JP7251113B2 - Reactive power compensator, its control program, and reactive power compensation system - Google Patents

Reactive power compensator, its control program, and reactive power compensation system Download PDF

Info

Publication number
JP7251113B2
JP7251113B2 JP2018216131A JP2018216131A JP7251113B2 JP 7251113 B2 JP7251113 B2 JP 7251113B2 JP 2018216131 A JP2018216131 A JP 2018216131A JP 2018216131 A JP2018216131 A JP 2018216131A JP 7251113 B2 JP7251113 B2 JP 7251113B2
Authority
JP
Japan
Prior art keywords
reactive power
voltage
deviation
dead band
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018216131A
Other languages
Japanese (ja)
Other versions
JP2019140898A (en
Inventor
孝二郎 関
亨 神通川
道彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JP2019140898A publication Critical patent/JP2019140898A/en
Application granted granted Critical
Publication of JP7251113B2 publication Critical patent/JP7251113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力系統に接続された電力変換器から電力系統に無効電力を注入することにより、電力系統との接続端の電圧を目標電圧に制御する無効電力補償装置等に関する。
詳しくは、電力系統に接続された分散型電源が有する能動的単独運転検出機能を妨害することのないSVC(Static Var Compensator)やSTATCOM(Static Synchronous Compensator)等の静止型の無効電力補償装置及びその制御プログラム、並びに、無効電力補償装置と分散型電源とを含む無効電力補償システムに関するものである。
TECHNICAL FIELD The present invention relates to a reactive power compensator or the like that controls the voltage at a connection end to a power system to a target voltage by injecting reactive power into the power system from a power converter connected to the power system.
Specifically, static reactive power compensators such as SVC (Static Var Compensator) and STATCOM (Static Synchronous Compensator) that do not interfere with the active islanding detection function of distributed power sources connected to the power system and their The present invention relates to a control program, a reactive power compensation system including a reactive power compensator and a distributed power supply.

図11は、従来の静止型の無効電力補償装置(SVC)の構成図である。この無効電力補償装置の原理は、例えば特許文献1に記載されている。
図11において、無効電力補償装置100’は、遮断器CB及び変圧器Trを介して電力系統1に接続されたインバータ等の電力変換器INVと、その制御手段としての交流制御部100A’とを備えている。交流制御部100A’には、電流検出器CTにより検出した電力変換器INVの出力電流と電圧検出器VTにより検出した系統電圧vとが入力され、これらの入力情報及び目標電圧130に基づいて電圧指令Vを演算すると共に、この電圧指令Vに従ってPWM(パルス幅変調)回路190が生成した駆動パルスにより電力変換器INVの半導体スイッチング素子を制御するように構成されている。
FIG. 11 is a configuration diagram of a conventional static static var compensator (SVC). The principle of this reactive power compensator is described in Patent Document 1, for example.
In FIG. 11, a reactive power compensator 100' includes a power converter INV such as an inverter connected to a power system 1 via a circuit breaker CB and a transformer Tr, and an AC controller 100A' as its control means. I have. The output current of the power converter INV detected by the current detector CT and the system voltage vr detected by the voltage detector VT are input to the AC control unit 100A', and based on these input information and the target voltage 130 The voltage command V * is calculated, and the semiconductor switching elements of the power converter INV are controlled by driving pulses generated by a PWM (Pulse Width Modulation) circuit 190 according to the voltage command V * .

次に、交流制御部100A’の構成及び動作を簡単に説明する。
振幅演算部121により演算した系統電圧vの振幅値と目標電圧130との偏差dvを減算器101により求め、この偏差dvがゼロになるように電圧制御部(AVR)141が無効電流指令Iqrefを算出する。ここで、無効電流指令Iqrefの代わりに無効電力指令を用いても良いのは言うまでもない。
Next, the configuration and operation of the AC control section 100A' will be briefly described.
The deviation dv between the amplitude value of the system voltage vr calculated by the amplitude calculation unit 121 and the target voltage 130 is obtained by the subtractor 101, and the voltage control unit (AVR) 141 outputs the reactive current command I so that the deviation dv becomes zero. Calculate qref . Here, it goes without saying that a reactive power command may be used instead of the reactive current command Iqref .

一方、系統電圧vを三相PLL回路150に入力して位相θを演算し、この位相θを用いて座標変換部160が交流直流変換及び逆変換を行って三相の無効電流指令を演算する。減算器102は三相の無効電流指令と無効電力補償装置100’の出力電流(無効分)との電流偏差dCを求め、電流制御部(ACR)180は上記電流偏差dCがゼロになるように動作して補償電圧ΔVを演算する。
また、座標変換部160から出力された無効電流指令に基づいて変圧器電圧補償部170が補償電圧ΔV’を求めると共に、これらの補償電圧ΔV,ΔV’と系統電圧vとを加算器103,104により加算して電圧指令Vを生成し、この電圧指令VをPWM回路190に与えて電力変換器INVを制御することにより、無効電力補償装置100’の電力系統1との接続端の電圧を目標電圧130に制御している。
On the other hand, the system voltage vr is input to the three-phase PLL circuit 150 to calculate the phase θ, and the coordinate conversion unit 160 performs AC-DC conversion and inverse conversion using this phase θ to calculate the three-phase reactive current command. do. The subtractor 102 obtains the current deviation dC between the three-phase reactive current command and the output current (reactive component) of the reactive power compensator 100', and the current control section (ACR) 180 controls the current deviation dC to be zero. It operates to calculate the compensation voltage ΔV.
Further, the transformer voltage compensating unit 170 obtains the compensating voltage ΔV′ based on the reactive current command output from the coordinate transforming unit 160, and the compensating voltages ΔV, ΔV′ and the system voltage vr are added to the adder 103, 104 to generate a voltage command V * , and this voltage command V * is given to a PWM circuit 190 to control the power converter INV, thereby reducing the The voltage is controlled to target voltage 130 .

図12は、無効電力補償装置100’が商用電力系統に連系している場合の動作説明図である。
図12(a)に示すように、負荷投入等によって接続端の電圧が低下した場合には、無効電力補償装置100’が進みの無効電力を電力系統1に注入して電圧低下を抑制する。また、図12(b)に示すように、負荷の脱落等により電力系統の電圧が上昇した場合には、無効電力補償装置100’が遅れの無効電力を注入して電圧上昇を抑制し、目標電圧を維持する。
なお、図12(a),(b)では無効電力を注入する場合を示しているが、この無効電力を無効電流に置き換えても差し支えない。
FIG. 12 is an operation explanatory diagram when the reactive power compensator 100' is connected to the commercial power system.
As shown in FIG. 12(a), when the voltage at the connection end drops due to load application or the like, the reactive power compensator 100' injects leading reactive power into the power system 1 to suppress the voltage drop. Further, as shown in FIG. 12(b), when the voltage of the electric power system rises due to a drop of the load or the like, the reactive power compensator 100′ suppresses the voltage rise by injecting the lagging reactive power, and the target maintain voltage.
Although FIGS. 12(a) and 12(b) show the case of injecting reactive power, the reactive power may be replaced with a reactive current.

一方、商用電力系統には、負荷だけでなく発電機等の分散型電源も接続される。
電力系統で事故が発生すると、系統内の遮断器や開閉器が動作して事故区間が系統から切り離されるが、切り離された事故区間に分散型電源が連系されている場合には分散型電源の単独運転状態が発生する。このような場合の感電防止や再閉路時の事故防止の観点から、分散型電源には、単独運転状態を検出して電力系統から解列する単独運転検出機能を備えることが規定されている。
On the other hand, the commercial power system is connected not only with loads but also with distributed power sources such as generators.
When an accident occurs in a power system, circuit breakers and switches in the system operate to disconnect the fault section from the system. islanding occurs. From the viewpoint of preventing electric shocks in such cases and accidents at the time of reclosing, distributed power sources are stipulated to have an islanding detection function that detects the islanding state and disconnects from the power system.

ここで、分散型電源が能動的に単独運転を検出する方式としては、例えば、非特許文献1のP.152-153に記載された無効電力変動方式や無効電力補償方式が知られている。
無効電力変動方式は、分散型電源(同期発電機等)の自動電圧調整装置(AVR)の電圧設定値に周期的な変動を与えて電力系統に注入する無効電力を周期的に変動させておき、単独運転移行後に発生する周波数の変動を検出する方式である。
また、無効電力補償方式は、原理的には無効電力変動方式と同様であるが、分散型電源に併設された無効電力調整装置等から電力系統に注入する無効電力を周期的に変動させておき、単独運転移行後に発生する周波数の変動を検出する方式である。
Here, for example, the reactive power fluctuation method and the reactive power compensation method described on pages 152-153 of Non-Patent Document 1 are known as methods for the distributed power sources to actively detect islanding.
The reactive power fluctuation method periodically fluctuates the reactive power injected into the power system by giving periodic fluctuations to the voltage setting value of the automatic voltage regulator (AVR) of the distributed power supply (synchronous generator, etc.). , is a method for detecting frequency fluctuations that occur after switching to islanding operation.
In principle, the reactive power compensation method is the same as the reactive power fluctuation method, but the reactive power injected into the power system is periodically fluctuated from a reactive power adjustment device or the like installed in the distributed power source. , is a method for detecting frequency fluctuations that occur after switching to islanding operation.

しかしながら、図13に示すように、前述の無効電力補償装置100’が分散型電源200及び負荷300と共に電力系統1に接続されている場合において、系統事故により遮断器CBが開放された状態で無効電力補償装置100’及び分散型電源200の運転が継続されると、上述した分散型電源200の単独運転検出機能が、無効電力補償装置100’の動作によって妨害される場合がある。 However, as shown in FIG. 13, when the reactive power compensator 100′ described above is connected to the electric power system 1 together with the distributed power source 200 and the load 300, the circuit breaker CB is opened due to a system fault and the invalid power compensator 100′ If the power compensator 100' and the distributed power source 200 continue to operate, the above-described islanding detection function of the distributed power source 200 may be disturbed by the operation of the reactive power compensator 100'.

例えば、分散型電源200の単独運転検出方式として、前述の無効電力変動方式を採用した場合の動作波形を図14に示す。
この無効電力変動方式では、単独運転状態になった際に発生する周波数偏差(過去数サイクルの系統電圧周波数と現在の周波数との差)を単独運転検出条件としている。図14(a)に示すように、無効電力補償装置100’による制御を停止している場合には、遮断器CBの開放による単独運転の発生から約2秒後に周波数偏差が0.4[Hz]以上になり、これを条件として単独運転状態を検出している。
しかし、図14(b)に示すように、無効電力補償装置100’による制御が従来方式によって行われている場合には、単独運転状態において無効電力補償装置100’が出力する無効電力により分散型電源200から出力される無効電力が打ち消されてしまい、結果として周波数偏差がほぼゼロのままとなるため、単独運転状態を検出することができていない。
For example, FIG. 14 shows operation waveforms when the above-described reactive power fluctuation method is adopted as the isolated operation detection method of the distributed power source 200 .
In this reactive power fluctuation method, the frequency deviation (difference between the system voltage frequency of the past several cycles and the current frequency) that occurs when islanding occurs is used as the islanding detection condition. As shown in FIG. 14(a), when the control by the reactive power compensator 100′ is stopped, the frequency deviation becomes 0.4 [Hz] about 2 seconds after islanding occurs due to the opening of the circuit breaker CB. ], and the isolated operation state is detected under this condition.
However, as shown in FIG. 14(b), when the control by the reactive power compensator 100' is performed by the conventional method, the reactive power output by the reactive power compensator 100' in the islanding state causes a distributed Since the reactive power output from the power supply 200 is canceled and the frequency deviation remains almost zero as a result, the islanding state cannot be detected.

なお、無効電力補償装置の動作により分散型電源の単独運転検出機能が妨害されるのを防止する従来技術として、特許文献2に記載された無効電力補償装置が知られている。
図15は、この従来技術の構成図である。図15において、分散型電源の単独運転状態が疑われる場合に単独運転現象判定信号S(=1)を発生させ、この判定信号Sを無効電力指令算出部400内の不感帯幅調整部410に入力して不感帯幅(接続端の電圧指令値と電圧計測値との電圧偏差の幅)をDからD’(D<D’)に切り替える。
上記の不感帯幅調整部410から出力される調整信号を用いて比例積分制御器420の入力側の不感帯幅を広めのD’に切り替えることにより、無効電力補償装置の動作を抑制し、分散型電源の能動的な単独運転検出機能に対する干渉を防止している。
A reactive power compensator described in Patent Document 2 is known as a conventional technique for preventing the operation of the reactive power compensator from interfering with the islanding detection function of the distributed power supply.
FIG. 15 is a configuration diagram of this prior art. In FIG. 15, when the islanding state of the distributed power source is suspected, the islanding phenomenon determination signal S (=1) is generated, and this determination signal S is input to the dead band width adjustment unit 410 in the reactive power command calculation unit 400. Then, the dead band width (the width of the voltage deviation between the voltage command value and the voltage measurement value at the connection end) is switched from D to D'(D<D').
By switching the dead band width on the input side of the proportional integral controller 420 to a wider D' using the adjustment signal output from the dead band width adjustment unit 410, the operation of the reactive power compensator is suppressed, and the distributed power supply to prevent interference with the active islanding detection function of the

特開平6-98469号公報(段落[0027]~[0036]、図1等)JP-A-6-98469 (paragraphs [0027] to [0036], FIG. 1, etc.) 特開2017-147875号公報(段落[0130]~[0152]、図17~図19等)JP 2017-147875 A (paragraphs [0130] to [0152], FIGS. 17 to 19, etc.)

「系統連系規程(JEAC9701-2016)」,一般社団法人日本電気協会 系統連系専門部会,P.54-73, P.149-169,2016年"Grid Interconnection Regulations (JEAC9701-2016)", Japan Electric Association Grid Interconnection Special Committee, pp.54-73, pp.149-169, 2016

特許文献2に記載された従来技術では、分散型電源の通常連系運転時と単独運転時とで電圧偏差の不感帯幅を離散的に切り替えており、不感帯幅を連続的に調整することができないという問題があった。また、通常連系運転時に周波数変動を伴う系統の擾乱により単独運転状態を誤検出した場合には、不感帯幅の切り替えが頻発する状態や、不感帯幅が広めのD’に一定時間固定されて無効電力が注入されない等の状態が発生するため、通常連系運転時の電圧制御性能を著しく悪化させるという問題があった。
更に、単独運転現象判定信号Sを生成する手段として、系統電圧の周波数検出値に基づいて単独運転状態を判定する判定回路が必要であり、回路構成や制御プログラムが複雑になるという問題があった。
In the prior art described in Patent Document 2, the dead band width of the voltage deviation is discretely switched between the normal interconnected operation and the isolated operation of the dispersed power source, and the dead band width cannot be adjusted continuously. There was a problem. In addition, if an islanding operation state is erroneously detected due to system disturbances that accompany frequency fluctuations during normal interconnected operation, the dead band width will be switched frequently, or the dead band width will be fixed to a wider D' for a certain period of time and will be invalid. Since a state such as no power injection occurs, there is a problem that the voltage control performance during normal grid-connected operation is remarkably deteriorated.
Furthermore, as a means for generating the islanding phenomenon determination signal S, a determination circuit for determining the islanding state based on the frequency detection value of the system voltage is required, which complicates the circuit configuration and control program. .

そこで、本発明の解決課題は、系統電圧の周期偏差や周波数偏差に基づいて電圧偏差の不感帯幅を連続的に調整し、この不感帯を有する電圧偏差に従って無効電力補償を行うことにより、分散型電源の能動的な単独運転検出機能を損なうことのない無効電力補償装置及びその制御プログラム、並びに無効電力補償システムを提供することにある。 Therefore, the problem to be solved by the present invention is to continuously adjust the dead band width of the voltage deviation based on the periodic deviation and frequency deviation of the system voltage, and perform reactive power compensation according to the voltage deviation having this dead band. The object of the present invention is to provide a reactive power compensator, its control program, and a reactive power compensation system that do not impair the active islanding detection function of the engine.

上記課題を解決するため、請求項1に係る無効電力補償装置は、電力変換器の動作により、電力系統に無効電力を注入して前記電力系統の電圧を制御する無効電力補償装置であって、前記電力系統に無効電力を注入して単独運転状態を検出する機能を備えた分散型電源と共に前記電力系統に連系される無効電力補償装置において、
系統電圧の周期または周波数を算出する第1の手段と、
前記第1の手段の出力を用いて一定期間の周期偏差または周波数偏差を検出する第2の手段と、
前記周期偏差または周波数偏差に応じて不感帯幅を任意に設定可能な第3の手段と、
前記第3の手段により設定された前記不感帯幅に従って、前記系統電圧と目標電圧との電圧偏差を演算する第4の手段と、
前記電圧偏差に基づいて無効電力指令を生成する第5の手段と、
前記無効電力指令から電圧指令を生成し、この電圧指令に従って前記電力変換器を制御する第6の手段と、
を備え
前記第3の手段は、前記周期偏差または周波数偏差の一定範囲内で、前記周期偏差または周波数偏差が大きくなるほど前記不感帯幅が増大しかつ連続的な特性を有することを特徴とする。
In order to solve the above problems, a reactive power compensator according to claim 1 is a reactive power compensator that controls the voltage of the power system by injecting reactive power into the power system by the operation of a power converter, In a reactive power compensator interconnected to the power system together with a distributed power supply having a function of injecting reactive power into the power system and detecting an islanding state,
a first means for calculating the period or frequency of the system voltage;
a second means for detecting a period deviation or a frequency deviation for a certain period of time using the output of the first means;
a third means capable of arbitrarily setting a dead band width according to the periodic deviation or the frequency deviation;
a fourth means for calculating a voltage deviation between the system voltage and the target voltage according to the dead band width set by the third means;
fifth means for generating a reactive power command based on the voltage deviation;
sixth means for generating a voltage command from the reactive power command and controlling the power converter according to the voltage command;
with
The third means is characterized in that, within a certain range of the periodic deviation or frequency deviation, the dead band width increases as the periodic deviation or frequency deviation increases and has a continuous characteristic.

請求項2に係る無効電力補償装置は、電力変換器の動作により、電力系統に無効電力を注入して前記電力系統の電圧を制御する無効電力補償装置であって、前記電力系統に無効電力を注入して単独運転状態を検出する機能を備えた分散型電源と共に前記電力系統に連系される無効電力補償装置において、
系統電圧の周期または周波数を算出する第1の手段と、
前記第1の手段の出力を用いて一定期間の周期偏差または周波数偏差を検出する第2の手段と、
前記周期偏差または周波数偏差に応じて、比例制御用、積分制御用、微分制御用の不感帯幅のうち少なくとも一種類の不感帯幅を任意に設定可能な第3の手段と、
前記第3の手段により設定された不感帯幅に従って、前記系統電圧と目標電圧との電圧偏差を演算する第4の手段と、
前記電圧偏差に基づいて無効電力指令を生成する第5の手段と、
前記無効電力指令から電圧指令を生成し、この電圧指令に従って前記電力変換器を制御する第6の手段と、
を備え
前記第3の手段は、前記周期偏差または周波数偏差の一定範囲内で、前記周期偏差または周波数偏差が大きくなるほど前記不感帯幅が増大しかつ連続的な特性を有することを特徴とする。
A reactive power compensator according to claim 2 is a reactive power compensator for injecting reactive power into an electric power system and controlling the voltage of the electric power system by the operation of a power converter, wherein the reactive power is injected into the electric power system. In a reactive power compensator interconnected to the power system together with a distributed power supply having a function of injecting and detecting an islanding state,
a first means for calculating the period or frequency of the system voltage;
a second means for detecting a period deviation or a frequency deviation for a certain period of time using the output of the first means;
third means capable of arbitrarily setting at least one type of dead band width among proportional control, integral control, and differential control dead band widths according to the periodic deviation or frequency deviation;
a fourth means for calculating a voltage deviation between the system voltage and the target voltage according to the dead band width set by the third means;
fifth means for generating a reactive power command based on the voltage deviation;
sixth means for generating a voltage command from the reactive power command and controlling the power converter according to the voltage command;
with
The third means is characterized in that, within a certain range of the periodic deviation or frequency deviation, the dead band width increases as the periodic deviation or frequency deviation increases and has a continuous characteristic.

本発明によれば、電力系統に接続された分散型電源の能動的な単独運転検出機能を妨害することのない無効電力補償装置を提供することができ、分散型電源の単独運転時における感電や事故の防止に一層寄与することができる。
また、上述した分散型電源に対する不干渉機能は、電圧偏差の不感帯を可変にすることによって実現可能であり、分散型電源が単独運転状態に移行したことを判定する必要がないため、特許文献2に記載された従来技術と比べて回路構成や制御プログラムの簡略化が可能である。
According to the present invention, it is possible to provide a reactive power compensator that does not interfere with the active islanding detection function of a distributed power supply connected to a power system. It can further contribute to the prevention of accidents.
In addition, the non-interference function for the distributed power sources described above can be realized by making the dead band of the voltage deviation variable, and there is no need to determine that the distributed power sources have shifted to the islanding state. The circuit configuration and control program can be simplified as compared with the prior art described in .

本発明の実施形態を示す無効電力補償装置の構成図である。1 is a configuration diagram of a reactive power compensator showing an embodiment of the present invention; FIG. 図1における単独運転非干渉制御部の一実施例を示す構成図である。FIG. 2 is a configuration diagram showing an embodiment of an islanding operation non-interference control unit in FIG. 1; 図2の単独運転非干渉制御部における周期または周波数の算出原理の説明図である。FIG. 3 is an explanatory diagram of a calculation principle of a period or frequency in the islanding operation non-interference control unit of FIG. 2; 図2における周期偏差検出部の構成図である。FIG. 3 is a configuration diagram of a periodic deviation detection unit in FIG. 2; 図2における不感帯幅設定部の動作説明図である。3 is an operation explanatory diagram of a dead band width setting unit in FIG. 2; FIG. 図2における電圧偏差演算部の動作説明図である。FIG. 3 is an operation explanatory diagram of a voltage deviation calculator in FIG. 2; 本発明の実施形態の全体的な動作を示すフローチャートである。4 is a flow chart showing overall operation of an embodiment of the present invention; 本発明の効果を検証するためのシミュレーション結果を示す波形図である。FIG. 5 is a waveform diagram showing simulation results for verifying the effect of the present invention; 図1における単独運転非干渉制御部及び電圧制御部の他の実施例を示す構成図である。FIG. 3 is a configuration diagram showing another embodiment of the islanding operation non-interference control section and the voltage control section in FIG. 1 ; 図9における不感帯幅設定部の動作説明図である。FIG. 10 is an operation explanatory diagram of a dead band width setting unit in FIG. 9; 従来の無効電力補償装置の構成図である。1 is a configuration diagram of a conventional reactive power compensator; FIG. 商用電力系統に連系している無効電力補償装置の動作説明図である。FIG. 3 is an operation explanatory diagram of a reactive power compensator linked to a commercial power system; 分散型電源及び無効電力補償装置等を含む電力系統の構成図である。1 is a configuration diagram of a power system including a distributed power source, a reactive power compensator, and the like; FIG. 能動的な単独運転検出方式として無効電力変動方式を採用した場合の動作波形図である。FIG. 4 is an operation waveform diagram when a reactive power fluctuation method is adopted as an active islanding operation detection method; 特許文献2に記載された無効電力補償装置の構成図である。1 is a configuration diagram of a reactive power compensator described in Patent Document 2; FIG.

以下、図に沿って本発明の実施形態を説明する。
図1は、この実施形態に係る無効電力補償装置100を示しており、その内部の交流制御部100Aの構成が、図11に示した無効電力補償装置100’内の交流制御部100A’と相違している。以下では、交流制御部100Aが交流制御部100A’と異なる点を中心に説明し、その他の部分については重複を避けるために詳述を省略する。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a reactive power compensator 100 according to this embodiment, and the configuration of an AC control section 100A inside it is different from the AC control section 100A' in the reactive power compensator 100' shown in FIG. are doing. In the following, the description will focus on the differences between the AC control unit 100A and the AC control unit 100A', and detailed descriptions of other parts will be omitted to avoid duplication.

図1の交流制御部100Aは、系統電圧vの実効値Vを演算する実効値演算部120を備えている。また、実効値Vと目標電圧130との偏差ΔVが入力され、かつ、系統電圧vの周期または周波数に応じて変化する不感帯幅に従い、電圧偏差ΔVからΔV’を演算する単独運転非干渉制御部110を備えている。
なお、上述した実効値演算部120の代わりに、図11と同様に系統電圧vの振幅値を演算する振幅演算部を設けても良く、要は目標電圧130との偏差を求めるために系統電圧vを直流量に変換する手段であれば良い。
The AC control unit 100A of FIG. 1 includes an effective value calculation unit 120 that calculates the effective value Vr of the system voltage vr . In addition, the deviation ΔV r between the effective value V r and the target voltage 130 is input, and ΔV r ′ is calculated from the voltage deviation ΔV r according to the dead band width that changes according to the cycle or frequency of the system voltage v r . A driving non-interference control unit 110 is provided.
Note that instead of the above-described effective value calculator 120, an amplitude calculator that calculates the amplitude value of the system voltage vr may be provided in the same manner as in FIG. Any means for converting the voltage vr into a DC quantity may be used.

次に、図2は単独運転非干渉制御部110の一実施例を示す構成図である。
図2において、周期算出部(特許請求の範囲における第1の手段)111は系統電圧vの周期T(周波数fの逆数)を算出する。この周期Tは、図3に示すように、系統電圧vのゼロクロス点の時間間隔から算出することができる。なお、図3において、小文字のtは時刻を示し、大文字のTは周期を示す。
Next, FIG. 2 is a configuration diagram showing an embodiment of the islanding operation non-interference control unit 110. As shown in FIG.
In FIG. 2, a period calculator (first means in the scope of claims) 111 calculates a period T (reciprocal of frequency f) of system voltage vr . This cycle T can be calculated from the time intervals of the zero crossing points of the system voltage vr , as shown in FIG. In FIG. 3, a small letter t indicates time, and a capital letter T indicates a period.

図2に戻って、周期偏差検出部(特許請求の範囲における第2の手段)112は一定期間の周期偏差ΔTを検出する。この周期偏差ΔTは、例えば図4に示すごとく、移動平均演算部112aにより求めた現在の周期と、移動平均演算部112b及び待ち行列112cを介して求めた過去数サイクルの周期との差を減算器112dに入力して求めている。
次いで、不感帯幅設定部(特許請求の範囲における第3の手段)113は、周期偏差ΔTに応じて不感帯幅Wを算出するものであり、例えば図5に示すように、周期偏差ΔTの一定範囲では周期偏差ΔTが大きくなるほど不感帯幅Wが増大するようなリニアな特性を有する。図5において、WDLは不感帯幅Wの下限値、WULは上限値である。
Returning to FIG. 2, the periodic deviation detector (second means in the scope of claims) 112 detects the periodic deviation ΔT for a certain period. For example, as shown in FIG. 4, the period deviation ΔT is obtained by subtracting the difference between the current period obtained by the moving average calculator 112a and the period of several past cycles obtained by the moving average calculator 112b and the queue 112c. It is obtained by inputting it to the device 112d.
Next, the dead band width setting unit (third means in the claims) 113 calculates the dead band width W according to the periodic deviation ΔT. For example, as shown in FIG. has a linear characteristic in which the dead band width W increases as the period deviation ΔT increases. In FIG. 5, WDL is the lower limit of the dead band width W, and WUL is the upper limit.

図6は、図2における電圧偏差演算部114(特許請求の範囲における第4の手段)の動作説明図である。この電圧偏差演算部114は、図1の減算器101から入力された電圧偏差ΔVと不感帯幅Wとに基づいて電圧偏差ΔV’を演算し、図1の電圧制御部(特許請求の範囲における第5の手段)140に出力する。前述したように、不感帯幅Wは周期偏差ΔTに応じて変化するため、この実施形態では、周期偏差ΔTに応じて不感帯幅Wをリアルタイムで連続的に変更しながら電圧偏差ΔV’を演算することができる。
周知のように周期は周波数の逆数であるため、図2の周期算出部111、周期偏差検出部112に代えて周波数算出部、周波数偏差検出部をそれぞれ用いても良い。
FIG. 6 is an operation explanatory diagram of the voltage deviation calculator 114 (fourth means in the scope of claims) in FIG. The voltage deviation calculator 114 calculates the voltage deviation ΔV r ′ based on the voltage deviation ΔV r input from the subtractor 101 in FIG. fifth means in) 140. As described above, since the dead band width W changes according to the periodic deviation ΔT, in this embodiment, the voltage deviation ΔV r ' is calculated while continuously changing the dead band width W in real time according to the periodic deviation ΔT. be able to.
As is well known, since the period is the reciprocal of the frequency, a frequency calculator and a frequency deviation detector may be used instead of the period calculator 111 and the period deviation detector 112 in FIG.

次に、本実施形態に係る無効電力補償装置100の全体的な動作を、図7のフローチャートに従って説明する。
まず、無効電力補償装置100の運転を開始し(ステップS1)、電力系統1との接続端における系統電圧vを検出する(ステップS2)。
次いで、実効値演算部120が系統電圧vの実効値Vを算出し(ステップS3)、目標電圧130との偏差ΔVを求める(ステップS4)。ステップS3では、前述したごとく実効値Vに代えて振幅値を算出しても良い。
Next, the overall operation of the reactive power compensator 100 according to this embodiment will be described according to the flowchart of FIG.
First, the operation of the reactive power compensator 100 is started (step S1), and the system voltage vr at the connection terminal with the power system 1 is detected (step S2).
Next, the effective value calculator 120 calculates the effective value Vr of the system voltage vr (step S3), and obtains the deviation ΔVr from the target voltage 130 (step S4). At step S3, the amplitude value may be calculated instead of the effective value Vr as described above.

更に、図2により説明した単独運転非干渉制御部110の動作により、系統電圧vからその周期Tまたは周波数fを求めると共に、これらに基づいて周期偏差ΔTまたは周波数偏差Δfを求め、不感帯幅設定部113が不感帯幅Wを算出する。また、電圧偏差演算部114の動作により、ΔVと不感帯幅Wとに基づいて電圧偏差ΔV’を演算する(ステップS5)。 Furthermore, by the operation of the islanding operation non-interference control unit 110 explained with reference to FIG . A unit 113 calculates the dead band width W. FIG. Further, the voltage deviation calculator 114 operates to calculate the voltage deviation ΔV r ′ based on ΔV r and the dead band width W (step S5).

その後、図1の電圧制御部140は電圧偏差ΔV’がゼロになるように無効電流指令Iqref(請求項1に記載するように、無効電力指令は無効電流指令と同義である)を演算して出力する(ステップS6)。
この無効電流指令Iqrefに基づいて、図11と同様に座標変換部160、電流制御部180、変圧器電圧補償部170、加算器103,104等が動作して電圧指令Vを生成し、この電圧指令VをPWM回路190に与えて電力変換器INVを制御することにより、無効電力補償装置100が電力系統1に無効電力を注入して接続端の電圧を目標電圧130に制御する(ステップS7)。なお、座標変換部160からPWM回路190に至る部分は、特許請求の範囲における第6の手段を構成している。
そして、無効電力補償装置100に運転終了指令が入力されれば処理を終了し、運転継続であればステップS2に戻って運転終了指令が入力されるまで上記の処理を繰り返す(ステップS8)。
After that, the voltage control unit 140 of FIG. 1 calculates the reactive current command I qref (as described in claim 1, the reactive power command is synonymous with the reactive current command) so that the voltage deviation ΔV r ' becomes zero. and output (step S6).
Based on this reactive current command Iqref , the coordinate conversion unit 160, the current control unit 180, the transformer voltage compensation unit 170, the adders 103 and 104, etc. operate in the same manner as in FIG. 11 to generate the voltage command V * , By giving this voltage command V * to the PWM circuit 190 and controlling the power converter INV, the reactive power compensator 100 injects reactive power into the power system 1 and controls the voltage at the connection end to the target voltage 130 ( step S7). A portion from the coordinate conversion unit 160 to the PWM circuit 190 constitutes sixth means in the claims.
Then, if an operation termination command is input to the reactive power compensator 100, the process is terminated, and if the operation is continued, the process returns to step S2, and the above processes are repeated until an operation termination command is input (step S8).

ここで、本実施形態に係る無効電力補償装置100が、図13に示したように分散型電源200と共に電力系統1に連系されており、分散型電源200が無効電力変動方式または無効電力補償方式の単独運転検出機能を備えている場合を想定する。
この場合、分散型電源200が単独運転状態に移行すると、無効電力変動方式等の単独運転検出機能が働いて系統電圧vの周期や周波数の変動ひいては周期偏差ΔTまたは周波数偏差Δfが大きくなり、不感帯幅Wが広がって電圧偏差ΔV’がゼロとなる期間が長くなる。この電圧偏差ΔV’がゼロとなる期間では無効電流指令Iqrefが生成されず、無効電力補償装置100から電力系統1に無効電力が注入されることはない。
従って、分散型電源200から出力される無効電力が打ち消されることがないため、その単独運転検出機能が無効電力補償装置100によって妨害される恐れはない。
Here, the reactive power compensator 100 according to the present embodiment is interconnected with the power system 1 together with the distributed power source 200 as shown in FIG. It is assumed that the system has an islanding detection function.
In this case, when the distributed power supply 200 shifts to the islanding operation state, the islanding detection function such as the reactive power fluctuation method works, and the period and frequency fluctuations of the system voltage vr and the period deviation ΔT or the frequency deviation Δf increase. The dead band width W widens and the period during which the voltage deviation ΔV r ′ becomes zero becomes longer. During the period when the voltage deviation ΔV r ′ is zero, the reactive current command I qref is not generated, and reactive power is not injected from the reactive power compensator 100 to the power system 1 .
Therefore, since the reactive power output from the distributed power source 200 is not canceled, there is no fear that the islanding detection function will be disturbed by the reactive power compensator 100 .

この実施形態では、不感帯幅設定部113により、系統電圧vの周期偏差ΔTまたは周波数偏差Δfに応じて不感帯幅Wを可変にすることが可能である。つまり、分散型電源200が単独運転状態に移行したか否かを判定して不感帯幅Wを離散的に切り替えるのではなく、不感帯幅設定部113の特性を任意に設定して無効電力補償装置100の動作または不動作を制御することができる。従って、特許文献2に記載されているように、無効電力補償装置100の動作を制御するために、分散型電源200が単独運転状態に移行したことを判定する判定回路等を設ける必要はない。そのため、単独運転状態の判定に際して誤検出の問題が起こらず、通常連系運転時の電圧制御性能を確保することができる。
また、不感帯幅設定部113の特性として、図5のように周期偏差ΔTまたは周波数偏差Δfの一定範囲においてリニアな特性を設定すれば、連続的に変化する不感帯幅Wを用いて無効電力補償装置100の動作を制御することができる。
In this embodiment, the dead band width setting unit 113 can vary the dead band width W according to the period deviation ΔT or the frequency deviation Δf of the system voltage vr . That is, instead of discretely switching the dead band width W by determining whether the distributed power source 200 has transitioned to the islanding state, the characteristics of the dead band width setting unit 113 are arbitrarily set, and the reactive power compensator 100 can control the operation or non-operation of Therefore, as described in Patent Document 2, it is not necessary to provide a determination circuit or the like for determining that the distributed power supply 200 has transitioned to the islanding operation state in order to control the operation of the reactive power compensator 100. Therefore, the problem of erroneous detection does not occur when determining the islanding state, and the voltage control performance during normal grid-connected operation can be ensured.
As a characteristic of the dead band width setting unit 113, if a linear characteristic is set in a certain range of the periodic deviation ΔT or the frequency deviation Δf as shown in FIG. 100 operations can be controlled.

次に、図8は本発明の効果を検証するためのシミュレーション結果を示している。図8(a)は従来技術による無効電力補償装置の制御動作時の波形図、図8(b)は本発明による無効電力補償装置の制御動作時の波形図である。 Next, FIG. 8 shows simulation results for verifying the effects of the present invention. FIG. 8(a) is a waveform diagram during control operation of the reactive power compensator according to the prior art, and FIG. 8(b) is a waveform diagram during control operation of the reactive power compensator according to the present invention.

図8(a)の従来技術では、系統事故等により遮断器CBが開放されて分散型電源が単独運転状態に移行した場合でも、無効電流指令に基づく無効電力補償装置の動作により分散型電源が出力する無効電力が打ち消されてしまうため、分散型電源は単独運転状態を検出することができない。
これに対し、図8(b)の本発明では、遮断器CBの開放後の周波数偏差に応じて前述の不感帯幅Wが変化し、僅かな無効電流指令が生成されて無効電力補償装置が動作しているが、分散型電源が出力する無効電力を打ち消すには至らないため、分散型電源の単独運転検出機能により、周波数偏差が所定の閾値を超えた時点で単動運転状態を検出できている。
In the prior art of FIG. 8(a), even if the circuit breaker CB is opened due to a system accident or the like and the distributed power supply shifts to the islanding state, the distributed power supply is operated by the reactive power compensator based on the reactive current command. Distributed generators cannot detect an islanding state because the reactive power they output cancels out.
On the other hand, in the present invention shown in FIG. 8B, the dead band width W changes according to the frequency deviation after the circuit breaker CB is opened, and a slight reactive current command is generated to operate the reactive power compensator. However, since the reactive power output by distributed power sources cannot be canceled, the single-acting operation state cannot be detected by the islanding detection function of distributed power sources when the frequency deviation exceeds a predetermined threshold. there is

次に、単独運転非干渉制御部及び電圧制御部の他の実施例を、図9に基づいて説明する。
図9において、単独運転非干渉制御部110Aには、図2と同様に系統電圧vが入力される周期算出部111と、その出力である周期Tが入力される周期偏差検出部112が設けられている。
Next, another embodiment of the islanding operation non-interference control section and the voltage control section will be described with reference to FIG.
In FIG. 9, the islanding operation non-interference control unit 110A is provided with a period calculation unit 111 to which the system voltage vr is input as in FIG. 2, and a period deviation detection unit 112 to which the output period T is input. It is

周期偏差検出部112によって検出された周期偏差ΔTは、3種類の不感帯幅設定部(特許請求の範囲における第3の手段)113p,113i,113dに入力されている。
これらの不感帯幅設定部113p,113i,113dには、周期偏差ΔTに応じた、比例制御用、積分制御用、微分制御用の不感帯幅W,W,Wがそれぞれ設定されている。図10は不感帯幅W,W,Wの一例を示しており、図5と同様に、周期偏差(または周波数偏差)の一定範囲内では、周期偏差が大きくなるほど増大し、あるいは直線的に変化するような特性を有している。なお、WpUL,WiUL,WdULは各不感帯幅の上限値、WpDL,WiDL,WdDLは各不感帯幅の下限値である。
The periodic deviation ΔT detected by the periodic deviation detector 112 is input to three types of dead band width setting sections (third means in the scope of claims) 113p, 113i, and 113d.
Dead band widths W p , W i , and W d for proportional control, integral control, and differential control are set in these dead band width setting units 113p, 113i, and 113d, respectively, according to the period deviation ΔT. FIG. 10 shows an example of dead band widths W p , W i , and W d . Similar to FIG. It has a characteristic that changes to W pUL , W iUL , and W dUL are the upper limit values of each dead band width, and W pDL , W iDL , and W dDL are the lower limit values of each dead band width.

上述した不感帯幅W,W,Wは、比例制御用、積分制御用、微分制御用に設けられた電圧偏差演算部(特許請求の範囲における第4の手段)114p,114i,114dにそれぞれ入力されると共に、これらの電圧偏差演算部114p,114i,114dには、図1の減算器101により算出された電圧偏差ΔVが入力されている。
電圧偏差演算部114p,114i,114dは、それぞれに入力されている不感帯幅W,W,Wに従って電圧偏差ΔVから電圧偏差ΔV’,ΔV’,ΔV’を演算する。これらの電圧偏差ΔV’,ΔV’,ΔV’は、電圧制御部140A(特許請求の範囲における第5の手段)内の比例制御部140p、積分制御部140i、微分制御部140dにそれぞれ入力される。
The dead band widths W p , W i , and W d described above are stored in voltage deviation calculation units (fourth means in the scope of claims) 114p, 114i, and 114d provided for proportional control, integral control, and differential control. The voltage deviation .DELTA.Vr calculated by the subtractor 101 in FIG. 1 is also input to these voltage deviation calculators 114p, 114i, and 114d.
The voltage deviation calculators 114p, 114i, and 114d calculate voltage deviations ΔV p ', ΔV i ' , ΔV d ' from the voltage deviation ΔV r according to the input dead band widths W p , Wi, and W d respectively. These voltage deviations ΔV p ', ΔV i ', ΔV d ' are applied to the proportional control section 140p, the integral control section 140i, and the differential control section 140d in the voltage control section 140A (fifth means in the scope of claims). is entered.

比例制御部140p、積分制御部140i、微分制御部140dは、それぞれに入力される電圧偏差ΔV’ ,ΔV’,ΔV’がゼロになるように調節動作し、これらの出力は加算器141により加算されて無効電流指令Iqrefとなる。
この無効電流指令Iqrefは、図1の座標変換部160に入力され、以後は前記同様の動作によって無効電力補償が行われることになる。
The proportional control section 140p, the integral control section 140i, and the differential control section 140d adjust so that the voltage deviations ΔV p ', ΔV i ', and ΔV d ' input to them become zero. 141 to become the reactive current command I_qref .
This reactive current command I qref is input to the coordinate transformation unit 160 in FIG. 1, and thereafter reactive power compensation is performed by the same operation as described above.

上記の構成において、例えば、電圧制御部140AがPI(比例積分)制御を行う場合には比例制御部140p及び積分制御部140iの出力を加算して無効電流指令Iqrefを求め、PID(比例積分微分)制御を行う場合には比例制御部140p、積分制御部140i及び微分制御部140dの出力を加算して無効電流指令Iqrefを求める。また、P(比例)制御を行う場合には、比例制御部140pのみの出力をそのまま無効電流指令Iqrefとして用いれば良い。
上述したごとく、図9,図10に記載した実施例では、電圧制御部140Aにおける制御演算の種類に応じて不感帯幅を連続的に調整可能とし、これらの不感帯を有する電圧偏差に従って無効電力補償を行う。なお、無効電力補償装置の全体的な動作は、図7に示したフローチャートの通りである。
In the above configuration, for example, when the voltage control unit 140A performs PI (proportional integral) control, the outputs of the proportional control unit 140p and the integral control unit 140i are added to obtain the reactive current command Iqref , and the PID (proportional integral When differential control is performed, the outputs of the proportional control section 140p, the integral control section 140i and the differential control section 140d are added to obtain the reactive current command Iqref . Further, when performing P (proportional) control, the output of only the proportional control section 140p may be used as it is as the reactive current command Iqref .
As described above, in the embodiments shown in FIGS. 9 and 10, the dead band width can be continuously adjusted according to the type of control calculation in the voltage control section 140A, and the reactive power compensation is performed according to the voltage deviation having these dead bands. conduct. The overall operation of the reactive power compensator is as shown in the flow chart of FIG.

以上説明したように、本発明の実施形態によれば、分散型電源200の能動的な単独運転検出機能を損なうことのない無効電力補償装置100を提供することができる。
なお、図1に示した交流制御部100Aの機能、すなわち図7に示した一連の制御動作は、コンピュータシステムのハードウェアと、このハードウェアに搭載される制御プログラムとによって実現可能である。
As described above, according to the embodiment of the present invention, it is possible to provide the reactive power compensator 100 that does not impair the active islanding detection function of the distributed power source 200 .
The functions of the AC control unit 100A shown in FIG. 1, that is, the series of control operations shown in FIG. 7 can be realized by computer system hardware and a control program installed in this hardware.

1: 電力系統
100:無効電力補償装置(SVC)
100A:交流制御部
101,102:減算器
103,104:加算器
110,110A:単独運転非干渉制御部
111:周期算出部
112:周期偏差検出部
112a,112b:移動平均演算部
112c:待ち行列
112d:減算器
113,113p,113i,113d:不感帯幅設定部
114,114p,114i,114d:電圧偏差演算部
120:実効値演算部
130:目標電圧
140,140A:電圧制御部(AVR)
140p:比例制御部
140i:積分制御部
140d:微分制御部
141:加算器
150:三相PLL回路
160:座標変換部
170:変圧器電圧補償部
180:電流制御部(ACR)
190:PWM回路
200:分散型電源
300:負荷
INV:電力変換器
CT:電流検出器
CB:遮断器
Tr:変圧器
VT:電圧検出器
1: Power system 100: Static var compensator (SVC)
100A: AC control unit 101, 102: Subtractor 103, 104: Adder 110, 110A: Single operation non-interference control unit 111: Period calculation unit 112: Period deviation detection unit 112a, 112b: Moving average calculation unit 112c: Queue 112d: subtractor 113, 113p, 113i, 113d: dead band width setting section 114, 114p, 114i, 114d: voltage deviation calculation section 120: effective value calculation section 130: target voltage 140, 140A: voltage control section (AVR)
140p: proportional controller 140i: integral controller 140d: differential controller 141: adder 150: three-phase PLL circuit 160: coordinate converter 170: transformer voltage compensator 180: current controller (ACR)
190: PWM circuit 200: distributed power supply 300: load INV: power converter CT: current detector CB: circuit breaker Tr: transformer VT: voltage detector

Claims (6)

電力変換器の動作により、電力系統に無効電力を注入して前記電力系統の電圧を制御する無効電力補償装置であって、前記電力系統に無効電力を注入して単独運転状態を検出する機能を備えた分散型電源と共に前記電力系統に連系される無効電力補償装置において、
系統電圧の周期または周波数を算出する第1の手段と、
前記第1の手段の出力を用いて一定期間の周期偏差または周波数偏差を検出する第2の手段と、
前記周期偏差または周波数偏差に応じて不感帯幅を任意に設定可能な第3の手段と、
前記第3の手段により設定された前記不感帯幅に従って、前記系統電圧と目標電圧との電圧偏差を演算する第4の手段と、
前記電圧偏差に基づいて無効電力指令を生成する第5の手段と、
前記無効電力指令から電圧指令を生成し、この電圧指令に従って前記電力変換器を制御する第6の手段と、
を備え
前記第3の手段は、前記周期偏差または周波数偏差の一定範囲内で、前記周期偏差または周波数偏差が大きくなるほど前記不感帯幅が増大しかつ連続的な特性を有することを特徴とする無効電力補償装置。
A reactive power compensator for injecting reactive power into an electric power system and controlling the voltage of the electric power system by the operation of a power converter, the reactive power compensating apparatus having a function of injecting reactive power into the electric power system and detecting an islanding state. In a reactive power compensator interconnected to the power system together with a distributed power supply comprising:
a first means for calculating the period or frequency of the system voltage;
a second means for detecting a period deviation or a frequency deviation for a certain period of time using the output of the first means;
a third means capable of arbitrarily setting a dead band width according to the periodic deviation or the frequency deviation;
a fourth means for calculating a voltage deviation between the system voltage and the target voltage according to the dead band width set by the third means;
fifth means for generating a reactive power command based on the voltage deviation;
sixth means for generating a voltage command from the reactive power command and controlling the power converter according to the voltage command;
with
The reactive power compensator according to the third means is characterized in that, within a certain range of the periodic deviation or frequency deviation, the dead band width increases as the periodic deviation or frequency deviation increases, and has a continuous characteristic. .
電力変換器の動作により、電力系統に無効電力を注入して前記電力系統の電圧を制御する無効電力補償装置であって、前記電力系統に無効電力を注入して単独運転状態を検出する機能を備えた分散型電源と共に前記電力系統に連系される無効電力補償装置において、
系統電圧の周期または周波数を算出する第1の手段と、
前記第1の手段の出力を用いて一定期間の周期偏差または周波数偏差を検出する第2の手段と、
前記周期偏差または周波数偏差に応じて、比例制御用、積分制御用、微分制御用の不感帯幅のうち少なくとも一種類の不感帯幅を任意に設定可能な第3の手段と、
前記第3の手段により設定された不感帯幅に従って、前記系統電圧と目標電圧との電圧偏差を演算する第4の手段と、
前記電圧偏差に基づいて無効電力指令を生成する第5の手段と、
前記無効電力指令から電圧指令を生成し、この電圧指令に従って前記電力変換器を制御する第6の手段と、
を備え
前記第3の手段は、前記周期偏差または周波数偏差の一定範囲内で、前記周期偏差または周波数偏差が大きくなるほど前記不感帯幅が増大しかつ連続的な特性を有することを特徴とする無効電力補償装置。
A reactive power compensator for injecting reactive power into an electric power system and controlling the voltage of the electric power system by the operation of a power converter, the reactive power compensating apparatus having a function of injecting reactive power into the electric power system and detecting an islanding state. In a reactive power compensator interconnected to the power system together with a distributed power supply comprising:
a first means for calculating the period or frequency of the system voltage;
a second means for detecting a period deviation or a frequency deviation for a certain period of time using the output of the first means;
third means capable of arbitrarily setting at least one type of dead band width among proportional control, integral control, and differential control dead band widths according to the periodic deviation or frequency deviation;
a fourth means for calculating a voltage deviation between the system voltage and the target voltage according to the dead band width set by the third means;
fifth means for generating a reactive power command based on the voltage deviation;
sixth means for generating a voltage command from the reactive power command and controlling the power converter according to the voltage command;
with
The reactive power compensator according to the third means is characterized in that, within a certain range of the periodic deviation or frequency deviation, the dead band width increases as the periodic deviation or frequency deviation increases, and has a continuous characteristic. .
請求項1または請求項2に記載した無効電力補償装置において、
前記第3の手段は、前記周期偏差または周波数偏差の一定範囲内で、前記不感帯幅が直線的に変化する特性を有することを特徴とする無効電力補償装置。
In the reactive power compensator according to claim 1 or claim 2 ,
The reactive power compensator according to the third means has a characteristic that the width of the dead band varies linearly within a certain range of the periodic deviation or the frequency deviation.
コンピュータシステムに搭載されるプログラムであって、請求項1~の何れか1項に記載した無効電力補償装置における前記第1~第6の手段を機能させることを特徴とした、無効電力補償装置の制御プログラム。 A reactive power compensator characterized in that it is a program installed in a computer system and causes the first to sixth means in the reactive power compensator according to any one of claims 1 to 3 to function. control program. 請求項1~の何れか1項に記載した無効電力補償装置と、無効電力変動方式による単独運転検出機能を有する前記分散型電源と、を備えたことを特徴とする無効電力補償システム。 A reactive power compensation system comprising: the reactive power compensator according to any one of claims 1 to 3 ; and the distributed power supply having an islanding detection function by a reactive power fluctuation method. 請求項1~の何れか1項に記載した無効電力補償装置と、無効電力補償方式による単独運転検出機能を有する前記分散型電源と、を備えたことを特徴とする無効電力補償システム。 A reactive power compensation system comprising: the reactive power compensator according to any one of claims 1 to 3 ; and the distributed power supply having an islanding detection function based on a reactive power compensation method.
JP2018216131A 2018-02-13 2018-11-19 Reactive power compensator, its control program, and reactive power compensation system Active JP7251113B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018022962 2018-02-13
JP2018022962 2018-02-13

Publications (2)

Publication Number Publication Date
JP2019140898A JP2019140898A (en) 2019-08-22
JP7251113B2 true JP7251113B2 (en) 2023-04-04

Family

ID=67694669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018216131A Active JP7251113B2 (en) 2018-02-13 2018-11-19 Reactive power compensator, its control program, and reactive power compensation system

Country Status (1)

Country Link
JP (1) JP7251113B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7222146B1 (en) * 2021-06-29 2023-02-14 東芝三菱電機産業システム株式会社 power converter
CN113824128A (en) * 2021-09-02 2021-12-21 国网河北省电力有限公司电力科学研究院 Frequency adaptability test method and system for reactive power compensation device of photovoltaic power station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081285A (en) 2004-09-09 2006-03-23 Chugoku Electric Power Co Inc:The Control method for static reactive power compensator
JP2017147875A (en) 2016-02-18 2017-08-24 富士電機株式会社 Reactive power output device, control method for reactive power output device, and power system
JP2018148664A (en) 2017-03-03 2018-09-20 富士電機株式会社 Reactive power compensator and control system of the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698469A (en) * 1992-09-17 1994-04-08 Nissin Electric Co Ltd Control system of voltage detection-type reactive-power compensation apparatus
JPH0711847U (en) * 1993-07-20 1995-02-21 日新電機株式会社 Control method of voltage fluctuation suppression device
JPH0965574A (en) * 1995-08-22 1997-03-07 Nissin Electric Co Ltd Control of self-excited reactive power compensating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081285A (en) 2004-09-09 2006-03-23 Chugoku Electric Power Co Inc:The Control method for static reactive power compensator
JP2017147875A (en) 2016-02-18 2017-08-24 富士電機株式会社 Reactive power output device, control method for reactive power output device, and power system
JP2018148664A (en) 2017-03-03 2018-09-20 富士電機株式会社 Reactive power compensator and control system of the same

Also Published As

Publication number Publication date
JP2019140898A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
Salimin et al. Simulation analysis of DVR performance for voltage sag mitigation
JP5893057B2 (en) Isolated operation detection device and isolated operation detection method
JP6030263B1 (en) Power interconnection device for grid connection and output current control method thereof
Prasad et al. Realization of cascaded H-bridge 5-Level multilevel inverter as Dynamic Voltage Restorer
KR101639192B1 (en) Apparatus for compensating reactive power
Li et al. A new current limiting and overload protection scheme for distributed inverters in microgrids under grid faults
JP5829053B2 (en) Grid-connected inverter device
WO2013142553A2 (en) System and method for islanding detection and protection
JP5134691B2 (en) Self-excited reactive power compensator
JP7251113B2 (en) Reactive power compensator, its control program, and reactive power compensation system
KR101529889B1 (en) Switchgear capable of power factor correction
Talha et al. A grid-tied PV inverter with sag-severity-independent low-voltage ride through, reactive power support, and islanding protection
Rabie et al. Study and analysis of voltage source converter control stability for HVDC system using different control techniques
Karmiris et al. A multifunction control scheme for current harmonic elimination and voltage sag mitigation using a three phase three level flying capacitor inverter
Jangid et al. Reducing the voltage sag and swell problem in distribution system using dynamic voltage restorer with pi controller
Renders et al. Improving the voltage dip immunity of converter-connected distributed generation units
JP6258806B2 (en) Power converter for grid connection
TWI505597B (en) Micro-grid operation system with smart energy management
Rathore et al. D-STATCOM modeling and simulation applying control schemes for power quality improvement
Tumay et al. Simulation and modeling of a dynamic voltage restorer
KR101287887B1 (en) Control apparatus of thyristor controlled reactor for static var compensator
KR101451363B1 (en) Power converter for new renewable energy generator
Burungale et al. DSTATCOM performance for voltage sag, swell mitigation
Alhasheem et al. Performance assessment of the VSC using two model predictive control schemes
Kumari et al. Dynamic Voltage Restorer for Sag and Swell Issues in Power System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7251113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150