JP7268927B2 - Ultraviolet irradiation device and its driving method - Google Patents

Ultraviolet irradiation device and its driving method Download PDF

Info

Publication number
JP7268927B2
JP7268927B2 JP2022076688A JP2022076688A JP7268927B2 JP 7268927 B2 JP7268927 B2 JP 7268927B2 JP 2022076688 A JP2022076688 A JP 2022076688A JP 2022076688 A JP2022076688 A JP 2022076688A JP 7268927 B2 JP7268927 B2 JP 7268927B2
Authority
JP
Japan
Prior art keywords
light emitting
gas discharge
electrode
ultraviolet
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022076688A
Other languages
Japanese (ja)
Other versions
JP2022115993A (en
Inventor
傳 篠田
仁 平川
健司 粟本
武文 日▲高▼
純一郎 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIKOH TECH CO., LTD.
Original Assignee
SHIKOH TECH CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020141016A external-priority patent/JP6955798B2/en
Priority claimed from JP2021156879A external-priority patent/JP7470994B2/en
Application filed by SHIKOH TECH CO., LTD. filed Critical SHIKOH TECH CO., LTD.
Priority to JP2022076688A priority Critical patent/JP7268927B2/en
Publication of JP2022115993A publication Critical patent/JP2022115993A/en
Application granted granted Critical
Publication of JP7268927B2 publication Critical patent/JP7268927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

本発明は、紫外発光ガス放電チューブのアレイからなる紫外線照射装置とその駆動方法に関するものである。 The present invention relates to an ultraviolet irradiation device comprising an array of ultraviolet light emitting gas discharge tubes and a driving method thereof.

従来、産業用や医療用、殺菌・滅菌用などの分野で紫外線が広く応用されているが、光源デバイスとしては高圧水銀ランプやエキシマ放電ランプのほかには実用的なものが無いのが実情である。水銀レス構造として注目される紫外発光LEDは、未だ開発途上にあって十分な発光強度のものが得られていない。また、特許文献1には外部電極構成のガス放電チューブを利用した紫外発光用平面光源デバイスも提案されているが、同じく発光強度の向上が望まれている。 Conventionally, ultraviolet rays have been widely applied in industrial, medical, sterilization and sterilization fields. be. Ultraviolet light-emitting LEDs, which are attracting attention as mercury-free structures, are still under development and have not been obtained with sufficient light emission intensity. Further, Patent Document 1 proposes a planar light source device for ultraviolet light emission using a gas discharge tube having an external electrode structure, but it is also desired to improve the light emission intensity.

特開2011-040271号公開特許公報Japanese Unexamined Patent Application Publication No. 2011-040271

上記のように、LEDを利用した従来の光源デバイスは未だ十分な発光強度が得られておらず、また、ガス放電チューブを利用した従来の平面光源は、電極構成が複雑であるほか、発光効率や発光出力の点で未だ実用の域に達していない。 As described above, conventional light source devices using LEDs have not yet achieved sufficient luminous intensity, and conventional planar light sources using gas discharge tubes have complex electrode configurations and low luminous efficiency. In terms of light emission output, it has not yet reached the level of practical use.

従って、本発明は、高強度の照射光が得られる水銀レスの光源デバイスの提供を目的とするものである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a mercury-free light source device capable of obtaining high-intensity irradiation light.

本発明は、細長いガラス管の長手方向に沿って設けた一対の長電極間で放電を発生させるようにした外部電極型の新しい紫外発光ガス放電チューブをベースとするものである。この新しい紫外発光ガス放電チューブは、従来の平面光源に用いられた発光チューブとは電極構造並びに放電形式が異なり、発光効率の大幅な改善が図られている。また、複数本の発光チューブを共通の電極対上に配列して面光源を構成した場合、アルミニウム箔のような反射性の電極材料で発光チューブの発光面積に対する背面側の80%以上をカバーすることが可能となるので、一層高い集光機能を得ることができる。 The present invention is based on a new external electrode type ultraviolet light emitting gas discharge tube in which discharge is generated between a pair of long electrodes provided along the longitudinal direction of an elongated glass tube. This new ultraviolet light emitting gas discharge tube differs from the light emitting tube used in the conventional flat light source in electrode structure and discharge type, and is designed to greatly improve the luminous efficiency. Further, when a surface light source is configured by arranging a plurality of light-emitting tubes on a common electrode pair, the reflective electrode material such as aluminum foil covers 80% or more of the light-emitting area of the light-emitting tubes on the back side. Therefore, a higher light-collecting function can be obtained.

かくして本発明による紫外線照射装置は、絶縁基板上に少なくとも1対の帯状電極対を平行に配置した電極構造体と、内部に放電ガスを封入してなる複数の紫外発光ガス放電チューブを平行に配列したチューブアレイ構造体とを備え、前記電極構造体の上に複数の各放電チューブの底面側が位置して前記帯状電極対を横切る方向となるよう前記チューブアレイ構造体を組み合わせて紫外線発光構造体を構成したことを特徴とするものである。 Thus, the ultraviolet irradiation apparatus according to the present invention comprises an electrode structure in which at least one pair of strip-shaped electrodes are arranged in parallel on an insulating substrate, and a plurality of ultraviolet emission gas discharge tubes in which a discharge gas is enclosed are arranged in parallel. The tube array structure is combined so that the bottom surface side of each of the plurality of discharge tubes is positioned on the electrode structure and the direction crosses the strip electrode pair to form an ultraviolet light emitting structure. It is characterized by comprising:

前記紫外発光ガス放電チューブの配列面は、照射対象を挟むように形成された複合平面でもよいし、円筒又は角筒などの筒状面であってもよい。 The arrangement surface of the ultraviolet light emitting gas discharge tubes may be a compound plane formed so as to sandwich an irradiation target, or may be a cylindrical surface such as a cylinder or a rectangular cylinder.

紫外発光ガス放電チューブの配列面を筒状に構成する場合、前記配列面を紫外線透過性のガラス筒やメッシュ構造体で構成してもよい。 When the arrangement surface of the ultraviolet light emitting gas discharge tubes is configured in a cylindrical shape, the arrangement surface may be configured with an ultraviolet-transmitting glass cylinder or a mesh structure.

本発明の紫外線照射装置によれば、水銀レスの達成は勿論、安全で且つ安価な構成で高強度の紫外線を対象面に照射することが可能となり、医療用途や殺菌・滅菌用途など産業上の実用範囲が大幅に拡大する。 According to the ultraviolet irradiation device of the present invention, it is possible to irradiate the target surface with high-intensity ultraviolet rays with a safe and inexpensive configuration, as well as achieving mercury-free, and industrial applications such as medical applications and sterilization / sterilization applications. The practical range is greatly expanded.

本発明による紫外線照射装置に用いる紫外発光ガス放電チューブを利用した面光源デバイスの基本構成を説明する説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing explaining the basic composition of the surface light source device using the ultraviolet light emission gas discharge tube used for the ultraviolet irradiation device by this invention. 本発明の紫外線照射装置の実施形態1における発光面の構成と照射プロファイルを示す説明図である。FIG. 2 is an explanatory diagram showing the configuration of the light-emitting surface and the irradiation profile in Embodiment 1 of the ultraviolet irradiation device of the present invention; 本発明による紫外線照射装置の使用例を示す模式的斜視図である。1 is a schematic perspective view showing a usage example of an ultraviolet irradiation device according to the present invention; FIG. 本発明の実施形態2の紫外線照射装置の発光面の構成を示す斜視図である。FIG. 4 is a perspective view showing the configuration of the light emitting surface of the ultraviolet irradiation device of Embodiment 2 of the present invention;

以下、図面に示す実施形態を用いて、本発明を詳述する。これによって、この発明が限定されるものではない。
(実施形態1)
The present invention will be described in detail below using embodiments shown in the drawings. This does not limit the invention.
(Embodiment 1)

図1(a)は、本発明の実施形態1における紫外線照射装置に用いる紫外発光ガス放電チューブの基本構成を示す断面図、図1(b)は該紫外発光ガス放電チューブを複数本配列して構成した面光源の基本構成を示す斜視図、図1(c)はその駆動原理を説明する説明図である。 FIG. 1(a) is a cross-sectional view showing the basic configuration of an ultraviolet light emitting gas discharge tube used in an ultraviolet irradiation apparatus according to Embodiment 1 of the present invention, and FIG. FIG. 1(c) is a perspective view showing the basic configuration of the constructed surface light source, and FIG. 1(c) is an explanatory diagram for explaining the driving principle thereof.

〔紫外発光ガス放電チューブ〕
図1(a)に示すように、新しい紫外発光ガス放電チューブ(以下、発光チューブという)1は、扁平楕円形状の横断面を有する細長いガラス管2を主体とし、その内部底面に紫外蛍光体層3を備えると共に、内部にネオンとキセノンを混合した放電ガスが封入され、両端が封止されている。ガラス管2は、酸化珪素(SiO2)と酸化硼素(B2O3)を主成分とする硼珪酸系ガラスを材料とした、例えば長径2mm、短径1mm程度の扁平楕円断面を持つ細管で、肉厚を300μm以下に制限して紫外線に対する十分な透過率を実現している。
[Ultraviolet emission gas discharge tube]
As shown in FIG. 1(a), a novel ultraviolet light emitting gas discharge tube (hereinafter referred to as a light emitting tube) 1 is mainly composed of an elongated glass tube 2 having an oblate elliptical cross section, and an ultraviolet phosphor layer on the inner bottom surface thereof. 3, a discharge gas in which neon and xenon are mixed is sealed inside, and both ends are sealed. The glass tube 2 is made of borosilicate glass whose main components are silicon oxide (SiO2) and boron oxide (B2O3). The thickness is limited to 300 μm or less to realize sufficient transmittance for ultraviolet rays.

紫外蛍光体層3に、ガドリリュウム賦活蛍光体(LaMgAl11O19 : Gd) を用いた場合、産業用や医療用に有効なUV-Bバンドの波長レンジである311nmの紫外発光を得ることができる。また、プラセオジム賦活の蛍光体(YBO3 : PrまたはY2SiO5 : Pr)を用いれば殺菌・滅菌効果のあるUV-Cバンドの波長レンジの261nmまたは270nmの紫外発光を得ることができる。 When a gadoryllium-activated phosphor (LaMgAl11O19:Gd) is used for the ultraviolet phosphor layer 3, it is possible to obtain ultraviolet light emission of 311 nm, which is the wavelength range of the UV-B band effective for industrial and medical purposes. Also, if a praseodymium-activated phosphor (YBO3:Pr or Y2SiO5:Pr) is used, it is possible to obtain ultraviolet emission at 261 nm or 270 nm in the wavelength range of the UV-C band, which has a sterilizing effect.

〔フレキシブル面光源デバイス〕
ガラス管2を主体とした発光チューブ1が、図1(b)に示すようにチューブの長手方向と交差する方向に複数本平行に並べられてアレイ構成の面光源デバイス(発光チューブアレイ構造体)10が作られる。図1(a)の断面図との関連において一層明らかなように、発光チューブアレイ構造体10を構成する各発光チューブ1は、耐熱性の薄い絶縁フィルム11の上にシリコーン樹脂のような熱伝導性の良好な粘着剤12により離脱可能な粘着状態で配置されている。隣接する発光チューブ1の相互間には発光面の彎曲を可能とするため同じ幅又は部分的に異なる幅の隙間が設けられている。
[Flexible surface light source device]
A surface light source device (light emitting tube array structure) having an array configuration in which a plurality of light emitting tubes 1 mainly composed of glass tubes 2 are arranged in parallel in a direction crossing the longitudinal direction of the tubes as shown in FIG. 1(b). 10 are made. As is clearer in relation to the cross-sectional view of FIG. 1(a), each light-emitting tube 1 constituting the light-emitting tube array structure 10 is coated with a thin heat-resistant insulating film 11 and a heat-conducting film such as silicone resin. It is arranged in a detachable adhesive state by an adhesive 12 having good properties. A gap of the same width or partially different width is provided between the adjacent light emitting tubes 1 to allow the bending of the light emitting surface.

他方、発光チューブアレイ構造体10の下には、例えば、ポリイミド系樹脂製のフレキシブルな絶縁基板13と、その上に形成された電極対14とからなる電極構造体15が非接着状態で配置されている。電極対14は、発光チューブアレイ構造体10を構成する各発光チューブ1の底部背面に対向して、共通の電極スリットGを挟んで両側に広がる帯状のX電極14XとY電極14Yとからなる。 On the other hand, below the light-emitting tube array structure 10, an electrode structure 15 composed of, for example, a flexible insulating substrate 13 made of polyimide resin and electrode pairs 14 formed thereon is arranged in a non-bonded state. ing. The electrode pair 14 is composed of a strip-shaped X electrode 14X and a Y electrode 14Y extending on both sides of a common electrode slit G so as to face the bottom rear surface of each light emitting tube 1 constituting the light emitting tube array structure 10 .

即ち、X電極14XとY電極14Yは、全体としては各発光チューブ1の長手方向と交差する方向に延びる共通の電極パターンを有するが、個々の発光チューブ1に対しては、そのチューブ内に初期放電を発生させる0.1~10mm程度の電極スリットGを挟んで長手方向の両側に対称的に延びる長電極対の構成をもつ。X電極14X、Y電極14Yのチューブ長手方向における長さは電極スリットGの幅の5~10倍またはそれ以上となる。 That is, the X electrode 14X and the Y electrode 14Y have a common electrode pattern extending in a direction intersecting the longitudinal direction of each light emitting tube 1 as a whole, but for each light emitting tube 1, an initial electrode is formed inside the tube. It has a configuration of long electrode pairs extending symmetrically on both sides in the longitudinal direction across an electrode slit G of about 0.1 to 10 mm for generating discharge. The length of the X electrode 14X and the Y electrode 14Y in the longitudinal direction of the tube is 5 to 10 times the width of the electrode slit G or more.

因に、発光チューブ1を長径2mm、短径1mmの扁平楕円断面を持つ長さ5cmのガラス細管で構成し、これを1mm間隔で20本平行配列して図1(b)に示すような発光チューブアレイ構造体10を構成した場合、X電極14XとY電極14Yは、3mm幅の放電スリットGの両側にそれぞれ23.5mmの幅を持って各発光チューブ1と交差する方向に延びるパターンで設けられる。この結果、各発光チューブの長手方向における電極対の占める長さ4.7cm(23.5mm×2)と、電極スリットの幅(3mm)を合わせた5cmの長さに対し、幅2mmの発光チューブ20本を1mmの間隔で配列した合計6cmの幅を持った5×6=30cm2の発光面が構成され、その背面側は、電極スリットGの幅に対応した0.3×6=1.8cm2の隙間を除いて全て電極面でカバーされた形となる。発光面積に対する電極のカバー率は94%に相当する。 By the way, the light emitting tube 1 is composed of a glass tube having a length of 5 cm and a flattened elliptical cross section of 2 mm in the major diameter and 1 mm in the minor diameter. When the tube array structure 10 is constructed, the X electrodes 14X and the Y electrodes 14Y are provided in a pattern extending in a direction intersecting the light emitting tubes 1 with a width of 23.5 mm on both sides of the discharge slit G having a width of 3 mm. be done. As a result, the length of the electrode pair in the longitudinal direction of each light emitting tube is 4.7 cm (23.5 mm × 2), and the width of the electrode slit (3 mm) is 5 cm, and the width of the light emitting tube is 2 mm. A light-emitting surface of 5×6=30 cm 2 having a total width of 6 cm was formed by arranging 20 lines at intervals of 1 mm. All the electrode surfaces except for the gap of 8 cm 2 are covered. The coverage of the electrode with respect to the light emitting area corresponds to 94%.

X電極14XとY電極14Yは、絶縁基板13の上に銀ペースト等の導電性インクを印刷して直接形成してもよいし、あらかじめ整形した銅やアルミニウム等の金属導体箔を粘着または接着して構成してもよい。 The X electrodes 14X and the Y electrodes 14Y may be directly formed by printing conductive ink such as silver paste on the insulating substrate 13, or may be formed by adhering or adhering previously shaped metal conductor foils such as copper or aluminum. may be configured

発光チューブ1をアレイ状に支持する絶縁フィルム11としてテフロン(登録商標)などのフッ素系透明樹脂で構成した場合、X、Y電極14X、14Yには高い光反射率の材料を用いることが好ましく、その意味では特にアルミニウム箔を用いるのが効果的である。この場合、電極スリットGが下方に開いた窓となって紫外発光が裏へ抜けるおそれがあるので、電極スリットGの対応部を電極材料と同等の光反率を持った絶縁材料、例えば光反射テープで塞ぐことが好ましい。 When the insulating film 11 that supports the light-emitting tubes 1 in an array is made of a fluorine-based transparent resin such as Teflon (registered trademark), it is preferable to use a material with a high light reflectance for the X and Y electrodes 14X and 14Y. In that sense, it is particularly effective to use aluminum foil. In this case, the electrode slit G becomes a window that opens downward, and there is a risk that the ultraviolet light will pass through to the back side. It is preferable to close with tape.

また、電極対14を形成した絶縁基板13上に直接シリコーン樹脂等の粘着性絶縁層を設けて発光チューブ1を配置するようにしてもよい。それによって、発光チューブ1と電極対14との間が非接着状態で滑り可能になるので、フレキシブルな面光源デバイスを湾曲させる場合に絶縁基板13に加わる引っ張り力を吸収することができる。 Alternatively, the luminous tube 1 may be arranged by providing an adhesive insulating layer such as silicone resin directly on the insulating substrate 13 on which the electrode pairs 14 are formed. As a result, the light-emitting tube 1 and the electrode pair 14 are slidable in a non-bonded state, so that the tensile force applied to the insulating substrate 13 when bending the flexible surface light source device can be absorbed.

〔駆動原理〕
本発明による紫外線照射装置の基本単位となる新しい形式の発光チューブ1は、外部電極型であり、正弦波電圧で駆動する。即ち図1(c)に示すように電極対14の一方のX電極14Xを接地した状態で他方のY電極14Yに正弦波電圧を印加するようにインバータ電源17を接続する。正弦波電圧の上昇過程において電極スリットGで電極近接端間の電圧が対応ガス空間の放電開始電圧を超えた時点でトリガ放電が発生する。
[Drive principle]
A new type light-emitting tube 1, which is the basic unit of the ultraviolet irradiation device according to the present invention, is of an external electrode type and is driven by a sine wave voltage. That is, as shown in FIG. 1(c), the inverter power supply 17 is connected so as to apply a sinusoidal voltage to the other Y electrode 14Y while the X electrode 14X of the electrode pair 14 is grounded. In the rising process of the sinusoidal voltage, a trigger discharge occurs when the voltage between the electrodes adjacent to the electrode slit G exceeds the discharge start voltage of the corresponding gas space.

このトリガ放電からの空間電荷の供給による種火効果で近傍の放電開始電圧が低下するので、印加正弦波電圧の上昇と相俟って新たな放電がX電極14XとY電極14Yの両端方向に拡張していく。 The spark effect due to the supply of space charge from this trigger discharge lowers the discharge starting voltage in the vicinity. Expand.

一方、外部電極型放電デバイスの特徴として放電した電極対応部分の内壁には印加電圧の極性と反対極性の電荷(電子と陽イオン)が壁電荷として蓄積し、この内部電界が当該対応部分に印加された外部電圧の電界を打ち消す結果、一旦発生した放電は順次停止していくことになる。この動作原理は本発明者等が先に出願した特願2015-148622号(特許第6,103,730号)に更に詳しく述べられている。 On the other hand, a feature of the external electrode type discharge device is that charges (electrons and cations) of opposite polarity to the applied voltage are accumulated as wall charges on the inner wall of the portion corresponding to the discharged electrode, and this internal electric field is applied to the corresponding portion. As a result of canceling the electric field of the applied external voltage, the discharge once generated is sequentially stopped. This operating principle is described in more detail in Japanese Patent Application No. 2015-148622 (Patent No. 6,103,730) previously filed by the present inventors.

印加される正弦波駆動電圧の極性が反転すると、壁電荷による内部電界が外部印加電圧の電界に加算される結果、再度、電極スリットGの対応部で放電が始まった後、上記と同様に印加正弦波電圧の逆方向への上昇に伴う放電の拡張と停止が、電極対14の両端方向に進行する。この動作の繰り返しでガス放電とそれに伴う発光が行われる。 When the polarity of the applied sinusoidal drive voltage is reversed, the internal electric field due to the wall charge is added to the electric field of the externally applied voltage, and as a result, discharge starts again at the corresponding portion of the electrode slit G, and then the application is performed in the same manner as described above. The expansion and termination of the discharge accompanying the rise of the sinusoidal voltage in the opposite direction progress toward both ends of the electrode pair 14 . By repeating this operation, gas discharge and accompanying light emission are performed.

因に、正弦波駆動電圧の周波数は、負荷となるガス空間の容量や電極間容量の関係から10KHz乃至40KHz、例えば25KHzに設定される。また、ピーク電圧は電極スリットGに対応したガス空間の放電開始電圧よりも高い1000V乃至はそれ以上となるが、長電極対上での放電の広がり長さと、電極スリット部16の耐圧を超えた損傷防止との両方のバランスを考慮して決めるのが望ましい。 Incidentally, the frequency of the sinusoidal drive voltage is set to 10 KHz to 40 KHz, for example, 25 KHz from the relationship between the capacity of the gas space serving as the load and the capacity between the electrodes. In addition, the peak voltage is 1000 V or higher, which is higher than the discharge start voltage of the gas space corresponding to the electrode slit G, but exceeds the discharge spread length on the long electrode pair and the withstand voltage of the electrode slit portion 16. It is desirable to consider and decide the balance between damage prevention and both.

因に、先に例示した5cm長、20本の発光チューブからなる面光源デバイスを駆動するには、12Vの直流電圧(電池)を20KHzの正弦波に変換するインバータ回路と、この正弦波をピーク電圧2000Vまで昇圧する小型トランスを含む小型のインバータ電源で十分である。 By the way, in order to drive the surface light source device consisting of 20 light emitting tubes with a length of 5 cm as an example, an inverter circuit that converts a DC voltage of 12 V (battery) into a sine wave of 20 KHz and a peak of this sine wave A small inverter power supply containing a small transformer that boosts the voltage up to 2000V is sufficient.

〔自己集光機能〕
ところで、図1に示した発光面が平面の面光源デバイス10では、照射対象物を発光面に接近させて配置しても個々の発光チューブ1の発光強度以上の照射強度は得られない。本発明は発光面を曲げることによって複数本の発光チューブ1の光束を照射対象に向けて収束させるようにした自己集光機能を有する構成を特徴とする。これは発光チューブアレイ構造体である面光源デバイス10がフレキシブルである利点を最大限利用するものである。
[Self-focusing function]
By the way, in the surface light source device 10 having a flat light emitting surface shown in FIG. The present invention is characterized by a configuration having a self-condensing function in which the luminous fluxes of the plurality of luminous tubes 1 are converged toward the irradiation target by bending the luminous surface. This makes maximum use of the flexibility of the surface light source device 10, which is a light emitting tube array structure.

図2は実施形態1による紫外線照射装置の発光面構成と照射強度プロファイルを示す説明図である。先に説明したような複数本の発光チューブ1のアレイからなる面光源20は、湾曲した発光面を持つよう全体が図2のように湾曲している。この湾曲面を実現するには、前述したように隣接チューブ間に絶縁フィルム11や電極基板13の湾曲を吸収する隙間が必須となる。 2A and 2B are explanatory diagrams showing the light-emitting surface configuration and the irradiation intensity profile of the ultraviolet irradiation device according to Embodiment 1. FIG. The surface light source 20 composed of an array of a plurality of light emitting tubes 1 as described above is curved as a whole so as to have a curved light emitting surface as shown in FIG. In order to realize this curved surface, a gap for absorbing the curvature of the insulating film 11 and the electrode substrate 13 is essential between the adjacent tubes as described above.

即ち、隣接する発光チューブ1同志が当接するまでフレキシブルの光源デバイスを湾曲させて圧縮力を吸収することができるので、半円状の発光面を得る場合には等間隔配列とし、両サイドの曲率を小さくした湾曲面を得る場合には中間部に比べて両サイドでの配列間隔を広くすることになる。また湾曲時における絶縁基板13と発光チューブ配列を支持する絶縁フィルム11との間は単に重ねた状態でコンタクトしているだけであり機械的な固着手段で固着されていないので湾曲時の張力は両者間の滑りによって吸収されることになる。 That is, since the flexible light source device can be bent until the adjacent light emitting tubes 1 abut against each other and compressive force can be absorbed, when obtaining a semicircular light emitting surface, the light emitting surfaces are arranged at equal intervals and the curvature of both sides is increased. In order to obtain a curved surface with a small , the arrangement intervals on both sides are widened compared to the intermediate portion. Further, the insulating substrate 13 and the insulating film 11 supporting the array of light-emitting tubes are in contact with each other only in a superimposed state when bent, and are not fixed by mechanical fixing means. It will be absorbed by the slip between.

発光面を湾曲させたことにより、各発光チューブの発光中心軸(以下、光軸という)22は湾曲面の内側に向けて収束する。その結果、平坦な受光面23に対しては、図2(a)に示すように、湾曲した発光面に対応して、ほぼ均等且つ強度の高い照射強度プロファイル24を得ることができる。従って、受光面23の代わりに立体的な照射対象物25を置けば、図2(b)に示すように、照射強度プロファイル26で対象物25の表面全体にほぼ均等に紫外線照射を行うことが可能となる。
(実施形態2)
By curving the light-emitting surface, the light-emitting central axis (hereinafter referred to as the optical axis) 22 of each light-emitting tube converges toward the inside of the curved surface. As a result, as shown in FIG. 2A, a substantially uniform and high-intensity irradiation intensity profile 24 can be obtained for the flat light receiving surface 23 corresponding to the curved light emitting surface. Therefore, if a three-dimensional object 25 to be irradiated is placed instead of the light receiving surface 23, the entire surface of the object 25 can be irradiated with ultraviolet rays substantially uniformly with the irradiation intensity profile 26 as shown in FIG. 2(b). It becomes possible.
(Embodiment 2)

図3は、本発明による自己集光機能を有する紫外線照射装置の実施形態2を示す概略説明図である。 FIG. 3 is a schematic explanatory view showing Embodiment 2 of an ultraviolet irradiation device having a self-condensing function according to the present invention.

図3(a) において、トンネル形状に湾曲した紫外線照射装置30が、自動搬送機(ベルトコンベア)35の走行路の一部を覆う形で配置されている。紫外線照射装置30は、フレキシブルな電極支持体とその上(図では下面側)に配列した複数の発光チューブ1からなる紫外光源デバイスの発光面を内側に向けて湾曲させた構成を持ち、各発光チューブ1の光軸は、搬送機35に載せられた立体形状の照射対象物36に向けて収束した形となる。 In FIG. 3(a), an ultraviolet irradiating device 30 curved in a tunnel shape is arranged so as to partially cover the running path of an automatic transporter (belt conveyor) 35. As shown in FIG. The ultraviolet irradiation device 30 has a configuration in which the light emitting surface of the ultraviolet light source device, which is composed of a flexible electrode support and a plurality of light emitting tubes 1 arranged thereon (on the bottom side in the drawing), is curved inward. The optical axis of the tube 1 converges toward a three-dimensional irradiation object 36 placed on a carrier 35 .

この実施形態によれば、自動搬送機35に載置した立体形状の照射対象物36に対して殺菌効果のある紫外線を強い強度で直接照射可能な照射装置を提供することができる。特に、紫外線照射装置30は、主体となる光源デバイスが発光チューブ1の長手方向と交差する方向にフレキシブルであり、また発光面の幅を発光チューブの配列本数で決定することができる点から、自動搬送機で搬送する照射対象物36の大きさに見合った設計対応が可能である。 According to this embodiment, it is possible to provide an irradiation device capable of directly irradiating ultraviolet light having a sterilizing effect with a high intensity to a three-dimensional irradiation object 36 placed on an automatic carrier 35 . In particular, the ultraviolet irradiation device 30 has a main light source device flexible in a direction crossing the longitudinal direction of the light emitting tube 1, and the width of the light emitting surface can be determined by the number of arranged light emitting tubes. It is possible to design according to the size of the irradiation object 36 to be transported by the transporter.

図3(b)は、図3(a)に示す実施形態の変形例である。自動搬送機35の走行路に沿って2つの紫外線照射装置30が走行路をトンネル状に直列にカバーする形で設けられている。かくして搬送機35に載せられて移動する照射対象物36は2つの照射装置30からの紫外線照射に連続して2回曝される。連続照射の構成は、自動搬送機35の速度を速めて処理速度を向上させる点と、低速でトータル照射線量を増やす点で効果的である。 FIG. 3(b) is a modification of the embodiment shown in FIG. 3(a). Along the travel path of the automatic carrier 35, two ultraviolet irradiation devices 30 are provided so as to cover the travel path in series in a tunnel shape. Thus, the object to be irradiated 36 that is placed on the carrier 35 and moved is continuously exposed to the ultraviolet irradiation from the two irradiation devices 30 twice. The configuration of continuous irradiation is effective in that the speed of the automatic carrier 35 is increased to improve the processing speed, and in that the total irradiation dose is increased at a low speed.

なお、2つの紫外線照射装置30とは同じ構成でもよいが、互いに発光波長や発光波長幅の異なる構成とすることも可能である。発光波長は、単位発光源となる各発光チューブ1の蛍光体層3(図1(a)参照)の材料を調整することで実現する。 Although the two ultraviolet irradiation devices 30 may have the same configuration, they may have different emission wavelengths and emission wavelength widths. The emission wavelength is realized by adjusting the material of the phosphor layer 3 (see FIG. 1(a)) of each light emitting tube 1, which serves as a unit light source.

図3(c)は、図3(a)に示す実施形態の別の変形例であり、自動搬送機35の走行路に沿って、2つの紫外線照射装置30が搬送路を上下から包むように配置されている。搬送機35に載せられて移動する立体的な照射対象物36は、湾曲した発光面を下に向けた照射装置30と、湾曲した発光面を上に向けた照射装置30のそれぞれから収束して照射される紫外線に両面を曝され、全表面の照射処理が行われる。この場合、搬送機37は、少なくとも照射対象物を載置する部分において下側の照射装置30からの照射紫外線を透過させることが必要である。 FIG. 3(c) is another modification of the embodiment shown in FIG. 3(a), and along the travel path of the automatic transport machine 35, two ultraviolet irradiation devices 30 are arranged so as to wrap the transport path from above and below. It is A three-dimensional irradiation object 36 that is placed on a carrier 35 and moves is converged from each of the irradiation device 30 with the curved light emitting surface facing downward and the irradiation device 30 with the curved light emitting surface facing upward. Both sides are exposed to irradiated ultraviolet rays, and irradiation treatment of the entire surface is performed. In this case, the transfer machine 37 needs to allow the ultraviolet rays emitted from the lower irradiation device 30 to pass through at least the portion where the object to be irradiated is placed.

従って、搬送機35の搬送ベルトをメッシュ構成のものとするほか、載置部分を紫外線透過性のフッ素系樹脂膜で構成するなどの対策が採られる。また図3(b)の場合と同様、上下の紫外線照射装置30を搬送機の走行路に沿って更に増設することにより照射処理効率を上げることも可能であるし、それぞれの発光スペクトルを異ならせておくことも可能である。
(実施形態3)
Therefore, in addition to making the conveying belt of the conveying machine 35 a mesh structure, countermeasures such as constructing the placing portion with an ultraviolet-transmitting fluorine-based resin film are taken. Further, as in the case of FIG. 3(b), it is possible to increase the efficiency of the irradiation treatment by further adding the upper and lower ultraviolet irradiation devices 30 along the travel path of the conveying machine, and to make the respective emission spectra different. It is also possible to keep
(Embodiment 3)

図4(a)及び(b)は、それぞれ本発明による実施形態3の紫外線照射装置の2種類の構成を示す概略斜視図である。この実施形態は、2つ以上の平坦発光面を角度を持って組み合わせて自己集光機能を得るようにした複合発光面を特徴とするものである。 FIGS. 4(a) and 4(b) are schematic perspective views respectively showing two types of configurations of an ultraviolet irradiation device according to Embodiment 3 of the present invention. This embodiment features a compound emitting surface in which two or more flat emitting surfaces are angularly combined to provide a self-focusing function.

即ち図4(a)には、発光チューブアレイ構造体の平面光源デバイスをそのほぼ中央の発光チューブの長手方向に沿うライン41で発光面側に2つに折り曲げた紫外線照射装置40が示されている。折り曲げられて形成された2つの発光面10Aと10Bを構成する各発光チューブ1の光軸22は、折り曲げライン41の垂直面に向けて互いに収束する方向となり、中央垂直面の延長位置に置いた照射対象物に効果的な紫外線照射を行うことができる。 That is, FIG. 4(a) shows an ultraviolet irradiation device 40 in which a flat light source device having a light emitting tube array structure is bent in two toward the light emitting surface side along a line 41 extending along the longitudinal direction of the light emitting tube at substantially the center thereof. there is The optical axes 22 of the light emitting tubes 1, which form the two light emitting surfaces 10A and 10B formed by bending, converge toward the vertical plane of the bending line 41, and extend from the central vertical plane. It is possible to effectively irradiate an object to be irradiated with ultraviolet rays.

図4(b)の紫外線照射装置70は、矩形状に折り曲げた3つの複合発光面10A、10B、及び10Cからなり、各発光面を構成する発光チューブ1の光軸は発光面で囲まれた照射空間に集まる形となる。 The ultraviolet irradiation device 70 of FIG. 4(b) is composed of three composite light emitting surfaces 10A, 10B, and 10C bent into a rectangular shape, and the optical axis of the light emitting tube 1 constituting each light emitting surface is surrounded by the light emitting surfaces. It becomes a form that gathers in the irradiation space.

折り曲げられた複合発光面10A、10B及び10Cは、それぞれ独立した面光源デバイスとして構成してもよいし、電極配置基板13を各発光面に共通とした構成にしてもよい。複合発光面で囲まれた照射空間に図示しない搬送ベルトを通すことにより、移動する搬送ベルト上の被照射物に効果的に紫外線照射を行うことが可能となる。 The folded composite light emitting surfaces 10A, 10B, and 10C may be configured as independent surface light source devices, or may be configured such that the electrode arrangement substrate 13 is common to each light emitting surface. By passing a conveying belt (not shown) through the irradiation space surrounded by the composite light-emitting surface, it is possible to effectively irradiate the irradiated object on the moving conveying belt with ultraviolet rays.

(その他の変形例)
本発明の紫外線照射装置は、最初に述べたようにガス放電を利用した発光チューブを複数本並べて構成したアレイ状の面光源デバイスを基本構成とするものである。
(Other modifications)
The ultraviolet irradiating apparatus of the present invention is basically composed of an array-shaped surface light source device in which a plurality of light-emitting tubes utilizing gas discharge are arranged side by side as described at the beginning.

図1に例示した光源デバイスの基本構成では、細長いガラス管2に対してその長手方向を2分して1対のX電極14XとY電極14Yを直列配置しているが、更に電極を複数対直列配置して発光チューブの長尺化に対応することができる。因に、ガラス管2の長さを20cm余りとした場合、ガラス管の長手方向にそれぞれ電極スリットGを挟んだ長さ5cmのXY電極対を所定間隔で2対直列配置することにより、有効発光長が20cmの紫外発光チューブを構成することができる。 In the basic configuration of the light source device illustrated in FIG. 1, a pair of X electrodes 14X and Y electrodes 14Y are arranged in series by dividing the elongated glass tube 2 in the longitudinal direction. By arranging them in series, it is possible to cope with the lengthening of the light emitting tube. Incidentally, when the length of the glass tube 2 is more than 20 cm, effective light emission can be obtained by arranging two pairs of 5 cm long XY electrodes in series at predetermined intervals in the longitudinal direction of the glass tube. A 20 cm long UV light emitting tube can be constructed.

図1に示す電極支持用の絶縁基板13については、フレキシブルな樹脂フィルムが好適であるが、予め発光面の曲がり具合に沿った曲面又は複合平面のそれぞれに対応した面を持つリジッドなガラス又はセラミック基体で代替してもよい。また、発光チューブ1の配列方向に延びる帯状の共通X電極14XとY電極14Yの背面パターンに対応してそれぞれ独立した形状の金属放熱フィンのような放熱エレメントを電極基板の裏側に密着するよう設けることにより光源デバイスの放熱を促進して発光効率を安定に保つことができる。 A flexible resin film is suitable for the insulating substrate 13 for supporting the electrodes shown in FIG. Substrates may be substituted. In addition, heat radiation elements such as metal heat radiation fins having independent shapes corresponding to the back patterns of the common X electrodes 14X and the Y electrodes 14Y extending in the arrangement direction of the light emitting tubes 1 are provided so as to be in close contact with the back side of the electrode substrate. As a result, the heat dissipation of the light source device can be promoted, and the luminous efficiency can be kept stable.

紫外線照射強度は複数の発光チューブの光軸が照射対象に向けて収束させることで強められるが、その強度調整は、図1(c)に示すインバータ電源17から駆動正弦波電圧をバースト形式で間欠的に印加する際のデューティ比を変えることで行うことができる。また、図3の実施形態に示したような自動搬送機35に載置されて移動する照射対象物に紫外線を照射する構成では、駆動正弦波電圧の印加を照射対象物の搬送速度に同期した通過時間幅で間欠的に行うことにより光源デバイスの発熱を抑制することができる。 The intensity of ultraviolet light irradiation is increased by converging the optical axes of a plurality of light emitting tubes toward the irradiation target. This can be done by changing the duty ratio when applying voltage. Further, in the configuration shown in the embodiment of FIG. 3, in which the object to be irradiated which is placed and moved on the automatic transport machine 35 is irradiated with the ultraviolet rays, the application of the driving sine wave voltage is synchronized with the transport speed of the object to be irradiated. Heat generation of the light source device can be suppressed by intermittently performing the passage time width.

いずれにしても本発明の紫外線照射装置によれば、反射ミラーや集光レンズ等の光学素子を用いることなく発光面自体の形状で集光機能を制御できるメリットが得られ、紫外線応用面の拡大に極めて有益である。 In any case, according to the ultraviolet irradiation device of the present invention, there is an advantage that the light collecting function can be controlled by the shape of the light emitting surface itself without using optical elements such as a reflecting mirror and a light collecting lens. extremely useful for

1:紫外発光ガス放電チューブ(発光チューブ)
2:ガラス管
3:紫外蛍光体層
10:発光チューブアレイ構造体(面光源デバイス)
11:絶縁層
12:粘着剤
13:絶縁基板
14:電極対
14X:X電極
14Y:Y電極
15:電極構造体
17:交番電源
G:電極スリット
20:面光源
1: Ultraviolet light emitting gas discharge tube (light emitting tube)
2: Glass tube 3: Ultraviolet phosphor layer 10: Luminescent tube array structure (surface light source device)
11: Insulating layer 12: Adhesive 13: Insulating substrate 14: Electrode pair 14X: X electrode 14Y: Y electrode 15: Electrode structure 17: Alternating power source G: Electrode slit 20: Surface light source

Claims (12)

初期放電を発生させるための電極スリットを挟んで配置された1対の電極を有する電極構造体と、それぞれが前記電極スリットを横切る細管であって当該電極対に背面が対向するように複数平行に並んだ紫外発光ガス放電チューブとを備え、
前記1対の電極は、前記紫外発光ガス放電チューブの背面側において、前記電極スリットの対応部と、平行に並んで隣接する前記紫外発光ガス放電チューブの隙間と、を含めた面積の80%以上をカバーして前記電極スリットを挟んで前記紫外発光ガス放電チューブの長手方向の両側に対称的に広がるパターンを有することを特徴とする紫外線照射装置。
An electrode structure having a pair of electrodes arranged across an electrode slit for generating an initial discharge, and a plurality of thin tubes each crossing the electrode slit and arranged in parallel so that the back surface faces the electrode pair. an array of ultraviolet light emitting gas discharge tubes;
80% or more of the area of the pair of electrodes on the back side of the ultraviolet light emitting gas discharge tube, including the corresponding portion of the electrode slit and the gap between the ultraviolet light emitting gas discharge tubes adjacent in parallel. and having a pattern extending symmetrically on both sides in the longitudinal direction of the ultraviolet light emitting gas discharge tube with the electrode slit interposed therebetween.
前記電極スリットの対応部に、前記紫外発光ガス放電チューブの背面側に抜ける紫外発光を塞ぐ絶縁部材を配置したことを特徴とする請求項1に記載の紫外線照射装置。 2. The ultraviolet irradiation device according to claim 1, wherein an insulating member is disposed in a portion corresponding to said electrode slit for blocking ultraviolet light emitted to the rear side of said ultraviolet light emitting gas discharge tube. 前記電極スリットの対応部に配置された絶縁部材が光反射テープであることを特徴とする請求項2記載の紫外線照射装置。 3. The ultraviolet irradiation device according to claim 2, wherein the insulating member arranged at the corresponding portion of the electrode slit is a light reflecting tape. 前記電極構造体の各電極がフッ素系樹脂の絶縁体上に形成された反射性材料から成り、前記電極スリットの対応部に前記複数の紫外発光ガス放電チューブからの紫外発光の通過を塞ぐ光反射テープを設けたことを特徴とする請求項1~3の何れか1項に記載の紫外線照射装置。 Each electrode of the electrode structure is made of a reflective material formed on an insulator of fluorine-based resin, and a portion corresponding to the electrode slit reflects light that blocks passage of ultraviolet light emitted from the plurality of ultraviolet light emitting gas discharge tubes. 4. The ultraviolet irradiation device according to claim 1, further comprising a tape. 電極構造体と、
該電極構造体上に所定の間隔を持って平行に配列された複数本の紫外発光ガス放電チューブとを有し、
前記電極構造体は、それぞれの紫外発光ガス放電チューブが横切る電極スリットと、当該電極スリットを挟んで前記各紫外発光ガス放電チューブの長手方向の両側に発光面に対する背面側の80%以上をカバーして広がる1対の電極とを備え、かつ前記電極スリット対応部に各紫外発光ガス放電チューブから背面側に抜ける紫外発光を塞ぐ絶縁部材を配置してなることを特徴とする紫外線照射装置。
an electrode structure;
a plurality of ultraviolet light emitting gas discharge tubes arranged in parallel at predetermined intervals on the electrode structure;
The electrode structure includes electrode slits crossed by the respective ultraviolet light emitting gas discharge tubes, and covering 80% or more of the back surface side with respect to the light emitting surface on both sides in the longitudinal direction of each of the ultraviolet light emitting gas discharge tubes with the electrode slits interposed therebetween. and an insulating member for blocking ultraviolet light emitted from each ultraviolet light gas discharge tube to the back side is arranged in the electrode slit corresponding portion.
電極構造体と、
該電極構造体上に所定間隔で平行に配列されて発光面を構成する複数本の紫外発光ガス放電チューブを有し、
前記電極構造体は、それぞれの紫外発光ガス放電チューブが横切る幅0.1~10mmの共通の電極スリットを挟んで当該紫外発光ガス放電チューブの長手方向の両側に対称的に広がり、各紫外発光ガス放電チューブの背面側の80%以上を共通にカバーする1対の反射性電極を有し、前記1対の反射性電極と、当該電極対間の前記電極スリット対応部に配置された反射性絶縁部材とで前記発光面の背面側をカバーしたことを特徴とする紫外線照射装置。
an electrode structure;
Having a plurality of ultraviolet light emitting gas discharge tubes arranged in parallel at predetermined intervals on the electrode structure to form a light emitting surface,
The electrode structure extends symmetrically on both sides in the longitudinal direction of the ultraviolet-emitting gas discharge tube with a common electrode slit having a width of 0.1 to 10 mm across which each ultraviolet-emitting gas discharge tube traverses. Having a pair of reflective electrodes that commonly cover 80% or more of the back side of the luminous gas discharge tube , the pair of reflective electrodes and a reflector disposed in the electrode slit corresponding portion between the pair of electrodes. An ultraviolet irradiating device, characterized in that the back side of the light emitting surface is covered with an insulating member.
前記紫外発光ガス放電チューブのそれぞれが前記電極構造体の上に非接着状態で離脱可能にコンタクトして配置されていることを特徴とする請求項1~6の何れか1項に記載の紫外線照射装置。 7. The ultraviolet irradiation according to any one of claims 1 to 6, wherein each of the ultraviolet light emitting gas discharge tubes is disposed on the electrode structure in non-adhesive and detachable contact. Device. 電極構造体と、
該電極構造体上にそれぞれ離脱可能な非接着状態でコンタクトして平行に配列されて発光面を構成する複数本の紫外発光ガス放電チューブとを備え、
前記電極構造体は、それぞれの紫外発光ガス放電チューブが横切る電極スリットと、当該電極スリットを挟んだ両側に前記紫外発光ガス放電チューブの長手方向に対称的に広がる1対の反射性電極を有し、当該1対の反射性電極は、各ガス放電チューブの長手方向において前記電極対と前記電極スリットの幅を合わせた長さを有し、前記ガス放電チューブが配列された合計の幅を有する発光面の面積に対して80%以上をカバーする構成であることを特徴とする紫外線照射装置。
an electrode structure;
a plurality of ultraviolet light emitting gas discharge tubes arranged in parallel in contact with the electrode structure in a detachable non-bonded state to form a light emitting surface;
The electrode structure has an electrode slit crossed by each ultraviolet light emitting gas discharge tube, and a pair of reflective electrodes extending symmetrically in the longitudinal direction of the ultraviolet light emitting gas discharge tube on both sides of the electrode slit. The pair of reflective electrodes has a length that is the sum of the widths of the electrode pair and the electrode slit in the longitudinal direction of each gas discharge tube, and has the total width of the arrangement of the gas discharge tubes. An ultraviolet irradiating device characterized in that it is configured to cover 80% or more of the area of a light emitting surface .
絶縁支持体と、
該絶縁支持体上に所定の隙間を空けて平行に配列された複数本の紫外発光ガス放電チューブを有し、
前記絶縁支持体には、それぞれの紫外発光ガス放電チューブを共通に横切る電極スリットを挟んで前記各紫外発光ガス放電チューブの長手方向の両側に共通に延び、前記紫外発光ガス放電チューブの背面側において発光面積の80%以上をカバーする1対の電極が設けられ、更に前記電極スリットの対応部からの紫外発光を塞ぐよう当該電極スリット対応部に絶縁部材を配置したことを特徴とする紫外線照射装置。
an insulating support;
Having a plurality of ultraviolet light emitting gas discharge tubes arranged in parallel with a predetermined gap on the insulating support,
The insulating support extends on both sides in the longitudinal direction of each of the ultraviolet gas discharge tubes in common across an electrode slit that crosses the respective ultraviolet gas discharge tubes in common, and on the back side of each of the ultraviolet gas discharge tubes, An ultraviolet irradiation device, comprising: a pair of electrodes covering 80% or more of a light emitting area ; and an insulating member arranged in a portion corresponding to the electrode slit so as to block ultraviolet light emission from the portion corresponding to the electrode slit. .
前記電極スリットが0.1~10mmの幅を有し、前記1対の電極が当該電極スリットの5倍以上の長さ持って前記紫外発光ガス放電チューブの長手方向の両側に対称的に広がるパターンを有することを特徴とする請求項1、6~9の何れか1項に記載の紫外線照射装置。 A pattern in which the electrode slit has a width of 0.1 to 10 mm, and the pair of electrodes has a length of at least 5 times the electrode slit and spreads symmetrically on both sides in the longitudinal direction of the ultraviolet light emitting gas discharge tube. The ultraviolet irradiation device according to any one of claims 1 and 6 to 9, characterized by having 請求項1~9の何れか1項に記載の紫外線照射装置における前記1対の電極の間にインバータ電源を接続し、
該インバータ電源から前記1対の電極の間に駆動電圧を印加し、
前記駆動電圧の上昇過程において、前記電極スリット対応部に放電が発生した際にガス放電チューブの管内壁の電極対対応部に印加電圧と逆の極性を持って蓄積する壁電荷を利用して当該ガス放電チューブの長手方向の電極端部に向けて放電を拡大する駆動を当該電極対間で交互に繰り返すことを特徴とする紫外線照射装置の駆動方法。
An inverter power supply is connected between the pair of electrodes in the ultraviolet irradiation device according to any one of claims 1 to 9,
applying a drive voltage between the pair of electrodes from the inverter power supply;
In the process of increasing the drive voltage, when a discharge occurs in the electrode slit corresponding portion, the wall charge accumulated in the electrode pair corresponding portion of the tube inner wall of the gas discharge tube with a polarity opposite to the applied voltage is used to generate the electric discharge. 1. A method of driving an ultraviolet irradiation device , characterized by alternately repeating driving between pairs of electrodes so as to expand discharge toward the end portions of the electrodes in the longitudinal direction of the gas discharge tube .
電極構造体と、
該電極構造体上にそれぞれ離脱可能な非接着状態でコンタクトして平行に配列されて発光面を構成する複数本の紫外発光ガス放電チューブとを備え、
前記電極構造体は、それぞれの紫外発光ガス放電チューブを共通に横切る電極スリットを挟んで各紫外発光ガス放電チューブの長手方向の両側に対称的に広がる1対の反射性電極と、当該反射性電極対を所定形状で支持するリジッドな基体とを有し、当該1対の反射性電極は、各ガス放電チューブの長手方向において前記電極対と前記電極スリットの幅を合わせた長さを有し、前記ガス放電チューブが配列された合計の幅を有する発光面の面積に対して80%以上をカバーする構成であることを特徴とする紫外線照射装置。
an electrode structure;
a plurality of ultraviolet light emitting gas discharge tubes arranged in parallel in contact with the electrode structure in a detachable non-bonded state to form a light emitting surface;
The electrode structure includes a pair of reflective electrodes extending symmetrically on both sides in the longitudinal direction of each ultraviolet light emitting gas discharge tube with an electrode slit that commonly crosses each ultraviolet light emitting gas discharge tube interposed therebetween, and the reflective electrode a rigid base supporting the pair in a predetermined shape, the pair of reflective electrodes having a length that is the sum of the width of the electrode pair and the electrode slit in the longitudinal direction of each gas discharge tube; An ultraviolet irradiating device characterized in that it covers 80% or more of the total width of a light emitting surface on which said gas discharge tubes are arranged.
JP2022076688A 2020-08-24 2022-05-06 Ultraviolet irradiation device and its driving method Active JP7268927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022076688A JP7268927B2 (en) 2020-08-24 2022-05-06 Ultraviolet irradiation device and its driving method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020141016A JP6955798B2 (en) 2015-11-13 2020-08-24 Ultraviolet irradiation device
JP2021156879A JP7470994B2 (en) 2020-08-24 2021-09-27 Ultraviolet irradiation device and driving method thereof
JP2022076688A JP7268927B2 (en) 2020-08-24 2022-05-06 Ultraviolet irradiation device and its driving method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021156879A Division JP7470994B2 (en) 2020-08-24 2021-09-27 Ultraviolet irradiation device and driving method thereof

Publications (2)

Publication Number Publication Date
JP2022115993A JP2022115993A (en) 2022-08-09
JP7268927B2 true JP7268927B2 (en) 2023-05-08

Family

ID=87885287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022076688A Active JP7268927B2 (en) 2020-08-24 2022-05-06 Ultraviolet irradiation device and its driving method

Country Status (1)

Country Link
JP (1) JP7268927B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216704A (en) 2000-11-16 2002-08-02 Nec Lighting Ltd Rare gas discharge lamp
WO2006134660A1 (en) 2005-06-17 2006-12-21 Shinoda Plasma Corporation Discharge tube array and display device using same
JP2008059775A (en) 2006-08-29 2008-03-13 Harison Toshiba Lighting Corp Planar light source
JP2009266538A (en) 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Discharge lamp and lighting fixture
JP2011040271A (en) 2009-08-11 2011-02-24 Shinoda Plasma Kk Planar light source
JP2011193929A (en) 2010-03-17 2011-10-06 Shinoda Plasma Kk Ultraviolet light irradiation device
JP5805273B1 (en) 2014-06-13 2015-11-04 富山県 UV generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3546610B2 (en) * 1996-09-20 2004-07-28 ウシオ電機株式会社 Dielectric barrier discharge device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216704A (en) 2000-11-16 2002-08-02 Nec Lighting Ltd Rare gas discharge lamp
WO2006134660A1 (en) 2005-06-17 2006-12-21 Shinoda Plasma Corporation Discharge tube array and display device using same
JP2008059775A (en) 2006-08-29 2008-03-13 Harison Toshiba Lighting Corp Planar light source
JP2009266538A (en) 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Discharge lamp and lighting fixture
JP2011040271A (en) 2009-08-11 2011-02-24 Shinoda Plasma Kk Planar light source
JP2011193929A (en) 2010-03-17 2011-10-06 Shinoda Plasma Kk Ultraviolet light irradiation device
JP5805273B1 (en) 2014-06-13 2015-11-04 富山県 UV generator

Also Published As

Publication number Publication date
JP2022115993A (en) 2022-08-09

Similar Documents

Publication Publication Date Title
JP6757531B2 (en) Ultraviolet irradiation device with self-condensing function
JP6241971B2 (en) Gas discharge device, flat light source using the same, and driving method thereof
JPH02158049A (en) High power beam
JP2580266Y2 (en) High power beam generator
JP6524477B2 (en) Gas discharge light emitting device and its driving circuit
JP2004350946A (en) Narrow-band uv-b phototherapeutic device
JP2018190686A (en) Ultraviolet light source device and manufacturing method thereof
JPH10501920A (en) High-performance fluorescent lamp device
JP7268927B2 (en) Ultraviolet irradiation device and its driving method
JP6103730B2 (en) Gas discharge light emitting device
JP7470994B2 (en) Ultraviolet irradiation device and driving method thereof
JP6955798B2 (en) Ultraviolet irradiation device
JP6485780B2 (en) Gas discharge light emitting device
JP2006302720A (en) Excimer lamp
JP2934511B2 (en) Corona discharge light source cell and corona discharge light source device
US20200152442A1 (en) Light-emitting tube array-type light source device, light source module using the same, and fluid treatment device using the same light source device
TWI344320B (en) Short arc type discharge lamp operating apparatus, ultraviolet irradiation apparatus and method of ultraviolet irradiating
JP2017157519A (en) Manufacturing method of gas discharge light-emitting tube, manufacturing method of light-emitting tube array type surface light source, and gas discharge light-emitting tube for surface light source
JP7029641B2 (en) Excimer lamp
TWI790362B (en) Ultraviolet irradiation unit, ultraviolet irradiation device, and shielding discharge lamp
JP7139808B2 (en) barrier discharge lamp
KR100833205B1 (en) A reflector having gradually inclined step type multiple parabolic surfaces for ultra violet lamp and ultra violet focussing device having the same
JP3481175B2 (en) Dielectric barrier lamp
JP2023055415A (en) Ultraviolet light source, ozone generator, ultraviolet light radiation method
KR20230144325A (en) Far ultraviolet light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230414

R150 Certificate of patent or registration of utility model

Ref document number: 7268927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150