JP7268382B2 - How to dispose of used lithium-ion batteries - Google Patents

How to dispose of used lithium-ion batteries Download PDF

Info

Publication number
JP7268382B2
JP7268382B2 JP2019022175A JP2019022175A JP7268382B2 JP 7268382 B2 JP7268382 B2 JP 7268382B2 JP 2019022175 A JP2019022175 A JP 2019022175A JP 2019022175 A JP2019022175 A JP 2019022175A JP 7268382 B2 JP7268382 B2 JP 7268382B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
carbon
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019022175A
Other languages
Japanese (ja)
Other versions
JP2020129505A (en
Inventor
弘樹 村岡
始 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019022175A priority Critical patent/JP7268382B2/en
Publication of JP2020129505A publication Critical patent/JP2020129505A/en
Application granted granted Critical
Publication of JP7268382B2 publication Critical patent/JP7268382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

本発明は、使用済みリチウムイオン電池の処理において、負極材のカーボンと正極活物質とを上手く分離して、該正極活物質からコバルト、ニッケル、リチウムなどの有価物を効率よく回収することができる処理方法に関する。 INDUSTRIAL APPLICABILITY In the treatment of used lithium-ion batteries, the present invention can effectively separate the carbon of the negative electrode material and the positive electrode active material, and efficiently recover valuables such as cobalt, nickel, and lithium from the positive electrode active material. Regarding the processing method.

リチウムイオン電池(LIB)の正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどによって構成されており、これらは有価物であるので、使用済みリチウムイオン電池から、これらの有価物を回収して再利用することが求められる。一方、リチウムイオン電池の負極活物質は主にカーボン(グラファイト)などによって形成されており、使用済みリチウムイオン電池からコバルト、ニッケル、リチウムなどの有価物を回収するには、正極活物質と負極活物質を含む粉砕混合物から負極活物質のカーボンを上手く分離する必要がある。 The positive electrode active material of lithium ion batteries (LIB) is composed of lithium cobalt oxide, lithium nickel oxide, lithium manganate, etc. These are valuable materials, so these valuable materials are recovered from used lithium ion batteries. are required to be reused. On the other hand, the negative electrode active material of lithium-ion batteries is mainly made of carbon (graphite). It is necessary to successfully separate the carbon of the negative electrode active material from the pulverized mixture containing the material.

使用済みリチウムイオン電池の処理方法として以下の方法が知られている。
(イ) アルミニウム筐体を有するリチウムイオン電池を温度400℃~550℃に加熱する工程、その後、リチウムイオン電池を破砕し篩別する工程、次いで、篩別された篩下の電池粉末を550℃~700℃に加熱する工程を有し、加熱した電池粉末を磁選処理ないし浮選処理する処理方法(特開2017-37807号公報)。
(ロ)リチウムイオン電池を焙焼して焙焼物を得る工程、前記焙焼物を破砕して破砕物を得る工程、前記破砕物を篩別して、篩下側に主として正極および負極の破砕物を回収する工程、正極を正極集電体と正極活物質に分離し、負極を負極集電体と負極活物質に分離する工程、正極活物質と負極活物質を回収する工程、回収した正極集電体と負極集電体を含む金属製部材を磁選して磁性物と非磁性物に分別する工程を含むリチウムイオン電池からの有価物の回収方法(特開2014-199774号公報)。
The following methods are known as methods for processing used lithium-ion batteries.
(b) a step of heating a lithium-ion battery having an aluminum housing to a temperature of 400°C to 550°C, then crushing and sieving the lithium-ion battery; A treatment method that includes a step of heating to ~700°C and performs magnetic separation treatment or flotation treatment on the heated battery powder (Japanese Patent Application Laid-Open No. 2017-37807).
(b) a step of roasting the lithium ion battery to obtain a roasted product, a step of crushing the roasted product to obtain a crushed product, sieving the crushed product, and recovering mainly the crushed positive electrode and negative electrode crushed products on the underside of the sieve; a step of separating the positive electrode into a positive electrode current collector and a positive electrode active material, a step of separating the negative electrode into a negative electrode current collector and a negative electrode active material, a step of collecting the positive electrode active material and the negative electrode active material, and a recovered positive electrode current collector A method for recovering valuables from a lithium ion battery, which includes a step of magnetically separating a metal member including a negative electrode current collector and separating it into magnetic substances and non-magnetic substances (Japanese Patent Application Laid-Open No. 2014-199774).

従来の使用済みリチウムイオン二次電池の処理方法は、一般に、電池本体を破砕し、焼却し、篩い分けなどの物理選別を行っており、多くの場合、乾式の物理選別であるため、正極材の有価物と負極材のカーボン(グラファイト)粉体が混合した状態で回収されている。例えば、磁力選別を行う場合でも、正極活物質の粉砕物にカーボンが付着して磁選されるために、後にカーボンを除去する処理が必要になっている。また、負極材と正極材が混合して回収されると、後工程での取扱い体積が増加するため装置が大型化する問題があり、後にカーボンを分離するために大気焼成を行うと、多量の酸素ガスや燃料費が必要になるのでコスト高になるなどの問題がある。 Conventional methods for processing used lithium-ion secondary batteries generally involve crushing the battery body, incinerating, and performing physical sorting such as sieving. and the carbon (graphite) powder of the negative electrode material are collected in a mixed state. For example, even when magnetic separation is performed, since carbon adheres to the pulverized positive electrode active material and is magnetically separated, it is necessary to remove the carbon later. In addition, when the negative electrode material and the positive electrode material are mixed and collected, the volume to be handled in the post-process increases, which poses a problem of increasing the size of the equipment. Since oxygen gas and fuel cost are required, there is a problem such as high cost.

特開2017-37807号公報JP 2017-37807 A 特開2014-199774号公報JP 2014-199774 A

本発明は従来の上記問題を解消した処理方法であり、湿式処理によって負極材のカーボンと正極活物質とを効果的に上手く分離して正極活物質からコバルト、ニッケル、リチウムなどの有価物を効率よく回収することができる処理方法を提供する。 The present invention is a treatment method that solves the above-mentioned conventional problems, and effectively separates the carbon of the negative electrode material and the positive electrode active material from the positive electrode active material by wet treatment, and efficiently removes valuable substances such as cobalt, nickel, and lithium from the positive electrode active material. To provide a processing method which can be recovered well.

本発明は、以下の構成を有する使用済みリチウムイオン電池の処理方法である。
〔1〕(イ)使用済みリチウムイオン電池を非酸化性雰囲気下400℃~600℃で加熱処理した後に粉砕する工程、(ロ)上記工程の粉砕物を電極活物質が主体の細粉砕物と、細粉砕物より粗粒の粗粉砕物に篩分けする工程、(ハ)上記細粉砕物を回収して水を加えて懸濁スラリーにし、該懸濁スラリーに0.05g/L~1.0g/Lの界面活性剤を加えて負極活物質のカーボンと正極活物質由来の細粉砕物とを互いに分離して分散させる工程、(ニ)上記懸濁スラリーに含まれる正極活物質由来の細粉砕物を磁束密度1000ガウス~8000ガウスの磁束密度下で磁着させて該懸濁スラリーから選択的に分離回収する磁選工程を有することを特徴とする使用済みリチウムイオン電池の処理方法。
〔2〕磁力を与える手段として磁束密度1000ガウス~8000ガウスの磁石を用い、該磁石を上記懸濁スラリーに差し込み、正極活物質由来の粉砕物を該磁石に磁着させて引き上げる一方、負極材由来のカーボンを懸濁スラリーに分散させたまま残し、正極活物質由来の粉砕物をカーボンから分離して回収する上記[1]に記載する処理方法。
The present invention is a method for treating used lithium ion batteries having the following configuration.
[1] (a) a step of pulverizing the used lithium ion battery after heat treatment at 400 ° C to 600 ° C in a non-oxidizing atmosphere , (b) the pulverized product of the above step as a finely pulverized product mainly composed of the electrode active material (c) recovering the above-mentioned finely ground material and adding water to make a suspension slurry ; a step of adding 0 g/L of a surfactant to separate and disperse the carbon of the negative electrode active material and the finely pulverized material derived from the positive electrode active material; A method for treating used lithium-ion batteries, comprising a magnetic separation step of selectively separating and recovering pulverized materials from the suspended slurry by magnetizing them under a magnetic flux density of 1,000 to 8,000 gauss .
[2] Using a magnet with a magnetic flux density of 1000 gauss to 8000 gauss as a means for applying a magnetic force, inserting the magnet into the suspension slurry, magnetically attaching the pulverized material derived from the positive electrode active material to the magnet and pulling it up, while negative electrode material The treatment method described in [1] above, wherein the carbon derived from the positive electrode active material is left dispersed in the suspension slurry, and the pulverized material derived from the positive electrode active material is separated from the carbon and recovered.

〔具体的な説明〕
以下、本発明の処理方法を具体的に説明する。
本発明の処理方法は、(イ)使用済みリチウムイオン電池を非酸化性雰囲気下400℃~600℃で加熱処理した後に粉砕する工程、(ロ)上記工程の粉砕物を電極活物質が主体の細粉砕物と、細粉砕物より粗粒の粗粉砕物に篩分けする工程、(ハ)上記細粉砕物を回収して水を加えて懸濁スラリーにし、該懸濁スラリーに0.05g/L~1.0g/Lの界面活性剤を加えて負極活物質のカーボンと正極活物質由来の細粉砕物とを互いに分離して分散させる工程、(ニ)上記懸濁スラリーに含まれる正極活物質由来の細粉砕物を磁束密度1000ガウス~8000ガウスの磁束密度下で磁着させて該懸濁スラリーから選択的に分離回収する磁選工程を有することを特徴とする使用済みリチウムイオン電池の処理方法である。


[Specific explanation]
The processing method of the present invention will be specifically described below.
The treatment method of the present invention includes (a) a step of heat-treating a used lithium ion battery at 400° C. to 600° C. in a non-oxidizing atmosphere and then pulverizing it, and (b) the pulverized product of the above step mainly composed of an electrode active material. A step of sieving into a finely pulverized product and a coarsely pulverized product having coarser grains than the finely pulverized product, (c) recovering the finely pulverized product, adding water to make a suspension slurry, and adding 0.05 g/ g to the suspension slurry. A step of adding L to 1.0 g/L of a surfactant to separate and disperse the carbon of the negative electrode active material and the finely pulverized material derived from the positive electrode active material from each other; A treatment of used lithium-ion batteries characterized by having a magnetic separation step of selectively separating and recovering finely pulverized substances derived from substances from the suspended slurry by magnetically attaching them under a magnetic flux density of 1000 gauss to 8000 gauss. The method.


〔Liイオン電池〕
リチウムイオン電池の正極活物質として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、コバルト酸リチウムのコバルトの一部をニッケルとマンガンで置換した三元系活物質、ニッケルとコバルトとアルミニウムを用いたNCA系活物質〔Li(Ni-Co-Al)O〕、リン酸鉄系活物質などが用いられている。また、負極活物質として主にカーボン(グラファイト)が用いられている。
本発明の処理方法は、負極材のカーボンと正極活物質とを効果的に上手く分離する処理方法に関する。
[Li-ion battery]
Lithium cobaltate, lithium nickelate, lithium manganate, ternary active material in which part of the cobalt in lithium cobaltate is replaced with nickel and manganese, nickel, cobalt and aluminum are used as positive electrode active materials for lithium ion batteries. NCA-based active materials [Li(Ni-Co-Al) O2 ], iron phosphate-based active materials, and the like are used. Carbon (graphite) is mainly used as the negative electrode active material.
The treatment method of the present invention relates to a treatment method for effectively separating the carbon of the negative electrode material and the positive electrode active material.

〔加熱処理工程〕
本発明の処理方法において、使用済みリチウムイオン電池を粉砕する工程に先立ち、上記電池を放電して加熱処理するのが好ましい。加熱処理は、リチウムイオン電池を熱分解炉などに入れ、好ましくは、不活性ガス雰囲気などの非酸化性雰囲気下、400℃~600℃の温度で加熱すると良い。この加熱処理によって可燃性の電解液を熱分解して無害化され、セパレータや接着樹脂等の可燃物も熱分解して減容化される。
[Heat treatment process]
In the processing method of the present invention, it is preferable to discharge and heat-treat the used lithium-ion battery prior to the step of pulverizing the used lithium-ion battery. For heat treatment, the lithium ion battery is placed in a pyrolysis furnace or the like, and preferably heated at a temperature of 400° C. to 600° C. in a non-oxidizing atmosphere such as an inert gas atmosphere. This heat treatment thermally decomposes the combustible electrolytic solution to render it harmless, and thermally decomposes combustibles such as the separator and the adhesive resin to reduce the volume.

上記加熱処理によって、例えば、正極活物質のコバルト酸リチウムやニッケル酸リチウム、アルミン酸リチウムなどの一部は電解液等が分解して生じた炭素等やフッ化水素と反応して酸化コバルトや酸化ニッケルになり、またフッ化リチウムが生じる。なお、加熱処理温度が400℃未満ではコバルト酸リチウムやニッケル酸リチウムは十分に分解されない。一方、集電体にアルミニウム箔が用いられていると、加熱温度が660℃以上(アルミの融点以上)になるとアルミニウムが溶融して分別し難くなるので、加熱処理温度は400℃~600℃が好ましい。さらに、酸化性雰囲気中で加熱すると、集電体の銅箔やアルミニウム箔が酸化物になり、金属を回収する利点が損なわれるので、非酸化性雰囲気下の加熱処理が好ましい。 By the above heat treatment, for example, some of the positive electrode active materials such as lithium cobalt oxide, lithium nickel oxide, and lithium aluminate react with carbon generated by decomposition of the electrolytic solution, etc., and hydrogen fluoride to react with cobalt oxide and oxidation. It becomes nickel and also produces lithium fluoride. If the heat treatment temperature is less than 400° C., lithium cobaltate and lithium nickelate are not sufficiently decomposed. On the other hand, if an aluminum foil is used as the current collector, the aluminum will melt if the heating temperature is 660°C or higher (above the melting point of aluminum), making separation difficult. preferable. Furthermore, when heated in an oxidizing atmosphere, the copper foil or aluminum foil of the current collector becomes an oxide, which impairs the advantage of recovering the metal. Therefore, heat treatment in a non-oxidizing atmosphere is preferred.

〔粉砕工程〕
加熱処理した使用済みリチウムイオン電池を破砕する。通常、正極集電体はアルミニウム箔によって形成されており、負極集電体は銅箔によって形成されている。これらの箔は展性があるため破砕すると概ね1mm以上の粗粒の破砕物になる。一方、集電体に付着している活物質は1~50μm程度の粒子の集合体であるため、破砕すると細かく破砕されて概ね1mm未満の細粒の破砕物になる。従って、1mm以上の粗粒破砕物と1mm未満の細粒破砕物とに粉砕することによって、アルミニウム箔や銅箔などの集電体と活物質とを物理的に分離することができる。破砕手段は上記電池の加熱分解物を上記粗粒粉砕物と上記細粒粉砕物に破砕できるものであれば良い。一般的な二軸破砕機やハンマーミルなどの破砕装置を用いることができる。
[Pulverization process]
Crush the heat-treated used lithium-ion batteries. Generally, the positive electrode current collector is made of aluminum foil, and the negative electrode current collector is made of copper foil. Since these foils are malleable, when they are crushed, they become roughly 1 mm or more coarse crushed particles. On the other hand, since the active material adhering to the current collector is an aggregate of particles of about 1 to 50 μm, when it is crushed, it is finely crushed into fine crushed particles of approximately less than 1 mm. Therefore, by pulverizing into crushed coarse particles of 1 mm or more and crushed fine particles of less than 1 mm, it is possible to physically separate the current collector such as aluminum foil or copper foil from the active material. Any crushing means may be used as long as it can crush the thermally decomposed product of the battery into the coarse-grain pulverized product and the fine-grain pulverized product. A crushing device such as a general twin-screw crusher or a hammer mill can be used.

〔篩分工程〕
加熱処理した使用済みリチウムイオン電池の破砕物を、1mm以上の粗粒破砕物と、1mm未満の細粒破砕物に篩分けする。篩分手段は振動篩などを用いることができる。主に1mm以上の粗粒破砕物はアルミニウム箔や銅箔などの電池材料の破砕物であり、一方、1mm未満の細粒破砕物は、主にコバルト酸リチウムやニッケル酸リチウムなどの正極活物質および該正極活物質由来の酸化コバルトや酸化ニッケルなどの細粉砕物と、負極活物質のカーボン(グラファイト)の細粉砕物との混合細粉砕物である。この1mm未満の細粒破砕物を篩分けして回収する。
[Sieving process]
The heat-treated used lithium ion battery crushed matter is sieved into coarse-grained crushed matter of 1 mm or more and fine-grained crushed matter of less than 1 mm. A vibrating screen or the like can be used as the sieving means. Crushed coarse particles of 1 mm or more are mainly crushed battery materials such as aluminum foil and copper foil, while fine crushed particles of less than 1 mm are mainly positive electrode active materials such as lithium cobalt oxide and lithium nickel oxide. and a finely ground mixture of a finely ground material such as cobalt oxide or nickel oxide derived from the positive electrode active material and a finely ground material of carbon (graphite) as the negative electrode active material. This fine crushed material of less than 1 mm is sieved and recovered.

〔スラリー化工程〕
回収した1mm未満の細粒破砕物に水を加えて懸濁スラリーにし、該懸濁スラリーに界面活性剤を加えて負極活物質のカーボンと正極活物質由来の細粉砕物とを分散させる。該懸濁スラリーの固形分濃度(活物質濃度)は70g/L~350g/Lの範囲が好ましく、75g/L~300g/Lの範囲がより好ましい。該固形分濃度が30g/L未満ではバッチ当たりの処理量が少な過ぎてコスト高になり、300g/Lよりも多いと界面活性剤の添加量を増やしてもカーボンや正極活物質由来の細粉砕物が十分に分散し難くなる。
[Slurry process]
Water is added to the collected crushed fine particles of less than 1 mm to form a suspension slurry, and a surfactant is added to the suspension slurry to disperse the carbon of the negative electrode active material and the finely ground particles derived from the positive electrode active material. The solid content concentration (active material concentration) of the suspension slurry is preferably in the range of 70 g/L to 350 g/L, more preferably in the range of 75 g/L to 300 g/L. If the solid content concentration is less than 30 g/L, the processing amount per batch is too small, resulting in high costs. Things become difficult to disperse sufficiently.

界面活性剤は、例えば、以下に示す、陰イオン系界面活性剤、非イオン系界面活性剤、両性イオン系界面活性剤、陽イオン系界面活性剤などを用いることができる。
(イ)陰イオン系界面活性剤
直鎖アルキルベンゼンスルホン酸ナトリウム、アルキル硫酸エステルナトリウム、アルキルエーテル硫酸エステルナトリウム、α-オレフィンスルホン酸ナトリウム、アルキルスルホン酸ナトリウムなど。市販品としては、第一石鹸社の「ファーストフレッシュライム」(商品名)などがある。
(ロ)非イオン系界面活性剤
ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルカノールアミド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルなど。市販品としては、エコエストジャパン社の「アースクリン」(商品名)などがある。
(ハ)両性イオン系界面活性剤
アルキルアミノ脂肪酸ナトリウム、アルキルベタイン、アルキルアミンオキシドなど。市販品としては、花王社の「アンヒトール2ONN」(商品名)などがある。
(ニ)陽イオン系界面活性剤
アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩など。市販品としては、花王社の「アセタミン24」(商品名)などがある。
また、上記化合物を主成分として含む市販の合成洗剤を用いることができる。これらを複数混合して使用することも可能である。
Surfactants that can be used include, for example, the following anionic surfactants, nonionic surfactants, amphoteric surfactants, and cationic surfactants.
(b) Anionic surfactants Linear sodium alkylbenzene sulfonate, sodium alkyl sulfate, sodium alkyl ether sulfate, sodium α-olefin sulfonate, sodium alkyl sulfonate, and the like. Commercially available products include "First Fresh Lime" (trade name) manufactured by Daiichi Soup Co., Ltd.
(b) Nonionic surfactants such as sucrose fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, fatty acid alkanolamides, polyoxyethylene alkyl ethers and polyoxyethylene alkylphenyl ethers. Commercially available products include "Earthclean" (trade name) manufactured by Ecoest Japan.
(c) Zwitterionic surfactants sodium alkylamino fatty acid, alkylbetaine, alkylamine oxide and the like. Commercially available products include "Amphitol 2ONN" (trade name) from Kao Corporation.
(d) Cationic surfactants such as alkyltrimethylammonium salts and dialkyldimethylammonium salts. Commercially available products include "Acetamine 24" (trade name) manufactured by Kao Corporation.
Moreover, a commercially available synthetic detergent containing the above compound as a main component can be used. It is also possible to use a mixture of these.

上記界面活性剤の添加量は、上記化合物の量として0.05~1.0g/Lが好ましい。界面活性剤が0.05g/Lより少ないと、負極活物質のカーボンや正極活物質由来の細粉砕物が十分に水中に分散し難く、1.0g/Lより多いと、界面活性剤が残留して無駄になり、あるいは洗浄水量を大量が必要になり、処理コストが嵩むようになる。 The amount of the surfactant added is preferably 0.05 to 1.0 g/L as the amount of the compound. If the surfactant is less than 0.05 g/L, the carbon of the negative electrode active material and the finely pulverized material derived from the positive electrode active material are difficult to sufficiently disperse in water, and if it is more than 1.0 g/L, the surfactant remains. Otherwise, a large amount of washing water is required, resulting in an increase in treatment cost.

上記懸濁スラリーに界面活性剤を加えることによって、カーボンや正極活物質由来の細破砕物は水に対して濡れ性を帯び、これらが水中に良く分散するようになる。 By adding a surfactant to the suspension slurry, the carbon and the finely crushed material derived from the positive electrode active material become wettable with water, and are well dispersed in water.

〔磁気分離工程〕
正極活物質のコバルト酸リチウムやニッケル酸リチウム、アルミン酸リチウム、およびその熱分解によって生じた酸化コバルトや酸化ニッケル、金属ニッケルは磁気によって吸着される磁着性物質であるので、これらを磁気手段に磁着させてカーボンなどの非磁着から分離することができる。
[Magnetic separation process]
Lithium cobalt oxide, lithium nickel oxide, and lithium aluminate, which are positive electrode active materials, and cobalt oxide, nickel oxide, and metallic nickel generated by the thermal decomposition thereof are magnetizable substances that are magnetically adsorbed. It can be magnetized and separated from non-magnetized materials such as carbon.

上記磁気分離の磁着方法としては、磁石を該懸濁スラリーに差し込んで、該磁石に酸化コバルトや酸化ニッケルなどの磁着性粉砕物を付着させればよい。Nd磁石のように磁力の強い磁石を用いると良い。または、磁界を付与した管路や流路に上記懸濁スラリーを通過させて該管路や該流路の内壁に酸化コバルトや酸化ニッケルなどの磁着性粉砕物を付着させ、その後に磁界を止めて磁着性粉砕物を回収する方法など、磁着性粉砕物を磁着させる種々の方法を利用することができる。 As a magnetic attachment method for the above magnetic separation, a magnet may be inserted into the suspension slurry, and a magnetizable pulverized material such as cobalt oxide or nickel oxide may be attached to the magnet. It is preferable to use a magnet with a strong magnetic force such as an Nd magnet. Alternatively, the suspended slurry is passed through a conduit or flow path to which a magnetic field is applied, and magnetically attracted pulverized matter such as cobalt oxide or nickel oxide is attached to the inner wall of the conduit or flow path, and then the magnetic field is applied. Various methods of magnetizing the magnetizable pulverized material can be used, such as stopping and recovering the magnetic pulverized material.

このような磁石等の磁気手段を用いることによって、懸濁スラリー中の磁着性粉砕物は該磁気手段に磁着され、一方、カーボンは磁着せずに懸濁スラリー中に残るので、磁着性粉砕物を選択的に分離して回収することができる。このとき、懸濁スラリーには界面活性剤が添加されており、磁着性粉砕物とカーボンは良く分散しているので、カーボンが磁着性粉砕物に付着して回収されることが少なく、カーボンの混在が少ない磁着性粉砕物を回収することができる。 By using a magnetic means such as a magnet, the magnetically attracted pulverized material in the suspended slurry is magnetically attached to the magnetic means, while the carbon remains in the suspended slurry without being magnetically attached. can be selectively separated and recovered. At this time, since a surfactant is added to the suspended slurry and the magnetically attracted pulverized material and the carbon are well dispersed, the carbon is less likely to adhere to the magnetically attracted pulverized material and be recovered. It is possible to recover the magnetically attracted pulverized material with little carbon mixed.

上記磁気分離の磁束密度は、例えば、1000ガウス~8000ガウスが好ましい。磁束密度が1000ガウスよりも小さいと磁着性粉砕物の磁着効果が不十分であり、一方、8000ガウスを上回ると装置費用も嵩むようになり、また磁力を付加した状態での磁着物の剥離が難しくなる。 The magnetic flux density of the magnetic separation is preferably, for example, 1000 Gauss to 8000 Gauss. If the magnetic flux density is less than 1,000 gauss, the magnetic attraction effect of the magnetic pulverized material is insufficient. becomes difficult.

上記磁気分離によって回収した磁着性粉砕物は水洗して界面活性剤を取り除く。回収した磁着性粉砕物は正極活物質のコバルト酸リチウムやニッケル酸リチウム、リチウム酸アルミニウム、およびその熱分解によって生じた酸化コバルトや酸化ニッケル、金属ニッケルなどあり、これらは硫酸浸出してニッケル、コバルト、リチウムを含む浸出液にし、pH調整などを経て溶媒抽出などによってニッケル、コバルト、リチウムなどを有価物として回収することができる。 The magnetizable pulverized material collected by the magnetic separation is washed with water to remove the surfactant. The recovered magnetically attracted pulverized materials include positive electrode active materials such as lithium cobalt oxide, lithium nickel oxide, and lithium aluminum oxide, as well as cobalt oxide, nickel oxide, and metallic nickel generated by thermal decomposition thereof. Nickel, cobalt, lithium and the like can be recovered as valuables by making a leachate containing cobalt and lithium, and then subjecting it to pH adjustment and solvent extraction.

懸濁スラリーに残ったカーボン(グラファイト)は濾過し水洗して界面活性剤を取り除く。このカーボンは不純物が少ないので、非鉄製錬業などにおいて還元剤として利用することができる。 Carbon (graphite) remaining in the suspended slurry is filtered and washed with water to remove the surfactant. Since this carbon has few impurities, it can be used as a reducing agent in the non-ferrous smelting industry.

本発明の処理方法によれば、カーボンの混在が少ない正極活物質粉砕物(コバルト酸リチウムやニッケル酸リチウム等)や正極活物質由来の酸化物粉砕物(酸化コバルトや酸化ニッケル等)を容易に回収することができる。
本発明の処理方法は湿式の磁気分離を行うので、粉砕物が飛散せずにロスが極めて少ない。従来の処理方法は乾式の磁気分離であるため、各活物質の微粉が飛散して収率減や環境汚染などの問題を生じているが、本発明の処理方法ではこのような問題を生じない。
According to the processing method of the present invention, pulverized positive electrode active material (lithium cobalt oxide, lithium nickel oxide, etc.) containing less carbon and pulverized oxide derived from positive electrode active material (cobalt oxide, nickel oxide, etc.) can be easily obtained. can be recovered.
Since the processing method of the present invention performs wet magnetic separation, the pulverized material does not scatter and loss is extremely small. Since the conventional processing method is dry magnetic separation, fine powder of each active material is scattered, causing problems such as yield reduction and environmental pollution, but the processing method of the present invention does not cause such problems. .

また、本発明の処理方法では、湿式の磁気分離に先立ち、懸濁スラリーに界面活性剤を添加するので、正極活物質などの粉砕物と負極材由来のカーボンとが水中に良く分散し、正極活物質などの粉砕物にカーボンが付着し難い。このため正極材活物質などを高収率で回収することができ、また正極材活物質などに混在するカーボンが少ない。 In addition, in the processing method of the present invention, a surfactant is added to the suspension slurry prior to wet magnetic separation, so that the pulverized material such as the positive electrode active material and the carbon derived from the negative electrode material are well dispersed in water, and the positive electrode Carbon is less likely to adhere to pulverized materials such as active materials. Therefore, the positive electrode active material and the like can be recovered at a high yield, and the amount of carbon mixed in the positive electrode active material and the like is small.

NCA系正極材を含む活物質粉末混合物(未処理)のXRDチャート。XRD chart of active material powder mixture (untreated) containing NCA-based cathode material. 実施例1において回収した磁着物のXRDチャート。4 is an XRD chart of magnetic substances collected in Example 1. FIG. 実施例1において回収した非磁着物のXRDチャート。The XRD chart of the non-magnetic substance recovered in Example 1.

本発明の実施例を比較例と共に以下に示す。表1および表2のCo、Ni、Alの分析値は蛍光X線分析(XRF)の半定量値、Liは硫酸浸出液のICP測定値より算出、Cがガス分析値、他には酸素、銅、リン、シリコン、鉄などを含む。 Examples of the present invention are shown below together with comparative examples. Analysis values of Co, Ni, and Al in Tables 1 and 2 are semiquantitative values of X-ray fluorescence analysis (XRF), Li is calculated from ICP measurement values of sulfuric acid leachate, C is gas analysis value, and oxygen and copper are also included. , phosphorus, silicon, iron, etc.

〔実施例1〕
NCA系正極材〔Li(Ni-Co-Al)O〕を含む活物質粉末混合物を原料として用いた。該活物質粉末混合物のXRD測定チャートを図1に示す。この組成を表1に示す。
上記活物質粉末混合物15gをイオン交換水200mLに入れて撹拌して懸濁スラリーにした。撹拌時に界面活性剤が液中で0.5g/Lになるように添加した。この懸濁スラリー中に、磁束密度4000ガウスの棒状Nd磁石を挿入し撹拌したところNd磁石表面に磁着物が見られた。磁石の磁力をカットした後に、この磁着物を回収して水洗し、乾燥後に回収した。回収量は7.2gであった。回収した磁着物のXRD測定を行った。その結果を図2に示す。図2に示すように、XRDでは、正極材由来のコバルト酸リチウム及び/または酸化ニッケル、金属ニッケル、およびアルミン酸リチウムなどが検出された。また微弱なピークではあるが負極材由来のカーボン(グラファイト)も検出された。この回収した磁着物の組成を表2に示す。
次に、懸濁液に残留した非磁着物を濾過して水洗し、回収した。回収量は7.6gであった。回収した非磁着物のXRD測定を行った。その結果を図3に示す。図3に示すように、非磁着物は負極材由来のカーボン(グラファイト)のみであり、この結果から上記懸濁スラリーに界面活性剤を添加した磁気分離によって、正極材由来のコバルト酸リチウム、酸化ニッケルなどが負極材由来のカーボンと上手く分離され、カーボンの極めて少ないコバルト酸リチウムや酸化ニッケルなどが回収できることが確認された。
なお、図中、●印は酸化ニッケル、▲印は金属ニッケル、■印はアルミン酸リチウム、×印はカーボンである。コバルト酸リチウムと酸化ニッケルのXRDのピーク箇所は同じ回折角(2θ)に対応しているので区分できず、図中●印はコバルト酸リチウムと酸化ニッケルの合わさったピークである。
[Example 1]
An active material powder mixture containing an NCA-based positive electrode material [Li(Ni-Co-Al) O2 ] was used as a raw material. FIG. 1 shows an XRD measurement chart of the active material powder mixture. This composition is shown in Table 1.
15 g of the above active material powder mixture was added to 200 mL of deionized water and stirred to form a suspension slurry. The surfactant was added so as to be 0.5 g/L in the liquid during stirring. When a bar-shaped Nd magnet with a magnetic flux density of 4000 gauss was inserted into this suspended slurry and stirred, magnetic substances were found on the surface of the Nd magnet. After cutting off the magnetic force of the magnet, the magnetic substance was recovered, washed with water, and recovered after drying. The recovered amount was 7.2 g. An XRD measurement was performed on the recovered magnetic substance. The results are shown in FIG. As shown in FIG. 2, XRD detected lithium cobalt oxide and/or nickel oxide, metallic nickel, and lithium aluminate derived from the positive electrode material. Carbon (graphite) derived from the negative electrode material was also detected, although it was a faint peak. Table 2 shows the composition of the recovered magnetic substance.
Next, non-magnetic substances remaining in the suspension were collected by filtering and washing with water. The recovered amount was 7.6 g. An XRD measurement was performed on the collected non-magnetic substances. The results are shown in FIG. As shown in FIG. 3, the non-magnetic substance is only carbon (graphite) derived from the negative electrode material, and from this result, lithium cobalt oxide derived from the positive electrode material, oxidation It was confirmed that nickel and the like are successfully separated from the carbon derived from the negative electrode material, and lithium cobalt oxide and nickel oxide, which contain very little carbon, can be recovered.
In the figure, ● indicates nickel oxide, ▲ indicates metallic nickel, ■ indicates lithium aluminate, and x indicates carbon. Since the XRD peaks of lithium cobaltate and nickel oxide correspond to the same diffraction angle (2θ), they cannot be distinguished.

〔実施例2~10〕
活物質粉末混合物の使用量、懸濁水量、界面活性剤の添加量、Nd磁石の磁束密度を表1に示すように変えた以外は実施例1と同様にして磁着物を回収した。この結果を表1に示す。表1に示すように、界面活性剤の添加量が少ない実施例8は回収した磁着物の炭素量が実施例2よりも多く、従って、界面活性剤の添加量は0.05g/L以上が好ましい。
磁石の磁束密度が小さい実施例9は磁着物量が少なく、従って、磁石の磁束密度は他の実施例の範囲(1000~8000ガウス)が好ましい。
[Examples 2 to 10]
Magnetic substances were recovered in the same manner as in Example 1, except that the amount of the active material powder mixture used, the amount of suspended water, the amount of surfactant added, and the magnetic flux density of the Nd magnet were changed as shown in Table 1. The results are shown in Table 1. As shown in Table 1, in Example 8, in which the amount of surfactant added was small, the amount of carbon in the recovered magnetite was larger than that in Example 2. Therefore, the amount of surfactant added was 0.05 g/L or more. preferable.
Example 9, in which the magnetic flux density of the magnet is small, has a small amount of magnetic substance. Therefore, the magnetic flux density of the magnet is preferably within the range of the other examples (1000 to 8000 gauss).

〔比較例1〕
界面活性剤を添加しない以外は実施例1と同様にして、磁着物を磁気分離により回収した。この結果を表1に示す。磁着物の回収量は9.6gであり、非磁着物の回収量は4.6gであった。回収した磁着物には負極材由来のカーボンが25.2%含まれており、カーボンの混入量が格段に多く、一方、有価物の回収率は低かった。
[Comparative Example 1]
Magnetic substances were recovered by magnetic separation in the same manner as in Example 1, except that no surfactant was added. The results are shown in Table 1. The recovered amount of magnetic substances was 9.6 g, and the recovered amount of non-magnetic substances was 4.6 g. The collected magnetic substance contained 25.2% of carbon derived from the negative electrode material, and the amount of carbon mixed was remarkably large, while the recovery rate of valuable substances was low.

〔比較例2〕
実施例1と同様の活物質粉末混合物15gをスラリーにせず、Nd磁石を該粉末混合物に接触させて磁着物を分離回収した。この結果を表1に示す。磁着物の回収量は8.7gであり、非磁着物の回収量は6.0gであった。回収した磁着物には負極材由来のカーボンが17.2%含まれており、カーボンの混入量が格段に多く、一方、有価物の回収率は低かった。
[Comparative Example 2]
15 g of the same active material powder mixture as in Example 1 was not slurried, but a Nd magnet was brought into contact with the powder mixture to separate and recover magnetic substances. The results are shown in Table 1. The recovered amount of magnetic substances was 8.7 g, and the recovered amount of non-magnetic substances was 6.0 g. The collected magnetic substance contained 17.2% of carbon derived from the negative electrode material, and the amount of mixed carbon was remarkably large, while the recovery rate of valuable substances was low.

Figure 0007268382000001
Figure 0007268382000001

Figure 0007268382000002
Figure 0007268382000002

Claims (2)

(イ)使用済みリチウムイオン電池を非酸化性雰囲気下400℃~600℃で加熱処理した後に粉砕する工程、(ロ)上記工程の粉砕物を電極活物質が主体の細粉砕物と、細粉砕物より粗粒の粗粉砕物に篩分けする工程、(ハ)上記細粉砕物を回収して水を加えて懸濁スラリーにし、該懸濁スラリーに0.05g/L~1.0g/Lの界面活性剤を加えて負極活物質のカーボンと正極活物質由来の細粉砕物とを互いに分離して分散させる工程、(ニ)上記懸濁スラリーに含まれる正極活物質由来の細粉砕物を磁束密度1000ガウス~8000ガウスの磁束密度下で磁着させて該懸濁スラリーから選択的に分離回収する磁選工程を有することを特徴とする使用済みリチウムイオン電池の処理方法。 (a) a step of pulverizing the used lithium-ion battery after heat treatment at 400 ° C to 600 ° C in a non-oxidizing atmosphere , (c) recovering the above -mentioned finely ground material and adding water to make a suspension slurry; A step of adding a surfactant to separate and disperse the carbon of the negative electrode active material and the finely ground material derived from the positive electrode active material from each other; (d) the finely ground material derived from the positive electrode active material contained in the suspension slurry; A method for treating used lithium ion batteries, characterized by comprising a magnetic separation step of selectively separating and recovering from the suspended slurry by magnetizing under a magnetic flux density of 1000 Gauss to 8000 Gauss . 磁力を与える手段として磁束密度1000ガウス~8000ガウスの磁石を用い、該磁石を上記懸濁スラリーに差し込み、正極活物質由来の粉砕物を該磁石に磁着させて引き上げる一方、負極材由来のカーボンを懸濁スラリーに分散させたまま残し、正極活物質由来の粉砕物をカーボンから分離して回収する請求項1に記載する処理方法。
A magnet with a magnetic flux density of 1000 to 8000 gauss is used as a means for applying a magnetic force, the magnet is inserted into the suspension slurry, and the pulverized material derived from the positive electrode active material is magnetically attached to the magnet and pulled up, while carbon derived from the negative electrode material. remains dispersed in the suspension slurry, and the pulverized material derived from the positive electrode active material is separated from the carbon and recovered.
JP2019022175A 2019-02-09 2019-02-09 How to dispose of used lithium-ion batteries Active JP7268382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019022175A JP7268382B2 (en) 2019-02-09 2019-02-09 How to dispose of used lithium-ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019022175A JP7268382B2 (en) 2019-02-09 2019-02-09 How to dispose of used lithium-ion batteries

Publications (2)

Publication Number Publication Date
JP2020129505A JP2020129505A (en) 2020-08-27
JP7268382B2 true JP7268382B2 (en) 2023-05-08

Family

ID=72174741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019022175A Active JP7268382B2 (en) 2019-02-09 2019-02-09 How to dispose of used lithium-ion batteries

Country Status (1)

Country Link
JP (1) JP7268382B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670614B (en) * 2020-12-29 2022-11-22 广东省科学院资源综合利用研究所 Physical sorting method for positive and negative electrode materials of waste lithium iron phosphate batteries
JP2023177724A (en) * 2022-06-03 2023-12-14 株式会社エンビプロ・ホールディングス Waste residue of lithium ion battery and method for producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212478A (en) 2012-04-04 2013-10-17 Sumitomo Metal Mining Co Ltd Method for dressing ore containing fine mineral
JP2014199774A (en) 2013-03-29 2014-10-23 Jx日鉱日石金属株式会社 Method for recovering valuable material from lithium ion battery
JP2014529500A (en) 2011-12-15 2014-11-13 アドバンスドテクノロジーマテリアルズ,インコーポレイテッド Apparatus and method for stripping solder metal during recycling of waste electrical and electronic equipment
JP6322452B2 (en) 2014-03-25 2018-05-09 太平洋マテリアル株式会社 Backfill material
JP2018172732A (en) 2017-03-31 2018-11-08 Jx金属株式会社 Method for recovering lithium
JP2019160429A (en) 2018-03-07 2019-09-19 Jx金属株式会社 Lithium recovery method
JP6948481B2 (en) 2020-03-13 2021-10-13 Dowaエコシステム株式会社 How to collect valuables

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843147B2 (en) * 1975-05-16 1983-09-24 セントラル硝子株式会社 Kobutsu no Senkouhou
JP3434318B2 (en) * 1993-05-12 2003-08-04 住友金属鉱山株式会社 Separation and recovery of valuable metals from used lithium secondary batteries
JP5849880B2 (en) * 2012-07-18 2016-02-03 住友金属鉱山株式会社 Method for leaching metal and method for recovering metal from battery
JP2016089209A (en) * 2014-10-31 2016-05-23 三菱マテリアル株式会社 Method for separating cobalt
JP6268130B2 (en) * 2015-06-11 2018-01-24 日本リサイクルセンター株式会社 Method for recovering valuable materials from lithium-ion batteries
JP6587861B2 (en) * 2015-08-11 2019-10-09 学校法人早稲田大学 Lithium-ion battery processing method
JP6748274B2 (en) * 2018-10-11 2020-08-26 Dowaエコシステム株式会社 How to recover valuables from lithium-ion secondary batteries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014529500A (en) 2011-12-15 2014-11-13 アドバンスドテクノロジーマテリアルズ,インコーポレイテッド Apparatus and method for stripping solder metal during recycling of waste electrical and electronic equipment
JP2013212478A (en) 2012-04-04 2013-10-17 Sumitomo Metal Mining Co Ltd Method for dressing ore containing fine mineral
JP2014199774A (en) 2013-03-29 2014-10-23 Jx日鉱日石金属株式会社 Method for recovering valuable material from lithium ion battery
JP6322452B2 (en) 2014-03-25 2018-05-09 太平洋マテリアル株式会社 Backfill material
JP2018172732A (en) 2017-03-31 2018-11-08 Jx金属株式会社 Method for recovering lithium
JP2019160429A (en) 2018-03-07 2019-09-19 Jx金属株式会社 Lithium recovery method
JP6948481B2 (en) 2020-03-13 2021-10-13 Dowaエコシステム株式会社 How to collect valuables

Also Published As

Publication number Publication date
JP2020129505A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
KR102473000B1 (en) Method for recovering valuables from used lithium ion batteries
KR101883100B1 (en) Method of recovering valuable metals from wasted batteries and system for the same
JP6247681B2 (en) Magnetic separation of electrochemical cell materials
JP6948066B2 (en) Recycled negative electrode active material recovered from waste lithium ion battery containing lithium titanate and its recovery method
JP7268382B2 (en) How to dispose of used lithium-ion batteries
Hu et al. High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries
WO2021177200A1 (en) Method for concentrating valuable metal contained in lithium ion secondary battery
JP7399586B2 (en) Method of recovering valuable elements
JP3434318B2 (en) Separation and recovery of valuable metals from used lithium secondary batteries
JP2018087365A (en) Method for producing metal manganese
JP6676124B1 (en) Method of recovering valuable resources from lithium ion secondary batteries
JP3443446B2 (en) Method for recovering cobalt from used lithium secondary battery
JPH1046266A (en) Method for recovering cobalt from spent secondary battery
WO2022085222A1 (en) Method for recovering lithium and method for producing lithium carbonate
JP2021141060A (en) Method for concentrating valuable metal included in lithium-ion secondary battery
JP3448392B2 (en) Method for recovering cobalt, copper and lithium from used lithium secondary batteries
CN114171813B (en) Method for magnetic separation of anode and cathode powder from waste lithium batteries
JP7403946B2 (en) Method for producing purified lithium compound and method for producing lithium transition metal composite oxide
JPWO2018168472A1 (en) Method of producing metallic manganese
WO2024014144A1 (en) Method for recovering valuable materials from lithium ion secondary batteries
TWI790740B (en) Method for recovering valuable materials from lithium ion secondary cell
WO2023204230A1 (en) Method for recovering valuable materials from lithium-ion secondary battery
Tsunekawa et al. The recovery of electrode compounds from waste nickel metal hydride batteries by physical separation techniques
Qiu et al. The InnoRec Process: A Comparative Study of Three Mainstream Routes for Spent Lithium-ion Battery Recycling Based on the Same Feedstock
TW202410536A (en) Method for recycling valuables derived from lithium-ion secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7268382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150