JP7246263B2 - Seismic structure of wooden buildings - Google Patents

Seismic structure of wooden buildings Download PDF

Info

Publication number
JP7246263B2
JP7246263B2 JP2019116503A JP2019116503A JP7246263B2 JP 7246263 B2 JP7246263 B2 JP 7246263B2 JP 2019116503 A JP2019116503 A JP 2019116503A JP 2019116503 A JP2019116503 A JP 2019116503A JP 7246263 B2 JP7246263 B2 JP 7246263B2
Authority
JP
Japan
Prior art keywords
pillar
pillars
thick
thin
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019116503A
Other languages
Japanese (ja)
Other versions
JP2021001508A (en
Inventor
正晴 西田
由美子 岸
亮二 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Forestry Co Ltd
Original Assignee
Sumitomo Forestry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Forestry Co Ltd filed Critical Sumitomo Forestry Co Ltd
Priority to JP2019116503A priority Critical patent/JP7246263B2/en
Publication of JP2021001508A publication Critical patent/JP2021001508A/en
Application granted granted Critical
Publication of JP7246263B2 publication Critical patent/JP7246263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Description

本発明は、主として伝統構法で構築された木造建築物を耐震補強する際に適用される木造建築物の耐震構造に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earthquake-resistant structure of a wooden building that is mainly applied to earthquake-resistant reinforcement of a wooden building constructed by a traditional construction method.

木造建築物を構築する工法としては、柱、梁といった軸組部材を組み合わせた木造軸組構法が代表例となるが、このような木造軸組構法にも、在来工法によるものと伝統構法によるものとが存在し、在来工法が、建築基準法に基づいて構築される比較的新しい工法であるのに対し、伝統構法は、建築基準法制定以前から数多く適用されているものであって、文化的価値が高い寺社建築や古民家については、建替えではなく修復によって建物再生を図った上、後世に残していこうというニーズが年々高まりを見せている。 As a construction method for constructing a wooden building, a typical example is a wooden framework construction method that combines framework members such as columns and beams. While conventional construction methods are relatively new construction methods based on the Building Standards Law, traditional construction methods have been applied many times before the enactment of the Building Standards Law. With respect to temples, shrines, and old folk houses that have high cultural value, there is a growing need to preserve them for future generations, rather than rebuilding them.

これらのうち、在来工法は、連続RC基礎である布基礎の上に土台を敷設してその上に柱を立設した上、柱梁の仕口については接合金物を用いて補強するとともに、適当な箇所には耐力壁を配置するものであるが、伝統構法は、礎石の上に柱を立設した上、柱梁の仕口については、ほぞとほぞ穴を使った接合によって連結するものであって、在来工法のように接合金物や耐力壁を用いることはない。 Among these, the conventional construction method lays a base on a continuous RC foundation, and erects a column on top of it. Although load-bearing walls are placed in appropriate places, the traditional construction method is to erect pillars on top of the foundation stones and connect the joints of the columns and beams by joints using mortises and mortises. Unlike conventional construction methods, joint hardware and load-bearing walls are not used.

したがって、在来工法で構築された建築物がいわゆる剛構造となって、建物の剛性で地震力に抵抗しようとするのに対し、伝統構法で建てられた建築物はいわゆる柔構造となり、地震動の卓越周期にもよるが、我が国においては、建物の固有周期が延びることで地震で発生する部材力自体が小さくなり、さらには柱脚と礎石とのずれが許容されることによる入力地震動の低減作用も期待できる。 Therefore, while buildings constructed by conventional construction methods have a so-called rigid structure and try to resist seismic forces with the rigidity of the building, buildings built with traditional construction methods have a so-called flexible structure and are resistant to seismic motion. Although it depends on the dominant period, in Japan, the extension of the natural period of the building reduces the member force itself generated by the earthquake, and furthermore, the input seismic motion is reduced by allowing the misalignment between the column base and the foundation stone. can also be expected.

特開2017-101511号公報JP 2017-101511 A 特開2011-64044号公報JP 2011-64044 A

「柱―差鴨居接合部の力学特性に関する実験的研究」(日本建築学会構造系論文集 第77巻 第675号 2012年5月発行)"Experimental study on mechanical properties of pillar-sashi-kamoi joint" (Journal of Structural Engineering, Architectural Institute of Japan, Vol. 77, No. 675, May 2012)

このような長所を持つ伝統構法ではあるが、柔構造であるがゆえに地震時においては層間変形が大きくなり、構造部材の経年劣化とも重なると、大地震時には柱梁接合部である仕口が損傷する懸念があり、耐震補強が必要になる場合が少なくない。 Although this is a traditional construction method with such advantages, inter-story deformation increases during an earthquake due to its flexible structure. There is a concern that it will be damaged, and there are many cases where seismic reinforcement is required.

例えば、開放的な空間を形成すべく、差し鴨居を用いることがある。 For example, sashigamoi may be used to create an open space.

差し鴨居は、造作材を兼ねた構造材であって、敷居の上方に位置するように配置してあり、差し鴨居の下面に形成された溝に襖等の建具の上縁を、敷居に設けられた溝に下縁をそれぞれ嵌め込むことで、差し鴨居と敷居に挟まれた空間を自在に開閉できるようになっており、軸組架構を構成する横架材として機能しつつ、互いに隣接する二つの室内空間、あるいは室内空間と屋外空間とを連続させることができるものの、かかる差し鴨居は、その先端に形成されたほぞを柱のほぞ穴に差し込むことで柱との連結を図るものであるため、層間変形が大きすぎると、ほぞに打ち込まれた鼻栓や込み栓が破損して柱のほぞ穴から引き抜かれる場合があり、状況によっては建物が倒壊する原因ともなる。 The sashi-kamoi is a structural material that also serves as a building material, and is positioned above the threshold. By fitting the lower edge into each groove, the space sandwiched between the sashigamoi and the threshold can be opened and closed freely. Although it is possible to connect two indoor spaces, or an indoor space and an outdoor space, this type of sashikamoi connects with a pillar by inserting the tenon formed at the tip into the mortise hole of the pillar. For this reason, if the deformation between floors is too large, the nose plugs and plugs driven into the tenons may break and be pulled out of the mortises of the pillars, which may cause the building to collapse depending on the situation.

そのため、差し鴨居が配置された木造建築物を耐震補強するにあたっては、耐力壁の設置に障害となる差し鴨居を撤去した上、その撤去箇所に耐力壁を配置するという対策を余儀なくされていた。 Therefore, when seismically reinforcing a wooden building with a sashigamoi installed, it was necessary to remove the sashigamoi, which was an obstacle to the installation of a load-bearing wall, and then install a load-bearing wall in the place where it was removed.

しかしながら、差し鴨居を撤去することは、伝統構法で構築された木造建築物からその貴重な意匠の一部を取り除いてしまうことに他ならず、寺社建築や古民家の文化的価値を低下させる懸念がある。 However, removing the sashigamoi is nothing more than removing a part of the valuable design from a wooden building constructed with traditional construction methods, and there is concern that the cultural value of temples and shrines and old folk houses will decline. There is

ちなみに、従来においては、差し鴨居に関してさまざまな実験的研究がなされているものの(非特許文献1)、差し鴨居を残しつつ、耐震補強することが可能な具体的な解決策は未だ見出されておらず、差し鴨居を残しながら耐震補強するという課題についてすら認識されていないのが現状である(特許文献1,2)。 By the way, in the past, although various experimental studies have been conducted on sashigamoi (non-patent document 1), no concrete solution has yet been found that allows seismic reinforcement while leaving sashigamoi. It is the current situation that even the problem of seismic reinforcement while leaving the sashigamoi is not recognized (Patent Documents 1 and 2).

本発明は、上述した事情を考慮してなされたもので、差し鴨居を撤去することなく十分な耐震補強を行うことが可能な木造建築物の耐震構造を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an earthquake-resistant structure for a wooden building that can be sufficiently reinforced against earthquakes without removing the lintel.

上記目的を達成するため、本発明に係る木造建築物の耐震構造は請求項1に記載したように、土台、敷き土台、足固めその他地盤近傍に配置された横架材を下段横架材、該下段横架材の上方に配置され上階床又は屋根を支持する胴差し、梁、小屋梁等の横架材を上段横架材とし、前記下段横架材、前記上段横架材、それらに接合された一対の柱及びそれらに囲まれた鉛直空間に前記一対の柱のそれぞれに各端が差し込まれる形で配置された差し鴨居で構成される軸組架構を備えた木造建築物の耐震構造において、
前記差し鴨居、前記上段横架材及び前記一対の柱からなる上段軸組架構の面内せん断変形が抑制されるように該上段軸組架構の内側に第1の補剛手段を配置するとともに、前記一対の柱のうち、前記軸組架構に平行な方向の水平剛性が相対的に大きい方の柱を太柱、小さい方の柱を細柱として、前記太柱の脚部における回転変形が抑制されるように該太柱と前記下段横架材との接合部位を第2の補剛手段を用いて補剛することで前記太柱と前記下段横架材とが剛接合又は剛とみなしえる接合となるように構成したものである。
In order to achieve the above object, an earthquake-resistant structure for a wooden building according to the present invention comprises a foundation, a floor sill, a footing, and other horizontal members placed near the ground, and the lower horizontal members, Horizontal members such as girder, beams, and roof beams that are placed above the lower horizontal members and support the upper floor or roof are used as upper horizontal members, and the lower horizontal members, the upper horizontal members, and An earthquake-resistant structure of a wooden building equipped with a frame structure consisting of a pair of joined pillars and a sashigamoi arranged in a vertical space surrounded by the pair of pillars so that each end is inserted into each of the pair of pillars. in
A first stiffening means is arranged inside the upper frame structure so as to suppress in-plane shear deformation of the upper frame structure composed of the front door, the upper horizontal member, and the pair of pillars, Of the pair of pillars, the pillar with relatively greater horizontal rigidity in the direction parallel to the framework is designated as a thick pillar, and the pillar with the smaller horizontal rigidity is designated as a thin pillar, thereby suppressing rotational deformation at the leg of the thick pillar. By stiffening the joint portion between the thick pillar and the lower horizontal member using the second stiffening means , the thick pillar and the lower horizontal member can be considered to be rigidly connected or rigid. It is configured to be a joint .

また、本発明に係る木造建築物の耐震構造は、前記太柱を150mm角以上の正方形断面、前記細柱を150mm角未満の正方形断面としたものである。 Further, in the earthquake-resistant structure of a wooden building according to the present invention, the thick pillar has a square cross section of 150 mm square or more, and the thin pillar has a square cross section of less than 150 mm square.

また、本発明に係る木造建築物の耐震構造は、前記細柱の脚部における回転変形が抑制されるように該細柱と前記下段横架材との接合部位を第3の補剛手段を用いて補剛したものである。 Further, in the earthquake-resistant structure of a wooden building according to the present invention, a third stiffening means is provided at a joint portion between the thin pillar and the lower horizontal member so as to suppress rotational deformation at the leg portion of the thin pillar. It is stiffened by using

また、本発明に係る木造建築物の耐震構造は、前記細柱の側面のうち、前記鉛直空間の側を除く側面であって前記差し鴨居との接合部位を含む高さ範囲に補強板を添着したものである。 Further, in the earthquake-resistant structure of a wooden building according to the present invention, a reinforcing plate is attached to a side surface of the thin column excluding the side of the vertical space and a height range including the joint portion with the sashigamoi. It is what I did.

また、本発明に係る木造建築物の耐震構造は、鉄筋コンクリートからなる布基礎上に敷設された土台を前記下段横架材としたものである。 Further, in the earthquake-resistant structure of a wooden building according to the present invention, the foundation laid on a continuous foundation made of reinforced concrete is used as the lower horizontal member.

また、本発明に係る木造建築物の耐震構造は、前記地盤に設置された礎石の上に前記太柱を立設するとともに該太柱の脚部に敷き土台を連結して前記下段横架材とするとともに、該敷き土台の上に前記細柱を立設し、前記礎石が埋設される形で前記地盤に鉄筋コンクリートからなる耐圧盤を構築するとともに、該耐圧盤に前記敷き土台を連結したものである。 Further, in the earthquake-resistant structure of a wooden building according to the present invention, the thick pillars are erected on foundation stones placed on the ground, and the bases are connected to the legs of the thick pillars to form the lower horizontal beams. and constructing a pressure-resistant board made of reinforced concrete on the ground in such a manner that the slender pillars are erected on the bed base, and the foundation stones are buried, and the bed base is connected to the pressure-resistant board. is.

また、本発明に係る木造建築物の耐震構造は、前記地盤に設置された礎石の上に敷き土台を架け渡して該敷き土台を前記下段横架材とするとともに前記敷き土台の上に前記一対の柱をそれぞれ立設し、前記礎石が埋設される形で前記地盤に鉄筋コンクリートからなる耐圧盤を構築するとともに該耐圧盤に前記敷き土台を連結したものである。 Further, in the earthquake-resistant structure of a wooden building according to the present invention, a flooring base is laid over the foundation stones placed on the ground, and the flooring base is used as the lower horizontal member, and the pair of flooring members are placed on the flooring base. , a pressure-resistant board made of reinforced concrete is constructed on the ground in such a manner that the foundation stone is buried, and the base is connected to the pressure-resistant board.

太柱の代表例である伝統構法の大黒柱は、横断面積が240mm角、さらには300mm角にも及ぶものであるが、その主たる役割は、屋根や床の荷重を圧縮荷重の形で礎石、さらには地盤へと伝達することであって、建物全体の水平剛性向上には必ずしも十分な寄与をしていないところ、本発明は、伝統構法において貴重な意匠である大黒柱や差し鴨居を残しつつ、建物の耐震性能を向上させるにはいかなる構造を採用すればよいか、さらには単に大黒柱や差し鴨居を残すのではなく、これらを耐震性能向上に寄与させるにはどうすればよいかに着眼してなされたものである。 The main pillar of the traditional construction method, which is a representative example of a thick pillar, has a cross-sectional area of 240 mm square, and even 300 mm square. is transmitted to the ground, and does not necessarily contribute sufficiently to the improvement of the horizontal rigidity of the entire building. This was done with a focus on what kind of structure should be adopted to improve the earthquake resistance performance of the building, and how to contribute to the improvement of the earthquake resistance performance, rather than simply leaving the main pillars and sashigamoi. be.

すなわち、本発明に係る木造建築物の耐震構造においては、下段横架材、上段横架材、それらに接合された一対の柱及びそれらに囲まれた鉛直空間に配置された差し鴨居で構成される軸組架構を備えるが、差し鴨居、上段横架材及び一対の柱からなる上段軸組架構の内側には、その面内せん断変形が抑制されるように第1の補剛手段を配置してあるとともに、一対の柱のうち、軸組架構に平行な方向の水平剛性が相対的に大きい方の太柱については、その脚部における回転変形が抑制されるように、該太柱と下段横架材との接合部位を第2の補剛手段を用いて補剛してある。 That is, the earthquake-resistant structure of a wooden building according to the present invention is composed of a lower horizontal beam, an upper horizontal beam, a pair of pillars joined to them, and a sashigamoi arranged in a vertical space surrounded by them. A first stiffening means is placed on the inside of the upper frame structure, which consists of a gate, an upper horizontal frame, and a pair of pillars, so as to suppress in-plane shear deformation. In addition, of the pair of pillars, the thicker pillar that has relatively greater horizontal rigidity in the direction parallel to the framework is attached to the lower pillar so that rotational deformation at the leg is suppressed. The joint portion with the horizontal member is stiffened using the second stiffening means.

このようにすると、太柱と下段横架材とが剛接合又は剛とみなしえる接合となるため、大黒柱が潜在的に有していた高い水平剛性機能が、軸組架構全体の水平剛性向上への寄与という形で顕在化し、差し鴨居を含む上段軸組架構が第1の補剛手段で補剛されることと相俟って、軸組架構全体の層間変形を抑えることが可能となり、かくして伝統構法による建物を保存しつつ、その耐震性能を格段に向上させることができる。 In this way, the large pillars and the lower horizontal members are rigidly joined or joints that can be regarded as rigid, so the potential high horizontal rigidity function of the main pillars can be used to improve the horizontal rigidity of the entire framework. is manifested in the form of the contribution of , and coupled with the stiffening of the upper frame frame including the sashigamoi by the first stiffening means, it is possible to suppress the interlayer deformation of the entire frame frame. It is possible to dramatically improve the earthquake resistance performance while preserving the building by the traditional construction method.

また、細柱については、下段横架材との接合部位に対し、必ずしも特段の耐震補強を行う必要がないため、耐震補強すべき部位を限定することも可能となり、より合理的な形で建物再生を図ることが可能となる。 In addition, as for thin pillars, it is not always necessary to perform special seismic reinforcement for the joints with the lower horizontal members, so it is possible to limit the parts that should be seismically strengthened, and the building can be constructed in a more rational way. It becomes possible to plan reproduction.

なお、上段軸組架構を補剛するだけだと、差し鴨居より上方の高さ範囲ではせん断変形を抑えることができても、差し鴨居より下方の高さ範囲では水平剛性が十分でないためにせん断変形が大きくなり、差し鴨居が接合された直下で細柱の曲げ変形が大きくなって損壊したり、差し鴨居が柱のほぞ穴から引き抜かれたりする懸念があるが、上述したように太柱が有する高い剛性が軸組架構全体の水平剛性向上に寄与して軸組架構全体の層間変形が抑えられるため、細柱の損壊あるいは差し鴨居の抜けといった上述の事態を未然に回避することができる。 Even if shear deformation can be suppressed in the height range above the sashigamoi by simply stiffening the upper frame frame, the horizontal rigidity is not sufficient in the height range below the sashigamoi, so shear deformation can be prevented. As the deformation increases, there is a concern that the thin pillars will be deformed by bending directly under the jointed kamoi and be damaged, or the kamoi will be pulled out of the mortise of the pillar, but as mentioned above, the thick pillars The high rigidity of the frame contributes to the improvement of the horizontal rigidity of the frame as a whole, and the inter-layer deformation of the frame as a whole is suppressed.

加えて、差し鴨居、下段横架材及び一対の柱からなる下段軸組架構の内側については、例えば襖を立て込む空間として利用することができるため、伝統構法の意匠として貴重な差し鴨居直下の開放空間をそのまま生かすことも可能となる。 In addition, the inner side of the lower frame structure, which consists of the sashigamoi, the lower horizontal beams, and a pair of pillars, can be used, for example, as a space to set up a sliding door. It is also possible to utilize the open space as it is.

本発明に係る木造建築物の耐震構造は、差し鴨居が含まれた既存の木造建築物に耐震補強を施すことで構築される場合を典型例とするものの、どのような手順あるいは方法で構築されるかは任意であって、耐震補強ではなく、あらたに構築される場合も包摂されるものであり、例えば古民家を模してかつ耐震性能に優れた形で新築する場合が想定される。 A typical example of the earthquake-resistant structure of a wooden building according to the present invention is a case where it is constructed by applying earthquake-resistant reinforcement to an existing wooden building that includes a sashigamoi. It is not a seismic reinforcement, but a new construction is also included.

また、耐震補強する場合において、補強対象となる元の木造建築物を解体せずに行うのか、それともいったん解体してからそれを再構築しつつ行うのかは任意であるし、再構築の場合も、元の場所に限らず、別の場所に構築するようにしてもかまわない。 In addition, in the case of seismic reinforcement, it is optional whether the original wooden building to be reinforced is to be demolished, or whether it is to be demolished and then reconstructed. , not limited to the original location, but may be constructed in another location.

加えて、耐震補強の場合には、補強対象となる元の木造建築物に第1の補剛手段及び第2の補剛手段を、場合によってはさらに第3の補剛手段をあらたに加える形になるが、元の木造建築物に存在していた軸組架構についても、必要に応じて、例えば腐食が進行しているような場合には、その軸組部材を適宜補修交換することはもちろん可能であるし、差し鴨居等の一部の軸組部材については、解体された古民家のものを適宜転用することができる。 In addition, in the case of seismic reinforcement, first stiffening means and second stiffening means, and in some cases, third stiffening means are newly added to the original wooden building to be reinforced. However, if the frame structure that existed in the original wooden building is also corroded as necessary, for example, the frame member should be repaired and replaced as appropriate. It is possible, and for some frame members such as the sashigamoi, those of the dismantled old private house can be appropriately diverted.

差し鴨居とは、その端部に設けられたほぞを柱に設けられたほぞ穴に差し込むことで該柱に接合されるようになっている横架材であって、上階を支持する梁や屋根を支持する小屋梁の下方に配置された上、敷居との間に襖等の建具が立て込まれるようになっているものが典型例となるが、梁のように建物内側ではなく、胴差しのように建物周囲であっても、柱との接合部が上述のように構成されていれば、本発明の差し鴨居に包摂される。 A sashikamoi is a horizontal member that is joined to a pillar by inserting the tenon provided at the end into a mortise hole provided in the pillar. A typical example is that which is placed below the beams that support the roof, and where fittings such as fusuma (sliding doors) are set up between them and the threshold. Even if it is around the building like a sash, if the joint with the pillar is configured as described above, it is included in the sashigamoi of the present invention.

本発明に係る一対の柱は、軸組架構に平行な方向の水平剛性が相対的に大きい太柱と小さい方の細柱とで構成され、軸組架構はいわば非対称架構となる。 The pair of pillars according to the present invention is composed of a thick pillar and a thin pillar having a relatively large horizontal rigidity in the direction parallel to the framework, and the framework is an asymmetrical framework.

太柱及び細柱は、軸組架構に平行な方向の水平剛性が互いに異なれば足りるのであって、いかなる断面の柱を太柱としあるいは細柱とするか、その指標やしきい値は任意であるし、角柱とするか丸柱とするか、あるいは一方を角柱とし他方を丸柱とするかなども任意であるが、例えば軸線架構に垂直な方向回りの曲げ剛性あるいは断面2次モーメントの大きさを指標とすることができるし、正方形断面であれば柱幅、円形断面であれば柱径を指標とすることが可能であり、太柱を150mm角以上の正方形断面、細柱を150mm角未満の正方形断面とした構成、太柱を180mm角以上の正方形断面、細柱を150mm角未満の正方形断面とした構成、あるいは太柱を240mm角以上の正方形断面、細柱を150mm角未満の正方形断面とした構成が典型例となる。 It is sufficient for the thick and thin pillars to have different horizontal stiffness in the direction parallel to the frame structure. In addition, it is optional to use a square column or a round column, or to use a square column on one side and a round column on the other. A square section can be used as an index, and a column width can be used as an index for a circular section, and a column diameter can be used as an index for a circular section. A configuration with a square cross section, a thick column with a square cross section of 180 mm or more, and a thin column with a square cross section of less than 150 mm, or a thick column with a square cross section of 240 mm or more and a thin column with a square cross section of less than 150 mm. A typical example is a configuration with

細柱については、上述したように下段横架材との接合部位に対して特段の耐震補強を行う必要はないが、細柱の脚部における回転変形が抑制されるように該細柱と下段横架材との接合部位を第3の補剛手段を用いて補剛したならば、軸組架構全体の水平剛性、ひいてはその層間変形をさらに抑制し、あるいはより確実に抑制することが可能となる。 Regarding the thin columns, as described above, it is not necessary to perform special seismic reinforcement for the joints with the lower horizontal members. If the joints with the horizontal members are stiffened using the third stiffening means, it is possible to further suppress the horizontal stiffness of the entire frame structure and, in turn, the interlayer deformation, or more reliably suppress it. Become.

第1の補剛手段は、上段軸組架構の面内せん断変形が抑制される限り、その具体的構成は任意であって、耐力壁で構成することもできるし、柱梁接合部に用いられる補強金物で構成することも可能である。 The first stiffening means may have any specific configuration as long as the in-plane shear deformation of the upper frame structure is suppressed. It is also possible to configure it with reinforcing hardware.

第2の補剛手段や第3の補剛手段も、太柱や細柱の脚部における回転変形が抑制される限り、それらの具体的構成は任意であって、例えば柱梁接合部に用いられる補強金物で構成することが可能である。 The second stiffening means and the third stiffening means may have any specific configuration as long as the rotational deformation at the leg of the thick or thin column is suppressed. It is possible to configure with reinforcing hardware that is

第1の補剛手段、第2の補剛手段あるいは第3の補剛手段は、例えば、接合対象となる2本の接合部材のうち、一方の接合部材に当接されるフランジ及びそれを補剛するウェブを有する第1の山形鋼と、該第1の山形鋼に直交配置され他方の接合部材に当接されるフランジ及びそれを補剛するウェブを有する第2の山形鋼と、前記第1の山形鋼及び前記第2の山形鋼に対して斜めとなるように配置された第3の山形鋼とからなるとともに、前記第3の山形鋼のフランジを前記第1の山形鋼のフランジ及び前記第2の山形鋼のフランジよりも幅が狭くなるように形成した三角形状補剛部材を用いて構成することができる。 The first stiffening means, the second stiffening means, or the third stiffening means are, for example, a flange that abuts against one of the two joining members to be joined, and a flange that supports the flange. a first angle steel having a stiffening web; a second angle steel having a flange and a web stiffening the flange arranged orthogonally to the first angle steel and abutting against the other joining member; 1 angle steel and a third angle steel arranged obliquely with respect to the second angle steel, and the flange of the third angle steel is connected to the flange of the first angle steel and A triangular stiffening member having a narrower width than the flange of the second angle steel can be used.

本発明に係る木造建築物の耐震構造によれば、上述したように軸組架構全体の層間変形が抑えられるため、細柱の損壊を防止することができるが、細柱の側面のうち、上記鉛直空間の側を除く側面であって、差し鴨居との接合部位を含む高さ範囲に補強板を添着した構成としたならば、細柱は、差し鴨居との接合部位を含む高さ範囲にわたり、補強板を含めた全体の断面積が増加するため、細柱の損壊はより確実に防止される。 According to the earthquake-resistant structure of the wooden building according to the present invention, as described above, the inter-story deformation of the entire framing frame is suppressed, so it is possible to prevent the thin columns from being damaged. If a reinforcing plate is attached to the side surface excluding the vertical space side and the height range including the joint with the lintel, the thin pillar extends over the height range including the joint with the lintel. , the entire cross-sectional area including the reinforcing plate is increased, so that the thin columns are more reliably prevented from being damaged.

下段横架材としては、少なくとも以下の3つの形態、すなわち、
(a)鉄筋コンクリートからなる布基礎上に敷設された土台を下段横架材とした構成
(b)地盤に設置された礎石の上に太柱を立設するとともに該太柱の脚部に敷き土台を連結して下段横架材とするとともに、該敷き土台の上に細柱を立設し、礎石が埋設される形で地盤に鉄筋コンクリートからなる耐圧盤を構築するとともに、該耐圧盤に敷き土台を連結した構成
(c)地盤に設置された礎石の上に敷き土台を架け渡して該敷き土台を下段横架材とするとともに敷き土台の上に一対の柱をそれぞれ立設し、礎石が埋設される形で地盤に鉄筋コンクリートからなる耐圧盤を構築するとともに該耐圧盤に敷き土台を連結した構成
が包摂される。
There are at least the following three forms for the lower horizontal member, that is,
(a) Configuration with a foundation laid on a continuous foundation made of reinforced concrete as a lower horizontal member
(b) A thick pillar is erected on top of the foundation stone placed in the ground, and a base is connected to the foot of the thick pillar to form the lower horizontal frame, and a thin pillar is erected on top of the base. A structure in which a pressure-resistant board made of reinforced concrete is constructed in the ground in such a way that the foundation stone is buried, and a foundation is connected to the pressure-resistant board.
(c) A foundation stone is laid over the foundation stone placed in the ground, and the foundation stone is used as a horizontal member for the lower stage. A structure in which a pressure-resistant board made of reinforced concrete is constructed on the ground and a foundation is connected to the pressure-resistant board is included.

なお、敷き土台を下段横架材とする構成(b),(c)では、その上方に足固めを配置して該足固めに床を敷設することができるため、差し鴨居の下方をすべて開放空間として利用することができるが、布基礎上に敷設された土台を下段横架材とする構成(a)では、第2の補剛手段、場合によってはさらに第3の補剛手段が居室空間に露出する状況が生じ得る。 In addition, in configurations (b) and (c) in which the flooring base is the lower horizontal member, the floor can be laid on the upper part of the footing, so that the entire area below the sashigamoi is an open space. However, in the configuration (a) in which the base laid on the continuous foundation is the lower horizontal member, the second stiffening means, and in some cases, the third stiffening means are exposed to the living room space. situations can arise.

かかる場合には、軸組架構の鉛直空間のうち、太柱、場合によってはさらに細柱の側方に拡がる空間に袖壁を配置して該袖壁に第2の補剛手段や第3の補剛手段を埋設し、あるいはそれらを袖壁で覆い隠すようにすればよい。 In such a case, out of the vertical space of the framing frame, a wing wall is arranged in the space extending to the side of the thick pillar, and depending on the case, the thin pillar, and the second stiffening means and the third stiffening means are placed on the wing wall. The stiffening means may be embedded or they may be covered with a wing wall.

この場合においても、差し鴨居の下方空間に部分的に利用制限が生じるものの、該下方空間を開放空間として概ね利用できることに変わりはない。 Even in this case, although the use of the space below the sashigamoi is partially restricted, the space below can be generally used as an open space.

本実施形態に係る木造建築物の耐震構造1の図であり、(a)は正面図、(b)はA-A線に沿う詳細断面図。1 is a diagram of an earthquake-resistant structure 1 for a wooden building according to the present embodiment, (a) is a front view, and (b) is a detailed cross-sectional view taken along line AA. 三角形状補剛部材92を示した全体斜視図。The whole perspective view which showed the triangular stiffening member 92. FIG. 軸組架構6全体の地震時変形状態を概念的に示した模式図。FIG. 4 is a schematic diagram conceptually showing the state of deformation of the entire framework 6 during an earthquake. 耐震補強の対象となった木造建築物51の正面図。The front view of the wooden building 51 which became the object of seismic reinforcement. 変形例に係る木造建築物の耐震構造を示した正面図。The front view which showed the earthquake-resistant structure of the wooden building which concerns on a modification. 別の変形例に係る木造建築物の耐震構造を示した図であり、(a)は正面図、(b)はB-B線に沿う詳細断面図。FIG. 10 is a diagram showing an earthquake-resistant structure of a wooden building according to another modification, where (a) is a front view and (b) is a detailed cross-sectional view taken along line BB. 変形例に係る木造建築物の耐震構造を示した正面図。The front view which showed the earthquake-resistant structure of the wooden building which concerns on a modification.

以下、本発明に係る木造建築物の耐震構造の実施の形態について、添付図面を参照して説明する。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an earthquake-resistant structure for a wooden building according to the present invention will be described below with reference to the accompanying drawings.

図1は、本実施形態に係る木造建築物の耐震構造1を示した図である。同図でわかるように、本実施形態に係る木造建築物の耐震構造1は、一対の柱としての太柱4a及び細柱4bのうち、太柱4aを、地盤11に設置された礎石12の上に立設するとともに、該太柱の脚部と図示しない通し柱等の別の柱の脚部とを、下段横架材としての敷き土台2を介して相互に連結した上、該敷き土台の上に細柱4bを立設し、太柱4aと細柱4bの頂部には、上段横架材としての小屋梁3を架け渡してある。 FIG. 1 is a diagram showing an earthquake-resistant structure 1 for a wooden building according to this embodiment. As can be seen from the figure, the earthquake-resistant structure 1 of a wooden building according to the present embodiment has a thick pillar 4a and a thin pillar 4b as a pair of pillars. While standing on the top, the leg of the thick pillar and the leg of another pillar such as a through pillar (not shown) are connected to each other via a floor sill 2 as a lower horizontal member, and the floor sill A thin pillar 4b is erected on the top, and a roof beam 3 as an upper horizontal member is bridged over the tops of the thick pillar 4a and the thin pillar 4b.

ここで、敷き土台2、小屋梁3、太柱4a及び細柱4bに囲まれた鉛直空間には差し鴨居5を配置してあり、該差し鴨居は、敷き土台2、小屋梁3、太柱4a及び細柱4bとともに軸組架構6を構成するとともに、敷き土台2、差し鴨居5、太柱4a及び細柱4bは下段軸組架構6aを、差し鴨居5、小屋梁3、太柱4a及び細柱4bは上段軸組架構6bをそれぞれ構成する。 Here, in the vertical space surrounded by the floor base 2, the hut beam 3, the thick pillar 4a and the thin pillar 4b, an inter-lintel 5 is arranged. Together with 4a and thin pillars 4b, a frame frame 6 is constructed, and the floor sill 2, the lintel 5, the thick pillars 4a and the thin pillars 4b constitute the bottom framing frame 6a, the lintel 5, the roof beam 3, the thick pillars 4a and The thin pillars 4b respectively constitute the upper stage framework frame 6b.

差し鴨居5は、その各端に形成されたほぞ16,16を太柱4a、細柱4bのほぞ穴17,17にそれぞれ差し込んだ上、鼻栓や込み栓(図示せず)をほぞ16,16に打ち込むことで、該ほぞがほぞ穴17,17から抜け出さないようになっている。 The mortise 5 has tenons 16, 16 formed at each end thereof inserted into the mortises 17, 17 of the thick pillar 4a and thin pillar 4b, respectively, and nose plugs and plugs (not shown) are inserted into the tenons 16, 16, respectively. By driving into 16, the tenon is prevented from slipping out of mortise holes 17, 17. - 特許庁

また、敷き土台2は、礎石12が埋設される形で地盤11に構築された鉄筋コンクリートからなる耐圧盤18にアンカーボルト19を介して連結してある。 The paving base 2 is connected via anchor bolts 19 to a pressure-resistant board 18 made of reinforced concrete constructed on the ground 11 in such a manner that the foundation stones 12 are buried.

なお、太柱4aと細柱4bとの間には、それらの脚部上方を相互に連結する形で足固め14を配置してあり、該足固めには、図示しない床根太を架け渡してある。 Between the thick pillars 4a and the thin pillars 4b, footings 14 are arranged so as to connect the upper parts of their legs, and floor joists (not shown) are laid over the footings.

太柱4aは、軸組架構6に平行な方向の水平剛性(図1で言えば左右方向の剛性)、具体的には、軸組架構6に垂直な方向回りの断面2次モーメントが細柱4bよりも相対的に大きくなるように断面を選定してあり、例えば太柱4aを150mm角以上の正方形断面、細柱4bを150mm角未満の正方形断面とすることが可能であり、太柱4aについては特に、180mm角以上の正方形断面、さらには240mm角以上の正方形断面とすることが可能であり、これらの太柱4aは、一般に大黒柱と呼ばれる。 The thick column 4a has a horizontal rigidity in a direction parallel to the framework 6 (stiffness in the left-right direction in FIG. 1). The cross section is selected to be relatively larger than 4b. For example, the thick pillar 4a can have a square cross section of 150 mm square or more, and the thin pillar 4b can have a square cross section of less than 150 mm square. In particular, it is possible to have a square cross section of 180 mm square or more, or a square cross section of 240 mm square or more, and these thick pillars 4a are generally called main pillars.

本実施形態に係る木造建築物の耐震構造1は、上段軸組架構6bの面内せん断変形が抑制されるように、該上段軸組架構の内側に第1の補剛手段としての耐力壁91を配置してあるとともに、太柱4aの脚部における回転変形(軸組架構6に垂直な方向回りの回転変形)が抑制されるように、該太柱と敷き土台2との接合部位を第2の補剛手段としての一対の三角形状補剛部材92,92を用いて補剛してある。 In the earthquake-resistant structure 1 of a wooden building according to this embodiment, a load-bearing wall 91 as a first stiffening means is provided inside the upper frame structure 6b so as to suppress in-plane shear deformation of the upper frame structure 6b. are arranged, and the joint portion between the thick pillar and the floor sill 2 is arranged so that the rotational deformation of the leg of the thick pillar 4a (rotational deformation around the direction perpendicular to the frame frame 6) is suppressed. It is stiffened using a pair of triangular stiffening members 92, 92 as two stiffening means.

耐力壁91は同図(b)に示すように、太柱4a及び細柱4bの対向内面に受け材26,26をそれぞれ取り付けるとともに、差し鴨居5の上面と小屋梁3の下面に受け材27,27をそれぞれ取り付け、それらに構造用合板25,25の周縁を釘等で固定して構成することができる。 As shown in FIG. 4(b), the load-bearing wall 91 has supporting members 26, 26 attached to the opposite inner surfaces of the thick pillar 4a and thin pillar 4b, and supporting members 27 attached to the upper surface of the front door 5 and the lower surface of the roof beam 3. , 27 are attached, and the peripheral edges of the structural plywoods 25, 25 are fixed to them with nails or the like.

三角形状補剛部材92は、太柱4a及び敷き土台2の接合部位における入り隅のうち、軸組架構6の内側に拡がる鉛直空間の側とそれと背中合わせとなる側にそれぞれ配置してあり、図2に示すように、山形鋼101、山形鋼102及び山形鋼103を、山形鋼101及び山形鋼102が互いに直交し、山形鋼103がそれらに対して斜めとなるように直角三角形状に接合して構成してある。 The triangular stiffening members 92 are arranged on the side of the vertical space extending inward of the frame frame 6 and on the side facing back to it, among the corners of the joining portion of the thick pillar 4a and the floor sill 2, as shown in FIG. 2, the angle steel 101, the angle steel 102 and the angle steel 103 are joined in a right triangle shape so that the angle steel 101 and the angle steel 102 are orthogonal to each other and the angle steel 103 is oblique to them. are configured.

ここで、山形鋼101のうち、三角形平面に垂直な部分(以下、説明の便宜上、フランジ101aと呼ぶ)は、接合部材の一方、図1の配置構成では敷き土台2の上面に当接され、三角形平面に平行な部分(以下、説明の便宜上、ウェブ101bと呼ぶ)がこれを補剛するようになっているとともに、山形鋼102のうち、フランジ102aは、接合部材の他方、図1の配置構成では太柱4aの側面に当接され、ウェブ102bがこれを補剛するようになっており、フランジ101aやフランジ102aには、アンカーボルトや連結ボルトが挿通されるボルト挿通孔104及びビス、スクリューネジ等が挿通されるビス孔105が穿設してある。 Here, of the angle iron 101, a portion perpendicular to the triangular plane (hereinafter referred to as a flange 101a for convenience of explanation) is in contact with one of the joining members, which is the upper surface of the flooring base 2 in the arrangement configuration of FIG. A portion parallel to the triangular plane (hereinafter referred to as a web 101b for convenience of explanation) stiffens this, and the flange 102a of the angle iron 102 is the other of the joint members, the arrangement of FIG. In the structure, the web 102b abuts on the side surface of the thick column 4a and stiffens the web 102b. A screw hole 105 is provided through which a screw or the like is inserted.

山形鋼103は、山形鋼101や山形鋼102と同様、フランジ103a及びウェブ103bからなるが、フランジ103aは、フランジ101a及びフランジ102aの幅よりも狭くなるように形成してあり、ボルト挿通孔104にアンカーボルトや連結ボルトを挿通して締結する作業や、ビス孔105にビスやスクリューネジを挿通してねじ込む作業を行う際、それらの作業を行うための工具との干渉が防止されるようになっている。 Like the angle steel 101 and the angle steel 102, the angle steel 103 comprises a flange 103a and a web 103b. When inserting anchor bolts or connecting bolts into the screw holes 105 and screwing them in, or inserting screws or screw threads into the screw holes 105 and screwing them in, interference with the tools used for these operations is prevented. It's becoming

図3は、敷き土台2、小屋梁3、太柱4a及び細柱4bからなる軸組架構6全体の地震時変形状態を概念的に示した模式図であって、同図(a)は、伝統構法による建物に代表されるものであって、上段軸組架構6b内に耐力壁を設けずなおかつ太柱4aの脚部を敷き土台2にピン接合した場合、同図(b)は、伝統構法による建物に従来の耐震補強が施されたものに代表されるものであって、上段軸組架構6b内に耐力壁91を設けるが太柱4aの脚部については(a)と同様に敷き土台2にピン接合した場合、同図(c)は、本実施形態に係る構成であって、上段軸組架構6b内に耐力壁91を設けなおかつ太柱4aと敷き土台2との接合部位を三角形状補剛部材92,92を用いて補剛した場合をそれぞれ示したものである。 Fig. 3 is a schematic diagram conceptually showing the state of deformation during an earthquake of the entire frame structure 6 consisting of the floor sill 2, the roof beam 3, the thick pillars 4a and the thin pillars 4b. Typical of buildings based on the traditional construction method, in the case where load-bearing walls are not provided in the upper frame frame 6b and the legs of the thick pillars 4a are laid and pinned to the base 2, the figure (b) shows the traditional structure. It is represented by a building constructed by conventional earthquake-resistant reinforcement, in which load-bearing walls 91 are provided in the upper frame frame 6b, but the legs of the thick columns 4a are laid in the same manner as in (a). When the base 2 is pin-joined, FIG. 4(c) shows the configuration according to this embodiment, in which a load-bearing wall 91 is provided in the upper frame frame 6b, and the joint portion between the thick pillar 4a and the floor sill 2 is The case where it stiffens using the triangular stiffening members 92 and 92 is shown, respectively.

これらの図でわかるように、(a)においては、柱梁接合部がすべてピン接合であって耐力部材も存在しないため、地震時の層間変形δは3つのケースで最も大きくなり、差し鴨居5が太柱4aや細柱4bから引き抜かれ、場合によっては、建物の倒壊につながる懸念もある。 As can be seen from these figures, in (a), all column-to-beam joints are pin joints and there are no load-bearing members. 5 may be pulled out from the thick pillar 4a or the thin pillar 4b, and depending on the case, there is a concern that the building may collapse.

また、(b)においては、上段軸組架構6b内に耐力壁91が立て込まれているため、差し鴨居5より上方の高さ範囲ではせん断変形が抑えられ、層間変形δは、層間変形δよりも小さくなるものの、差し鴨居5より下方の高さ範囲では水平剛性が十分でないためにせん断変形が大きくなり、差し鴨居5が接合された直下(同図一点鎖線で囲んだ部分)で細柱4bの曲げ変形が大きくなり、該細柱が損壊する懸念がある。 In addition, in (b), since the load-bearing wall 91 is erected in the upper frame frame 6b, shear deformation is suppressed in the height range above the front door 5, and the interlayer deformation δ2 is the interlayer deformation Although it is smaller than δ 1 , the horizontal rigidity is not sufficient in the height range below the front door 5, so shear deformation becomes large, and immediately below the front door 5 is joined (the part surrounded by the dashed line in the figure) There is a concern that the bending deformation of the thin column 4b will increase and the thin column will be damaged.

一方、(c)においては、上段軸組架構6b内に耐力壁91が立て込まれているとともに、太柱4aと敷き土台2との接合部位が三角形状補剛部材92,92を用いて補剛されているため、地震時の層間変形δは最も小さくなり、差し鴨居5が太柱4aや細柱4bから引き抜かれたり、細柱4bの曲げ変形が大きくなって該細柱が損壊するおそれはなくなる。 On the other hand, in (c), a load-bearing wall 91 is erected in the upper frame frame 6b, and the junction between the thick pillar 4a and the floor 2 is reinforced with triangular stiffening members 92, 92. Since it is stiffened, the inter-layer deformation δ3 during an earthquake becomes the smallest, and the sash lintel 5 is pulled out from the thick pillar 4a and the thin pillar 4b, or the bending deformation of the thin pillar 4b becomes large and the thin pillar is damaged. The fear is gone.

本実施形態に係る木造建築物の耐震構造1は、図4に示した木造建築物51を耐震補強することで得ることができる。 The wooden building earthquake-resistant structure 1 according to this embodiment can be obtained by performing earthquake-resistant reinforcement on the wooden building 51 shown in FIG.

木造建築物51は、柱52a,52bを、それらの脚部53a,53bが地盤11に設置された礎石55,55の天端に載せられる形で該礎石の上に立設してあるとともに、脚部53a,53bを足固め56で相互に連結してある。 The wooden building 51 has pillars 52a and 52b erected on top of cornerstones 55 and 55 installed on the ground 11 so that their legs 53a and 53b are placed on top of the cornerstones. The legs 53a and 53b are connected to each other by a footing 56. As shown in FIG.

また、柱52a,52bの頂部には小屋梁57を架け渡してあるとともに、該小屋梁の下方には差し鴨居58を配置してあり、該差し鴨居の下方には、図示しない敷居との間に襖60を立て込んである。 A roof beam 57 is laid over the tops of the pillars 52a and 52b. Fusuma 60 is set up in the room.

差し鴨居58は、その各端に形成されたほぞ61,61を柱52a,52bのほぞ穴62,62にそれぞれ差し込んだ上、鼻栓や込み栓(図示せず)をほぞ61,61に打ち込むことで、該ほぞがほぞ穴62,62から抜け出さないようになっている。 The tenons 61, 61 formed at each end of the lintel 58 are inserted into the mortises 62, 62 of the pillars 52a, 52b, respectively, and nose plugs and plugs (not shown) are driven into the tenons 61, 61. This prevents the tenons from slipping out of the tenon holes 62,62.

かかる木造建築物51は、耐震補強に際し、利用できるものについては、そのまま生かし、腐食等、損傷が進んでいるのであれば、適宜補修しあるいは交換すればよい。例えば礎石55,55、柱52a,52b、小屋梁57、足固め56、差し鴨居58をそのまま生かして、礎石12,12、太柱4a及び細4b、小屋梁3、足固め14、差し鴨居5とすることが可能である。 Such a wooden building 51 may be used as it is if it can be used for seismic reinforcement. For example, the foundation stones 55, 55, the pillars 52a, 52b, the roof beam 57, the footing 56, and the front door 58 are used as they are to form the foundation stones 12, 12, the thick pillars 4a and thin 4b, the roof beam 3, the footing 14, and the front door 5. Is possible.

上記の方針で耐震補強するには、木造建築物51をいったん解体した後、まず、地盤11に設置された礎石12,12が埋設されるように鉄筋コンクリートからなる耐圧盤18を構築する。 To reinforce the earthquake resistance according to the above policy, after dismantling the wooden building 51, first, a pressure-resistant board 18 made of reinforced concrete is constructed so that the foundation stones 12, 12 placed in the ground 11 are buried.

次に、太柱4aを礎石12の上に立設するとともに、礎石12,12に架け渡すように敷き土台2を配置しつつ、該敷き土台を介して、太柱4aの脚部と図示しない通し柱等の別の柱の脚部とを相互に連結し、次いで、敷き土台2を、耐圧盤18に予め定着されたアンカーボルト19を介して該耐圧盤に連結する。 Next, the thick pillar 4a is erected on the foundation stone 12, and the base 2 is arranged so as to span the foundation stones 12, 12. The base 2 is then connected to the pressure-resistant board 18 via anchor bolts 19 fixed in advance to the pressure-resistant board 18 .

次に、敷き土台2の上に細柱4bを立設する。 Next, thin columns 4b are erected on the flooring base 2. As shown in FIG.

以下、公知の技術を用いて、足固め14、差し鴨居5、小屋梁3、耐力壁91及び三角形状補剛部材92を適宜配置し、木造建築物の耐震構造1を完成させればよい。なお、差し鴨居5の下方に拡がる空間については、耐震補強前の襖60を適宜立て込めばよい。 Then, using a known technique, the footing 14, the lintel 5, the roof beam 3, the bearing wall 91, and the triangular stiffening member 92 are appropriately arranged to complete the earthquake-resistant structure 1 of the wooden building. In addition, the sliding doors 60 before seismic reinforcement may be placed appropriately in the space extending below the sashigamoi 5 .

以上説明したように、本実施形態に係る木造建築物の耐震構造1によれば、上段軸組架構6bの内側に、その面内せん断変形が抑制されるように耐力壁91を配置するとともに、太柱4aの脚部における回転変形が抑制されるように、該太柱と敷き土台2との接合部位を一対の三角形状補剛部材92,92を用いて補剛するようにしたので、大黒柱である太柱4aと敷き土台2とは、補剛前のピン接合とは異なり、剛接合又は剛とみなしえる接合となる。 As described above, according to the earthquake-resistant structure 1 for a wooden building according to the present embodiment, the load-bearing walls 91 are arranged inside the upper frame structure 6b so as to suppress the in-plane shear deformation thereof. A pair of triangular stiffening members 92, 92 are used to stiffen the joints between the thick pillars 4a and the base 2 so as to suppress rotational deformation of the legs of the thick pillars 4a. The thick pillar 4a and the base 2 are rigid joints or joints that can be regarded as rigid, unlike pin joints before stiffening.

そのため、太柱4aが潜在的に有していた高い水平剛性機能は、軸組架構6全体の水平剛性向上への寄与という形で顕在化し、差し鴨居5を含む上段軸組架構6bが耐力壁91で補剛されることと相俟って、軸組架構6全体の層間変形が大幅に抑制される。 Therefore, the high horizontal rigidity function latently possessed by the thick pillars 4a is manifested in the form of contributing to the improvement of the horizontal rigidity of the entire framework 6, and the upper framework 6b including the sashigamoi 5 is a load-bearing wall. Together with the stiffening by 91, inter-story deformation of the entire framework 6 is greatly suppressed.

したがって、細柱4bの損壊あるいは差し鴨居5の抜けといった事態を未然に回避することが可能となり、伝統構法による建物を保存しつつ、その耐震性能を格段に向上させることが可能となる。 Therefore, it is possible to avoid damage to the thin pillars 4b or the falling out of the lining 5, and it is possible to remarkably improve the seismic performance of the building while preserving the traditional construction method.

また、細柱4bについては、敷き土台2との接合部位に対し、必ずしも特段の耐震補強を行う必要がないため、耐震補強すべき部位を限定することも可能となり、より合理的な形で建物再生を図ることも可能となる。 In addition, since it is not always necessary to perform special seismic reinforcement for the joint portion of the thin column 4b with the base 2, it is possible to limit the portion to be seismically strengthened, and the building can be constructed in a more rational manner. It is also possible to attempt reproduction.

加えて、差し鴨居5、敷き土台2、太柱4a及び細柱4bからなる下段軸組架構6aの内側については、足固め14の上方にて例えば襖を立て込む空間として利用することができるため、伝統構法の意匠として貴重な差し鴨居直下の開放空間をそのまま生かすことも可能となる。 In addition, the inner side of the lower frame frame 6a consisting of the front door 5, the floor sill 2, the thick pillars 4a and the thin pillars 4b can be used as a space for e.g. As a design of traditional construction method, it is also possible to make use of the open space directly under the sashikamoi, which is valuable as it is.

本実施形態では、木造建築物51を耐震補強することで木造建築物の耐震構造1を得る場合を説明したが、本発明に係る木造建築物の耐震構造1をどのような手順や方法で構築するかは任意であり、例えば解体された古民家から差し鴨居5だけを構築現場に搬入し、他の部材は新規に調達して構築することが可能である。 In this embodiment, the case of obtaining the wooden building earthquake-resistant structure 1 by seismically reinforcing the wooden building 51 has been described, but what steps and methods are used to construct the wooden building earthquake-resistant structure 1 according to the present invention? For example, it is possible to bring only the sashigamoi 5 from a dismantled old folk house to the construction site, and to procure and construct the other members newly.

また、本実施形態では、本発明の差し鴨居を、隣り合う2つの居室を隔てる柱間鉛直スペースに架け渡された差し鴨居5としたが、これに代えて、建物外周、例えば広縁屋外側に架け渡された横架材であって差し鴨居と同様の構造を有するものであれば、これを本発明の差し鴨居とすることが可能である。 In this embodiment, the sashigamoi of the present invention is the sashigamoi 5 that spans the vertical space between pillars separating two adjacent living rooms. As long as it is a bridged horizontal member and has the same structure as the sashigamoi, it can be used as the sashigamoi of the present invention.

また、本実施形態では、上段軸組架構の内側に配置される第1の補剛手段を耐力壁91で構成したが、本発明に係る第1の補剛手段は、上段軸組架構の面内せん断変形が抑制される限り、その具体的構成は任意であって、耐力壁91に代えて、図5(a)に示すように、上段軸組架構6bの内側空間に位置する4つの入り隅に三角形状補剛部材92をそれぞれ配置して構成する、すなわち、山形鋼101のフランジ101aが接合部材の一方である差し鴨居5の上面に、山形鋼102のフランジ102aが接合部材の他方である太柱4aの側面にそれぞれ当接されるように三角形状補剛部材92を配置し、山形鋼101のフランジ101aが接合部材の一方である差し鴨居5の上面に、山形鋼102のフランジ102aが接合部材の他方である細柱4bの側面にそれぞれ当接されるように三角形状補剛部材92を配置し、山形鋼101のフランジ101aが接合部材の一方である小屋梁3の下面に、山形鋼102のフランジ102aが接合部材の他方である細柱4bの側面にそれぞれ当接されるように三角形状補剛部材92を配置し、山形鋼101のフランジ101aが接合部材の一方である小屋梁3の下面に、山形鋼102のフランジ102aが接合部材の他方である太柱4aの側面にそれぞれ当接されるように三角形状補剛部材92を配置して構成することが可能である。 In addition, in this embodiment, the first stiffening means arranged inside the upper frame is constituted by the bearing wall 91, but the first stiffening means according to the present invention is the surface of the upper frame. As long as the internal shear deformation is suppressed, its specific configuration is arbitrary. In place of the load-bearing wall 91, as shown in FIG. Triangular stiffening members 92 are arranged at the corners, that is, the flange 101a of the angle steel 101 is on the upper surface of the sashigamoi 5, which is one of the joining members, and the flange 102a of the angle steel 102 is on the other side of the joining member. A triangular stiffening member 92 is arranged so as to abut on the side surface of a certain thick pillar 4a, and the flange 101a of the angle steel 101 is attached to the upper surface of the connecting member 5, which is one of the joining members. A triangular stiffening member 92 is placed so that it abuts against the side surface of the thin column 4b, which is the other of the joint members, and the flange 101a of the angle steel 101 is placed on the lower surface of the roof beam 3, which is one of the joint members. The triangular stiffening member 92 is arranged so that the flange 102a of the angle steel 102 is in contact with the side surface of the thin column 4b, which is the other of the joining members, and the flange 101a of the angle steel 101 is one of the joining members. A triangular stiffening member 92 can be arranged on the lower surface of the beam 3 so that the flange 102a of the angle steel 102 abuts against the side surface of the thick column 4a, which is the other joining member.

また、本実施形態では、太柱4aと敷き土台2との接合部位を一対の三角形状補剛部材92,92を用いて補剛するようにしたが、太柱4aの脚部における回転変形が十分抑制されるのであれば、このようなペア配置に代えて、いずれか一方にのみ配置すれば足りるものであり、例えば図5(b)に示すように、軸組架構6の内側に拡がる鉛直空間の側にのみ三角形状補剛部材92を配置するようにしてもかまわない。 Further, in the present embodiment, the joint portion between the thick pillar 4a and the floor sill 2 is stiffened by using a pair of triangular stiffening members 92, 92, but the rotational deformation of the leg portion of the thick pillar 4a does not occur. If it is sufficiently suppressed, it is sufficient to arrange only one of them instead of such a pair arrangement. For example, as shown in FIG. The triangular stiffening member 92 may be arranged only on the space side.

また、本実施形態では、細柱4bと敷き土台2との接合部位を特に補剛しなかったが、これに代えて、細柱4bの脚部における回転変形が抑制されるように、該細柱と敷き土台2との接合部位を、図6に示すように第3の補剛手段としての三角形状補剛部材92を用いて補剛するようにしてもよい。 In addition, in the present embodiment, the joining portion between the thin column 4b and the base 2 is not particularly stiffened. As shown in FIG. 6, the joining portion between the pillar and the floor sill 2 may be stiffened using a triangular stiffening member 92 as a third stiffening means.

かかる構成によれば、軸組架構6全体の水平剛性、ひいてはその層間変形をさらに抑制し、あるいはより確実に抑制することが可能となる。 According to such a configuration, it is possible to further suppress the horizontal rigidity of the framework 6 as a whole and, in turn, the interlayer deformation thereof, or more reliably suppress it.

また、本実施形態では特に言及しなかったが、図6に示すように、細柱4bの側面のうち、軸組架構6の内側空間の側を除く3つの側面であって、差し鴨居5との接合部位を含む高さ範囲に3枚の補強板111をそれぞれ添着するようにしてもよい。 Also, although not specifically mentioned in this embodiment, as shown in FIG. Three reinforcing plates 111 may be affixed in the height range including the joint portion.

かかる構成によれば、細柱4bは、差し鴨居5との接合部位を含む高さ範囲にわたって、その横断面積に3枚の補強板111の横断面積が加わることとなり、細柱4bの損壊はより確実に防止される。 According to such a configuration, the cross-sectional area of the thin column 4b is added to the cross-sectional area of the three reinforcing plates 111 over the height range including the joint portion with the lintel 5, so that the thin column 4b is less likely to be damaged. definitely prevented.

なお、図6においては、細柱4bと敷き土台2との接合部位における三角形状補剛部材92の配置構成と細柱4bへの3枚の補強板111の添着構成が併せて示されているが、これらの構成は選択的であり、いずれか一方のみを採用することが可能である。 In addition, FIG. 6 also shows the arrangement configuration of the triangular stiffening member 92 at the joint portion between the thin column 4b and the base 2, and the attachment configuration of the three reinforcing plates 111 to the thin column 4b. However, these configurations are optional, and only one of them can be adopted.

なお、本実施形態及び上記各変形例では、細柱4bを敷き土台2の上に立設する構成としたが、これに代えて、太柱4aと同様、礎石12に立設するとともに、該細柱の脚部に敷き土台2を連結する構成としてもかまわない。 In addition, in the present embodiment and each of the modifications described above, the thin pillars 4b are constructed to stand on the base 2, but instead of this, the foundation stones 12 are erected in the same manner as the thick pillars 4a. A configuration in which the base 2 is connected to the legs of the thin pillars may also be used.

また、本実施形態では、太柱4aを礎石12の上に立設した状態で該太柱と他の柱とを敷き土台2を介して相互連結する、いわゆる柱勝ち構成としたが、これに代えて、図7(a)に示すように、礎石12,12に敷き土台2を架け渡した上、該敷き土台の上に太柱4a及び細柱4bを立設する土台勝ち構成としてもかまわない。 In this embodiment, the thick pillar 4a is erected on the foundation stone 12, and the thick pillar and other pillars are laid and interconnected via the base 2, which is a so-called pillar construction. Alternatively, as shown in FIG. 7(a), a foundation structure may be employed in which a base 2 is laid over foundation stones 12, 12, and thick pillars 4a and thin pillars 4b are erected on the base. do not have.

また、同図(b)に示すように、鉄筋コンクリートからなる布基礎81を地盤11に構築した上、該布基礎に土台82を敷設して該土台に太柱4a及び細柱4bをそれぞれ立設するようにしてもかまわない。 In addition, as shown in FIG. 4(b), a continuous foundation 81 made of reinforced concrete is constructed on the ground 11, a base 82 is laid on the continuous foundation, and a thick column 4a and a thin column 4b are erected on the foundation. You can do it.

ここで、上記変形例では、三角形状補剛部材92が居室空間に露出する状況が生じ得るが、その場合には、下段軸組架構6aの鉛直空間のうち、太柱4aや細柱4bの側方に拡がる空間に袖壁121を配置して該袖壁に三角形状補剛部材92を埋設し、あるいはそれらを袖壁で覆い隠すようにすればよい。 Here, in the above modified example, a situation may arise in which the triangular stiffening member 92 is exposed in the living room space. A sleeve wall 121 may be placed in the laterally expanding space, and the triangular stiffening member 92 may be embedded in the sleeve wall, or they may be covered with the sleeve wall.

この場合においても、差し鴨居5の下方空間に部分的に利用制限が生じるものの、該下方空間を開放空間として概ね利用できることに変わりはない。 Even in this case, although the use of the space below the sashigamoi 5 is partially restricted, the space below can be generally used as an open space.

なお、図7に示した基礎構成は、上述した実施形態及びすべての変形例について、適用が可能である。 It should be noted that the basic configuration shown in FIG. 7 can be applied to the above-described embodiment and all modifications.

1 木造建築物の耐震構造
2 敷き土台(下段横架材)
3 小屋梁(上段横架材)
4a 太柱(一対の柱)
4b 細柱(一対の柱)
5 差し鴨居
6 軸組架構
6b 上段軸組架構
11 地盤
12 礎石
18 耐圧盤
82 土台(下段横架材)
91 耐力壁(第1の補剛手段)
92 三角形状補剛部材(第1の補剛手段、第2の補剛手段、第3の補剛手段)
111 補強板
1 Seismic structure of wooden building 2 Base (lower level horizontal frame)
3 Shed beams (upper horizontal beams)
4a Thick pillars (a pair of pillars)
4b thin column (a pair of columns)
5 Sashikamoi 6 Frame frame 6b Upper frame frame 11 Ground 12 Foundation stone 18 Pressure-resistant board 82 Foundation (lower horizontal frame)
91 bearing wall (first stiffening means)
92 Triangular stiffening member (first stiffening means, second stiffening means, third stiffening means)
111 reinforcing plate

Claims (7)

土台、敷き土台、足固めその他地盤近傍に配置された横架材を下段横架材、該下段横架材の上方に配置され上階床又は屋根を支持する胴差し、梁、小屋梁等の横架材を上段横架材とし、前記下段横架材、前記上段横架材、それらに接合された一対の柱及びそれらに囲まれた鉛直空間に前記一対の柱のそれぞれに各端が差し込まれる形で配置された差し鴨居で構成される軸組架構を備えた木造建築物の耐震構造において、
前記差し鴨居、前記上段横架材及び前記一対の柱からなる上段軸組架構の面内せん断変形が抑制されるように該上段軸組架構の内側に第1の補剛手段を配置するとともに、前記一対の柱のうち、前記軸組架構に平行な方向の水平剛性が相対的に大きい方の柱を太柱、小さい方の柱を細柱として、前記太柱の脚部における回転変形が抑制されるように該太柱と前記下段横架材との接合部位を第2の補剛手段を用いて補剛することで前記太柱と前記下段横架材とが剛接合又は剛とみなしえる接合となるように構成したことを特徴とする木造建築物の耐震構造。
Bases, paving bases, footings, and other horizontal members placed near the ground are the lower horizontal members, and the horizontal members such as girder, beams, shed beams, etc. that are placed above the lower horizontal members and support the upper floor or roof An upper horizontal member is used as the frame, and each end of the pair of columns is inserted into the lower horizontal member, the upper horizontal member, a pair of pillars joined to them, and the vertical space surrounded by them. In the earthquake-resistant structure of a wooden building with a frame structure composed of sashigamoi arranged in the shape of
A first stiffening means is arranged inside the upper frame structure so as to suppress in-plane shear deformation of the upper frame structure composed of the front door, the upper horizontal member, and the pair of pillars, Of the pair of pillars, the pillar with relatively greater horizontal rigidity in the direction parallel to the framework is designated as a thick pillar, and the pillar with the smaller horizontal rigidity is designated as a thin pillar, thereby suppressing rotational deformation at the leg of the thick pillar. By stiffening the joint portion between the thick pillar and the lower horizontal member using the second stiffening means , the thick pillar and the lower horizontal member can be considered to be rigidly connected or rigid. An earthquake-resistant structure of a wooden building characterized by being constructed so as to be a joint .
前記太柱を150mm角以上の正方形断面、前記細柱を150mm角未満の正方形断面とした請求項1記載の木造建築物の耐震構造。 2. An earthquake-resistant structure for a wooden building according to claim 1, wherein said thick pillar has a square cross section of 150 mm square or more, and said thin pillar has a square cross section of less than 150 mm square. 前記細柱の脚部における回転変形が抑制されるように該細柱と前記下段横架材との接合部位を第3の補剛手段を用いて補剛した請求項1又は請求項2記載の木造建築物の耐震構造。 3. The method according to claim 1 or 2, wherein a third stiffening means is used to stiffen a joint portion between the thin column and the lower horizontal member so as to suppress rotational deformation of the leg portion of the thin column. Seismic structure of wooden buildings. 前記細柱の側面のうち、前記鉛直空間の側を除く側面であって前記差し鴨居との接合部位を含む高さ範囲に補強板を添着した請求項1乃至請求項3のいずれか一記載の木造建築物の耐震構造。 4. A reinforcing plate according to any one of claims 1 to 3, wherein a reinforcing plate is affixed to a side surface of said thin column excluding a side of said vertical space and in a height range including a joint portion with said front door. Seismic structure of wooden buildings. 鉄筋コンクリートからなる布基礎上に敷設された土台を前記下段横架材とした請求項1乃至請求項4のいずれか一記載の木造建築物の耐震構造。 5. An earthquake-resistant structure for a wooden building according to any one of claims 1 to 4, wherein the base laid on the continuous foundation made of reinforced concrete is used as the lower horizontal member. 前記地盤に設置された礎石の上に前記太柱を立設するとともに該太柱の脚部に敷き土台を連結して前記下段横架材とするとともに、該敷き土台の上に前記細柱を立設し、前記礎石が埋設される形で前記地盤に鉄筋コンクリートからなる耐圧盤を構築するとともに、該耐圧盤に前記敷き土台を連結した請求項1乃至請求項4のいずれか一記載の木造建築物の耐震構造。 The thick pillars are erected on top of foundation stones placed on the ground, and the bases are connected to the legs of the thick pillars to form the lower horizontal members, and the thin pillars are placed on top of the bases. 5. The wooden building according to any one of claims 1 to 4, wherein a pressure-resistant board made of reinforced concrete is constructed on the ground in such a manner that the foundation stone is buried, and the flooring is connected to the pressure-resistant board. Seismic structure of things. 前記地盤に設置された礎石の上に敷き土台を架け渡して該敷き土台を前記下段横架材とするとともに前記敷き土台の上に前記一対の柱をそれぞれ立設し、前記礎石が埋設される形で前記地盤に鉄筋コンクリートからなる耐圧盤を構築するとともに該耐圧盤に前記敷き土台を連結した請求項1乃至請求項4のいずれか一記載の木造建築物の耐震構造。 A bed base is laid over the foundation stone set on the ground, and the bed base is used as the lower horizontal member, and the pair of pillars are respectively erected on the bed base, and the foundation stone is buried. 5. An earthquake-resistant structure for a wooden building according to any one of claims 1 to 4, wherein a pressure-resistant board made of reinforced concrete is constructed on said ground in the form of a reinforced concrete, and said flooring is connected to said pressure-resistant board.
JP2019116503A 2019-06-24 2019-06-24 Seismic structure of wooden buildings Active JP7246263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019116503A JP7246263B2 (en) 2019-06-24 2019-06-24 Seismic structure of wooden buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019116503A JP7246263B2 (en) 2019-06-24 2019-06-24 Seismic structure of wooden buildings

Publications (2)

Publication Number Publication Date
JP2021001508A JP2021001508A (en) 2021-01-07
JP7246263B2 true JP7246263B2 (en) 2023-03-27

Family

ID=73994834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019116503A Active JP7246263B2 (en) 2019-06-24 2019-06-24 Seismic structure of wooden buildings

Country Status (1)

Country Link
JP (1) JP7246263B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054490A (en) 1998-08-03 2000-02-22 Zero Corporation:Kk Building reinforcing hardware
JP2002038588A (en) 2000-07-27 2002-02-06 Hasebe:Kk Triangular metal angle brace set for wooden building
JP2003293463A (en) 2002-04-02 2003-10-15 Tostem Homewell Kk Reinforcing fitting and reinforcing method for wooden building
JP2004238912A (en) 2003-02-06 2004-08-26 Aichiken:Kk Framework structure
JP2005083145A (en) 2003-09-11 2005-03-31 Nippon Gijutsu Hanbai Kk Earthquake-resisting device for building
JP2008308906A (en) 2007-06-15 2008-12-25 Sumitomo Fudosan Kk Method of aseismic response control of wooden building
JP2011064044A (en) 2009-09-19 2011-03-31 Sumitomo Forestry Co Ltd Method for reinforcing building in traditional construction method
JP2016223232A (en) 2015-05-27 2016-12-28 孝三 水谷 Joint connection reinforcement unit and earthquake resistance method using the same
JP2017101511A (en) 2015-12-04 2017-06-08 株式会社メッツ Wooden building reinforcement method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054490A (en) 1998-08-03 2000-02-22 Zero Corporation:Kk Building reinforcing hardware
JP2002038588A (en) 2000-07-27 2002-02-06 Hasebe:Kk Triangular metal angle brace set for wooden building
JP2003293463A (en) 2002-04-02 2003-10-15 Tostem Homewell Kk Reinforcing fitting and reinforcing method for wooden building
JP2004238912A (en) 2003-02-06 2004-08-26 Aichiken:Kk Framework structure
JP2005083145A (en) 2003-09-11 2005-03-31 Nippon Gijutsu Hanbai Kk Earthquake-resisting device for building
JP2008308906A (en) 2007-06-15 2008-12-25 Sumitomo Fudosan Kk Method of aseismic response control of wooden building
JP2011064044A (en) 2009-09-19 2011-03-31 Sumitomo Forestry Co Ltd Method for reinforcing building in traditional construction method
JP2016223232A (en) 2015-05-27 2016-12-28 孝三 水谷 Joint connection reinforcement unit and earthquake resistance method using the same
JP2017101511A (en) 2015-12-04 2017-06-08 株式会社メッツ Wooden building reinforcement method

Also Published As

Publication number Publication date
JP2021001508A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP4928091B2 (en) Seismic frame at the opening of a wooden building
JP2010159543A (en) Aseismatic reinforcing structure
JP7246263B2 (en) Seismic structure of wooden buildings
KR102621354B1 (en) Prefabricated structural systems and their applications
JP4270380B2 (en) Seismic reinforcement structure and method for wooden frame houses
JP5711897B2 (en) Seismic strengthening method and seismic strengthening frame for existing buildings
JP7198565B2 (en) Seismic structure of wooden buildings
JP7134152B2 (en) Horizontal structural surface reinforcement plate and horizontal structural surface reinforcement structure
JP5475054B2 (en) Seismic shelter reinforcement method and seismic shelter with high seismic strength
JP7216369B2 (en) Wooden earthquake-resistant shelter and earthquake-resistant reinforcement structure
JP6893151B2 (en) Gate type frame and its construction method
AU2010249313A1 (en) Wooden building
JP6553003B2 (en) Damping wall structure for reinforcement
RU88696U1 (en) WOODEN BAR FOR ESTABLISHING WALLS
JP2015098780A (en) Existing building earthquake strengthening method and earthquake strengthening frame
JP5647713B2 (en) Building structure
JP2012233374A5 (en)
JP7189004B2 (en) Seismic reinforcement wall structure
JP7323999B2 (en) bearing wall
JP2015101850A (en) Framework wall structure, building, and framework wall building construction
JP4839161B2 (en) Wooden frame structure
JP2007262771A (en) Aseismatic reinforcement structure
JP4417743B2 (en) Column and beam frames in wooden buildings
JP2004027531A (en) Wooden frame body for wall member of unit type transparent material wall structure building, transparent material wall member, adjusting wooden frame body, transparent material wall structure building unit set, and unit type transparent material wall structure building
RU2597901C1 (en) Reconstructed building and method for low-rise building reconstruction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230314

R150 Certificate of patent or registration of utility model

Ref document number: 7246263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150