JP7269689B2 - Formaldehyde-free molding agent for mineral wool that improves water resistance - Google Patents

Formaldehyde-free molding agent for mineral wool that improves water resistance Download PDF

Info

Publication number
JP7269689B2
JP7269689B2 JP2022554462A JP2022554462A JP7269689B2 JP 7269689 B2 JP7269689 B2 JP 7269689B2 JP 2022554462 A JP2022554462 A JP 2022554462A JP 2022554462 A JP2022554462 A JP 2022554462A JP 7269689 B2 JP7269689 B2 JP 7269689B2
Authority
JP
Japan
Prior art keywords
parts
acrylate
formaldehyde
acid
mineral wool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022554462A
Other languages
Japanese (ja)
Other versions
JP2023516211A (en
Inventor
グオ ジュ,ユ
チュエン リ,ビン
チュン シェン ドン,
Original Assignee
ジャンスー エイケイエスティー ニューマテリアルズ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャンスー エイケイエスティー ニューマテリアルズ カンパニー リミテッド filed Critical ジャンスー エイケイエスティー ニューマテリアルズ カンパニー リミテッド
Publication of JP2023516211A publication Critical patent/JP2023516211A/en
Application granted granted Critical
Publication of JP7269689B2 publication Critical patent/JP7269689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、高分子化学材料の分野に属し、詳しく言えば、耐水性を向上させるミネラルウール専用ホルムアルデヒドフリー成形剤に関する。 The present invention belongs to the field of polymer chemical materials, and more particularly to a formaldehyde-free molding agent for mineral wool that improves water resistance.

ミネラルウールは、一般にロックウール、グラスウール、スラグウールを含み、軽量、優れた保温性、低い熱伝導率、強い耐熱性、遮音性、防水性、安定的な化学的性質、耐酸・耐塩基性、非腐食性などの特性があり、新規な軽量断熱材である。ミネラルウール及びその製品は、冶金、建設、石油、化学工業、軽工業、運輸、国防などの産業分野で幅広く使用され、特に、ミネラルウールのうちのロックウールは建設分野への使用がここ数年ようやく拡大されるが、農業などの分野におけるその使用にはまだ改善の余地があり、その優れた断熱性、吸音・騒音低減、防火安全特性が、各業界からますます注目を集める。 Mineral wool generally includes rock wool, glass wool and slag wool, and is lightweight, excellent heat retention, low thermal conductivity, strong heat resistance, sound insulation, waterproof, stable chemical properties, acid and base resistance, With properties such as non-corrosiveness, it is a novel lightweight insulation material. Mineral wool and its products are widely used in industrial fields such as metallurgy, construction, petroleum, chemical industry, light industry, transportation, and national defense. Although it will be expanded, its use in fields such as agriculture still has room for improvement, and its excellent thermal insulation, sound absorption and noise reduction, and fire safety properties are attracting more and more attention from various industries.

ミネラルウール業界では成形剤が一般的に使用され、成形剤は一般にオリゴマー樹脂水溶液で、樹脂の硬化と結合により、散り散り分散しているミネラルウールをボード、フェルト、ウールなどの製品に成形させるものであり、ミネラルウール断熱製品に良好な物理的・機械的特性を与え、繊維を結合させてミネラルウールの強度を高める役割を果たす。近年、政府が断熱産業への環境保護監督を強めることで、従来のフェノール樹脂ロックウール成形剤はホルムアルデヒドの大量生成とフェノール排水汚染のために厳しい規制を受け、生産停止さえ命じられるため、ますます多くの企業が、従来のフェノール樹脂成形剤の代わりとしてより環境配慮型で安全な成形剤を開発する作業に力を入れている。 Forming agents are commonly used in the mineral wool industry. Forming agents are generally oligomeric resin aqueous solutions. By hardening and bonding the resin, the dispersed mineral wool is molded into products such as boards, felts, and wool. It provides good physical and mechanical properties to mineral wool insulation products and serves to bind the fibers together to increase the strength of mineral wool. In recent years, as the government strengthens environmental protection supervision on the insulation industry, the traditional phenolic rock wool molding agent is subject to strict regulations and even orders to stop production due to large amounts of formaldehyde and phenolic wastewater pollution. Many companies are working hard to develop more environmentally friendly and safer molding compounds to replace traditional phenolic resin molding compounds.

特許US5661213には、ポリ酸と、ポリオールとリン含有促進剤とを含む硬化性の水性組成物が開示される。当該組成物は、ガラス繊維からなる不織布などの耐熱性不織布において結合剤として用いることができるが、当該組成物から製造された結合剤は高い特性が求められるウールボードを結合させる時に結合強度が優れず、特に高温・高湿環境下では強度が悪いため、ウールボードを使用する施工では垂れ下がりやすく、様々な不便をもたらし、施工効率を下げてしまう。特許CN106795247Aにはガラス繊維を結合できる結合剤が開示される。当該結合剤はヒドロキシ基を有する重合体を含むが、使用時に揮発性塩基(アンモニア水溶液)と接触したら分子量が増加し、不安定になる傾向があり、生産中に空気に揮発するため、環境汚染の問題がある。上記で分かるように、従来のホルムアルデヒドフリーポリアクリル酸系成形剤には依然としていくつかの克服しがたい技術的課題が残っている。中でも、保存安定性と結合強度の不足、特に湿潤強度の不足と強度保持率の低さが、早急に解決すべき課題である。 Patent US5661213 discloses a curable aqueous composition comprising a polyacid, a polyol and a phosphorus-containing accelerator. The composition can be used as a binder in heat-resistant nonwoven fabrics such as glass fiber nonwoven fabrics, and the binder produced from the composition has excellent bonding strength when bonding wool boards that require high properties. Because of its low strength, especially in high-temperature and high-humidity environments, it tends to sag when using wool boards, causing various inconveniences and lowering construction efficiency. Patent CN106795247A discloses a binder capable of binding glass fibers. The binder contains a polymer with a hydroxyl group, but when it comes into contact with a volatile base (aqueous ammonia solution) during use, it tends to increase in molecular weight and become unstable. there is a problem. As can be seen above, conventional formaldehyde-free polyacrylic acid-based molding agents still have some insurmountable technical problems. Among them, insufficient storage stability and bonding strength, particularly insufficient wet strength and low strength retention rate, are problems to be solved as soon as possible.

米国特許第5661213号公報U.S. Pat. No. 5,661,213 中国特許出願公開第106795247号明細書Chinese Patent Application Publication No. 106795247

本発明は、従来のホルムアルデヒドフリー(formaldehyde free)成形剤の強度が不十分で、特に湿潤強度が低いことで、生産されたミネラルウールが高温・高湿の条件下で特性が低下しやすいという課題に対し、耐水性を向上させるミネラルウール(mineral wool)専用ホルムアルデヒドフリー成形剤(setting agent)を提供するものであり、固形分含有量100%で計算すると、以下の重量配合比の成分を含む。
水溶性樹脂プレポリマー:100部、
ポリオール:10~70部、
触媒:2~15部。
The present invention has the problem that conventional formaldehyde-free molding agents have insufficient strength, especially low wet strength, so that the properties of mineral wool produced tend to deteriorate under conditions of high temperature and high humidity. On the other hand, it provides a formaldehyde-free setting agent exclusively for mineral wool that improves water resistance, and when calculated at a solid content of 100%, it contains components with the following weight ratios.
Water-soluble resin prepolymer: 100 parts,
Polyol: 10-70 parts,
Catalyst: 2-15 parts.

そのうち、水溶性樹脂プレポリマーは、モノマー原料の共重合反応から得られ、モノマー原料は、物質量基準で次の成分を含む。
a.アルキレン結合型不飽和カルボン酸モノマー:90.0~99.0%、
b.アルキレン結合型不飽和ヒドロキシ基官能性モノマー:0.5~5.0%、
c.疎水性アルキレン結合型不飽和モノマー:0.5~5.0%。
Among them, the water-soluble resin prepolymer is obtained from a copolymerization reaction of monomer raw materials, and the monomer raw materials contain the following components based on the amount of substances.
a. Alkylene-bonded unsaturated carboxylic acid monomer: 90.0 to 99.0%,
b. Alkylene-bonded unsaturated hydroxy group-functional monomer: 0.5 to 5.0%,
c. Hydrophobic alkylene-bonded unsaturated monomer: 0.5-5.0%.

好ましくは、本発明のミネラルウール専用ホルムアルデヒドフリー成形剤は、固形分含有量100%で計算すると、以下の重量配合比の成分を含む。
水溶性樹脂プレポリマー:100部、
ポリオール:12~50部、
触媒:5~10部。
Preferably, the formaldehyde-free molding agent for mineral wool of the present invention contains the following weight ratios of ingredients when calculated at 100% solids content.
Water-soluble resin prepolymer: 100 parts,
Polyol: 12-50 parts,
Catalyst: 5-10 parts.

そのうち、前記水溶性樹脂プレポリマーは、モノマー原料の共重合反応から得られ、前記モノマー原料は、物質量基準で次の成分を含む。
a.アルキレン結合型不飽和カルボン酸モノマー:92.5~96.0%、
b.アルキレン結合型不飽和ヒドロキシ基官能性モノマー:3.0~4.5%、
c.疎水性アルキレン結合型不飽和モノマー:1.0~3.0%。
Among them, the water-soluble resin prepolymer is obtained from a copolymerization reaction of monomer raw materials, and the monomer raw materials contain the following components based on the amount of material.
a. Alkylene-bonded unsaturated carboxylic acid monomer: 92.5 to 96.0%,
b. alkylene-bonded unsaturated hydroxy group-functional monomer: 3.0 to 4.5%,
c. Hydrophobic alkylene-bonded unsaturated monomer: 1.0-3.0%.

好ましくは、水溶性樹脂プレポリマーの数平均分子量は、500~30000であり、好ましくは、800~10000であり、より好ましくは、1000~5000であり、本発明に記載の数平均分子量は、ゲル浸透クロマトグラフィー(GPC)技術を用いて測定される。その固形分含有量は、1~99%であってもよく、好ましくは、20~60%であり、pHは、1.0~4.0である。 Preferably, the number average molecular weight of the water-soluble resin prepolymer is from 500 to 30,000, preferably from 800 to 10,000, more preferably from 1,000 to 5,000. Measured using permeation chromatography (GPC) techniques. Its solids content may be 1-99%, preferably 20-60%, and the pH is 1.0-4.0.

本発明に記載のアルキレン結合型不飽和カルボン酸モノマーは、アクリル酸(AA)、メタクリル酸(MA)、クロトン酸、フマル酸、マレイン酸(MLA)、2-メチルマレイン酸、イタコン酸、2-メチルイタコン酸、α-β-メチレングルタル酸、マレイン酸モノアルキル、フマル酸モノアルキル、無水マレイン酸、無水アクリル酸、無水メタクリル酸、無水イソオクチルアクリル酸、無水クロトン酸、或いは無水フマル酸の中の1つ又は複数であってもよく、好ましくは、アクリル酸、メタクリル酸、クロトン酸、フマル酸、イタコン酸、或いはマレイン酸の中の1つ又は複数である。 Alkylene-linked unsaturated carboxylic acid monomers according to the present invention include acrylic acid (AA), methacrylic acid (MA), crotonic acid, fumaric acid, maleic acid (MLA), 2-methylmaleic acid, itaconic acid, 2- Among methyl itaconic acid, α-β-methyleneglutaric acid, monoalkyl maleate, monoalkyl fumarate, maleic anhydride, acrylic anhydride, methacrylic anhydride, isooctylacrylic anhydride, crotonic anhydride, or fumaric anhydride preferably one or more of acrylic acid, methacrylic acid, crotonic acid, fumaric acid, itaconic acid, or maleic acid.

本発明に記載のアルキレン結合型不飽和ヒドロキシ基官能性モノマーは、(メタクリル酸)アクリル酸ヒドロキシアルキルエステルモノマーを含むが、それらに限定されず、メタクリル酸-2-ヒドロキシエチル(HEMA)、アクリル酸-2-ヒドロキシエチル(HEA)、メタクリル酸-2-ヒドロキシプロピル(HPMA)、メタクリル酸-1-メチル-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、アクリル酸-1-メチル-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシブチル、或いはアクリル酸-2-ヒドロキシブチルの中の1つ又は複数であってもよく、好ましくは、アクリル酸-2-ヒドロキシエチル、或いはメタクリル酸-2-ヒドロキシエチルの中の1つ又は複数である。 Alkylene-linked unsaturated hydroxy group-functional monomers according to the present invention include, but are not limited to, (methacrylic acid) acrylic acid hydroxyalkyl ester monomers, 2-hydroxyethyl methacrylate (HEMA), acrylic acid -2-hydroxyethyl (HEA), -2-hydroxypropyl methacrylate (HPMA), -1-methyl-2-hydroxyethyl methacrylate, -2-hydroxypropyl acrylate, -1-methyl-2-hydroxy acrylate may be one or more of ethyl, 2-hydroxybutyl methacrylate, or 2-hydroxybutyl acrylate, preferably 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate is one or more of

アルキレン結合型不飽和ヒドロキシ基官能性モノマーは、成形剤の結合強度、特に乾結合強度を効果的に向上させることができる。本願では、研究を行ったところ、アルキレン結合型不飽和ヒドロキシ基官能性モノマーの添加量が0.5%モル部未満である場合に、明らかに改善した強度向上効果が得られず、添加量が5%モル部より大きい場合に、成形剤の粘度が不安定になり、時間の経過とともに徐々に上昇する傾向にあるということを見出した。 Alkylene bond-type unsaturated hydroxy group-functional monomers can effectively improve the bond strength, particularly the dry bond strength, of the molding agent. In the present application, as a result of research, when the amount of the alkylene-bonded unsaturated hydroxy group-functional monomer added is less than 0.5% by mole, a clearly improved strength improvement effect cannot be obtained, and the amount added is It has been found that when the amount is more than 5% by mole, the viscosity of the molding agent becomes unstable and tends to gradually increase over time.

本発明に記載の疎水性アルキレン結合型不飽和モノマーとは、カルボキシ基又はヒドロキシ官能基を含まない疎水性アルキレン結合型不飽和モノマーを指し、成形剤の耐水性を一層効果的に向上させて、成形剤の親水性官能基に対して遮蔽効果を果たすことにより、成形剤の湿潤強度と強度保持率を効果的に向上させることができる。本発明に記載の疎水性不飽和モノマーは、次のものを含むが、それらに限定されない。メタクリル酸エステルモノマーであってもよいアクリル酸エステル系モノマーであって、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸-2-エチルヘキシル、アクリル酸デシル、アクリル酸ラウリル、メタクリル酸メチル、メタクリル酸ブチル、メタクリル酸イソデシル或いはメタクリル酸ラウリルを含むアクリル酸エステルモノマーであってもよく、ビニル系芳香族モノマーであって、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、エチルビニルベンゼン、ビニルナフタレン、ビニルキシレン或いはビニルトルエンであってもよく、酢酸ビニル系モノマーであって、酢酸ビニル又は酪酸ビニルであってもよく、ビニルモノマーであって、例えば、ビニルアルコール、塩化ビニル、ビニルトルエン、ビニルベンゾフェノン或いは塩化ビニリデンであってもよく、重合反応に参加できる他のモノマーであって、例えば、アクリロニトリル或いは(メタクリル酸)アクリル酸グリシジルであってもよい。 The hydrophobic alkylene-bonded unsaturated monomer described in the present invention refers to a hydrophobic alkylene-bonded unsaturated monomer that does not contain a carboxy group or a hydroxy functional group, and further effectively improves the water resistance of the molding agent, By performing a shielding effect on the hydrophilic functional groups of the molding agent, the wet strength and strength retention of the molding agent can be effectively improved. Hydrophobic unsaturated monomers according to the present invention include, but are not limited to: Acrylic acid ester-based monomers that may be methacrylic acid ester monomers, such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, lauryl acrylate, methyl methacrylate, methacryl Acrylic acid ester monomers including butyl acid, isodecyl methacrylate or lauryl methacrylate, and vinyl aromatic monomers such as styrene, α-methylstyrene, p-methylstyrene, ethylvinylbenzene, vinyl It may be naphthalene, vinylxylene or vinyltoluene, a vinyl acetate monomer such as vinyl acetate or vinyl butyrate, a vinyl monomer such as vinyl alcohol, vinyl chloride, vinyl toluene, vinyl It may be benzophenone or vinylidene chloride, or other monomers capable of participating in polymerization reactions, such as acrylonitrile or glycidyl (methacrylic acid) acrylate.

さらに、本発明に記載の疎水性不飽和モノマーは、水への溶解度が0~1.5g/100gである疎水性不飽和モノマーであるのが好ましく、アクリル酸エチル、アクリル酸n-ブチル(BA)、アクリル酸イソブチル(i-BA)、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸n-プロピル(PA)、アクリル酸シクロヘキシル(CHA)、アクリル酸ラウリル、アクリル酸-2-エチルヘキシル(2-EHMA)、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル(n-BMA)、メタクリル酸ラウリル(LMA)、メタクリル酸-2-エチルヘキシル(2-EHMA)、メタクリル酸イソボルニル(LMA)、スチレン、α-メチルスチレン、p-メチルスチレン、エチルビニルベンゼン、ビニルナフタレン、ビニルキシレン、ビニルトルエン或いは塩化ビニルトルエンの中の1つ又は複数であってもよい。 Furthermore, the hydrophobic unsaturated monomers according to the invention are preferably hydrophobic unsaturated monomers having a solubility in water of 0 to 1.5 g/100 g, ethyl acrylate, n-butyl acrylate (BA ), isobutyl acrylate (i-BA), sec-butyl acrylate, tert-butyl acrylate, n-propyl acrylate (PA), cyclohexyl acrylate (CHA), lauryl acrylate, 2-ethylhexyl acrylate ( 2-EHMA), methyl methacrylate, ethyl methacrylate, n-butyl methacrylate (n-BMA), lauryl methacrylate (LMA), 2-ethylhexyl methacrylate (2-EHMA), isobornyl methacrylate (LMA), It may be one or more of styrene, α-methylstyrene, p-methylstyrene, ethylvinylbenzene, vinylnaphthalene, vinylxylene, vinyltoluene or vinyltoluene chloride.

さらに、出願人は、前記疎水性モノマーを使用する場合は、合成時にホモポリマーのガラス転移点(Tg)が低い方のモノマー(いわゆるソフトモノマー)を使用すると、得られた成形剤の強度と強度保持率が一層向上するということを判明し、記述の簡素化の観点から、本発明に記載のモノマーのホモポリマーのTgをモノマーのTgと略称し、本発明にいうTgは、GB/T29611-2013「生ゴムのガラス転移点の測定:示差走査熱量測定法(DSC)」により測定することができ、測定条件は、昇温速度が10℃/分で、窒素雰囲気である。いかなる理論からも拘束されない理由として考えられるのは、本特許出願の成形剤自体が架橋密度の高い製品で、適量の撥水性軟質エラストマーを導入すると、成形剤自体の強靭性をある程度向上させ、最終的に成形剤の結合強度を向上させられることである。本発明で低いTgのモノマー・低い溶解度の疎水性モノマーとして好ましいのは、モノマーのTgが-15℃~-80℃の間で、水への溶解度が0~0.5g/100gである疎水性不飽和モノマーであり、好ましくは、アクリル酸n-ブチル(BA)、アクリル酸ラウリル、アクリル酸n-プロピル(n-BA)、アクリル酸イソブチル、アクリル酸-2-エチルヘキシル(2-EHA)或いはメタクリル酸ラウリルの中の1つ又は複数である。 Furthermore, the applicant believes that when the hydrophobic monomer is used, the strength and strength of the resulting molding agent can be improved by using a monomer having a lower glass transition point (Tg) of the homopolymer during synthesis (so-called soft monomer). It was found that the retention rate was further improved, and from the viewpoint of simplification of description, the Tg of the homopolymer of the monomer described in the present invention is abbreviated as the Tg of the monomer, and the Tg referred to in the present invention is GB/T29611- 2013, "Measurement of Glass Transition Point of Raw Rubber: Differential Scanning Calorimetry (DSC)", and the measurement conditions are a heating rate of 10°C/min and a nitrogen atmosphere. A possible reason, which is not bound by any theory, is that the molding agent itself of the present patent application is a product with a high cross-linking density. The advantage is that the bonding strength of the molding agent can be substantially improved. Preferred low Tg monomers/low solubility hydrophobic monomers in the present invention are hydrophobic monomers having a Tg between −15° C. and −80° C. and a solubility in water of 0 to 0.5 g/100 g. unsaturated monomers, preferably n-butyl acrylate (BA), lauryl acrylate, n-propyl acrylate (n-BA), isobutyl acrylate, 2-ethylhexyl acrylate (2-EHA) or methacryl one or more of lauryl acids;

本発明に記載の疎水性不飽和モノマーの添加量は、0.5~5%モル部であり、好ましくは、1.5~4.5%モル部であり、より好ましくは、3.0~4.5%モル部である。添加量が0.5%モル部未満である場合に、添加された不飽和撥水性モノマーは耐水性を明らかに改善させる効果を果たせず、添加量が5%モル部より大きい場合に、成形剤の架橋密度と結合強度が大きく低下する。 The amount of the hydrophobic unsaturated monomer added according to the present invention is 0.5-5% molar parts, preferably 1.5-4.5% molar parts, more preferably 3.0- 4.5% mole part. When the added amount is less than 0.5% by mole, the added unsaturated water-repellent monomer does not clearly improve the water resistance, and when the added amount is greater than 5% by mole, the molding agent The crosslink density and bond strength of

さらに、出願人は、アルキレン結合型不飽和ヒドロキシ基官能性モノマーb:疎水性アルキレン結合型不飽和モノマーcのモル比=1:1.5~1.5:1で且つモノマーbの含有量が3.0~4.5モル%である場合に、成形剤の乾態強度は5.0MPaより大きく、湿潤強度は3.5MPaより大きく、強度保持率は70%より大きく、且つその粘度上昇率は20%以下であり、最良の特性を有するということを見出した。 Furthermore, the applicant has found that the molar ratio of alkylene-bonded unsaturated hydroxy group-functional monomer b: hydrophobic alkylene-bonded unsaturated monomer c = 1:1.5 to 1.5:1 and the content of monomer b is When it is 3.0 to 4.5 mol%, the dry strength of the molding agent is greater than 5.0 MPa, the wet strength is greater than 3.5 MPa, the strength retention rate is greater than 70%, and its viscosity increase rate is is less than 20% and has the best properties.

本発明に記載のポリオールは、少なくとも2つのヒドロキシ基を備える化合物であり、1,2-エチレングリコール、1,3-プロピレングリコール、ジエチレングリコール、1,4-ブチレングリコール、1,2,3-シクロヘキサントリオール、1,2,4-ブタントリオール、1,2,3-ブタントリオール、1,2,5-ペンタントリオール、グリセリン、グリセリンポリエーテルポリオール、2,2-ジメチル-1,3-プロピレングリコール、2-ブチル-2-エチル-1,3-プロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、2-メチル-2,4-ブチレングリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、2-エチル-1,3-ヘキサンジオール、2-ヒドロキシメチル-2-メチル-1,3-プロピレングリコール、2-エチル-2-ヒドロキシメチル-2-メチル-1,3-プロピレングリコール、1,2,6-ヘキサントリオール、2,2-ジヒドロキシメチル-2,3-プロピレングリコール、ペンタエリスリトール、トリメチロールプロパン、グルコース、果糖、ソルビトール、スクロース、マンニトール、マルトース、マルチトール、グルコース、レゾルシノール、カテコール、ピロガロール、1,2-エチレングリコール二量体、1,2-エチレングリコール三量体、1,2-プロピレングリコール、1,2-プロピレングリコール二量体又は1,2-プロピレングリコール三量体などであってもよい。アルカノールアミンポリオールであって、例えば、エタノールアミン、イソプロパノールアミン、ジエタノールアミン、ジイソプロパノールアミン又はトリエタノールアミンであってもよく、少なくとも2つのヒドロキシ基を含む付加重合体であって、例えば、ポリビニルアルコール、部分的に加水分解されたポリ酢酸ビニル、(メタクリル酸)アクリル酸ヒドロキシエチル又は(メタクリル酸)アクリル酸ヒドロキシプロピルのホモポリマー又はコポリマーであってもよい。さらに、本発明でポリオールとして好ましいのは、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ジエタノールアミン、イソプロパノールアミン、トリエタノールアミン、ポリビニルアルコールの中の1つ又は複数である。 Polyols according to the invention are compounds with at least two hydroxy groups, 1,2-ethylene glycol, 1,3-propylene glycol, diethylene glycol, 1,4-butylene glycol, 1,2,3-cyclohexanetriol. , 1,2,4-butanetriol, 1,2,3-butanetriol, 1,2,5-pentanetriol, glycerin, glycerin polyether polyol, 2,2-dimethyl-1,3-propylene glycol, 2- Butyl-2-ethyl-1,3-propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 2-methyl-2,4-butylene glycol, 1,5-pentanediol, 3-methyl-1 ,5-pentanediol, 2-methyl-2,4-pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 2-ethyl-1,3-hexanediol, 2-hydroxymethyl-2-methyl -1,3-propylene glycol, 2-ethyl-2-hydroxymethyl-2-methyl-1,3-propylene glycol, 1,2,6-hexanetriol, 2,2-dihydroxymethyl-2,3-propylene glycol , pentaerythritol, trimethylolpropane, glucose, fructose, sorbitol, sucrose, mannitol, maltose, maltitol, glucose, resorcinol, catechol, pyrogallol, 1,2-ethylene glycol dimer, 1,2-ethylene glycol trimer , 1,2-propylene glycol, 1,2-propylene glycol dimer or 1,2-propylene glycol trimer. Alkanolamine polyols, which may be, for example, ethanolamine, isopropanolamine, diethanolamine, diisopropanolamine or triethanolamine, addition polymers containing at least two hydroxy groups, such as polyvinyl alcohol, partial It may also be a homopolymer or copolymer of hydrolyzed polyvinyl acetate, hydroxyethyl (methacrylic acid) acrylate or hydroxypropyl (methacrylic acid) acrylate. Further preferred polyols in the present invention are one or more of ethylene glycol, propylene glycol, glycerin, trimethylolpropane, diethanolamine, isopropanolamine, triethanolamine, polyvinyl alcohol.

本発明に記載の触媒とは、カルボン酸とヒドロキシ基の反応を促進できる触媒を指し、例えば、リン含有触媒であって、例えば、次亜リン酸(hypophosphorous acid)、次亜リン酸塩、アルカリ金属次亜リン酸塩、アルカリ金属亜リン酸塩、アルカリ金属ポリリン酸塩、アルカリ金属リン酸二水素塩、ポリリン酸、アルキル次亜リン酸或いはルイス酸であり、次亜リン酸塩であって、例えば、次亜リン酸ナトリウム、次亜リン酸亜鉛、次亜リン酸カリウム、次亜リン酸カルシウム、次亜リン酸マグネシウムであり、無機酸の金属塩であって、例えば、(ピロ)亜硫酸水素ナトリウム又は亜硫酸塩であってもよく、ルイス酸触媒は、亜鉛、アルミニウム、ジルコニウム、鉄、マグネシウム、スズ、チタン又はホウ素の硫酸塩、硝酸塩、ハロゲン化物、クエン酸塩、乳酸塩又はグルコン酸塩であってもよい。本発明で触媒として好ましいのは、次亜リン酸塩であり、次亜リン酸塩として好ましいのは、次亜リン酸ナトリウム、次亜リン酸亜鉛、次亜リン酸カリウム、次亜リン酸カルシウム、次亜リン酸マグネシウムの中の1つ又は複数である。 Catalysts according to the present invention refer to catalysts capable of promoting the reaction of carboxylic acids with hydroxy groups, such as phosphorus-containing catalysts, such as hypophosphorous acid, hypophosphite, alkali metal hypophosphite, alkali metal phosphite, alkali metal polyphosphate, alkali metal dihydrogen phosphate, polyphosphoric acid, alkyl hypophosphite or Lewis acid, hypophosphite , e.g. sodium hypophosphite, zinc hypophosphite, potassium hypophosphite, calcium hypophosphite, magnesium hypophosphite, metal salts of inorganic acids, e.g. sodium (pyro)bisulfite or sulfite, and the Lewis acid catalyst is zinc, aluminum, zirconium, iron, magnesium, tin, titanium or boron sulfate, nitrate, halide, citrate, lactate or gluconate. may Preferred catalysts in the present invention are hypophosphites, and preferred hypophosphites are sodium hypophosphite, zinc hypophosphite, potassium hypophosphite, calcium hypophosphite, one or more of magnesium phosphites;

本発明では、カップリング剤、撥水剤、防塵オイルの中の1つ又は複数の組み合わせを添加してもよい。カップリング剤は、無機物質と有機物質の界面の間に「分子ブリッジ」をかけて、特性が大きく異なる2種類の材料を緊密に結合させることにより、成形剤の湿潤・抗湿強度を改善させ、界面の結合特性を向上させ、内部応力を解消し、耐用年数を引き伸ばすことができ、本発明でカップリング剤として好ましいのは、エポキシシロキサンカップリング剤とアミノシランカップリング剤であり、さらに、本発明の好ましいアミノ系カップリング剤又はエポキシ系カップリング剤は、3-(2,3-エポキシプロポキシ)プロピルトリメトキシシラン(KH560)、3-アミノプロピルトリエトキシシラン(KH550)、3-(2,3-エポキシプロポキシ)プロピルトリエトキシシラン(KH561)或いは3-(2,3-エポキシプロポキシ)プロピルジメトキシシランから1つ又は複数選ばれ、撥水剤は、ガラス繊維の表面への水分子の吸着を効果的に阻止し、ミネラルウールの疎水性を向上させることができ、防塵オイルをミネラルウールに用いると、生産、切断、加工、運搬のプロセスで飛散する粉塵の大量発生を効果的に軽減させることができる。ミネラルウール専用ホルムアルデヒドフリー成形剤、カップリング剤、撥水剤、及び防塵オイルはいずれも固形分含有量100%で計算すると、カップリング剤、撥水剤、及び防塵オイルが次の重量配合比で添加される。
ミネラルウール専用ホルムアルデヒドフリー成形剤:100部、
カップリング剤:0.1~5部、より好ましくは、0.2~1.0部、
撥水剤:0~5部、
防塵オイル:0~10部。
In the present invention, a combination of one or more of coupling agents, water repellents, and anti-dust oils may be added. Coupling agents improve the wet and wet strength of molding agents by creating a "molecular bridge" between the interface between an inorganic substance and an organic substance to tightly bond two types of materials with significantly different properties. , can improve the bonding properties of the interface, eliminate internal stress, extend the service life, and the preferred coupling agents in the present invention are epoxy siloxane coupling agents and aminosilane coupling agents. Preferred amino coupling agents or epoxy coupling agents of the invention are 3-(2,3-epoxypropoxy)propyltrimethoxysilane (KH560), 3-aminopropyltriethoxysilane (KH550), 3-(2, One or more selected from 3-epoxypropoxy)propyltriethoxysilane (KH561) or 3-(2,3-epoxypropoxy)propyldimethoxysilane, and the water repellent agent prevents adsorption of water molecules to the surface of the glass fiber. It can effectively block and improve the hydrophobicity of mineral wool, and the use of anti-dust oil in mineral wool can effectively reduce the large amount of dust scattered in the process of production, cutting, processing and transportation. can be done. Formaldehyde-free molding agent for mineral wool, coupling agent, water repellent agent, and dustproof oil are all calculated based on the solid content of 100%. added.
Formaldehyde-free molding agent for mineral wool: 100 parts,
Coupling agent: 0.1 to 5 parts, more preferably 0.2 to 1.0 parts,
Water repellent: 0 to 5 parts,
Anti-dust oil: 0-10 parts.

さらに、前記成分に加え、本発明の成形剤には、所望により、適切に水を加えてもよく、適量の水を加えると粘度を低減できるため、成形剤の輸送と使用に有利である。水としては、一般に、純水、水道水又は成形剤の特性に影響を与えない他の循環水を選択することができる。好ましくは、ミネラルウール専用ホルムアルデヒドフリー成形剤は固形分含有量100%で計算すると、100質量部のミネラルウール専用ホルムアルデヒドフリー成形剤あたり水の添加量は0~200質量部である。 Furthermore, in addition to the above components, the molding agent of the present invention may optionally be appropriately watered, and adding an appropriate amount of water can reduce the viscosity, which is advantageous for transportation and use of the molding agent. As water, in general, pure water, tap water or other circulating water that does not affect the properties of the molding agent can be selected. Preferably, the amount of water added is 0-200 parts by weight per 100 parts by weight of the formaldehyde-free molding agent for mineral wool, calculated at 100% solids content.

本発明の成形剤組成物は、ホルムアルデヒドフリーのコポリマー組成物であるのが好ましい。「ホルムアルデヒドフリー」とは、前記組成物がホルムアルデヒドを含まないため、硬化中にホルムアルデヒドを放出せず、使用する添加剤、例えば、ポリオールや他の助剤などもホルムアルデヒドを含まないため、重合中にホルムアルデヒドを生成せず、かつ基材の処理中にホルムアルデヒドを生成又は放出しないことを表す。 The molding agent composition of the present invention is preferably a formaldehyde-free copolymer composition. "Formaldehyde-free" means that the composition does not contain formaldehyde and therefore does not release formaldehyde during curing, and the additives used, such as polyols and other auxiliaries, do not contain formaldehyde and therefore do not contain formaldehyde during polymerization. It does not produce formaldehyde and represents no production or release of formaldehyde during processing of the substrate.

本発明では、前記成形剤の保存安定性を検討するために、サンプルを高温オーブンに入れて60℃/4週間の条件で高温保持する前後の粘度上昇率(%)を測定することによりその安定性を表し、当該方法は、成形剤の安定性を効果的に検討することができ、本発明の成形剤として好ましいのは60℃/4週間の保持条件下で、粘度上昇率が20%以下であり、より好ましくは、粘度上昇率は15%以下であり、さらに、粘度上昇率(%)は10%以下である。 In the present invention, in order to examine the storage stability of the molding agent, a sample is placed in a high-temperature oven and the rate of increase in viscosity (%) before and after holding at a high temperature of 60°C for 4 weeks is measured. This method can effectively examine the stability of the molding agent, and the molding agent of the present invention preferably has a viscosity increase rate of 20% or less under the holding conditions of 60° C./4 weeks. More preferably, the viscosity increase rate is 15% or less, and the viscosity increase rate (%) is 10% or less.

本発明に記載の成形剤の結合強度測定方法としては、基準GB/T 34181-2017の付録Cに従って測定し、違いは、付録Cのプレミックスフェノール樹脂を本発明の成形剤などの固形分に置き換え、乾燥時間は従来の180℃/20分から180℃/30分に変更することで、他のステップは変わらず、測定中では樹脂含有量が一律に5%であるとして測定し、前記乾態結合強度は、基準の付録Cの要件に従って常温23℃/50%の条件で測定し、また、本発明では、成形剤の耐水性を一層検討するために、湿潤強度と強度保持率の概念を導入し、つまり、湿潤強度は調製されたサンプルを湿度90%、温度40℃下で24時間保持した後に測定するものと定義し、測定終了後、強度保持率%=湿潤強度/乾態強度という概念で成形剤の耐水・耐湿特性を一層検討する。 As a method for measuring the bond strength of the molding agent according to the present invention, it is measured according to Appendix C of the standard GB/T 34181-2017, the difference being that the premixed phenolic resin of Appendix C is added to the solid content of the molding agent such as the present invention. By changing the replacement and drying time from the conventional 180 ° C. / 20 minutes to 180 ° C. / 30 minutes, the other steps are unchanged, and the resin content is uniformly measured at 5% during measurement, and the dry state The bond strength was measured under the conditions of normal temperature 23° C./50% according to the requirements of Appendix C of the standard. In other words, the wet strength is defined as that measured after holding the prepared sample at a humidity of 90% and a temperature of 40 ° C. for 24 hours, and after the measurement is completed, the strength retention rate % = wet strength / dry strength. Further study the water resistance and moisture resistance properties of the molding agent in terms of concept.

出願人は、本願に記載のミネラルウール専用成形剤は、従来の複合材料又は接着剤業界におけるマトリックスバインダーの特性基準だけでは評価できないことを判明し、複合材料又は接着剤業界では、乾態-湿潤結合強度が重点的に考慮されるが、本発明に記載の成形剤の使用方法は液体スプレーの形態で繊維の表面になるべく均一にコーティングすることで、しかも主に繊維と繊維の間の点接触という弱い結合でミネラルウールの成形と特性を実現させ、ミネラルウールを継続的に使用する間に、この弱い結合力が維持する効果が、成形剤の乾態強度、湿潤強度、及び強度保持率のどちらにも大きく関係しているため、この観点からは、成形剤の乾態強度、湿潤強度、強度保持率のいくつかの指標が等しく重要であるといえる。本発明の一つの大きな新規な特徴は、乾態強度、湿潤強度、及び強度保持率の3つの指標にバランスをとり、成形剤の乾態強度は4.0MPaより大きく、湿潤強度は3.0MPaより大きく、且つ強度保持率は60%より大きいことを求め、好ましくは、成形剤の乾態強度は5.0MPaより大きく、湿潤強度は3.5MPaより大きく、且つ強度保持率は70%より大きく、当該3つの指標の最適化により、得られたミネラルウール製品の特性は従来のアクリル酸ホモポリマー製品を大きく上回り、良好な耐高温・高湿環境の効果と施工特性を有する。 The applicant found that the mineral wool-only molding agent described in the present application cannot be evaluated only by the conventional matrix binder property criteria in the composite material or adhesive industry, and in the composite material or adhesive industry, dry-wet Although the bonding strength is the main consideration, the method of using the molding agent according to the present invention is to coat the surface of the fiber as uniformly as possible in the form of a liquid spray, and mainly to the point contact between the fibers. This weak bond realizes the molding and properties of mineral wool, and the effect of maintaining this weak bonding force during continuous use of mineral wool is the dry strength, wet strength, and strength retention rate of the molding agent. From this point of view, it can be said that several indicators of the dry strength, the wet strength and the strength retention of the molding agent are equally important, since they are closely related to both. One major novel feature of the present invention is to balance the three indices of dry strength, wet strength, and strength retention, and the dry strength of the molding agent is greater than 4.0 MPa and the wet strength is 3.0 MPa. and the strength retention is greater than 60%, preferably the dry strength of the molding agent is greater than 5.0 MPa, the wet strength is greater than 3.5 MPa, and the strength retention is greater than 70% , By optimizing these three indicators, the resulting mineral wool product has properties that greatly exceed those of conventional acrylic acid homopolymer products, and has good high-temperature and high-humidity resistance and construction properties.

1.本発明で製造されるホルムアルデヒドフリーミネラルウール成形剤は、遊離ホルムアルデヒドを放出せず、揮発性塩基が添加されず、エコと環境配慮の、VOCフリー・ホルムアルデヒドフリーの基準要件を満たしている。
2.本発明のミネラルウール成形剤は、良好な安定性を有し、高温環境下で粘度が依然として明らかに変わらず、その粘度上昇率は10%以内であり、長期的に安定的な保存が可能であるため、産業的な使用に好適である。
3.本発明で製造されるホルムアルデヒドフリーミネラルウール成形剤は、良好な乾態・湿潤強度と耐水性を同時に有しており、本発明の技術的解決手段で製造されるミネラルウール成形剤の最良の総合的な特性としては、乾態強度は5.0MPaより大きく、湿潤強度は3.5MPaより大きく、強度保持率は70%より大きくなっており、従来のアクリル酸ホモポリマー製品を大きく上回っている。
4.最後に、本発明で提案される成形剤製品から生産されるミネラルウールボードは、硬度が従来のアクリル酸ホモポリマー製品より優れ、良好な耐水・耐劣化性と施工特性を有する。
1. The formaldehyde-free mineral wool forming agent produced by the present invention does not release free formaldehyde, does not add volatile bases, and meets the requirements of eco-friendly, environmentally friendly, VOC-free and formaldehyde-free standards.
2. The mineral wool forming agent of the present invention has good stability, and the viscosity does not change significantly in a high temperature environment, and the viscosity increase rate is within 10%, so that it can be stored stably for a long time. Therefore, it is suitable for industrial use.
3. The formaldehyde-free mineral wool forming agent produced by the present invention has good dry/wet strength and water resistance at the same time, and is the best comprehensive mineral wool forming agent produced by the technical solution of the present invention As for the physical properties, the dry strength is greater than 5.0 MPa, the wet strength is greater than 3.5 MPa, and the strength retention rate is greater than 70%, greatly exceeding conventional acrylic acid homopolymer products.
4. Finally, the mineral wool board produced from the molding agent product proposed in the present invention has a hardness superior to that of the conventional acrylic acid homopolymer product, and has good water and aging resistance and construction properties.

以下、本発明の実施例に係る技術的解決手段を明確かつ完全に説明し、なお、説明される実施例は、全ての実施例ではなく、本発明の一部の実施例に過ぎない。当業者が本発明の実施例に基づいて、創造的な作業をせず他の実施例を得た場合、そのいずれも本発明の保護範囲に属する。 The following clearly and completely describes the technical solutions according to the embodiments of the present invention, and the described embodiments are only some embodiments of the present invention, not all the embodiments. If a person skilled in the art obtains other embodiments without creative work based on the embodiments of the present invention, they shall all fall within the protection scope of the present invention.

本願で言及される関連の試験で参照する国の現行基準及び規格は、次のとおりである。
成形剤のホルムアルデヒド含有量測定方法としては、基準GB/T 34181-2017「ミネラルウール断熱製品用成形剤」の付録Dに従って測定し、ミネラルウール特性の測定方法は、下記の基準を参照する。
GB/T 13350-2017「断熱用グラスウール及びその製品」
GB/T 19686-2015「建設用ロックウール断熱製品」
The current national standards and standards referenced in the relevant tests referred to in this application are:
The method for measuring the formaldehyde content of the molding agent is according to Appendix D of the standard GB/T 34181-2017 "Molding agent for mineral wool insulation products", and the method for measuring the properties of mineral wool refers to the following standards.
GB/T 13350-2017 "Glass wool for thermal insulation and its products"
GB/T 19686-2015 "Rock wool insulation products for construction"

1.成形剤の安定性測定と結合強度試験
実施例1
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が98.0:1.0:1.0であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
1. Forming agent stability measurement and bond strength test Example 1
The composition of the resin prepolymer is such that the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 98.0: 1.0: 1.0, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例2
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が97.5:1.0:1.5であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 2
The composition of the resin prepolymer is such that the molar ratio of acrylic acid:hydroxyethyl acrylate:butyl acrylate is 97.5:1.0:1.5, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例3
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が96.0:1.0:3.0であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 3
The composition of the resin prepolymer is such that the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 96.0: 1.0: 3.0, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例4
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が94.5:1.0:4.5であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 4
The composition of the resin prepolymer is such that the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 94.5: 1.0: 4.5, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例5
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が97.5:1.5:1.0であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 5
The composition of the resin prepolymer is such that the molar ratio of acrylic acid:hydroxyethyl acrylate:butyl acrylate is 97.5:1.5:1.0, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例6
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が97.0:1.5:1.5であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 6
The composition of the resin prepolymer is such that the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 97.0: 1.5: 1.5, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例7
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が95.5:1.5:3.0であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 7
The composition of the resin prepolymer is such that the molar ratio of acrylic acid:hydroxyethyl acrylate:butyl acrylate is 95.5:1.5:3.0, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例8
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が94.0:1.5:4.5であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 8
The composition of the resin prepolymer is such that the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 94.0: 1.5: 4.5, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例9
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が96.0:3.0:1.0であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 9
The composition of the resin prepolymer is such that the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 96.0: 3.0: 1.0, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例10
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が95.5:3.0:1.5であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 10
The composition of the resin prepolymer is such that the molar ratio of acrylic acid:hydroxyethyl acrylate:butyl acrylate is 95.5:3.0:1.5, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例11
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が94.0:3.0:3.0であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 11
The composition of the resin prepolymer is such that the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 94.0: 3.0: 3.0, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例12
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が92.5:3.0:4.5であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 12
The composition of the resin prepolymer is such that the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 92.5: 3.0: 4.5, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例13
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が94.5:4.5:1.0であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 13
The composition of the resin prepolymer is such that the molar ratio of acrylic acid:hydroxyethyl acrylate:butyl acrylate is 94.5:4.5:1.0, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例14
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が94.0:4.5:1.5であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 14
The composition of the resin prepolymer is such that the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 94.0: 4.5: 1.5, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例15
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が92.5:4.5:3.0であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 15
The composition of the resin prepolymer is such that the molar ratio of acrylic acid:hydroxyethyl acrylate:butyl acrylate is 92.5:4.5:3.0, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepared so that the solid content was 50% at once, then some samples were held in a high temperature 60 ° C environment for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

実施例16
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が91.0:4.5:4.5であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、固形分含有量が50%になるように一括に調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Example 16
The composition of the resin prepolymer is such that the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 91.0: 4.5: 4.5, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water, Prepare all at once so that the solid content is 50%, then some samples are kept in a high temperature 60 ° C. environment for 4 weeks to measure the viscosity change, and another sample is 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

比較例1
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ブチルのモル比が95.5:4.5であり、樹脂プレポリマーの数平均分子量Mnは2500であり、アクリル酸ヒドロキシエチルを含まず、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒と、0.3部のKH560カップリング剤とを混合させ、適量の水を添加して均一に混合させることにより、固形分含有量が50%になるように一括に調製し、次に、高温60℃の環境で4週間保持してその粘度変化を測定するとともに、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Comparative example 1
The composition of the resin prepolymer is such that the molar ratio of acrylic acid:butyl acrylate is 95.5:4.5, the number average molecular weight Mn of the resin prepolymer is 2500, it does not contain hydroxyethyl acrylate, and contains no solids. Based on the amount, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, 5 parts of sodium hypophosphite catalyst, and 0.3 parts of KH560 coupling agent are mixed, and an appropriate amount of By adding water and mixing uniformly, it was prepared all at once so that the solid content was 50%, then it was kept in an environment at a high temperature of 60 ° C. for 4 weeks and its viscosity change was measured. The dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

比較例2
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチルのモル比が95.5:4.5であり、樹脂プレポリマーの数平均分子量Mnは2500であり、アクリル酸ブチルを含まず、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Comparative example 2
The composition of the resin prepolymer is such that the molar ratio of acrylic acid: hydroxyethyl acrylate is 95.5:4.5, the number average molecular weight Mn of the resin prepolymer is 2500, it does not contain butyl acrylate and contains no solids. Based on the amount, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are mixed uniformly by adding an appropriate amount of water, and Then, some samples were kept at a high temperature of 60 ° C for 4 weeks to measure the viscosity change, and another sample was 0 .3 parts of KH560 coupling agent were added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

比較例3
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチルのモル比が95.5:5.5であり、樹脂プレポリマーの数平均分子量Mnは2500であり、アクリル酸ブチルを含まず、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Comparative example 3
The composition of the resin prepolymer is acrylic acid: hydroxyethyl acrylate molar ratio of 95.5:5.5, the resin prepolymer has a number average molecular weight Mn of 2500, does not contain butyl acrylate, and contains no solids. Based on the amount, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are mixed uniformly by adding an appropriate amount of water, and Then, some samples were kept at a high temperature of 60 ° C for 4 weeks to measure the viscosity change, and another sample was 0 .3 parts of KH560 coupling agent were added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards, respectively.

比較例4
樹脂プレポリマーの組成は、アクリル酸:アクリル酸ヒドロキシエチル:アクリル酸ブチルのモル比が99.0:0.5:0.5であり、樹脂プレポリマーの数平均分子量Mnは2500であり、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることのより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Comparative example 4
The composition of the resin prepolymer is such that the molar ratio of acrylic acid: hydroxyethyl acrylate: butyl acrylate is 99.0:0.5:0.5, the number average molecular weight Mn of the resin prepolymer is 2500, and the solid Based on the content, 100 parts of the resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water. , Prepared so that the solid content was 50% at once, then some samples were kept in a high temperature 60 ° C. environment for 4 weeks to measure the viscosity change, and another sample was , 0.3 parts of KH560 coupling agent were added and mixed, and the dry-wet bond strength, strength retention rate, and formaldehyde content of the molding agent were measured respectively according to national standards.

比較例5
樹脂プレポリマーの組成は、モノマーの組成が全てアクリル酸であり、ポリマーの数平均分子量Mnは2500であり、アクリル酸ブチルとアクリル酸ヒドロキシエチルを含まず、固体含有量基準で、100部の前記樹脂プレポリマーと、34.5部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。
Comparative example 5
The composition of the resin prepolymer is such that the monomer composition is all acrylic acid, the polymer has a number average molecular weight Mn of 2500, does not contain butyl acrylate and hydroxyethyl acrylate, and is based on the solid content of 100 parts of the above A resin prepolymer, 34.5 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed with an appropriate amount of water, so that the solid content is 50% at once. Then, some samples were kept at a high temperature of 60 ° C. for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards.

比較例6
樹脂プレポリマーの組成は、モノマーの組成が全てアクリル酸であり、ポリマーの数平均分子量Mnは2500であり、アクリル酸ブチルとアクリル酸ヒドロキシエチルを含まず、固体含有量基準で、100部の前記樹脂プレポリマーと、38.8部のトリエタノールアミンと、5部の次亜リン酸ナトリウム触媒とを、適量の水を添加して均一に混合させることにより、一括に固形分含有量が50%になるように調製し、次に、一部のサンプルは、高温60℃の環境で4週間保持してその粘度変化を測定し、もう一部のサンプルは、0.3部のKH560カップリング剤を加えて混合させ、国の基準に基づいて成形剤の乾態-湿潤結合強度、強度保持率、及びホルムアルデヒド含有量をそれぞれ測定した。比較例6でトリエタノールアミンの添加量を上げるのは、比較例5と比較例3を比べると、比較例5のカルボキシ基含有量が比較例3より約12%高いことを考慮すると、本比較例では比較例3と同じカルボキシ基/ヒドロキシ基含有量である時の結合強度に対する影響を比較するために、比較例3と比べやすいよう12%の割合にトリエタノールアミンの比率を上げたのである。
Comparative example 6
The composition of the resin prepolymer is such that the monomer composition is all acrylic acid, the polymer has a number average molecular weight Mn of 2500, does not contain butyl acrylate and hydroxyethyl acrylate, and is based on the solid content of 100 parts of the above A resin prepolymer, 38.8 parts of triethanolamine, and 5 parts of sodium hypophosphite catalyst are uniformly mixed by adding an appropriate amount of water so that the solid content is 50% at once. Then, some samples were kept at a high temperature of 60 ° C. for 4 weeks to measure the viscosity change, and another sample was 0.3 parts of KH560 coupling agent was added and mixed, and the dry-wet bond strength, strength retention, and formaldehyde content of the molding agent were measured according to national standards. The reason for increasing the amount of triethanolamine added in Comparative Example 6 is that, when comparing Comparative Examples 5 and 3, the carboxy group content of Comparative Example 5 is about 12% higher than that of Comparative Example 3. In order to compare the effect on bond strength when the carboxy group/hydroxy group content is the same as in Comparative Example 3, the ratio of triethanolamine was increased to 12% to facilitate comparison with Comparative Example 3. .

上記の実施例と比較例で製造された成形剤の配合比は、表1に示されるとおりである。 Table 1 shows the compounding ratio of the molding agents produced in the above examples and comparative examples.

Figure 0007269689000001
Figure 0007269689000001

上記の実施例と比較例で製造された成形剤の特性測定結果は、表2に示されるとおりである。 Table 2 shows the measurement results of the properties of the molding agents produced in the above examples and comparative examples.

Figure 0007269689000002
Figure 0007269689000002

前記表1及び表2の結果から分かるように、HEA及びBAの添加量が0.5~4.5%モル部である時に、成形剤の粘度上昇率は20%以下であり、乾態強度は4.0MPaより大きく、湿潤強度は3.0MPaより大きく、強度保持率は60%より大きかった。実施例11、実施例12、実施例15及び実施例16のデータを更に統計したところ、アルキレン結合型不飽和ヒドロキシ基官能性モノマーb:疎水性アルキレン結合型不飽和モノマーcのモル比=1:1.5~1.5:1で且つbの含有量が3.0~4.5モル%である時に、成形剤の乾態強度は5.0MPaより大きく、湿潤強度は3.5MPaより大きく、強度保持率は70%より大きく、且つその粘度上昇率は20%以下であり、最良の特性を有することを見出した。 As can be seen from the results in Tables 1 and 2, when the amount of HEA and BA added is 0.5 to 4.5% molar parts, the viscosity increase rate of the molding agent is 20% or less, and the dry strength is was greater than 4.0 MPa, the wet strength was greater than 3.0 MPa, and the strength retention was greater than 60%. Further statistics on the data of Examples 11, 12, 15 and 16 revealed that the molar ratio of alkylene-linked unsaturated hydroxy group-functional monomer b:hydrophobic alkylene-linked unsaturated monomer c = 1: The dry strength of the molding agent is greater than 5.0 MPa and the wet strength is greater than 3.5 MPa when the ratio is 1.5-1.5:1 and the content of b is 3.0-4.5 mol%. , the strength retention rate is greater than 70% and the viscosity increase rate is 20% or less, which is the best property.

2.異なる溶解度とTgを有するモノマーの成形剤の特性に対する影響
実施例17:
実施例11を元にして、BAをアクリル酸ラウリルに置き換える以外、他の条件は変わらなかった。
2. Effect of Monomers with Different Solubilities and Tg's on Molding Agent Properties Example 17:
Based on Example 11, the other conditions were unchanged except that BA was replaced with lauryl acrylate.

実施例18:
実施例11を元にして、BAを2-EHAに置き換える以外、他の条件は変わらなかった。
Example 18:
Based on Example 11, except for replacing BA with 2-EHA, other conditions were unchanged.

比較例7:
実施例11を元にして、BAをMAに置き換える以外、他の条件は変わらなかった。
Comparative Example 7:
Based on Example 11, except for replacing BA with MA, other conditions were unchanged.

比較例8:
実施例11を元にして、BAをMMAに置き換える以外、他の条件は変わらなかった。
Comparative Example 8:
Based on Example 11, except for replacing BA with MMA, other conditions were unchanged.

前記実施例及び比較例で使用するモノマーの特性は、表3に示されるとおりである。 The properties of the monomers used in the Examples and Comparative Examples are shown in Table 3.

Figure 0007269689000003
Figure 0007269689000003

前記実施例及び比較例で製造された成形剤の特性測定結果は、表4に示されるとおりである。 Table 4 shows the properties of the molding agents prepared in Examples and Comparative Examples.

Figure 0007269689000004
Figure 0007269689000004

前記表3及び表4の結果から分かるように、特性の異なるモノマーを使用するのは、成形剤の特性に大きな影響があり、モノマーのTgが非常に低く、水への溶解度が高い場合に、成形剤の強度及び耐水性の向上には不利である。 As can be seen from the results in Tables 3 and 4, the use of monomers with different properties greatly affects the properties of the molding agent. It is disadvantageous for improving the strength and water resistance of the molding agent.

3.異なるタイプのモノマーの成形剤の特性に対する影響
実施例19:
実施例6を元にして、ただし、使用する原料と配合比が違い、原料と配合比の詳細は表5を参照する。
3. Effect of Different Types of Monomers on Molding Agent Properties Example 19:
Based on Example 6, except that the raw materials used and the blending ratio are different. See Table 5 for the details of the raw materials and the blending ratio.

実施例20:
実施例6を元にして、ただし、使用する原料と配合比が違い、原料と配合比の詳細は表5を参照する。
Example 20:
Based on Example 6, except that the raw materials used and the blending ratio are different. See Table 5 for the details of the raw materials and the blending ratio.

実施例21:
実施例6を元にして、ただし、使用する原料と配合比が違い、原料と配合比の詳細は表5を参照する。
Example 21:
Based on Example 6, except that the raw materials used and the blending ratio are different. See Table 5 for the details of the raw materials and the blending ratio.

実施例22:
実施例6を元にして、ただし、使用する原料と配合比が違い、原料と配合比の詳細は表5を参照する。
Example 22:
Based on Example 6, except that the raw materials used and the blending ratio are different. See Table 5 for the details of the raw materials and the blending ratio.

Figure 0007269689000005
Figure 0007269689000005

前記実施例及び比較例で製造された成形剤の特性測定結果は、表6に示されるとおりである。 Table 6 shows the properties of the molding agents prepared in Examples and Comparative Examples.

Figure 0007269689000006
Figure 0007269689000006

前記表5及び表6の結果から分かるように、本明細書にサポートされる範囲内で、本発明の技術的解決手段から提供される他のモノマー原料と配合比を用いても、同様に良好な特性を有し、成形剤の総合的な特性としては、粘度上昇率は20%以下であり、乾態強度は4.0MPaより大きく、湿潤強度は3.0MPaより大きく、強度保持率は60%より大きいという特性指標に達していた。 As can be seen from the results in Tables 5 and 6 above, within the scope supported by the present specification, other monomer raw materials and blending ratios provided by the technical solution of the present invention can be used as well. As overall characteristics of the molding agent, the viscosity increase rate is 20% or less, the dry strength is greater than 4.0 MPa, the wet strength is greater than 3.0 MPa, and the strength retention rate is 60 % has been reached.

4.異なる配合によるミネラルウールボードの耐水性比較試験
本願の試験例では、それぞれ、本願の実施例11及び比較例6の成形剤の配合を用いてミネラルウールボードを製造し、さらに、ミネラルウール専用ホルムアルデヒドフリー成形剤は100%固形分含有量で計算すると、100部のホルムアルデヒドフリー成形剤にさらに3部の撥水剤、6部の防塵オイルを添加し、プロセスの要件により適量の水を添加し、プロセスにおいては試験例1が比較例1と同じで、いずれもロックウールボードが試験対象であり、試験例2が比較例2と同じで、いずれもスラグウールボードが試験対象であり、試験例3が比較例3と同じで、いずれもグラスウールボードが試験対象であり、パラメータの詳細は、次の表7に示されるとおりである。
4. Water resistance comparison test of mineral wool boards with different formulations In the test examples of the present application, mineral wool boards were produced using the formulations of the molding agents of Example 11 and Comparative Example 6 of the present application, respectively. The molding agent is calculated at 100% solids content, 100 parts of formaldehyde free molding agent is further added with 3 parts of water repellent, 6 parts of anti-dust oil, appropriate amount of water is added according to process requirements, and the process is In Test Example 1 is the same as Comparative Example 1, both are rock wool boards to be tested, Test Example 2 is the same as Comparative Example 2, both are slag wool boards to be tested, and Test Example 3 is As in Comparative Example 3, glass wool boards were tested, and the details of the parameters are shown in Table 7 below.

Figure 0007269689000007
Figure 0007269689000007

前記表7にて製造されたミネラルウールサンプルを、国の基準に従って切り分けて2群にし、1群は劣化保持前サンプルとして、国の基準の規定に従って強度を測定し、もう1群は劣化保持後サンプルとして、恒温恒湿槽に入れて、50±2℃、95±3%の温度・湿度条件下で7日間劣化保持して、国の基準に従って強度を測定し、次に、劣化前後の強度と強度保持率をそれぞれ記録し、データは、表8及び表9に示されるとおりである。 The mineral wool samples produced in Table 7 were cut into two groups according to national standards, one group was used as a sample before deterioration and maintenance, and the strength was measured according to the provisions of the national standards, and the other group was after deterioration and maintenance. As a sample, put it in a constant temperature and humidity chamber, hold it for 7 days under temperature and humidity conditions of 50 ± 2 ° C and 95 ± 3%, measure the strength according to the national standard, and then measure the strength before and after deterioration. and strength retention were recorded, respectively, and the data are as shown in Tables 8 and 9.

Figure 0007269689000008
Figure 0007269689000008

Figure 0007269689000009
Figure 0007269689000009

表8及び表9から分かるように、本発明の配合の成形剤を使用して製造されたミネラルウールボードは、劣化前後の強度と強度保持率などがいずれも従来のアクリル酸ホモポリマー成形剤より優れており、特に、有機物含有量が低い時に、比較測定結果に明らかな差があった。 As can be seen from Tables 8 and 9, the mineral wool boards manufactured using the molding agent of the present invention are superior in strength and strength retention before and after deterioration to conventional acrylic acid homopolymer molding agents. Excellent, especially when the organic content was low, there was a clear difference in the comparative measurement results.

Claims (8)

固形分含有量100%で計算すると、
水溶性樹脂プレポリマー:100部と、
ポリオール:10~70部と、
触媒:2~15部との重量配合比の成分を含み、
そのうち、前記水溶性樹脂プレポリマーは、モノマー原料の共重合反応から得られ、前記モノマー原料は、物質量基準で、
a.アルキレン結合型不飽和カルボン酸モノマー:90.0~99.0%と、
b.アルキレン結合型不飽和ヒドロキシ基官能性モノマー:0.5~5.0%と、
c.疎水性アルキレン結合型不飽和モノマー:0.5~5.0%との成分を含み、
前記アルキレン結合型不飽和カルボン酸モノマーは、アクリル酸、メタクリル酸、クロトン酸、フマル酸、マレイン酸、2-メチルマレイン酸、イタコン酸、2-メチルイタコン酸、α-β-メチレングルタル酸、マレイン酸モノアルキル、フマル酸モノアルキル、無水マレイン酸、無水アクリル酸、無水メタクリル酸、無水イソオクチルアクリル酸、無水クロトン酸、無水フマル酸から選ばれる1つ又は複数であり、
前記アルキレン結合型不飽和ヒドロキシ基官能性モノマーは、メタクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、メタクリル酸-1-メチル-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、アクリル酸-1-メチル-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシブチル、及びアクリル酸-2-ヒドロキシブチルから選ばれ、
前記疎水性アルキレン結合型不飽和モノマーは、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸n-プロピル、アクリル酸シクロヘキシル、アクリル酸ラウリル、アクリル酸-2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸ラウリル、メタクリル酸-2-エチルヘキシル、メタクリル酸イソボルニル、スチレン、α-メチルスチレン、p-メチルスチレン、エチルビニルベンゼン、ビニルナフタレン、ビニルキシレン、ビニルトルエン、又は塩化ビニルトルエンから選ばれる1つ又は複数であり、
前記触媒はカルボン酸とヒドロキシ基の反応を促進できる触媒であり、次亜リン酸ナトリウム、次亜リン酸亜鉛、次亜リン酸カリウム、次亜リン酸カルシウム、又は次亜リン酸マグネシウムから選ばれる1つ又は複数であることを特徴とする、耐水性を向上させるミネラルウール専用ホルムアルデヒドフリー成形剤。
When calculated at 100% solids content,
Water-soluble resin prepolymer: 100 parts,
Polyol: 10 to 70 parts;
Catalyst: including components in a weight blending ratio of 2 to 15 parts,
Among them, the water-soluble resin prepolymer is obtained from a copolymerization reaction of monomer raw materials, and the monomer raw materials are, on a substance basis,
a. Alkylene-bonded unsaturated carboxylic acid monomer: 90.0 to 99.0%,
b. an alkylene-bonded unsaturated hydroxy group-functional monomer: 0.5 to 5.0%;
c. Hydrophobic alkylene-bonded unsaturated monomer: 0.5 to 5.0% ,
The alkylene-bonded unsaturated carboxylic acid monomers include acrylic acid, methacrylic acid, crotonic acid, fumaric acid, maleic acid, 2-methylmaleic acid, itaconic acid, 2-methylitaconic acid, α-β-methyleneglutaric acid, and malein. one or more selected from monoalkyl acid, monoalkyl fumarate, maleic anhydride, acrylic anhydride, methacrylic anhydride, isooctylacrylic anhydride, crotonic anhydride, and fumaric anhydride;
The alkylene-bonded unsaturated hydroxy group-functional monomers include 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, 1-methyl-2-hydroxyethyl methacrylate, acrylic selected from acid-2-hydroxypropyl, 1-methyl-2-hydroxyethyl acrylate, 2-hydroxybutyl methacrylate, and 2-hydroxybutyl acrylate;
The hydrophobic alkylene-bonded unsaturated monomers include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, n-propyl acrylate, and cyclohexyl acrylate. , Lauryl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, lauryl methacrylate, 2-ethylhexyl methacrylate, isobornyl methacrylate, styrene, α-methylstyrene, p- one or more selected from methylstyrene, ethylvinylbenzene, vinylnaphthalene, vinylxylene, vinyltoluene, or vinyltoluene chloride;
The catalyst is a catalyst capable of promoting the reaction between a carboxylic acid and a hydroxy group, and is one selected from sodium hypophosphite, zinc hypophosphite, potassium hypophosphite, calcium hypophosphite, and magnesium hypophosphite. or a plurality of formaldehyde-free molding agents for mineral wool that improve water resistance.
前記水溶性樹脂プレポリマーの数平均分子量は、500~30000であることを特徴とする、請求項1に記載の耐水性を向上させるミネラルウール専用ホルムアルデヒドフリー成形剤。 The formaldehyde-free molding agent for mineral wool that improves water resistance according to claim 1, wherein the water-soluble resin prepolymer has a number average molecular weight of 500 to 30,000. 前記疎水性アルキレン結合型不飽和モノマーの水への溶解度は、0~1.5g/100gであり、そのホモポリマーのガラス転移点は、-15℃~-80℃であることを特徴とする、請求項に記載の耐水性を向上させるミネラルウール専用ホルムアルデヒドフリー成形剤。 The solubility in water of the hydrophobic alkylene-bonded unsaturated monomer is 0 to 1.5 g/100 g, and the glass transition point of the homopolymer is -15 ° C. to -80 ° C., Formaldehyde-free molding agent for mineral wool that improves water resistance according to claim 1 . 前記疎水性アルキレン結合型不飽和モノマーは、アクリル酸n-ブチル、アクリル酸ラウリル、アクリル酸n-プロピル、アクリル酸イソブチル、アクリル酸-2-エチルヘキシル、又はメタクリル酸ラウリルから選ばれる1つ又は複数であることを特徴とする、請求項に記載の耐水性を向上させるミネラルウール専用ホルムアルデヒドフリー成形剤。 The hydrophobic alkylene-bonded unsaturated monomer is one or more selected from n-butyl acrylate, lauryl acrylate, n-propyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, and lauryl methacrylate. Formaldehyde-free molding agent for mineral wool to improve water resistance according to claim 3 , characterized in that 前記ポリオールは、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ジエタノールアミン、イソプロパノールアミン、トリエタノールアミン、又はポリビニルアルコールから選ばれる1つ又は複数であことを特徴とする、請求項1に記載の耐水性を向上させるミネラルウール専用ホルムアルデヒドフリー成形剤。 The polyol according to claim 1, characterized in that the polyol is one or more selected from ethylene glycol, propylene glycol, glycerin, trimethylolpropane, diethanolamine, isopropanolamine, triethanolamine, or polyvinyl alcohol. Formaldehyde-free molding agent for mineral wool that improves water resistance. 固形分含有量100%で計算すると、
水溶性樹脂プレポリマー:100部と、
ポリオール:12~50部と、
触媒:5~10部との重量配合比の成分を含み、
そのうち、前記水溶性樹脂プレポリマーは、モノマー原料の共重合反応から得られ、前記モノマー原料は、物質量基準で、
a.アルキレン結合型不飽和カルボン酸モノマー:92.5~96.0%と、
b.アルキレン結合型不飽和ヒドロキシ基官能性モノマー:3.0~4.5%と、
c.疎水性アルキレン結合型不飽和モノマー:1.0~3.0%との成分を含むことを特徴とする、請求項1乃至5のいずれか1項に記載の耐水性を向上させるミネラルウール専用ホルムアルデヒドフリー成形剤。
When calculated at 100% solids content,
Water-soluble resin prepolymer: 100 parts,
Polyol: 12 to 50 parts;
Catalyst: including components in a weight blending ratio of 5 to 10 parts,
Among them, the water-soluble resin prepolymer is obtained from a copolymerization reaction of monomer raw materials, and the monomer raw materials are, on a substance basis,
a. Alkylene-bonded unsaturated carboxylic acid monomer: 92.5 to 96.0%,
b. an alkylene-bonded unsaturated hydroxy group-functional monomer: 3.0 to 4.5%;
c. Hydrophobic alkylene-bonded unsaturated monomer: The formaldehyde for mineral wool that improves water resistance according to any one of claims 1 to 5 , characterized by containing a component of 1.0 to 3.0%. Free molding agent.
前記アルキレン結合型不飽和ヒドロキシ基官能性モノマーと疎水性アルキレン結合型不飽和モノマーのモル比の範囲は、1:1.5~1.5:1であることを特徴とする、請求項に記載の耐水性を向上させるミネラルウール専用ホルムアルデヒドフリー成形剤。 According to claim 6 , characterized in that the molar ratio range of said alkylene-bonded unsaturated hydroxy group-functional monomer and hydrophobic alkylene-bonded unsaturated monomer is 1:1.5 to 1.5:1. A formaldehyde-free molding agent specifically for mineral wool that improves water resistance as described. 固形分含有量100%で計算すると、
ミネラルウール専用ホルムアルデヒドフリー成形剤:100部と、
カップリング剤:0.1~5部と、
撥水剤:0~5部と、
防塵オイル:0~10部と、
水:0~200部との重量配合比の成分を含み、
そのうち、前記カップリング剤は、3-(2,3-エポキシプロポキシ)プロピルトリメトキシシラン(KH560)、3-アミノプロピルトリエトキシシラン(KH550)、3-(2,3-エポキシプロポキシ)プロピルトリエトキシシラン(KH561)、又は3-(2,3-エポキシプロポキシ)プロピルジメトキシシランから選ばれる1つ又は複数であることを特徴とする、請求項1に記載の耐水性を向上させるミネラルウール専用ホルムアルデヒドフリー成形剤。
When calculated at 100% solids content,
Formaldehyde-free molding agent for mineral wool: 100 parts;
Coupling agent: 0.1 to 5 parts,
Water repellent agent: 0 to 5 parts,
Dustproof oil: 0 to 10 parts,
Water: 0 to 200 parts by weight of ingredients,
Among them, the coupling agent is 3-(2,3-epoxypropoxy)propyltrimethoxysilane (KH560), 3-aminopropyltriethoxysilane (KH550), 3-(2,3-epoxypropoxy)propyltriethoxy Formaldehyde-free for mineral wool to improve water resistance according to claim 1, characterized in that it is one or more selected from silane (KH561), or 3-(2,3-epoxypropoxy)propyldimethoxysilane molding agent.
JP2022554462A 2021-12-30 2022-01-18 Formaldehyde-free molding agent for mineral wool that improves water resistance Active JP7269689B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202111654376.0 2021-12-30
CN202111654376.0A CN114380938B (en) 2021-12-30 2021-12-30 Special formaldehyde-free setting agent for improving water resistance of mineral wool
PCT/CN2022/072535 WO2022073527A2 (en) 2021-12-30 2022-01-18 Dedicated formaldehyde free setting agent for mineral wool with improved water resistance

Publications (2)

Publication Number Publication Date
JP2023516211A JP2023516211A (en) 2023-04-18
JP7269689B2 true JP7269689B2 (en) 2023-05-09

Family

ID=81127142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022554462A Active JP7269689B2 (en) 2021-12-30 2022-01-18 Formaldehyde-free molding agent for mineral wool that improves water resistance

Country Status (4)

Country Link
JP (1) JP7269689B2 (en)
KR (1) KR20240028465A (en)
CN (1) CN114380938B (en)
WO (1) WO2022073527A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353296B (en) * 2022-08-30 2024-03-01 武汉思越新材料有限公司 Water repellent composition and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033747A1 (en) 2002-08-16 2004-02-19 Miller Wayne P. Aqueous formaldehyde-free composition and fiberglass insulation including the same
JP2007211161A (en) 2006-02-10 2007-08-23 Asahi Fiber Glass Co Ltd Aqueous binder for inorganic fiber heat-insulating/sound-absorbing material, and inorganic fiber heat-insulating/sound-absorbing material
JP2008542451A (en) 2005-05-06 2008-11-27 ディネア オイ Polyvinyl alcohol-based curable aqueous composition containing no formaldehyde
CN102533168A (en) 2011-12-27 2012-07-04 华南理工大学 Aqueous formaldehyde-free glass wool binder and preparation method thereof
WO2020021616A1 (en) 2018-07-24 2020-01-30 三洋化成工業株式会社 Moisture resistance improver for water-based adhesive for inorganic materials, and water-based adhesive for inorganic materials
WO2021007692A1 (en) 2019-07-12 2021-01-21 Dow Global Technologies Llc Aqueous polymer formulation
CN112521871A (en) 2020-12-29 2021-03-19 太尔胶粘剂(广东)有限公司 Water-based adhesive for thermal insulation cotton and preparation method thereof
WO2021176866A1 (en) 2020-03-03 2021-09-10 株式会社日本触媒 Binder and bonded object

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE176657T1 (en) * 1994-11-14 1999-02-15 Owens Corning Fiberglass Corp BINDER FOR GLASS FIBERS
DE19535792A1 (en) * 1995-09-26 1997-03-27 Basf Ag Process for the production of recyclable fiber composites
JP4157853B2 (en) * 2003-08-13 2008-10-01 ローム アンド ハース カンパニー Curable composition and use as binder
AU2004201002B2 (en) * 2003-08-26 2009-08-06 Rohm And Haas Company Curable aqueous composition and use as heat-resistant nonwoven binder
EP1510618B1 (en) * 2003-08-26 2007-02-28 Rohm And Haas Company Curable aqueous composition and use as heat-resistant nonwoven binder
US20050214534A1 (en) * 2004-03-29 2005-09-29 Adamo Joseph R Extended curable compositions for use as binders
CN110066359B (en) * 2019-03-27 2021-04-20 华南理工大学 Water-soluble thermosetting acrylic resin and preparation method and application thereof
CN111849392B (en) * 2019-04-30 2022-02-25 江苏艾科赛特新材料有限公司 Special formaldehyde-free setting agent for mineral wool and testing method thereof
CN211800562U (en) * 2020-03-11 2020-10-30 江苏艾科赛特新材料有限公司 Formaldehyde-free shaping agent recovery system for mineral wool continuous production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040033747A1 (en) 2002-08-16 2004-02-19 Miller Wayne P. Aqueous formaldehyde-free composition and fiberglass insulation including the same
JP2008542451A (en) 2005-05-06 2008-11-27 ディネア オイ Polyvinyl alcohol-based curable aqueous composition containing no formaldehyde
JP2007211161A (en) 2006-02-10 2007-08-23 Asahi Fiber Glass Co Ltd Aqueous binder for inorganic fiber heat-insulating/sound-absorbing material, and inorganic fiber heat-insulating/sound-absorbing material
CN102533168A (en) 2011-12-27 2012-07-04 华南理工大学 Aqueous formaldehyde-free glass wool binder and preparation method thereof
WO2020021616A1 (en) 2018-07-24 2020-01-30 三洋化成工業株式会社 Moisture resistance improver for water-based adhesive for inorganic materials, and water-based adhesive for inorganic materials
WO2021007692A1 (en) 2019-07-12 2021-01-21 Dow Global Technologies Llc Aqueous polymer formulation
WO2021176866A1 (en) 2020-03-03 2021-09-10 株式会社日本触媒 Binder and bonded object
CN112521871A (en) 2020-12-29 2021-03-19 太尔胶粘剂(广东)有限公司 Water-based adhesive for thermal insulation cotton and preparation method thereof

Also Published As

Publication number Publication date
WO2022073527A2 (en) 2022-04-14
WO2022073527A9 (en) 2022-12-08
CN114380938B (en) 2022-08-16
KR20240028465A (en) 2024-03-05
WO2022073527A3 (en) 2022-11-10
CN114380938A (en) 2022-04-22
JP2023516211A (en) 2023-04-18

Similar Documents

Publication Publication Date Title
JP3850446B2 (en) Formaldehyde-free aqueous binder
JP4658522B2 (en) Glass adhesion promoter
AU2007246196B2 (en) Curable aqueous compositions
TWI354001B (en) Curable composition
EP1935940B1 (en) Curable aqueous compositions
JP2008515761A (en) Water repellent glass fiber binder containing a fluorinated polymer
CN106118173B (en) Hydrophilic antifogging coating composition of photo-thermal dual curable and preparation method thereof
US20070004835A1 (en) Curable composition
CN106752964B (en) A kind of graphene abrasion resistant fire blocking anti-corrosive powder paint and preparation method thereof
AU2006200880B2 (en) Curable composition and its uses
JP7269689B2 (en) Formaldehyde-free molding agent for mineral wool that improves water resistance
JP5755626B2 (en) Aqueous binder for mineral fiber
KR20180015155A (en) A hydrophilic treatment agent, a method for forming a hydrophilic film, and a hydrophilic film
KR20190137785A (en) Method of forming hydrophilic treatment agent and hydrophilic coating
JP2966881B2 (en) Hydraulic composition for autoclave curing
CN114621709B (en) High-water-resistance bio-based formaldehyde-free setting agent special for mineral wool
CN111849392B (en) Special formaldehyde-free setting agent for mineral wool and testing method thereof
JPWO2020129801A1 (en) Binders for inorganic fibers and inorganic fiber mats
JP7138282B2 (en) mineral wool

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220907

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7269689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150