してSnを含有しない比較例1及び比較例2のキャリア芯材を用いた電子写真様現像剤では現像メモリーの評価は「×」及び「△」であった。
The electrophotographic developers using the carrier core materials of Examples 4 and 8 were evaluated for development memory as "○", and the electrophotographic developers using the carrier core materials of the other Examples had development memory. was evaluated as "◎".
On the other hand, in the electrophotographic developers using the carrier core materials of Comparative Examples 1 and 2 containing no Sn, the development memory was evaluated as "X" and "Δ".

本発明に係るキャリア芯材によれば高速の画像形成装置に用いた場合であっても現像メモリーが抑制できると共にキャリア付着も抑制でき有用である。 According to the carrier core material of the present invention, development memory can be suppressed and carrier adhesion can be suppressed even when used in a high-speed image forming apparatus, which is useful.

3 現像ローラ
5 感光体ドラム
3 developing roller 5 photoreceptor drum

Claims (4)

組成式(MnFe3-x)O(但し、0<x<3である。)で表される材料を主成分とするキャリア芯材であって、
Snが0.10mol%以上0.30mol%以下含有され、
Srが0.01mol%以上0.50mol%以下含有され、
飽和磁化σが60Am/kg以上90Am/kg以下であり、
体積平均粒径が50μm未満である
ことを特徴とするキャリア芯材。
A carrier core material whose main component is a material represented by the composition formula (Mn x Fe 3-x )O 4 (where 0<x<3),
0.10 mol% or more and 0.30 mol% or less of Sn is contained,
Sr is contained in an amount of 0.01 mol% or more and 0.50 mol% or less,
Saturation magnetization σ s is 60 Am 2 /kg or more and 90 Am 2 /kg or less,
A carrier core material having a volume average particle diameter of less than 50 μm.
下記測定方法で測定される異形率が45.0%以上100%以下である請求項1に記載のキャリア芯材。
(異形率の測定方法)
測定装置:注入型画像解析粒度分布計
測定サンプル:0.07g
ポリエチレングリコール400を9ml投入したスクリュー管瓶(容量9ml)中で分散後に測定を行った。
(測定条件)
スペーサー厚:150μm
サンプリング:20%
解析タイプ:相対測定
測定量:0.95ml
解析:ダーク検出
閾値:169(穴を埋める)
O-Roughnessフィルタ:0.5
フィルタ条件:
ISO Area Diametere:最小値5、最大値100、内側の範囲
(解析条件)
解析フィルタ条件I:
ISO Area Diametere:最小値25、最大値55、内側の範囲
解析フィルタ条件II:
ISO Area Diametere:最小値25、最大値55、内側の範囲
ISO Solidity:最小値0.98、最大値1、外側の範囲
Ell.Ratio:最小値0.8、最大値1、内側の範囲
解析フィルタ条件IIでカウントされた粒子数を解析フィルタ条件Iでカウントされた粒子数で割り返して異形率を算出する。
2. The carrier core material according to claim 1, having an irregularity rate of 45.0% or more and 100% or less as measured by the following measuring method.
(Method for measuring deformity rate)
Measuring device: Injection type image analysis particle size distribution meter Measurement sample: 0.07 g
Measurement was performed after dispersing in a screw vial (capacity 9 ml) containing 9 ml of polyethylene glycol 400.
(Measurement condition)
Spacer thickness: 150 μm
Sampling: 20%
Analysis type: relative measurement Measurement volume: 0.95 ml
Analysis: Dark Detection Threshold: 169 (fill in holes)
O-Roughness filter: 0.5
Filter condition:
ISO Area Diameter: minimum value 5, maximum value 100, inner range (analysis conditions)
Analysis filter condition I:
ISO Area Diameter: Minimum 25, Maximum 55, Inner Range Analysis Filter Condition II:
ISO Area Diameter: minimum value 25, maximum value 55, inner range ISO Solidity: minimum value 0.98, maximum value 1, outer range Ell. Ratio: minimum value 0.8, maximum value 1, the number of particles counted under the inner range analysis filter condition II is divided by the number of particles counted under the analysis filter condition I to calculate the deformity ratio.
請求項1又は2に記載のキャリア芯材の表面が樹脂で被覆されていることを特徴とする電子写真現像用キャリア。 3. A carrier for electrophotographic development, wherein the surface of the carrier core material according to claim 1 or 2 is coated with a resin. 請求項3記載の電子写真現像用キャリアとトナーとを含むことを特徴とする電子写真用現像剤。 An electrophotographic developer comprising the electrophotographic developing carrier according to claim 3 and a toner.
JP2022090566A 2019-03-08 2022-06-03 Carrier core material, electrophotographic development carrier and electrophotographic developer using the same Active JP7275361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022090566A JP7275361B2 (en) 2019-03-08 2022-06-03 Carrier core material, electrophotographic development carrier and electrophotographic developer using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019042472A JP7085507B2 (en) 2019-03-08 2019-03-08 Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic
JP2022090566A JP7275361B2 (en) 2019-03-08 2022-06-03 Carrier core material, electrophotographic development carrier and electrophotographic developer using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019042472A Division JP7085507B2 (en) 2019-03-08 2019-03-08 Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic

Publications (2)

Publication Number Publication Date
JP2022116287A JP2022116287A (en) 2022-08-09
JP7275361B2 true JP7275361B2 (en) 2023-05-17

Family

ID=87798593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022090566A Active JP7275361B2 (en) 2019-03-08 2022-06-03 Carrier core material, electrophotographic development carrier and electrophotographic developer using the same

Country Status (1)

Country Link
JP (1) JP7275361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393219B2 (en) * 2020-01-23 2023-12-06 Dowaエレクトロニクス株式会社 Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181848A (en) 2003-12-22 2005-07-07 Sharp Corp Developer, toner, and carrier
JP2006259301A (en) 2005-03-17 2006-09-28 Konica Minolta Business Technologies Inc Image forming method and apparatus
CN103309190A (en) 2013-05-29 2013-09-18 湖北鼎龙化学股份有限公司 Carrier core material and manufacturing method thereof, as well as carrier core material and electrostatic charge image developer
JP2016184130A (en) 2015-03-27 2016-10-20 Dowaエレクトロニクス株式会社 Carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography
JP2017181904A (en) 2016-03-31 2017-10-05 Dowaエレクトロニクス株式会社 Carrier core material and carrier for electrophotographic development and developer for electrophotography using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181848A (en) 2003-12-22 2005-07-07 Sharp Corp Developer, toner, and carrier
JP2006259301A (en) 2005-03-17 2006-09-28 Konica Minolta Business Technologies Inc Image forming method and apparatus
CN103309190A (en) 2013-05-29 2013-09-18 湖北鼎龙化学股份有限公司 Carrier core material and manufacturing method thereof, as well as carrier core material and electrostatic charge image developer
JP2016184130A (en) 2015-03-27 2016-10-20 Dowaエレクトロニクス株式会社 Carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography
JP2017181904A (en) 2016-03-31 2017-10-05 Dowaエレクトロニクス株式会社 Carrier core material and carrier for electrophotographic development and developer for electrophotography using the same

Also Published As

Publication number Publication date
JP2022116287A (en) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2016140206A1 (en) Carrier core material, and electrophotography development carrier and electrophotography developer in which said material is used
JP5822415B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
WO2016158548A1 (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography both including same
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP7275361B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP5839639B1 (en) Carrier core
JP5828569B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP5736078B1 (en) Ferrite particles, electrophotographic carrier and electrophotographic developer using the same
JP6494453B2 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP2018173445A (en) Carrier core material, carrier for electrophotography using the same, and developer for electrophotography
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP7085507B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic
JP7257732B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP2021117281A (en) Ferrite carrier core material, electrophotographic development carrier using the same, and electrophotographic developer
JP6864054B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic development
JP7075913B2 (en) Carrier core material
JP6924885B1 (en) Carrier core material
WO2022244573A1 (en) Carrier core material, and carrier for electrophotographic development and electrophotographic developer employing same
JP6650300B2 (en) Carrier core material
JP2014149464A (en) Carrier particle
JP2022137600A (en) Carrier core, and carrier for electrophotographic development and developer for electrophotography using the same
JP2022143658A (en) Carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography
JP2022090791A (en) Carrier core material
JP2023145902A (en) Carrier core material, electrophotographic development career using the same and electrophotographic developer
JP2023020082A (en) Carrier core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7275361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150