JP7240667B2 - 補強された土構造物、及び土構造物補強方法 - Google Patents

補強された土構造物、及び土構造物補強方法 Download PDF

Info

Publication number
JP7240667B2
JP7240667B2 JP2019030309A JP2019030309A JP7240667B2 JP 7240667 B2 JP7240667 B2 JP 7240667B2 JP 2019030309 A JP2019030309 A JP 2019030309A JP 2019030309 A JP2019030309 A JP 2019030309A JP 7240667 B2 JP7240667 B2 JP 7240667B2
Authority
JP
Japan
Prior art keywords
water permeability
soil structure
water
improving body
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019030309A
Other languages
English (en)
Other versions
JP2020133311A (ja
Inventor
有史 足立
岳郎 西嶋
誠 木村
良介 渦岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Hazama Ando Corp
Original Assignee
Kyoto University
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Hazama Ando Corp filed Critical Kyoto University
Priority to JP2019030309A priority Critical patent/JP7240667B2/ja
Publication of JP2020133311A publication Critical patent/JP2020133311A/ja
Application granted granted Critical
Publication of JP7240667B2 publication Critical patent/JP7240667B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Revetment (AREA)

Description

本願発明は、河川や海岸、ため池などにおける堤防や防潮堤、えん堤といった土構造物に関する技術であり、より具体的には、土構造物本体よりも透水係数が低い「止水性改良体」と土構造物本体よりも透水係数が高い「透水性改良体」によって補強された土構造物、及びその方法に関するものである。
高度経済成長期に集中的に整備されてきた建設インフラストラクチャー(以下、「建設インフラ」という。)は、既に相当な老朽化が進んでいることが指摘されている。平成26年には「道路の老朽化対策の本格実施に関する提言(社会資本整備審議会)」がとりまとめられ、平成24年の笹子トンネルの例を挙げて「近い将来、橋梁の崩落など人命や社会装置に関わる致命的な事態を招くであろう」と警鐘を鳴らし、建設インフラの維持管理の重要性を強く唱えている。このような背景のもと、国は道路法施行規則の一部を改正する省令を公布し、具体的な建設インフラの点検方法、主な変状の着目箇所、判定事例写真などを示した定期点検要領を策定している。
代表的な建設インフラとしては、ダムや橋梁といった構造物のほか、海岸堤防や河川堤防、防潮堤などを挙げることができる。我が国の海岸線の総延長は、約35,000kmと世界でも6番目に長く、当然ながら海岸保全地区など必要箇所には海岸堤防が構築されており、その機能はもとより膨大な延長があるという点からも極めて重要な建設インフラといえる。
海岸堤防は、基本的には海岸法(昭和三十一年五月十二日法律第百一号)にしたがって計画され構築されている。この海岸法は、愛知県を中心に甚大な被害を受けた昭和28年9月の台風13号が契機となり昭和31年に制定された。つまり多くの海岸堤防は、構築されて以降すでに相当の期間が経過しており、2010年時点でおよそ4割の施設が50年以上経過しているといわれている。そのため、海岸堤防の劣化診断を行うための点検がますます重要視されているところである.
河川や海岸等における堤防や防潮堤など(以下、総称して「土構造物」という。)は、盛土を行うことによって構築されるのが一般的であり、断面(堤体延長方向に対して直角な横断面)視が概ね台形であって、河川や海がある堤外地側(以下、「表側」という。)と堤内地側(以下、「裏側」という。)それぞれにのり面が形成される。
土構造物が盛土体であることから、特に表側のり面ののり尻(のり面の下端)付近における洗掘や越流水によって裏側で発生する洗堀、土構造物の裏側で生じるパイピング、浸透水による盛土本体(つまり堤体)の強度劣化(以下、「浸透破壊」という。)といった現象は常に懸念されるところである。ましてや多くの土構造物は完成から相当の年月が経過していることから、既に洗掘され、パイピングが生じ、あるいは浸透破壊が進行しているものも少なくない。
また、現地の状況によっては、砂や砂質土からなる透水性地盤や、液状化層を含む地盤など、軟弱層の上に土構造物が構築されることもあり、この場合は、地震時によって基礎地盤が液状化することで土構造物そのものも不安定化するおそれがある。
著しい洗掘等が生じた土構造物に対しては、補強対策が実施される。従来、土構造物を補強する工法としては、表側、裏側ともにのり面の外側(つまり堤体の外側)に止水性の地盤改良体や鋼矢板などの構造体を形成する工法が主流であった。しかしながら、この地盤改良体を形成するには、三点式杭打機を使用した深層混合処理など比較的大規模な施工機械を配置するスペースが必要となり、そのため対象となる延長を考えると相当のコストや工期を要し、容易に事業化することができないという問題もある。
さらに、表側、裏側ともに止水性の地盤改良体を形成するという従来工法では、止水性は向上するものの排水機能が著しく低下するため、一旦海水や河川水が堤体内に浸透してしまうと堤体内に浸透水が滞水され、その結果、浸透破壊を生じるおそれがあるという問題も指摘することができる。特に、地震時においては堤体内の浸透水が要因となり、堤体そのものの液状化が生じ、この場合は堤防の変形が長期化することが知られている。
そこで特許文献1では、堤体と一体になるようにポーラスコンクリート製のせん断補強工を川裏ののり尻に敷設することによって、堤体内の浸透水を川裏側から排水し、堤体の強度低下を防止する技術について提案している。
特開2006-200249号公報
既述したとおり、土構造物を補強する従来技術は、表側、裏側ともに止水性の地盤改良体を形成するため堤体内に浸透水が滞水されるという問題があり、また相当のコストや工期を要することから容易に事業化することができないという問題がある。さらに、表側、裏側ともに堤体外に地盤改良体を形成するため、堤体そのものの強度が増加することはなく、地震時における堤体内のすべりや液状化による沈下を防止することはできないという問題もある。特許文献1は、ポーラスコンクリート製のせん断補強工を敷設することで、川裏側からの排水機能を確保するとともに、川裏側の堤体をせん断補強するものであるが、川表側における洗掘等を防止することはできず、また川表側の堤体を補強するものではないため地震に対する補強効果を期待することもできない。
本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち表裏側の洗掘や裏側で生じるパイピング、堤体の浸透破壊の防止を図ることができ、しかも地震時における堤体内のすべりや液状化による沈下の防止を図ることができる土構造物、及びその方法を提供することである。これにより、堤体内の地下水を速やかに排水することができ、盛土の強度低下を防止することができる。
本願発明は、堤体内のうち表側に比較的透水性が低い「止水性改良体」を構築するとともに、堤体内のうち裏側に比較的透水性が高い「透水性改良体」を構築することによって、表裏側の洗掘や裏側で生じるパイピング、堤体の浸透破壊の防止を図る、という点に着目してなされたものであり、これまでにない発想に基づいて行われた発明である。
本願発明の補強された土構造物は、表側のり面と裏側のり面を有し、さらに「本体部」とこの本体部よりも透水性が低い「止水性改良体」、本体部よりも透水性が高い「透水性改良体」を備えたものである。なお止水性改良体は、セメント系材料を主体とし、のり尻を含む表側のり面の一部に形成され、一方の透水性改良体は、セメント系材料を主体とし、のり尻を含む裏側のり面の一部に形成される。
本願発明の補強された土構造物は、止水性改良体や透水性改良体がのり尻を超えてのり面の外側(つまり堤体の外側)の地盤の一部にも形成されたものとすることもできる。
本願発明の補強された土構造物は、プレキャストコンクリート製の止水性改良体や透水性改良体を利用したものとすることもできる。
本願発明の補強された土構造物は、止水性改良体や透水性改良体が延長方向(堤体の軸方向)に間隔を空けて断続的に形成されたものとすることもできる。
本願発明の土構造物補強方法は、表側のり面と裏側のり面を有する既設の土構造物を補強する方法であって、止水性改良体形成工程と透水性改良体形成工程を備えた方法である。このうち止水性改良体形成工程では、土構造物のうちのり尻を含む表側のり面の一部に、土構造物(堤体本体)よりも透水性が低い「止水性改良体」を形成する。一方の透水性改良体形成工程では、土構造物のうちのり尻を含む裏側のり面の一部に、土構造物(堤体本体)よりも透水性が高い透水性改良体を形成する。
本願発明の土構造物補強方法は、機械攪拌工法、高圧噴射攪拌工法、又は薬液注入工法を用い、セメント系固化材で土構造物の地盤改良を行うことによって、止水性改良体を形成する方法とすることもできる。
本願発明の土構造物補強方法は、水中不分離性のポーラスコンクリートによる固化体を形成することによって、透水性改良体を形成する方法とすることもできる。
本願発明の補強された土構造物、及び土構造物補強方法には、次のような効果がある。
(1)堤体のうちのり尻を含む表側のり面の一部に「止水性改良体」を形成することによって、表側の洗掘や裏側で生じるパイピング、堤体の浸透破壊の防止を図ることができる。
(2)堤体のうちのり尻を含む裏側のり面の一部に「透水性改良体」を形成することによって、堤体内の浸透水を排水することができ、その結果、裏側の洗掘を防止し、地震時における堤体のせん断強度の低下を防ぐことができるとともに液状化被害を回避することができる。
(3)堤体のうち表側に止水性改良体、裏側に透水性改良体を形成することによって、表側あるいは裏側の一方にのみ改良体を形成したケースや、表側と裏側の両方に止水性改良体を形成したケースよりも、地震時における堤体の沈下を低減することができる。
河川や海岸等における堤防や防潮堤といった一般的な土構造物の断面図。 本願発明の補強された土構造物を示す断面図。 河川の水位が上昇したときの本願発明の補強された土構造物を示す断面図。 のり面の外側に張り出して形成された止水性改良体と透水性改良体を備えた補強された土構造物を示す断面図。 (a)は断続的に形成された止水性改良体を備えた補強された土構造物を示す正面図、(b)は一連の止水性改良体を備えた補強された土構造物を示す正面図。 本願発明の土構造物補強方法の主な工程を示す施工フロー図。 解析を行った5つのケースを示すモデル図。 (a)はケースごとの解析結果をグラフで示す結果図、(b)はケースごとの解析結果を表で示す結果図。
本願発明の補強された土構造物、及び土構造物補強方法の実施形態の例を図に基づいて説明する。
1.定義
本願発明の実施形態の例を説明するにあたって、はじめにここで用いる用語の定義を示しておく。
(表側と裏側)
図1は、河川や海岸等における堤防や防潮堤といった一般的な土構造物Dmの断面図である。一般的な土構造物Dmは、河川や海岸に沿って(図では紙面奥行方向に)相当に長い延長で構築される盛土体であり、またこの図に示すようにその断面形状は概ね台形とされることが多い。土構造物Dmは、河川や海からの浸水を遮るものであり、換言すれば河川や海がある堤外地側(図では左側)と、その反対側となる堤内地側(図では右側)を分離するものである。便宜上ここでは、堤外地側のことを「表側」ということとし、堤内地側のことを「裏側」ということとする。
(表側のり面と裏側のり面)
上記のとおり土構造物Dmの断面形状は概ね台形とされることから、その両側面(図では左右の側面)にはのり面が形成される。左右2つののり面を区別するため、便宜上ここでは、土構造物Dmの表側に形成されるのり面のことを「表側のり面Sf」ということとし、土構造物Dmの裏側に形成されるのり面のことを「裏側のり面Sr」ということとする。同様に、表側のり面Sfの下端となるのり尻(のり先ともいう。)のことを「表側のり尻Tf」ということとし、裏側のり面Srの下端となるのり尻のことを「裏側のり尻Tr」ということとする。
2.補強された土構造物
次に、本願発明の補強された土構造物について、図を参照しながら詳しく説明する。なお、本願発明の土構造物補強方法は、いわば本願発明の補強された土構造物を構築する方法であり、したがってまずは本願発明の補強された土構造物について説明し、その後に本願発明の土構造物補強方法について説明することとする。また便宜上ここでは、河川堤防として機能する補強された土構造物として説明するが、本願発明の補強された土構造物は河川堤防に限らず海岸堤防や防潮堤、あるいは砂防ダムや堰堤といった機能を有する土構造物としても利用することができる。
(全体構成)
図2は、本願発明の補強された土構造物100を示す断面図である。この図に示すように補強された土構造物100は、断面中央部に位置する本体部110と、表側に形成される止水性改良体120、裏側に形成される透水性改良体130を含んで形成される。本体部110は盛土材を主体として形成され、止水性改良体120と透水性改良体130はセメント系材料を主体として形成するとよい。また、止水性改良体120は、表側のり尻Tfを含む表側のり面Sfの一部に形成されるもので、その透水性は本体部110よりも低い(つまり止水性が高い)。一方の透水性改良体130は、裏側のり尻Trを含む裏側のり面Srの一部に形成されるもので、その透水性は本体部110よりも高い(つまり排水性が高い)。
図2に示すように、本体部110と止水性改良体120、透水性改良体130はそれぞれ傾斜面を有しており、本体部110の傾斜面(表側)と止水性改良体120の傾斜面によって一連の表側のり面Sfが形成され、本体部110の傾斜面(裏側)と透水性改良体130の傾斜面によって一連の裏側のり面Srが形成される。その結果、本願発明の補強された土構造物100は、本体部110と止水性改良体120の一部(地上部)、そして透水性改良体130の一部(地上部)によって、その断面視が概ね台形状となる。
本願発明の補強された土構造物100は、新設の構造物として構築することもできるし、既存の土構造物Dmを補強することで構築することもできる。新設の構造物として構築する場合は、計画した形状や寸法となるように本体部110と止水性改良体120、透水性改良体130を設置して構築する。一方、既存の土構造物Dmを補強する場合は、土構造物Dmのうち表側の一部に止水性改良体120を構築するとともに、土構造物Dmのうち裏側の一部に透水性改良体130を構築し、土構造物Dmのうち残った部分を本体部110とすることで構築するとよい。
(止水性改良体)
止水性改良体120は、図3に示すように河川の水位が上昇したときに本体部110へ浸透する水を抑制する機能と、河川が高水位の状態(図3の状態)から水位が低下した状態(図2の状態)となる際の洗掘(特に表側のり尻Tf付近の洗掘)を防止する機能を有する。そのため止水性改良体120は、表側のり尻Tfを含む表側のり面Sfの一部に形成され、その透水性が本体部110よりも低く(つまり止水性が高く)なるように形成される。また、地震時における補強部材としても機能するように、つまり相当の強度(せん断強度や曲げ強度)を有するように、止水性改良体120はセメント系材料を主体として形成するとよい。
止水性改良体120は、所定の透水性(止水性)や強度を満たすように、あるいは施工性を考慮したうえで設計される。特に透水性や強度に関しては、豪雨時や地震時においても、補強された土構造物100が異常な沈下や変状を生じないよう、あるいは本体部110の液状化が生じないよう設計することが望ましい。具体的には、豪雨時に想定される河川水位、そして地震時荷重を与条件とし、数値解析(例えばFEM解析)によって得られた結果に基づいて、止水性改良体120の透水性や強度を設計するとよい。
止水性改良体120を形成するにあたっては、既設の土構造物Dm(あるいは本体部110)の一部に対して地盤改良を行うことで形成することができる。この場合、機械攪拌工法や高圧噴射攪拌工法、あるいは薬液注入工法によって、土構造物Dm(あるいは本体部110)の一部をセメント系固化材で改良するとよい。あるいは、止水性改良体120をコンクリート製として設計し、場所打ちコンクリートによる固化体やプレキャストコンクリートの固化体を所定位置に設置することで止水性改良体120を形成することもできる。
(透水性改良体)
透水性改良体130は、図3に示すように河川の水位が上昇したときに本体部110へ浸透した水を外部に排水する機能と、その排水の際に生じる洗掘(特に裏側のり尻Tr付近の洗掘)を防止する機能を有する。そのため透水性改良体130は、裏側のり尻Trを含む裏側のり面Srの一部に形成され、その透水性が本体部110よりも高く(つまり排水性が高く)なるように形成される。また、地震時における補強部材としても機能するように、つまり相当の強度(せん断強度や曲げ強度)を有するように、透水性改良体130はセメント系材料を主体として形成するとよい。なお、透水性改良体130から排水された水を所定位置まで流すため、透水性改良体130の延長方向に沿って図2に示す排水溝140を設置することもできる。
透水性改良体130は、所定の透水性(排水性)や強度を満たすように、あるいは施工性を考慮したうえで設計される。特に透水性や強度に関しては、豪雨時や地震時においても、補強された土構造物100が異常な沈下や変状を生じないよう、あるいは本体部110の液状化被害が生じないよう設計することが望ましい。具体的には、豪雨時に想定される河川水位、そして地震時荷重を与条件とし、数値解析(例えばFEM解析)によって得られた結果に基づいて、透水性改良体130の透水性や強度を設計するとよい。また透水性改良体130は、図3に示すように、地上に位置するA部と、軟弱層に位置するB部、支持層に位置するC部に分け、目標とする安定性能に応じて、A部とB部、C部をそれぞれ異なる物性(強度や透水性など)の材料で設計することもできる。例えば、すべり安定性の面で下層ほど強度を大きくする条件で設計することもできるし、あるいは上部の砂層のパイピング抵抗を高めるために上部砂層に位置する透水性改良体130(図3ではB部)の透水係数をのり尻部より低下させる条件で設計することもできる。
透水性改良体130は、コンクリート製の固化体を設置することで形成することができる。この場合、場所打ちコンクリートによって固化体を設置することもできるし、プレキャストコンクリートの固化体を設置することもできる。ただし、透水性改良体130は適当な透水性(排水性)が要求されることから、多孔質のコンクリート(以下、「ポーラスコンクリート」という。)製の固化体を利用することが望ましい。また、透水性改良体130が排水機能を有するため、排水時にセメント分(モルタル分)が流出しないよう水中不分離性のコンクリートによる固化体とするとよい。
水中不分離性のポーラスコンクリートの配合設計を行うにあたっては、目詰まりを防ぐように、つまり適当な空隙率を確保するように骨材の粒径を選定し、水中不分離性を具備するように水中不分離材を添加するとともに、施工性に配慮して高性能減水剤を添加するよう配合するとよい。
(改良体の形成範囲)
図2や図3に示す補強された土構造物100は、支持層の上に堆積した軟弱層(砂や砂質土からなる透水性地盤や、液状化層など)の上に構築されていることから、この図に示す止水性改良体120と透水性改良体130は、軟弱層を貫通してさらに支持層に根入れするように形成されている。もちろん、軟弱層の強度によっては、支持層に根入れすることなく軟弱層にのみ根入れするように止水性改良体120や透水性改良体130を形成することもできるし、支持層に根入れすることなく支持層上に載置するように止水性改良体120や透水性改良体130を形成することもできる。
また止水性改良体120と透水性改良体130は、その一部が表側のり面Sfや裏側のり面Srの外側に形成されたものとすることもできる。具体的には図4に示すように、表側のり面Sfや裏側のり面Srを超えて、つまり表側のり尻Tfよりも河川側(図では左側)、あるいは裏側のり尻Trよりも河川の反対側(図では右側)に張り出し、その張り出した範囲の地盤(軟弱層と支持層)下にも止水性改良体120や透水性改良体130の一部を形成するわけである。図2と図4を比較すると、図4に示す止水性改良体120と透水性改良体130は、表側のり面Sfや裏側のり面Srから張り出した部分だけ大きく形成されている。そのため、補強された土構造物100の構築にかかる工期やコストは増大するものの、表側のり尻Tfや裏側のり尻Tr付近における洗掘防止機能や、地震時における補強機能は向上する。したがって、図4に示すような形式の止水性改良体120と透水性改良体130は、状況に応じて適宜設計するとよい。
既述したとおり一般的な土構造物Dmは、河川や海岸に沿って相当に長い延長で構築される。同様に、本願発明の補強された土構造物100も、河川や海岸に沿って(図2や図4では紙面奥行方向に)相当に長い延長で構築するとより好適となる。この場合、当然ながら止水性改良体120と透水性改良体130も相当な延長で形成されるが、図5に示すように、延長方向において一連のものとして形成することもできるし、断続的に形成することもできる。図5は、表側のり面Sf(裏側のり面Sr)を正面から見た補強された土構造物100を示す正面図であり、このうち図5(a)では隙間Gpを設けつつ複数(この図では4つ)の止水性改良体120や透水性改良体130が断続的に形成されており、図5(b)では隙間Gpを設けることなく連続した止水性改良体120や透水性改良体130が形成されている。
3.土構造物補強方法
次に本願発明の土構造物補強方法について図6を参照しながら説明する。なお、本願発明の土構造物補強方法は、いわばここまで説明した補強された土構造物100を構築する方法であり、したがって補強された土構造物100で説明した内容と重複する説明は避け、本願発明の土構造物補強方法に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、「1.定義」の説明を含め「2.補強された土構造物」で記載したものと同様である。
図6は、本願発明の土構造物補強方法の主な工程を示す施工フロー図である。まず、止水性改良体120や透水性改良体130を形成する位置を示す測量を行ったり、必要な機器を搬入して所定位置に配置したり、その日の施工手順を確認するといった準備工を行う。
準備が整うと、既設の土構造物Dmのうち表側の一部に止水性改良体120を形成する。具体的には、機械攪拌工法や高圧噴射攪拌工法、あるいは薬液注入工法を用い、土構造物Dmに対してセメント系固化材による地盤改良を行う(Step10)ことで、止水性改良体120を形成する。
一方、既設の土構造物Dmのうち裏側の一部には透水性改良体130を形成する。具体的には、水中不分離性のポーラスコンクリート製固化体を所定位置に設置する(Step20)ことで、透水性改良体130を形成する。このとき、透水性改良体130を形成するため土構造物Dmのうち当該部分の盛土材は撤去する場合は、掘削高さが所定高以上となるなど現場の状況に応じて適宜土留め工を併用したうえで撤去作業を行うとよい。なお、透水性改良体130を形成した後に、図2に示す排水溝140を、透水性改良体130の延長方向に沿って設置することもできる。
止水性改良体120を形成する工程と透水性改良体130を形成する工程は、どちらか一方の工程を先行して行うこともできるし、両方の工程を同時に(並行して)行うこともできる。計画した範囲すべての止水性改良体120と透水性改良体130を形成すると、後片付けを行って、作業を終了する。
4.解析結果
以下、本願発明の効果を確認するために本願の発明者らが実施した解析結果について説明する。図7は、解析を行った5つのケースを示すモデル図であり、図8は、これらケースごとの解析結果を示す結果図である。
まず、図7を参照しながら本解析を行った5つのケースについて説明する。図7(a)は既設の土構造物Dmに対して対策を行っていないケース(以下、「無対策のケース」という。)であり、図7(b)は既設の土構造物Dmのうち表側に止水性改良体120を形成したケース(以下、「対策1のケース」という。)、図7(c)は既設の土構造物Dmのうち裏側に透水性改良体130を形成したケース(以下、「対策2のケース」という。)、図7(d)は既設の土構造物Dmのうち表側と裏側に止水性改良体120を形成したケース(以下、「対策3のケース」という。)、図7(e)は既設の土構造物Dmのうち表側に止水性改良体120、裏側に透水性改良体130を形成した本願発明のケース(以下、「対策4のケース」という。)である。なお図7に示すように、軟弱層が砂層(液状化層)、支持層が粘性土層という条件で解析を行っている。
図に示す河川水位を条件として与え、さらに20秒間の地震動を与え、図7に示す5つのケースそれぞれに対してFEM解析を行って本体部110の沈下量を求めた。その結果、図8(a)に示すように、地震動が生じると5ケースともに天端の沈下が始まり、地震動が終了したときに5ケースとも沈下量が最大値となった。その最大沈下量を示す図8(b)を見ると、無対策のケースで最も大きな沈下量(86cm)を示し、対策4のケースで最も小さな沈下量(34cm)を示していることが分かる。ここで大きな沈下量を示しているケースは本体部110に液状化が生じていることが推定される一方で、本願発明(対策4のケース)では沈下量を抑制できており、すなわち基礎地盤の液状化による堤体の沈下被害を低減することができる。
また図8(b)のうち沈下減少率を見ると、表側に止水性改良体120を形成した対策1のケースにおける沈下減少率が15%であり、裏側に透水性改良体130を形成した対策2のケースにおける沈下減少率が20%である。つまり、両方の沈下減少率を加えた値(15+20=35%)と比べても、対策4のケースの沈下減少率(61%)の方が大きいことが分かる。すなわち本願発明(対策4のケース)は、対策1のケース単独の効果と対策2のケース単独の効果を単に加えた以上の効果が期待でき、換言すれば表側の止水性改良体120と裏側の透水性改良体130が相互に有機的に機能することでより大きな効果を発揮することが理解できる。
本願発明の補強された土構造物、及び土構造物補強方法は、河川堤防や海岸堤防、防潮堤、あるいは砂防ダムや堰堤など、一方側(表側)に水が滞留する土構造物に利用することができる。本願発明によれば、海岸堤防や河川堤防を効果的に補強することができ、すなわち建設インフラの長寿命化に寄与することを考えれば、本願発明は産業上利用できるばかりでなく社会的にも大きな貢献が期待できる発明といえる。
100 補強された土構造物
110 (補強された土構造物の)本体部
120 (補強された土構造物の)止水性改良体
130 (補強された土構造物の)透水性改良体
140 (補強された土構造物の)排水溝
Dm 土構造物
Sf 表側のり面
Sr 裏側のり面
Tf 表側のり尻
Tr 裏側のり尻
Gp 隙間

Claims (7)

  1. 支持層の上に構築され表側が湛水される土構造物において、
    本体部と、該本体部よりも透水性が低い止水性改良体と、該本体部よりも透水性が高い透水性改良体と、を備え、
    前記止水性改良体は、セメント系材料を主体とし、のり尻を含む表側のり面の一部に形成され、
    前記透水性改良体は、セメント系材料を主体とし、のり尻を含む裏側のり面の一部に形成され、
    前記透水性改良体は、支持層に根入れされた、
    ことを特徴とする補強された土構造物。
  2. 支持層の上に堆積した軟弱層の上に構築され、
    前記透水性改良体は、地上に位置する部分と、軟弱層に位置する部分、支持層に位置する部分で、それぞれせん断強度及び/又は曲げ強度が異なり、下層ほどせん断強度及び/又は曲げ強度が大きい、
    ことを特徴とする請求項1記載の補強された土構造物。
  3. 支持層の上に堆積した軟弱層の上に構築され、
    前記透水性改良体は、地上に位置する部分と、軟弱層に位置する部分で、それぞれ透水性が異なり、地上に位置する部分の透水性よりも軟弱層に位置する部分の透水性が高い
    ことを特徴とする請求項1記載の補強された土構造物。
  4. 前記透水性改良体が、プレキャストコンクリート製である、
    ことを特徴とする請求項1乃至請求項3のいずれかに記載の補強された土構造物。
  5. 支持層の上に構築され表側が湛水される既設の土構造物を補強する方法において、
    前記土構造物のうちのり尻を含む表側のり面の一部に、該土構造物よりも透水性が低い止水性改良体を形成する止水性改良体形成工程と、
    前記土構造物のうちのり尻を含む裏側のり面の一部に、該土構造物よりも透水性が高い透水性改良体を形成する透水性改良体形成工程と、を備え
    前記透水性改良体形成工程では、支持層に根入れするように前記透水性改良体を形成する、
    ことを特徴とする土構造物補強方法。
  6. 前記土構造物は、支持層の上に堆積した軟弱層の上に構築され、
    前記透水性改良体のうち、地上に位置する部分と、軟弱層に位置する部分、支持層に位置する部分で、それぞれ異なるせん断強度及び/又は曲げ強度となるように、かつ下層ほどせん断強度及び/又は曲げ強度が大きくなるように設計する工程を、さらに備え、
    前記透水性改良体形成工程では、下層ほどせん断強度及び/又は曲げ強度が大きい前記透水性改良体を形成する、
    ことを特徴とする請求項5記載の補強された土構造物補強方法。
  7. 前記土構造物は、支持層の上に堆積した軟弱層の上に構築され、
    前記透水性改良体のうち、地上に位置する部分と、軟弱層に位置する部分で、それぞれ異なる透水性となるように、かつ地上に位置する部分の透水性よりも軟弱層に位置する部分の透水性が高くなるように設計する工程を、さらに備え、
    前記透水性改良体形成工程では、地上に位置する部分の透水性よりも軟弱層に位置する部分の透水性が高い前記透水性改良体を形成する、
    ことを特徴とする請求項5記載の補強された土構造物補強方法。
JP2019030309A 2019-02-22 2019-02-22 補強された土構造物、及び土構造物補強方法 Active JP7240667B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019030309A JP7240667B2 (ja) 2019-02-22 2019-02-22 補強された土構造物、及び土構造物補強方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019030309A JP7240667B2 (ja) 2019-02-22 2019-02-22 補強された土構造物、及び土構造物補強方法

Publications (2)

Publication Number Publication Date
JP2020133311A JP2020133311A (ja) 2020-08-31
JP7240667B2 true JP7240667B2 (ja) 2023-03-16

Family

ID=72262728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019030309A Active JP7240667B2 (ja) 2019-02-22 2019-02-22 補強された土構造物、及び土構造物補強方法

Country Status (1)

Country Link
JP (1) JP7240667B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214145A (ja) 2005-02-03 2006-08-17 Dai Nippon Construction 堤防の補強構造および補強工法
JP2006274655A (ja) 2005-03-29 2006-10-12 National Institute For Rural Engineering 盛土堤体のドレーン構造及びその施工方法
JP2011038302A (ja) 2009-08-11 2011-02-24 Hazama Corp 傾斜地盤補強構造及び工法
JP2011153449A (ja) 2010-01-27 2011-08-11 East Japan Railway Co 地盤改良体の造成方法
JP2014015716A (ja) 2012-07-05 2014-01-30 Taisei Corp 山留壁の構築方法
JP2018100506A (ja) 2016-12-19 2018-06-28 学校法人東京理科大学 堤防補強構造
JP2018204391A (ja) 2017-06-08 2018-12-27 株式会社シーマコンサルタント ふとん篭及びこれを用いた傾斜地補強構造

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3566501B2 (ja) * 1996-12-20 2004-09-15 株式会社ホクコン 凝灰岩を骨材とするポーラスブロック

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214145A (ja) 2005-02-03 2006-08-17 Dai Nippon Construction 堤防の補強構造および補強工法
JP2006274655A (ja) 2005-03-29 2006-10-12 National Institute For Rural Engineering 盛土堤体のドレーン構造及びその施工方法
JP2011038302A (ja) 2009-08-11 2011-02-24 Hazama Corp 傾斜地盤補強構造及び工法
JP2011153449A (ja) 2010-01-27 2011-08-11 East Japan Railway Co 地盤改良体の造成方法
JP2014015716A (ja) 2012-07-05 2014-01-30 Taisei Corp 山留壁の構築方法
JP2018100506A (ja) 2016-12-19 2018-06-28 学校法人東京理科大学 堤防補強構造
JP2018204391A (ja) 2017-06-08 2018-12-27 株式会社シーマコンサルタント ふとん篭及びこれを用いた傾斜地補強構造

Also Published As

Publication number Publication date
JP2020133311A (ja) 2020-08-31

Similar Documents

Publication Publication Date Title
CN105507335B (zh) 钢板桩围堰基坑封底结构及施工方法
JP5445351B2 (ja) 盛土の補強構造
KR100970766B1 (ko) 교량의 세굴방지 및 내진용 기초보강공법
CN105040595B (zh) 缓坡河床基岩上的桥梁主墩承台基坑支护结构及其施工方法
JP6370295B2 (ja) 盛土の補強構造とその築造方法
JP2006214145A (ja) 堤防の補強構造および補強工法
Smith Types of marine concrete structures
Burcharth et al. Types and functions of coastal structures
JP7240667B2 (ja) 補強された土構造物、及び土構造物補強方法
Chu et al. Embankments on soft ground and ground improvement
Zwanenburg et al. Lessons learned from dike failures in recent decades
CN105064373A (zh) 河道陡坡基岩上的桥梁主墩承台基坑支护结构及其施工方法
JP2011214252A (ja) 盛土の補強構造
CN204875807U (zh) 河道陡坡基岩上的桥梁主墩承台基坑支护结构
JP2023036157A (ja) 補強された土構造物、及び土構造物補強方法
CN212223936U (zh) 一种用于山区采砂河道内桥梁桩基外露病害的防护结构
JP2008081960A (ja) 波浪防護構造物
Sitharam et al. Geotechnical considerations for coastal reservoirs
CN220550600U (zh) 一种海堤桥梁桩基立柱防腐结构
Hawkswood et al. Foundations to precast marine structures
CN220414126U (zh) 一种适用于水治理工程的埋石混凝土挡墙护岸
Allsop Historical experience of vertical breakwaters in the United Kingdom
Huber et al. The Importance of Geotechnical Engineering in Waterfront Design
Liu et al. Improvement of underwater soft subsoil in tidal zones by vacuum preloading technique
Brater et al. Michigans Demonstration Erosion Control Program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230224

R150 Certificate of patent or registration of utility model

Ref document number: 7240667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150