JP7236722B2 - Multi-electron redox catalyst - Google Patents

Multi-electron redox catalyst Download PDF

Info

Publication number
JP7236722B2
JP7236722B2 JP2018223005A JP2018223005A JP7236722B2 JP 7236722 B2 JP7236722 B2 JP 7236722B2 JP 2018223005 A JP2018223005 A JP 2018223005A JP 2018223005 A JP2018223005 A JP 2018223005A JP 7236722 B2 JP7236722 B2 JP 7236722B2
Authority
JP
Japan
Prior art keywords
pyp
synthesis
salen
fetm
cotm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018223005A
Other languages
Japanese (ja)
Other versions
JP2020082002A (en
Inventor
浩良 川上
陸 窪田
友和 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Public University Corp
Original Assignee
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Public University Corp filed Critical Tokyo Metropolitan Public University Corp
Priority to JP2018223005A priority Critical patent/JP7236722B2/en
Publication of JP2020082002A publication Critical patent/JP2020082002A/en
Application granted granted Critical
Publication of JP7236722B2 publication Critical patent/JP7236722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Description

本発明は金属ポルフィリン錯体と金属ピアレンあるいは金属サレンが、ククルビット[10]ウリル等の環状化合物内部に包摂された新規な超分子系の多電子酸化還元触媒に関する。 The present invention relates to a novel supramolecular multi-electron redox catalyst in which a metal porphyrin complex and a metal pialene or a metal salen are included in a cyclic compound such as cucurbit[10]uril.

水素は、その高いエネルギー密度や、燃焼により二酸化炭素を排出しない等という特長から、次世代型の高効率発電手段として脚光を浴びている。一方水素には、常温常圧で気体であるため長距離輸送が困難である、保存容器からの漏洩が容易に起こる、空気との混合により爆発が起こるといった深刻な課題が残されている。従って、水素を安定的に保存する方法論の確立は、水素をエネルギー源として有効利用する水素社会の実現には必須であると言える。
水素を安定的に保存するには、化合物中への水素原子の導入(水素キャリア)が有効である。例えば、二酸化炭素の還元により生じる化合物(ギ酸、ホルムアルデヒド、メタノール、メタン)や、窒素の還元により生じる化合物(ヒドラジン、アンモニア)は水素キャリアとして扱われる。
水素キャリアを効率よく生成する従来のアプローチとして、金属二核錯体触媒が挙げられる。二つの金属の共同的な触媒反応により効率的な水素キャリア生成が可能であるが、従来のアプローチでは、水素キャリアの化学構造に応じた複雑な分子設計、触媒合成が求められるのが現状である。
従って、水素社会の実現には、水素キャリアとして着目されている様々な化合物に適用可能となる統一的な触媒技術の確立が求められる。また、資源の枯渇を避けるという観点から、天然に豊富に存在する金属を用いることが求められる。
そこで、種々提案がなされており、例えば非特許文献1ではアンモニア生成を起こす触媒として、稀少金属であるルテニウムを用いた金属二核錯体が提案されている。また、非特許文献2ではギ酸生成を起こす触媒としてルテニウムを用いた金属二核錯体が提案されている。
また、本発明者らは、特許文献1において、水系溶媒中において様々な構造を容易に形成でき、かつ天然に豊富に存在する金属種を用いて高い酸化還元反応性を示す多電子酸化還元触媒として、7~14員環のククルビット構造を有する環状化合物と、金属ポルフィリン化合物と、金属ポルフィリン化合物及び金属ビピリジン化合物からなる群より選択される化合物との2分子が包摂されている多電子酸化還元触媒を提案している。
Hydrogen is attracting attention as a next-generation highly efficient means of power generation because of its high energy density and the fact that it does not emit carbon dioxide when burned. On the other hand, since hydrogen is a gas at normal temperature and pressure, it is difficult to transport over long distances, it easily leaks from storage containers, and it explodes when mixed with air. Therefore, it can be said that the establishment of a methodology for stably storing hydrogen is essential for the realization of a hydrogen society in which hydrogen is effectively used as an energy source.
In order to stably store hydrogen, it is effective to introduce a hydrogen atom (hydrogen carrier) into a compound. For example, compounds produced by reduction of carbon dioxide (formic acid, formaldehyde, methanol, methane) and compounds produced by reduction of nitrogen (hydrazine, ammonia) are treated as hydrogen carriers.
A conventional approach to efficiently generate hydrogen carriers includes metal binuclear complex catalysts. Efficient hydrogen carrier generation is possible through the joint catalytic reaction of two metals, but the current situation is that conventional approaches require complex molecular design and catalyst synthesis according to the chemical structure of the hydrogen carrier. .
Therefore, in order to realize a hydrogen society, it is necessary to establish a unified catalyst technology that can be applied to various compounds that are attracting attention as hydrogen carriers. Moreover, from the viewpoint of avoiding depletion of resources, the use of naturally abundant metals is required.
Therefore, various proposals have been made. For example, Non-Patent Document 1 proposes a metal binuclear complex using ruthenium, which is a rare metal, as a catalyst for generating ammonia. In addition, Non-Patent Document 2 proposes a metal binuclear complex using ruthenium as a catalyst for generating formic acid.
In Patent Document 1, the present inventors disclosed a multi-electron oxidation-reduction catalyst that can easily form various structures in an aqueous solvent and that exhibits high oxidation-reduction reactivity using metal species that are abundant in nature. A multi-electron redox catalyst containing two molecules of a cyclic compound having a 7- to 14-membered cucurbit structure, a metalloporphyrin compound, and a compound selected from the group consisting of a metalloporphyrin compound and a metalbipyridine compound. is proposing.

特願2017-158456号Japanese Patent Application No. 2017-158456

Y. Arikawa et al., J. Am. Chem. Soc., 2018, 140, 842~847.Y. Arikawa et al., J. Am. Chem. Soc., 2018, 140, 842~847. T, Ono et al., ChemCatChem, 2013, 5, 3897~3903.T, Ono et al., ChemCatChem, 2013, 5, 3897~3903.

しかしながら、上述の非特許文献の提案にかかる触媒では、ルテニウムといった高価な金属を用いる必要があり、未だ十分な触媒活性が得られていない。また、上述の特許文献にかかる提案では、高い触媒活性は得られているものの、より高い触媒活性、特に水素製造に際しての触媒活性の要求を満足できていない。このため、より高い触媒活性、特に水素製造に際しての触媒活性に優れた触媒の開発が要望されている。
したがって、本発明の目的は、高価な金属を用いることなく、より高い触媒活性、特に水素製造に際しての触媒活性に優れた多電子酸化還元触媒を提供することにある。
However, the catalysts proposed in the non-patent documents mentioned above require the use of expensive metals such as ruthenium, and sufficient catalytic activity has not yet been obtained. Further, the proposals in the above-mentioned patent documents, although high catalytic activity is obtained, cannot satisfy the demand for higher catalytic activity, especially for hydrogen production. Therefore, there is a demand for the development of catalysts with higher catalytic activity, particularly excellent catalytic activity in the production of hydrogen.
Accordingly, an object of the present invention is to provide a multi-electron oxidation-reduction catalyst that exhibits higher catalytic activity, particularly excellent catalytic activity in hydrogen production, without using expensive metals.

本発明者らは、上記課題を解消すべく鋭意検討した結果、検討したところ、特定の金属ポルフィリンと特定の金属サレンとをククルビット化合物で包摂した金属錯体が高い触媒効果を呈することを知見し、更にポルフィリンと組み合わせることが有効な化合物を検討し、本発明を完成するに至った。
すなわち、本発明は以下の各発明を提供するものである。
1.7~14員環のククルビット構造を有する環状化合物と、
該環状化合物中に包摂される嵩高化合物とからなる触媒であって、
該嵩高化合物は、下記化学式(I)で表される金属ポルフィリン化合物と、下記化学式(I)で表される金属ポルフィリン化合物、下記化学式(II)で表される該金属ピアレン又は下記化学式(III)で表される金属サレンとの2分子であることを特徴とする多電子酸化還元触媒。

Figure 0007236722000001

Figure 0007236722000002
上記各式中、M1およびM2は、それぞれ同一または異なる原子であって、遷移金属元素又は卑金属元素を示す。
R5~R8は、それぞれ同一または異なる基であって、水素原子、アルキル基、アルコキシ基を示す。 The inventors of the present invention have made intensive studies to solve the above problems, and as a result of their studies, they have found that a metal complex in which a specific metal porphyrin and a specific metal salen are encapsulated in a cucurbit compound exhibits a high catalytic effect. Furthermore, the inventors have investigated compounds that are effective in combination with porphyrin, and have completed the present invention.
That is, the present invention provides the following inventions.
a cyclic compound having a 1.7- to 14-membered cucurbit structure;
and a bulky compound included in the cyclic compound,
The bulky compound includes a metal porphyrin compound represented by the following chemical formula (I), a metal porphyrin compound represented by the following chemical formula (I), the metal pialene represented by the following chemical formula (II), or the following chemical formula (III) A multi-electron oxidation-reduction catalyst characterized by being two molecules with a metal salen represented by
Figure 0007236722000001

Figure 0007236722000002
In each of the above formulas, M1 and M2 are the same or different atoms and represent transition metal elements or base metal elements.
R5 to R8 are the same or different groups, each representing a hydrogen atom, an alkyl group or an alkoxy group.

本発明の多電子酸化還元触媒は、高価な金属を用いることなく、より高い触媒活性、特に水素製造に際しての触媒活性に優れたものである。 INDUSTRIAL APPLICABILITY The multi-electron oxidation-reduction catalyst of the present invention exhibits higher catalytic activity, particularly excellent catalytic activity in hydrogen production, without using expensive metals.

図1(a)及び(b)は、実施例1で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。1(a) and (b) are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 1. FIG. 図2(a)及び(b)は、実施例2で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。2(a) and (b) are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 2. FIG. 図3(a)及び(b)は、実施例3で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。3(a) and (b) are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 3. FIG. 図4(a)及び(b)は、実施例3で得られたjob’s plotの結果を示すチャートである。4A and 4B are charts showing the results of job's plot obtained in Example 3. FIG. 図5(a)及び(b)は、実施例4で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。5(a) and (b) are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 4. FIG. 図6(a)及び(b)は、実施例5で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。6(a) and (b) are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 5. FIG. 図7(a)及び(b)は、実施例6で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。7(a) and (b) are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 6. FIG. 図8(a)及び(b)は、実施例7で得られた多電子酸化還元触媒の錯体形成挙動の追跡チャートである。8(a) and (b) are tracking charts of the complex formation behavior of the multi-electron redox catalyst obtained in Example 7. FIG. 図9は、実施例8で得られたFeTM-4-PyP/Co-Salen/CB[10]の紫外可視吸収スペクトルのチャートである。9 is a chart of the UV-visible absorption spectrum of FeTM-4-PyP/Co-Salen/CB[10] obtained in Example 8. FIG. 図10は、実施例9で得られたFeTM-4-PyP/Co-Salen(OMe)/CB[10]の紫外可視吸収スペクトルのチャートである。10 is a chart of the UV-visible absorption spectrum of FeTM-4-PyP/Co-Salen(OMe)/CB[10] obtained in Example 9. FIG. 図11は、実施例10で得られたFeTM-4-PyP/Fe-Salen(OMe)/CB[10]の紫外可視吸収スペクトルのチャートである。11 is a chart of the UV-visible absorption spectrum of FeTM-4-PyP/Fe-Salen(OMe)/CB[10] obtained in Example 10. FIG. 図12は、実施例11で得られたFeTM-4-PyP/Fe-Salen/CB[10]の紫外可視吸収スペクトルのチャートである。12 is a chart of the UV-visible absorption spectrum of FeTM-4-PyP/Fe-Salen/CB[10] obtained in Example 11. FIG. 図13は、実施例12で得られたFeTM-4-PyP/ Fe-Pyalen/CB[10]の紫外可視吸収スペクトルのチャートである。13 is a UV-visible absorption spectrum chart of FeTM-4-PyP/Fe-Pyalen/CB[10] obtained in Example 12. FIG. 図14は、実施例13で得られたFeTM-4-PyP/Co-Pyalen/CB[10]の紫外可視吸収スペクトルのチャートである。14 is a chart of the UV-visible absorption spectrum of FeTM-4-PyP/Co-Pyalen/CB[10] obtained in Example 13. FIG. 図15は、実施例14で得られた(trans-CoM4Py2P)2/CB[10]の紫外可視吸収スペクトルのチャートである。15 is a chart of the ultraviolet-visible absorption spectrum of (trans-CoM4Py 2 P) 2 /CB[10] obtained in Example 14. FIG. 図16は、実施例15で得られた(trans-ZnM4Py2P)2/CB[10]の紫外可視吸収スペクトルのチャートである。16 is an ultraviolet-visible absorption spectrum chart of (trans-ZnM4Py 2 P) 2 /CB[10] obtained in Example 15. FIG. 図17は、実施例16で得られた(trans-FeM4Py2P)2/CB[10]の紫外可視吸収スペクトルのチャートである。17 is a chart of the ultraviolet-visible absorption spectrum of (trans-FeM4Py 2 P) 2 /CB[10] obtained in Example 16. FIG. 図18は、実施例17で行ったサイクリックボルタンメトリー測定結果を示すチャートである。18 is a chart showing the results of cyclic voltammetry measurement performed in Example 17. FIG. 図19(a)及び(b)は、それぞれ実施例18で行ったグルコース改質反応後のガスクロマトグラフ測定結果を示すチャートである。19(a) and (b) are charts showing gas chromatographic measurement results after the glucose reforming reaction performed in Example 18, respectively. 図20(a)及び(b)は、それぞれ実施例19で行った窒素還元反応の結果を示すチャートであり、(a)はヘリウム雰囲気下におけるサイクリックボルタモグラムを示し、(b)は窒素雰囲気下におけるサイクリックボルタモグラムを示す。20(a) and (b) are charts showing the results of the nitrogen reduction reaction performed in Example 19, (a) showing the cyclic voltammogram under a helium atmosphere, and (b) under a nitrogen atmosphere. shows a cyclic voltammogram at .

以下、本発明をさらに詳細に説明する。
本発明の多電子酸化還元触媒は、環状化合物と、該環状化合物中に包摂される嵩高化合物とからなる。
<環状化合物>
本発明において上記環状化合物として用いられる化合物は、7~14員環、好ましくは10~14員環、最も好ましくは10員環のククルビット構造を有する化合物(以下「ククルビット化合物」という)である。
上記ククルビット化合物としては、ククルビット[10]ウリル(以下、「CB[10]」という)、ククルビット[8]ウリル(以下、「CB[8]」という)、ククルビット[7]ウリル(以下、「CB[7]」という)、ククルビット[14]ウリル(以下、「CB[14]」という)等を挙げることができる。CB[10]の構造式を以下に示す。

Figure 0007236722000003
上記ククルビット化合物は、公知の手法、たとえば実施例に記載の方法などを用いて得ることができる。 The present invention will now be described in more detail.
The multi-electron redox catalyst of the present invention comprises a cyclic compound and a bulky compound included in the cyclic compound.
<Cyclic compound>
The compound used as the cyclic compound in the present invention is a compound having a 7- to 14-membered ring, preferably a 10- to 14-membered ring, and most preferably a 10-membered cucurbit structure (hereinafter referred to as "cucurbit compound").
Examples of the cucurbit compounds include cucurbit[10]uril (hereinafter referred to as “CB[10]”), cucurbit[8]uril (hereinafter referred to as “CB[8]”), cucurbit[7]uril (hereinafter referred to as “CB [7]”), cucurbit[14]uril (hereinafter referred to as “CB[14]”), and the like. The structural formula of CB[10] is shown below.
Figure 0007236722000003
The above cucurbit compound can be obtained using a known method such as the method described in the Examples.

<嵩高化合物>
本発明において用いられる上記嵩高化合物は、下記化学式(I)で表される金属ポルフィリン化合物と、下記化学式(I)で表される金属ポルフィリン化合物、下記化学式(II)で表される該金属ピアレン又は下記化学式(III)で表される金属サレンとの2分子である。

Figure 0007236722000004

Figure 0007236722000005
また、R5、R6、R7、R8は、それぞれ同一または異なる置換基であって、それぞれ、水素原子、アルキル基、又はアルコシキ基を示す。
アルキル基及びアルコシキ基の炭素数は、1~10であるのが好ましく、1~5であるのが更に好ましい。具体的には、アルキル基としては、-CH、-CH2CH3、-CH2CH2CH3、-CH2CH2CH2CH3等を挙げることができ、アルコシキ基としては、-OCH、-OCH2CH3、-CH2CH2OCH3 等を挙げることができる。
M1およびM2は、それぞれ同一または異なる原子であって、遷移元素、卑金属元素を示す。
上記遷移元素としてはFe,Ni,Cu,Ru,Ir,Rh,Re等を挙げることができ、上記卑金属元素としては、Zn,Mg,Mn,Co,Mo等を挙げることができる。
上記M1および上記M2としては、特に好ましくはMo、Fe又はCoである。
上記嵩高化合物は、それぞれ実施例に記載の手法などを用いて得ることができる。
上記金属ポルフィリン化合物としては具体的には以下の化合物などを挙げることができる。
Figure 0007236722000006
また、上記金属ピアレン及び上記金属サレンとしては具体的には以下の化合物などを挙げることができる。
Figure 0007236722000007
<Bulky compound>
The bulky compounds used in the present invention include a metal porphyrin compound represented by the following chemical formula (I), a metal porphyrin compound represented by the following chemical formula (I), the metal pialene represented by the following chemical formula (II), or It is two molecules with a metal salen represented by the following chemical formula (III).
Figure 0007236722000004

Figure 0007236722000005
R5, R6, R7, and R8 are the same or different substituents, each representing a hydrogen atom, an alkyl group, or an alkoxy group.
The number of carbon atoms in the alkyl group and alkoxy group is preferably 1-10, more preferably 1-5. Specifically, the alkyl group includes -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH 2 CH 2 CH 2 CH 3 and the like, and the alkoxy group includes - OCH 3 , -OCH 2 CH 3 , -CH 2 CH 2 OCH 3 and the like can be mentioned.
M1 and M2 are the same or different atoms, respectively, and represent transition elements and base metal elements.
Examples of the transition elements include Fe, Ni, Cu, Ru, Ir, Rh, and Re, and examples of the base metal elements include Zn, Mg, Mn, Co, and Mo.
Mo, Fe or Co is particularly preferred for M1 and M2.
The above-mentioned bulky compounds can be obtained by using the methods described in Examples.
Specific examples of the metalloporphyrin compound include the following compounds.
Figure 0007236722000006
Specific examples of the metal pialene and the metal salen include the following compounds.
Figure 0007236722000007

<具体例>
上記環状化合物と上記嵩高化合物とからなる本発明の多電子酸化還元触媒としては以下の構造式で表される化合物等を好ましく挙げることができる。

Figure 0007236722000008

Figure 0007236722000009
Figure 0007236722000010
Figure 0007236722000011
Figure 0007236722000012
Figure 0007236722000013
Figure 0007236722000014
<Specific example>
As the multi-electron oxidation-reduction catalyst of the present invention comprising the cyclic compound and the bulky compound, compounds represented by the following structural formulas are preferably exemplified.
Figure 0007236722000008

Figure 0007236722000009
Figure 0007236722000010
Figure 0007236722000011
Figure 0007236722000012
Figure 0007236722000013
Figure 0007236722000014

<製造方法>
本発明の多電子酸化還元触媒は、一つの嵩高化合物の水溶液に環状化合物を添加し、0~100℃にて1~60分間、超音波処理する等して反応を行った後、得られた水溶液にもう一つの嵩高化合物の水溶液を加え、緩衝液を添加して撹拌混合することで、反応を行い、得ることができる。
<Manufacturing method>
The multi-electron oxidation-reduction catalyst of the present invention is obtained by adding a cyclic compound to an aqueous solution of one bulky compound, and performing a reaction such as ultrasonic treatment at 0 to 100° C. for 1 to 60 minutes. An aqueous solution of another bulky compound is added to the aqueous solution, a buffer solution is added, and the compound is stirred and mixed to react and obtain the compound.

<使用方法・効果>
本発明の多電子酸化還元触媒は、各種酸化還元反応において触媒として用いることができるが、特に、下記する反応系において好ましく用いることができ、これらの反応系においては触媒を用いない場合に比して数倍の反応効率の向上を図ることも可能である。
(反応系)
酸素を原料とし、アスコルビン酸を還元剤とする反応系(酸素の四電子還元反応)
水素燃料電池用電極触媒(カソード電極における酸素の四電子還元反応)
水素イオンを基質とし、電気化学的に水素ガスを発生させる反応系
二酸化炭素とエポキシ化合物を原料とし、シクロカーボネートを目的物とする反応系
二酸化炭素を電気化学的に還元する反応系
水の分解により水素と酸素を発生させる電気化学反応系
水の分解により水素と酸素を発生させる光化学反応系
水とアルコールを原料とし、二酸化炭素と水素を目的物とする反応系
<How to use and effect>
The multi-electron oxidation-reduction catalyst of the present invention can be used as a catalyst in various oxidation-reduction reactions, and is particularly preferably used in the reaction systems described below. It is also possible to improve the reaction efficiency by several times.
(reaction system)
A reaction system using oxygen as a raw material and ascorbic acid as a reducing agent (four-electron reduction reaction of oxygen)
Hydrogen fuel cell electrode catalyst (four-electron reduction reaction of oxygen at the cathode electrode)
A reaction system that uses hydrogen ions as a substrate and electrochemically generates hydrogen gas. A reaction system that uses carbon dioxide and an epoxy compound as raw materials and uses cyclocarbonate as a target product. A reaction system that electrochemically reduces carbon dioxide. Electrochemical reaction system to generate hydrogen and oxygen Photochemical reaction system to generate hydrogen and oxygen by decomposition of water

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
なお、多電子酸化還元触媒の合成確認には、汎用性の高い手法であるUV/visスペクトル測定を用いた。(たとえば、当該UV/visスペクトル測定の先行論文として S.Liu et al.,Angew. Chem. Int. Ed.,2008,47,2657~2660を参照)
〔実施例1〕
CoTM-4-PyP/Co-Salen/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/Co-Salen/CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3)Salenの合成、(4)SalenへのCo導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Co-Salen/CB[10]の合成の6ステップで行った。
(1)CoTM-4-PyPの合成
出発原料として、5,10,15,20-テトラ(4-ピリジル)-21H,23H-ポルフィン(Aldrich社製)、p-トルエンスルホン酸メチル(東京化成社製)、塩化コバルト六水和物(II)(関東化学製)を用いた。
(a)5,10,15,20-テトラ(4-メチルピリジニウム)-21H,23H-ポルフィン(H2TM-4-PyP)の合成

Figure 0007236722000015
50mgの5,10,15,20-テトラ(4-ピリジル)-21H,23H-ポルフィン(0.081mmol)と10mLのp-トルエンスルホン酸メチル(66.3mmol)を、窒素雰囲気下30mLのN,N-ジメチルホルムアミド(DMF)中110℃で24時間加熱還流した。
24時間後、反応の進行はシリカTLC(アセトニトリル/水/KNO3aq)=(8/2/1)により確認した。DMFはエバポレートにより除去し、未反応のp-トルエンスルホン酸メチルは分液(クロロホルム/水)により除去した。分液後、水層にヘキサフルオロリン酸アンモニウム(NH4PF6)を添加し、紫色固体を得た。紫色固体をアセトンに溶解させ、テトラブチルアンモニウムクロリド添加により生じた紫色固体をろ過により回収し、目的物H2TM-4-PyPを得た。収量は45.2mg、収率は68.2%であった。
合成の確認は、先行報告に従い1H-NMRにより行った。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these.
Note that UV/vis spectrum measurement, which is a highly versatile technique, was used to confirm the synthesis of the multi-electron oxidation-reduction catalyst. (See, for example, S. Liu et al., Angew. Chem. Int. Ed., 2008, 47, 2657-2660 for previous papers on the UV/vis spectrum measurement)
[Example 1]
Synthesis of the multi-electron redox catalyst "CoTM-4-PyP/Co-Salen/CB[10]" of the present invention consisting of CoTM-4-PyP/Co-Salen/CB[10].
Synthesis includes (1) synthesis of CoTM-4-PyP, (2) synthesis of CB[10], (3) synthesis of Salen, (4) introduction of Co into Salen, and (5) CoTM-4-PyP/CB[ 10] and (6) Co TM-4-PyP/ Co-Salen/CB[10].
(1) Synthesis of CoTM-4-PyP As starting materials, 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (manufactured by Aldrich), methyl p-toluenesulfonate (Tokyo Kasei Co., Ltd.) Cobalt chloride hexahydrate (II) (manufactured by Kanto Kagaku) was used.
(a) Synthesis of 5,10,15,20-tetra(4-methylpyridinium)-21H,23H-porphine (H2TM-4-PyP)
Figure 0007236722000015
50 mg of 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (0.081 mmol) and 10 mL of methyl p-toluenesulfonate (66.3 mmol) were added to 30 mL of N,N- It was heated under reflux at 110° C. for 24 hours in dimethylformamide (DMF).
After 24 hours, the progress of the reaction was confirmed by silica TLC (acetonitrile/water/KNO3aq)=(8/2/1). DMF was removed by evaporation, and unreacted methyl p-toluenesulfonate was removed by liquid separation (chloroform/water). After liquid separation, ammonium hexafluorophosphate (NH4PF6) was added to the aqueous layer to obtain a purple solid. The purple solid was dissolved in acetone, and the purple solid produced by the addition of tetrabutylammonium chloride was collected by filtration to obtain the desired product H2TM-4-PyP. The yield was 45.2 mg and the yield was 68.2%.
Synthesis was confirmed by 1H-NMR according to previous reports.

(b)CoTM-4-PyPの合成

Figure 0007236722000016
H2TM-4-PyP(50mg, 0.061mmol)と塩化コバルト六水和物(II)(300 mg, 0.366mmol)を76.8 mLの水に溶解させ、塩酸を用いてpH4に合成し、窒素雰囲気下100℃で加熱還流した。反応進行はシリカTLC(アセトニトリル/水/KNO3aq)=(8/2/1)により確認した。
反応後、析出した赤褐色沈殿をろ過により除去し、ろ液にヘキサフルオロリン酸アンモニウム(NH4PF6)を添加し、紫色固体を得た。紫色固体をアセトンに溶解させ、テトラブチルアンモニウムクロリド添加により生じた紫色固体をろ過により回収し、目的物CoTM-4-PyPを得た。収量は60mg、収率は32.1%であった。 (b) Synthesis of CoTM-4-PyP
Figure 0007236722000016
H2TM-4-PyP (50 mg, 0.061 mmol) and cobalt chloride hexahydrate (II) (300 mg, 0.366 mmol) were dissolved in 76.8 mL of water, adjusted to pH 4 using hydrochloric acid, and evaporated at 100°C under nitrogen atmosphere. It was heated to reflux at °C. Reaction progress was confirmed by silica TLC (acetonitrile/water/KNO3aq) = (8/2/1).
After the reaction, the deposited reddish brown precipitate was removed by filtration, and ammonium hexafluorophosphate (NH4PF6) was added to the filtrate to obtain a purple solid. The purple solid was dissolved in acetone, and the purple solid produced by the addition of tetrabutylammonium chloride was collected by filtration to obtain the target CoTM-4-PyP. The yield was 60 mg and the yield was 32.1%.

(2)CB[10]の合成
出発原料として、グリコールウリル(Aldrich社製)、パラホルムアルデヒド(Aldrich社製)、シアヌル酸クロリド(東京化成社製)、4-[(N-Boc)アミノメチル]アニリン(Aldrich社製)を用いた。
(a) CB[5]/CB[10]の合成

Figure 0007236722000017
グリコールウリル(53g,0.37mol)とパラホルムアルデヒド(23.6g,0.75mol)を粉末状態でよく混合した。4℃に冷却した濃塩酸75.3mLを加え。アイスバス中で溶液がゲル化するまで攪拌した。次に、オイルバス中110℃で17時間加熱還流した。
反応後、反応溶液を水で10倍に希釈し、析出した白色固体をろ過により回収し、真空オーブン中50℃で一晩乾燥した。得られた固体を濃塩酸中100℃で繰り返し再結晶することにより、目的物であるCB[5]/CB[10]を得た。収量は0.8g、収率は2%であった。合成の確認は、先行報告に従い1H-NMR測定により行った。 (2) Synthesis of CB[10] As starting materials, glycoluril (manufactured by Aldrich), paraformaldehyde (manufactured by Aldrich), cyanuric chloride (manufactured by Tokyo Kasei), 4-[(N-Boc)aminomethyl] Aniline (manufactured by Aldrich) was used.
(a) Synthesis of CB[5]/CB[10]
Figure 0007236722000017
Glycoluril (53 g, 0.37 mol) and paraformaldehyde (23.6 g, 0.75 mol) were well mixed in powder form. Add 75.3 mL of concentrated hydrochloric acid cooled to 4°C. The solution was stirred in an ice bath until it gelled. Next, the mixture was heated under reflux at 110° C. for 17 hours in an oil bath.
After the reaction, the reaction solution was diluted 10-fold with water, and the precipitated white solid was collected by filtration and dried in a vacuum oven at 50°C overnight. The obtained solid was repeatedly recrystallized in concentrated hydrochloric acid at 100°C to obtain the target CB[5]/CB[10]. Yield was 0.8 g and yield was 2%. Synthesis was confirmed by 1H-NMR measurement according to previous reports.

(b)内部CB[5]を除去するゲスト分子(中間体2)の合成
(i)中間体1の合成

Figure 0007236722000018
4-[(N-Boc)アミノメチル]アニリン(1.0g, 4.5mmol)を3.3 mLのテトラヒドロフラン(THF)に溶解させた。シアヌル酸クロリド(0.40g, 2.2mmol)と0.67 mLのN,N-ジイソプロピルエチルアミンを溶液に添加し、0℃で2時間攪拌し、さらに室温で24時間攪拌した。反応後,反応液を濾過し溶媒をエバポレートし、目的物である中間体1を得た。収量は0.95g、収率は86.4%であった。 (b) Synthesis of guest molecule (intermediate 2) removing internal CB[5]
(i) Synthesis of Intermediate 1
Figure 0007236722000018
4-[(N-Boc)aminomethyl]aniline (1.0 g, 4.5 mmol) was dissolved in 3.3 mL of tetrahydrofuran (THF). Cyanuric chloride (0.40 g, 2.2 mmol) and 0.67 mL of N,N-diisopropylethylamine were added to the solution and stirred at 0° C. for 2 hours and at room temperature for 24 hours. After the reaction, the reaction solution was filtered and the solvent was evaporated to obtain the desired intermediate 1. Yield was 0.95 g and yield was 86.4%.

(ii)中間体2の合成

Figure 0007236722000019
中間体1 (0.3g, 0.54mmol)を、水5 mL/トリフルオロ酢酸3 mLの混合溶媒に溶解させ、85℃で10時間加熱還流した。反応後、反応液を室温まで放冷し、冷蔵庫中(4℃)で1日間静置した。析出した結晶を濾過により回収し、目的物である中間体2を得た。収量は280 mg、収率は92%であった。合成の確認は1H NMR測定により行った。 (ii) synthesis of intermediate 2
Figure 0007236722000019
Intermediate 1 (0.3 g, 0.54 mmol) was dissolved in a mixed solvent of 5 mL of water/3 mL of trifluoroacetic acid and heated to reflux at 85° C. for 10 hours. After the reaction, the reaction solution was allowed to cool to room temperature and allowed to stand in a refrigerator (4°C) for 1 day. The precipitated crystals were collected by filtration to obtain the target Intermediate 2. The yield was 280 mg and the yield was 92%. Synthesis was confirmed by 1H NMR measurement.

(b) CB[10]の合成

Figure 0007236722000020
CB[5]/CB[10](0.70g, 0.26mmol)と中間体2(0.73g, 1.30mmol)を170 mLの水に溶解させ90℃で30分間加熱還流した。反応後、溶液を空冷し濾液を濾過により回収した。濾液を40 mLまで濃縮し冷蔵庫(4℃)中で2時間静置、濾過し濾液を回収した。濾液をエバポレートにより乾固し、得られた固体を50mLのメタノールで繰り返し洗浄することで、CB[10]・中間体2(0.39g, 0.18mmol)を得た。
CB[10]・中間体2(0.37g,0.50mmol)を10mLの無水酢酸に懸濁させ100℃で16時間加熱還流した。沈殿を遠心分離により回収し、20mLのメタノール、20mLのジメチルスルホキシド、及び20 mLの水で洗浄した。固体を真空オーブン中で乾燥させることで、目的物であるCB[10](200mg, 0.12mmol)を得た。収率は73%であった。 (b) Synthesis of CB[10]
Figure 0007236722000020
CB[5]/CB[10] (0.70 g, 0.26 mmol) and Intermediate 2 (0.73 g, 1.30 mmol) were dissolved in 170 mL of water and heated to reflux at 90° C. for 30 minutes. After the reaction, the solution was air-cooled and the filtrate was collected by filtration. The filtrate was concentrated to 40 mL, allowed to stand in a refrigerator (4°C) for 2 hours, filtered, and the filtrate was collected. The filtrate was evaporated to dryness and the resulting solid was washed repeatedly with 50 mL of methanol to give CB[10].Intermediate 2 (0.39 g, 0.18 mmol).
CB[10].Intermediate 2 (0.37 g, 0.50 mmol) was suspended in 10 mL of acetic anhydride and heated to reflux at 100° C. for 16 hours. The precipitate was collected by centrifugation and washed with 20 mL methanol, 20 mL dimethylsulfoxide, and 20 mL water. The solid was dried in a vacuum oven to give the target CB[10] (200 mg, 0.12 mmol). Yield was 73%.

(3)Salenの合成
出発原料として、エチレンジアミン(東京化成社製)、サリチルアルデヒド(東京化成社製)、o-バニリン(東京化成社製)、1.3ジアミノプロパン(東京化成社製)、ピリジン-2-カルボキシアルデヒド(東京化成社製)を用いた。
メタノール332.7 mlにエチレンジアミン(1.0g, 0.017mol)とサリチルアルデヒド(4.06g, 0.033mol)を加え、室温で1日攪拌した。生成した沈殿物を濾過により回収し、真空オーブン中30℃で一晩乾燥した。目的物は収量2.60g、収率58.3%であった。合成の確認は、先行報告に従い、1H-NMR測定により行った。
(4)Co-Salenの合成
メタノール50mlに上述(3)(0.32g, 1.2mmol)を加え、そこに塩化コバルト六水和物(II) (関東化学製) (0.238g, 1mmol)を溶かし、塩酸を用いてpH 4に合成し、1時間室温で攪拌した。沈殿物を濾過にて回収しアセトンでよく洗浄し、真空オーブン中40℃で一晩乾燥させることにより目的物を収量42mg、収率26.1%で得た。合成の確認はFAB-MS測定により行った。
(3) As starting materials for the synthesis of Salen, ethylenediamine (manufactured by Tokyo Kasei Co., Ltd.), salicylaldehyde (manufactured by Tokyo Kasei Co., Ltd.), o-vanillin (manufactured by Tokyo Kasei Co., Ltd.), 1.3 diaminopropane (manufactured by Tokyo Kasei Co., Ltd.), pyridine-2 -Carboxaldehyde (manufactured by Tokyo Kasei Co., Ltd.) was used.
Ethylenediamine (1.0 g, 0.017 mol) and salicylaldehyde (4.06 g, 0.033 mol) were added to 332.7 ml of methanol and stirred at room temperature for one day. The precipitate that formed was collected by filtration and dried in a vacuum oven at 30° C. overnight. The desired product was obtained in a yield of 2.60 g and a yield of 58.3%. Synthesis was confirmed by 1 H-NMR measurement according to previous reports.
(4) Synthesis of Co-Salen The above (3) (0.32 g, 1.2 mmol) was added to 50 ml of methanol, and cobalt chloride hexahydrate (II) (manufactured by Kanto Kagaku) (0.238 g, 1 mmol) was dissolved therein. It was synthesized to pH 4 using hydrochloric acid and stirred at room temperature for 1 hour. The precipitate was collected by filtration, washed well with acetone, and dried overnight in a vacuum oven at 40°C to obtain 42 mg of the desired product at a yield of 26.1%. Synthesis was confirmed by FAB-MS measurement.

(5)CoTM-4-PyP/CB[10]の合成

Figure 0007236722000021
CoTM-4-PyP 1.0mgを5mLの水に溶解させた。溶液にCB[10] 2.6mgを添加し、室温で10分間超音波処理した。未反応のCB[10]をフィルター濾過により除去し、CoTM-4-PyP/CB[10]を水溶液として得た。CoTM-4-PyP/CB[10]形成は定量的に進行した。合成の確認は、UV/visスペクトルにより行った。
(6)CoTM-4-PyP/Co-Salen/CB[10]の合成
Figure 0007236722000022
式中、MはCoを示す。
図1(a)に示す結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるCo-Salenを添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図1(b)に示すように434 nmにおけるプロットは1:1のフィッティングカーブを示している。これらのことから、CB[10]内部でCoTM-4-PyPとCo-Salenが二核錯体を形成していることがわかる。 (5) Synthesis of CoTM-4-PyP/CB[10]

Figure 0007236722000021
1.0 mg of CoTM-4-PyP was dissolved in 5 mL of water. 2.6 mg of CB[10] was added to the solution and sonicated for 10 minutes at room temperature. Unreacted CB[10] was removed by filter filtration to obtain CoTM-4-PyP/CB[10] as an aqueous solution. CoTM-4-PyP/CB[10] formation proceeded quantitatively. Confirmation of synthesis was performed by UV/vis spectra.
(6) Synthesis of CoTM-4-PyP/Co-Salen/CB[10]
Figure 0007236722000022
In the formula, M represents Co.
As is clear from the results shown in Fig. 1(a), as a result of adding different concentrations of Co-Salen to CoTM-4-PyP/CB[10] with a constant concentration, the Soret band and Q A large change in the band was observed. Also, as shown in FIG. 1(b), the plot at 434 nm shows a 1:1 fitting curve. These results indicate that CoTM-4-PyP and Co-Salen form a dinuclear complex inside CB[10].

〔実施例2〕
CoTM-4-PyP/Fe-Salen/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/Fe-Salen/CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3)Salenの合成、(4)Salenへの金属導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Fe -Salen/CB[10]の合成の6ステップで行った。
(1) CoTM-4-PyPの合成は上述の実施例1と同様にして行い、目的物を得た。
(2) CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3) Salenの合成は、上述の実施例1と同様にして行い、目的物を得た。
(4) Fe-Salenの合成(SalenへのFe導入)
メタノール50 mlに上述(3)(0.32 g,1.2 mmol)を加え、そこに塩化鉄(II)(関東化学製) (0.200 g,1 mmol)を溶かし、塩酸を用いてpH 4に合成し、1時間室温で攪拌した。沈殿物を濾過にて回収しアセトンでよく洗浄し、真空オーブン中40℃で一晩乾燥させることにより目的物を収量103 mg、収率31.9%で得た。合成の確認はFAB-MS測定により行った。
(5) CoTM-4-PyP/CB[10]の合成
上述の実施例1と同様にして行い、目的物を得た。
(6)CoTM-4-PyP/Fe-Salen/CB[10]の合成

Figure 0007236722000023
式中、MはCoを示す。
CoTM-4-PyP/Fe-Salen /CB[10]の合成は、Fe-Salenの粉末をCoTM-4-PyP/CB[10]水溶液に加えることで反応を行い、目的物を得た。本実施例では合成確認として紫外・可視吸収スペクトルを用いた測定を行うため、以下の水溶液を合成した。
1)メタノール水溶液(160 μM)
2)Fe-Salenの160μM 水溶液。
3)CoTM-4-PyP/CB[10]の160μM水溶液。
そして、1)を(2000-X) μL、2)をXμL、3)を500μL、を添加し、合計2500μLリットルで一定とした。Xの値を変化させることで、異なる濃度のFe-Salenを添加した際の吸収スペクトル変化を追跡した。Xの値は0~2000まで変化させた。従って、添加したFe-Salenの濃度は、0~160μMであった。結果を図2に示す。
図2(a)に示す結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるFe-Salenを添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図2(b)に示すように441 nmにおけるプロットは1:1のフィッティングカーブを示し、CB[10]内部でCoTM-4-PyPとFe-Salenが二核錯体を形成していることがわかる。 [Example 2]
Synthesis of the multi-electron redox catalyst "CoTM-4-PyP/Fe-Salen/CB[10]" of the present invention consisting of CoTM-4-PyP/Fe-Salen/CB[10].
Synthesis includes (1) synthesis of CoTM-4-PyP, (2) synthesis of CB[10], (3) synthesis of Salen, (4) introduction of metal to Salen, and (5) CoTM-4-PyP/CB[ 10] and (6) Co TM-4-PyP/ Fe -Salen/CB[10].
(1) Synthesis of CoTM-4-PyP was carried out in the same manner as in Example 1 above to obtain the desired product.
(2) Synthesis of CB[10] was carried out in the same manner as in Example 1 above to obtain the desired product.
(3) Salen was synthesized in the same manner as in Example 1 above to obtain the desired product.
(4) Synthesis of Fe-Salen (Introduction of Fe into Salen)
The above (3) (0.32 g, 1.2 mmol) was added to 50 ml of methanol, iron (II) chloride (manufactured by Kanto Kagaku) (0.200 g, 1 mmol) was dissolved therein, and the pH was adjusted to 4 using hydrochloric acid. Stirred at room temperature for 1 hour. The precipitate was collected by filtration, washed well with acetone, and dried overnight in a vacuum oven at 40°C to obtain 103 mg of the desired product at a yield of 31.9%. Synthesis was confirmed by FAB-MS measurement.
(5) Synthesis of CoTM-4-PyP/CB[10] The desired product was obtained in the same manner as in Example 1 above.
(6) Synthesis of CoTM-4-PyP/Fe-Salen/CB[10]
Figure 0007236722000023
In the formula, M represents Co.
CoTM-4-PyP/Fe-Salen/CB[10] was synthesized by adding Fe-Salen powder to an aqueous CoTM-4-PyP/CB[10] solution to obtain the desired product. In this example, the following aqueous solution was synthesized in order to perform measurement using an ultraviolet/visible absorption spectrum for confirmation of synthesis.
1) Methanol aqueous solution (160 μM)
2) 160 μM aqueous solution of Fe-Salen.
3) 160 μM aqueous solution of CoTM-4-PyP/CB[10].
Then, (2000-X) μL of 1), X μL of 2), and 500 μL of 3) were added to make a total of 2500 μL liters constant. By changing the value of X, we traced the changes in the absorption spectrum when adding different concentrations of Fe-Salen. The value of X was varied from 0 to 2000. Therefore, the concentration of Fe-Salen added was 0-160 μM. The results are shown in FIG.
As is clear from the results shown in Fig. 2(a), as a result of adding different concentrations of Fe-Salen to CoTM-4-PyP/CB[10] with a constant concentration, the Soret band and Q A large change in the band was observed. In addition, as shown in Fig. 2(b), the plot at 441 nm shows a 1:1 fitting curve, indicating that CoTM-4-PyP and Fe-Salen form a binuclear complex inside CB[10]. Recognize.

〔実施例3〕
CoTM-4-PyP/Mo-Salen/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/Mo-Salen/CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3)Salenの合成、(4)SalenへのMo導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Mo-Salen/CB[10]の合成の6ステップで行った。
(1)CoTM-4-PyPの合成は上述の実施例1と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3)Salenの合成は、上述の実施例1と同様にして行い、目的物を得た。
(4) SalenへのMo導入
THF 35 mlに上述の方法により合成したSalen (131.2 mg,0.0489 mmol)を加え、そこにヘキサカルボニルモリブデン(関東化学製) (125 mg,0.473 mmol)を加え22時間還流した。沈殿物を濾過し、クロロホルムで洗浄し、真空オーブン中で40℃で一晩乾燥させ目的物を収量150 mg、収率74.6%で得た。合成の確認は、先行報告に従い、1H-NMR測定により行った。
(5)CoTM-4-PyP/CB[10]の合成
上述の実施例1と同様にして行い、目的物を得た。
(6)CoTM-4-PyP/Mo-Salen/CB[10]の合成

Figure 0007236722000024
式中、MはCoを示す。
CoTM-4-PyP/CB[10](10μM)に異なる濃度のMo-Salen(0~20μM)を添加し、その際の吸収スペクトル変化を紫外・可視吸収スペクトルを用いた測定を行った。結果を図3(a)及び(b)に示す。
また、錯形成比を求めるために、job’s Plot法を用いた。20μMに合成したCoTM-4-PyP/CB[10]とMo-Salenの比を1:0~0:1まで変化させ、その際極大吸収スペクトル変化を追跡した。結果を図4(a)及び(b)に示す。
図3(a)に示す結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるMo-Salenを添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図3(b)に示すように441 nmにおけるプロットは1:1のフィッティングカーブを示し、図4(a)及び(b)に示すように、Job’s PlotからもCB[10]内部でCoTM-4-PyPとMo-Salenが二核錯体を形成していることがわかる。 [Example 3]
Synthesis of the multi-electron redox catalyst "CoTM-4-PyP/Mo-Salen/CB[10]" of the present invention consisting of CoTM-4-PyP/Mo-Salen/CB[10].
Synthesis includes (1) synthesis of CoTM-4-PyP, (2) synthesis of CB[10], (3) synthesis of Salen, (4) introduction of Mo into Salen, and (5) CoTM-4-PyP/CB[ 10] and (6) Co TM-4-PyP/ Mo-Salen/CB[10].
(1) CoTM-4-PyP was synthesized in the same manner as in Example 1 above to obtain the desired product.
(2) CB[10] was synthesized in the same manner as in Example 1 above to obtain the desired product.
(3) Salen was synthesized in the same manner as in Example 1 above to obtain the desired product.
(4) Introduction of Mo to Salen
Salen (131.2 mg, 0.0489 mmol) synthesized by the above method was added to 35 ml of THF, and hexacarbonyl molybdenum (manufactured by Kanto Kagaku) (125 mg, 0.473 mmol) was added thereto and refluxed for 22 hours. The precipitate was filtered, washed with chloroform, and dried in a vacuum oven at 40° C. overnight to obtain 150 mg of the desired product in a yield of 74.6%. Synthesis was confirmed by 1 H-NMR measurement according to previous reports.
(5) Synthesis of CoTM-4-PyP/CB[10] The desired product was obtained in the same manner as in Example 1 above.
(6) Synthesis of CoTM-4-PyP/Mo-Salen/CB[10]
Figure 0007236722000024
In the formula, M represents Co.
CoTM-4-PyP/CB[10] (10 μM) was added with different concentrations of Mo-Salen (0-20 μM), and the changes in absorption spectra were measured using UV-visible absorption spectra. The results are shown in FIGS. 3(a) and (b).
In addition, the job's plot method was used to obtain the complex formation ratio. The ratio of CoTM-4-PyP/CB[10] synthesized to 20 μM and Mo-Salen was varied from 1:0 to 0:1, and the change in the maximum absorption spectrum was tracked. The results are shown in FIGS. 4(a) and (b).
As is clear from the results shown in Fig. 3(a), as a result of adding different concentrations of Mo-Salen to CoTM-4-PyP/CB[10] with a constant concentration, the Soret band and Q A large change in the band was observed. In addition, as shown in FIG. 3(b), the plot at 441 nm shows a 1:1 fitting curve, and as shown in FIGS. 4(a) and 4(b), CoTM- It can be seen that 4-PyP and Mo-Salen form a binuclear complex.

〔実施例4〕
CoTM-4-PyP/Co-Salen(OMe)/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/Co-Salen(OMe)/CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3) Salen(OMe)の合成、(4)Salen(OMe)へのCo導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Co-Salen(OMe)/CB[10]の合成の6ステップで行った。
(1)CoTM-4-PyPの合成は上述の実施例1と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3) Salen(OMe)の合成
メタノール332.7 mlにエチレンジアミン(1.0 g, 0.017 mol)とo-バニリン(東京化成社製) (5.06 g,0.033 mol)を加え、室温で1日攪拌した。生成した沈殿物を濾過により回収し、真空オーブン中30℃で一晩乾燥した。目的物は収量5.46 g、収率80.8%であった。合成の確認は、先行報告に従い、1H-NMR測定により行った。
(4) Salen(OMe)へのCo導入
メタノール50 mlに上述(3)(400 mg,1.2 mmol)を加え、そこに塩化コバルト六水和物(II)(0.238 g,1 mmol)を溶かし、塩酸を用いてpH 4に合成し、1時間室温で攪拌した。沈殿物を濾過にて回収しアセトンでよく洗浄し、真空オーブン中40℃で一晩乾燥させることにより目的物を収量253 mg、収率65.6%で得た。合成の確認はFAB-MS測定により行った。
(5)CoTM-4-PyP/CB[10]の合成
上述の実施例1と同様にして行い、目的物を得た。
(6)CoTM-4-PyP/Co-Salen(OMe)/CB[10]の合成

Figure 0007236722000025
式中Mは、Coを示す。
CoTM-4-PyP/Co-Salen(OMe)/CB[10]の合成は、Co-Salen(OMe)の粉末をCoTM-4-PyP/CB[10]水溶液に加えることで反応を行い、目的物を得た。本実施例では合成確認として紫外・可視吸収スペクトルを用いた測定を行うため、以下の水溶液を合成した。
1)メタノール水溶液(160μM)
2)Co- Salen(OMe)の160μM 溶液
3)CoTM-4-PyP/CB[10]の160μM水溶液
そして、1)を(2000-X)μL、2)をXμL、3)を500μL、を添加し、合計2500μLリットルで一定とした。Xの値を変化させることで、異なる濃度のCo-Salen(OMe)を添加した際の吸収スペクトル変化を追跡した。Xの値は0~2000まで変化させた。従って、添加したCo-Salen(OMe)の濃度は、0~160μMであった。結果を図5に示す。
図5(a)に示すように結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるCo-Salen(OMe)を添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図5(b)に示すように441 nmにおけるプロットは1:1のフィッティングカーブを示し、CB[10]内部でCoTM-4-PyPとCo-Salen(OMe)が二核錯体を形成していることがわかる。 [Example 4]
Synthesis of the multi-electron redox catalyst "CoTM-4-PyP/Co-Salen(OMe)/CB[10]" of the present invention consisting of CoTM-4-PyP/Co-Salen(OMe)/CB[10].
(1) synthesis of CoTM-4-PyP, (2) synthesis of CB[10], (3) synthesis of Salen(OMe), (4) introduction of Co into Salen(OMe), and (5) CoTM- 4-PyP/CB[10] and (6) Co TM-4-PyP/ Co-Salen(OMe)/CB[10] were synthesized in six steps.
(1) CoTM-4-PyP was synthesized in the same manner as in Example 1 above to obtain the desired product.
(2) CB[10] was synthesized in the same manner as in Example 1 above to obtain the desired product.
(3) Synthesis of Salen (OMe) Ethylenediamine (1.0 g, 0.017 mol) and o-vanillin (manufactured by Tokyo Kasei Co., Ltd.) (5.06 g, 0.033 mol) were added to 332.7 ml of methanol and stirred at room temperature for one day. The precipitate that formed was collected by filtration and dried in a vacuum oven at 30° C. overnight. The yield of the desired product was 5.46 g, 80.8%. Synthesis was confirmed by 1 H-NMR measurement according to previous reports.
(4) Introduction of Co into Salen (OMe) Add the above (3) (400 mg, 1.2 mmol) to 50 ml of methanol, dissolve cobalt chloride hexahydrate (II) (0.238 g, 1 mmol), It was synthesized to pH 4 using hydrochloric acid and stirred at room temperature for 1 hour. The precipitate was collected by filtration, washed well with acetone, and dried overnight in a vacuum oven at 40°C to obtain 253 mg of the desired product in a yield of 65.6%. Synthesis was confirmed by FAB-MS measurement.
(5) Synthesis of CoTM-4-PyP/CB[10] The desired product was obtained in the same manner as in Example 1 above.
(6) Synthesis of CoTM-4-PyP/Co-Salen(OMe)/CB[10]
Figure 0007236722000025
In the formula, M represents Co.
CoTM-4-PyP/Co-Salen(OMe)/CB[10] was synthesized by adding Co-Salen(OMe) powder to an aqueous solution of CoTM-4-PyP/CB[10]. got stuff In this example, the following aqueous solution was synthesized in order to perform measurement using an ultraviolet/visible absorption spectrum for confirmation of synthesis.
1) Methanol aqueous solution (160 μM)
2) 160 μM solution of Co- Salen (OMe)
3) 160 µM aqueous solution of CoTM-4-PyP/CB[10] Then, 1) was added to (2000-X) µL, 2) to X µL, and 3) to 500 µL, to a total of 2500 µL liters. By changing the value of X, we traced the change in absorption spectrum when adding different concentrations of Co-Salen (OMe). The value of X was varied from 0 to 2000. Therefore, the concentration of Co-Salen(OMe) added was 0-160 μM. The results are shown in FIG.
As is clear from the results shown in Fig. 5(a), as a result of adding different concentrations of Co-Salen (OMe) to a constant concentration of CoTM-4-PyP/CB[10], the maximum absorption was Large changes were observed in certain Soret and Q bands. In addition, as shown in Fig. 5(b), the plot at 441 nm shows a 1:1 fitting curve, indicating that CoTM-4-PyP and Co-Salen(OMe) form a binuclear complex inside CB[10]. I know there is.

〔実施例5〕
CoTM-4-PyP/Fe-Salen(OMe)/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/Fe-Salen(OMe)/CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3) Salen(OMe)の合成、(4)Salen(OMe)へのFe導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Fe- Salen(OMe)/CB[10]の合成の6ステップで行った。
(1)CoTM-4-PyPの合成は上述の実施例1と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3) Salen(OMe)の合成は上述の実施例4と同様にして行い、目的物を得た。
(4) メタノール50 mlに上述(3)(400 mg,1.2 mmol)を加え、そこに塩化鉄(II)(関東化学製) (0.200 g,1 mmol)を溶かし、塩酸を用いてpH 4に合成し、1時間室温で攪拌した。沈殿物を濾過にて回収しアセトンでよく洗浄し、真空オーブン中40℃で一晩乾燥させることにより目的物を収量258 mg、収率67.5%で得た。合成の確認はFAB-MS測定により行った。
(5)CoTM-4-PyP/CB[10]の合成
上述の実施例1と同様にして行い、目的物を得た。
(6)CoTM-4-PyP/Fe- Salen(OMe)/CB[10]の合成

Figure 0007236722000026
式中MはCoを示す。
CoTM-4-PyP/Fe-Salen(OMe)/CB[10]の合成は、Fe-Salen(OMe)の粉末をCoTM-4-PyP/CB[10]水溶液に加えることで反応を行い、目的物を得た。本実施例では合成確認として紫外・可視吸収スペクトルを用いた測定を行うため、以下の水溶液を合成した。
1)メタノール水溶液(160μM)
2)Fe-Salen(OMe)の160μM 水溶液
3)CoTM-4-PyP/CB[10]の160μM水溶液
そして、1)を(2000-X)μL、2)をXμL、3)を500μL、を添加し、合計2500μLリットルで一定とした。Xの値を変化させることで、異なる濃度のFe-Salen(OMe)を添加した際の吸収スペクトル変化を追跡した。Xの値は0~2000まで変化させた。従って、添加したFe-Salen(OMe)の濃度は、0~160μMであった。結果を図6に示す。
図6(a)に示すように結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるFe-Salen(OMe)を添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図6(b)に示すように441 nmにおけるプロットは1:1のフィッティングカーブを示し、CB[10]内部でCoTM-4-PyPとFe-Salen(OMe)が二核錯体を形成していることがわかる。 [Example 5]
Synthesis of the multi-electron redox catalyst "CoTM-4-PyP/Fe-Salen(OMe)/CB[10]" of the present invention consisting of CoTM-4-PyP/Fe-Salen(OMe)/CB[10].
(1) synthesis of CoTM-4-PyP, (2) synthesis of CB[10], (3) synthesis of Salen(OMe), (4) introduction of Fe into Salen(OMe), and (5) CoTM- 4-PyP/CB[10] synthesis and (6) Co TM-4-PyP/ Fe- Salen(OMe)/CB[10] synthesis were carried out in six steps.
(1) CoTM-4-PyP was synthesized in the same manner as in Example 1 above to obtain the desired product.
(2) CB[10] was synthesized in the same manner as in Example 1 above to obtain the desired product.
(3) Salen (OMe) was synthesized in the same manner as in Example 4 above to obtain the desired product.
(4) Add the above (3) (400 mg, 1.2 mmol) to 50 ml of methanol, dissolve iron (II) chloride (manufactured by Kanto Kagaku) (0.200 g, 1 mmol), and adjust to pH 4 using hydrochloric acid. synthesized and stirred for 1 hour at room temperature. The precipitate was collected by filtration, washed well with acetone, and dried overnight in a vacuum oven at 40°C to obtain 258 mg of the desired product in a yield of 67.5%. Synthesis was confirmed by FAB-MS measurement.
(5) Synthesis of CoTM-4-PyP/CB[10] The desired product was obtained in the same manner as in Example 1 above.
(6) Synthesis of CoTM-4-PyP/Fe- Salen(OMe)/CB[10]
Figure 0007236722000026
In the formula, M represents Co.
CoTM-4-PyP/Fe-Salen(OMe)/CB[10] was synthesized by adding Fe-Salen(OMe) powder to an aqueous solution of CoTM-4-PyP/CB[10]. got stuff In this example, the following aqueous solution was synthesized in order to perform measurement using an ultraviolet/visible absorption spectrum for confirmation of synthesis.
1) Methanol aqueous solution (160 μM)
2) 160 μM aqueous solution of Fe-Salen(OMe)
3) 160 µM aqueous solution of CoTM-4-PyP/CB[10] Then, 1) was added to (2000-X) µL, 2) to X µL, and 3) to 500 µL, to a total of 2500 µL liters. By changing the value of X, we traced the change in the absorption spectrum when adding different concentrations of Fe-Salen (OMe). The value of X was varied from 0 to 2000. Therefore, the concentration of Fe-Salen (OMe) added was 0-160 μM. The results are shown in FIG.
As is clear from the results shown in Fig. 6(a), as a result of adding different concentrations of Fe-Salen (OMe) to CoTM-4-PyP/CB[10] at a constant concentration, the maximum absorption Large changes were observed in certain Soret and Q bands. In addition, as shown in Fig. 6(b), the plot at 441 nm shows a 1:1 fitting curve, indicating that CoTM-4-PyP and Fe-Salen(OMe) form a binuclear complex inside CB[10]. I know there is.

〔実施例6〕
CoTM-4-PyP/Co-Pyalen/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/ Co-Pyalen /CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3) 1.3-〔Bis(Pyridine-2-Imino)〕Propane(以下Pyalen)の合成、(4)PyalenへのCo導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Co-Pyalen/CB[10]の合成の6ステップで行った。
(1)CoTM-4-PyPの合成は上述の実施例1と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3) Pyalenの合成
ディーンスターク装置を組み立て、そこにトルエン50 mlに1.3ジアミノプロパン(東京化成社製) (0.74 g,0.01 mol)を溶かし、さらにピリジン-2-カルボキシアルデヒド(東京化成社製) (2.14 g,0.02 mol)を加えた。ディーンスターク管に水が出てこなくなるまで反応させた。反応液をエバポレートにより溶媒を飛ばし、目的物を得た。収量は1.8 g、収率は71.4%であった。合成の確認は、先行報告に従い、1H-NMR測定により行った。
(4) メタノール50 mlに上述(3)(300 mg,1.2 mmol)を加え、そこに塩化コバルト六水和物(II)(0.238 g,1 mmol)を溶かし、塩酸を用いてpH 4に合成し、1時間室温で攪拌した。沈殿物を濾過にて回収しアセトンでよく洗浄し、真空オーブン中40℃で一晩乾燥させることにより目的物を収量300 mg、収率95.0%で得た。合成の確認はFAB-MS測定により行った。
(5)CoTM-4-PyP/CB[10]の合成
上述の実施例1と同様にして行い、目的物を得た。
(6)CoTM-4-PyP/ Co-Pyalen/CB[10]の合成

Figure 0007236722000027
式中MはCoを示す。
CoTM-4-PyP/ Co-Pyalen /CB[10]の合成は、Co-Pyalenの粉末をCoTM-4-PyP/CB[10]水溶液に加えることで反応を行い、目的物を得た。本実施例では合成確認として紫外・可視吸収スペクトルを用いた測定を行うため、以下の水溶液を合成した。
1)水
2)Co-Pyalenの160μM 水溶液
3)CoTM-4-PyP/CB[10]の160μM水溶液
そして、1)を(2000-X)μL、2)をXμL、3)を500μL、を添加し、合計2500μLリットルで一定とした。Xの値を変化させることで、異なる濃度のCo-Pyalenを添加した際の吸収スペクトル変化を追跡した。Xの値は0~2000まで変化させた。従って、添加したCo-Pyalenの濃度は、0~160μMであった。結果を図7に示す。
図7(a)に示すように結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるCo-Pyalenを添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図7(b)に示すように441 nmにおけるプロットは1:1のフィッティングカーブを示し、CB[10]内部でCoTM-4-PyPとCo-Pyalenが二核錯体を形成していることがわかる。 [Example 6]
Synthesis of the multi-electron redox catalyst "CoTM-4-PyP/Co-Pyalen/CB[10]" of the present invention consisting of CoTM-4-PyP/Co-Pyalen/CB[10].
Synthesis consists of (1) synthesis of CoTM-4-PyP, (2) synthesis of CB[10], (3) synthesis of 1.3-[Bis(pyridine-2-Imino)]propane (Pyalen), (4) Co introduction into Pyalen was carried out in six steps: (5) synthesis of CoTM-4-PyP/CB[10], and (6) synthesis of CoTM-4-PyP/Co-Pyalen/CB[10].
(1) CoTM-4-PyP was synthesized in the same manner as in Example 1 above to obtain the desired product.
(2) CB[10] was synthesized in the same manner as in Example 1 above to obtain the desired product.
(3) Synthesis of Pyalen Assemble a Dean-Stark apparatus, dissolve 1.3 diaminopropane (manufactured by Tokyo Kasei Co., Ltd.) (0.74 g, 0.01 mol) in 50 ml of toluene, and further pyridine-2-carboxaldehyde (manufactured by Tokyo Kasei Co., Ltd.). (2.14 g, 0.02 mol) was added. The reaction was continued until no more water came out of the Dean-Stark tube. The solvent was removed from the reaction solution by evaporation to obtain the desired product. The yield was 1.8 g and the yield was 71.4%. Synthesis was confirmed by 1 H-NMR measurement according to previous reports.
(4) The above (3) (300 mg, 1.2 mmol) was added to 50 ml of methanol, and cobalt chloride hexahydrate (II) (0.238 g, 1 mmol) was dissolved therein and adjusted to pH 4 using hydrochloric acid. and stirred for 1 hour at room temperature. The precipitate was collected by filtration, washed well with acetone, and dried overnight in a vacuum oven at 40°C to obtain 300 mg of the desired product at a yield of 95.0%. Synthesis was confirmed by FAB-MS measurement.
(5) Synthesis of CoTM-4-PyP/CB[10] The desired product was obtained in the same manner as in Example 1 above.
(6) Synthesis of CoTM-4-PyP/Co-Pyalen/CB[10]
Figure 0007236722000027
In the formula, M represents Co.
CoTM-4-PyP/Co-Pyalen/CB[10] was synthesized by adding Co-Pyalen powder to an aqueous CoTM-4-PyP/CB[10] solution to obtain the desired product. In this example, the following aqueous solution was synthesized in order to perform measurement using an ultraviolet/visible absorption spectrum for confirmation of synthesis.
1) water
2) 160 μM aqueous solution of Co-Pyalen
3) 160 µM aqueous solution of CoTM-4-PyP/CB[10] Then, 1) was added to (2000-X) µL, 2) to X µL, and 3) to 500 µL, to a total of 2500 µL liters. By changing the value of X, we traced the change in absorption spectrum when adding different concentrations of Co-Pyalen. The value of X was varied from 0 to 2000. Therefore, the concentration of Co-Pyalen added was 0-160 μM. The results are shown in FIG.
As is clear from the results shown in Fig. 7(a), as a result of adding different concentrations of Co-Pyalen to CoTM-4-PyP/CB[10] with a constant concentration, the Soret band, which is the maximum absorption, and large changes were observed in the Q band. In addition, as shown in Fig. 7(b), the plot at 441 nm shows a 1:1 fitting curve, indicating that CoTM-4-PyP and Co-Pyalen form a binuclear complex inside CB[10]. Recognize.

〔実施例7〕
CoTM-4-PyP/Fe-Pyalen/CB[10]からなる本発明の多電子酸化還元触媒「CoTM-4-PyP/ Fe-Pyalen /CB[10]」の合成。
合成は、(1)CoTM-4-PyPの合成、(2)CB[10]の合成、(3)Pyalenの合成、(4)PyalenへのFe導入(5)CoTM-4-PyP/CB[10]の合成、(6)Co TM-4-PyP/ Fe-Pyalen /CB[10]の合成の6ステップで行った。
(1)CoTM-4-PyPの合成は上述の実施例1と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3) Pyalenの合成
上述の実施例6と同様にして行い、目的物を得た。
(4) PyalenへのFe導入
メタノール50 mlに上述(3)(300 mg,1.2 mmol)を加え、そこに塩化鉄(II)(関東化学製) (0.200 g,1 mmol)を溶かし、塩酸を用いてpH 4に合成し、1時間室温で攪拌した。沈殿物を濾過にて回収しアセトンでよく洗浄し、真空オーブン中40℃で一晩乾燥させることにより目的物を収量307 mg、収率99.0%で得た。合成の確認はFAB-MS測定により行った。
(5)CoTM-4-PyP/CB[10]の合成
上述の実施例1と同様にして行い、目的物を得た。
(6)CoTM-4-PyP/ Fe-Pyalen /CB[10]の合成

Figure 0007236722000028
式中MはCoを示す。
CoTM-4-PyP/ Fe-Pyalen/CB[10]の合成は、Fe-Pyaleeの粉末をCoTM-4-PyP/CB[10]水溶液に加えることで反応を行い、目的物を得た。本実施例では合成確認として紫外・可視吸収スペクトルを用いた測定を行うため、以下の水溶液を合成した。
1)メタノール水溶液(160 μM)
2)Fe-Pyalenの160μM 水溶液
3)CoTM-4-PyP/CB[10]の160μM水溶液
そして、1)を(2000-X)μL、2)をXμL、3)を500μL、を添加し、合計2500μLリットルで一定とした。Xの値を変化させることで、異なる濃度のFe-Pyalenを添加した際の吸収スペクトル変化を追跡した。Xの値は0~2000まで変化させた。従って、添加したFe-Pyalenの濃度は、0~160μMであった。結果を図8に示す。
図8(a)に示すように結果から明らかなように、濃度一定のCoTM-4-PyP/CB[10]に対して、濃度の異なるFe-Pyalenを添加した結果、極大吸収であるソーレー帯とQ帯に大きな変化が観測された。また図8(b)に示すように、435 nmにおけるプロットは1:1のフィッティングカーブを示し、CB[10]内部でCoTM-4-PyPとFe-Pyalenが二核錯体を形成していることがわかる。 [Example 7]
Synthesis of the multi-electron redox catalyst "CoTM-4-PyP/Fe-Pyalen/CB[10]" of the present invention consisting of CoTM-4-PyP/Fe-Pyalen/CB[10].
Synthesis includes (1) synthesis of CoTM-4-PyP, (2) synthesis of CB[10], (3) synthesis of Pyalen, (4) introduction of Fe into Pyalen, and (5) CoTM-4-PyP/CB[ 10] and (6) Co TM-4-PyP/Fe-Pyalen/CB[10].
(1) CoTM-4-PyP was synthesized in the same manner as in Example 1 above to obtain the desired product.
(2) CB[10] was synthesized in the same manner as in Example 1 above to obtain the desired product.
(3) Synthesis of Pyalen The target product was obtained in the same manner as in Example 6 above.
(4) Introduction of Fe into Pyalen
The above (3) (300 mg, 1.2 mmol) was added to 50 ml of methanol, iron (II) chloride (manufactured by Kanto Kagaku) (0.200 g, 1 mmol) was dissolved therein, and the pH was adjusted to 4 using hydrochloric acid. Stirred at room temperature for 1 hour. The precipitate was collected by filtration, washed well with acetone, and dried overnight in a vacuum oven at 40°C to obtain 307 mg of the desired product at a yield of 99.0%. Synthesis was confirmed by FAB-MS measurement.
(5) Synthesis of CoTM-4-PyP/CB[10] The desired product was obtained in the same manner as in Example 1 above.
(6) Synthesis of CoTM-4-PyP/Fe-Pyalen/CB[10]
Figure 0007236722000028
In the formula, M represents Co.
CoTM-4-PyP/Fe-Pyalen/CB[10] was synthesized by adding Fe-Pyalee powder to an aqueous CoTM-4-PyP/CB[10] solution to obtain the desired product. In this example, the following aqueous solution was synthesized in order to perform measurement using an ultraviolet/visible absorption spectrum for confirmation of synthesis.
1) Methanol aqueous solution (160 μM)
2) 160 μM aqueous solution of Fe-Pyalen
3) 160 µM aqueous solution of CoTM-4-PyP/CB[10] Then, 1) was added to (2000-X) µL, 2) to X µL, and 3) to 500 µL, to a total of 2500 µL liters. By changing the value of X, we traced the changes in the absorption spectrum when adding different concentrations of Fe-Pyalen. The value of X was varied from 0 to 2000. Therefore, the concentration of Fe-Pyalen added was 0-160 μM. The results are shown in FIG.
As is clear from the results shown in Fig. 8(a), as a result of adding Fe-Pyalen with different concentrations to CoTM-4-PyP/CB[10] with a constant concentration, the Soret band, which is the maximum absorption, and large changes were observed in the Q band. In addition, as shown in Fig. 8(b), the plot at 435 nm shows a 1:1 fitting curve, indicating that CoTM-4-PyP and Fe-Pyalen form a dinuclear complex inside CB[10]. I understand.

〔実施例8〕
FeTM-4-PyP/Co-Salen/CB[10]からなる本発明の多電子酸化還元触媒「FeTM-4-PyP/Co-Salen/CB[10]」の合成。
合成は、(1)FeTM-4-PyPの合成、(2)CB[10]の合成、(3)Co-Salenの合成、(4)FeTM-4-PyP/CB[10]の合成、(5)FeTM-4-PyP/ Co-Salen/CB[10]の合成の5ステップで行った。
(1) FeTM-4-PyPの合成
出発原料として、5,10,15,20-テトラ(4-ピリジル)-21H,23H-ポルフィン(Aldrich社製)、p-トルエンスルホン酸メチル(東京化成社製)、塩化鉄(II)四水和物(関東化学製)を用いた。
(a) 5,10,15,20-テトラ(4-メチルピリジニウム)-21H,23H-ポルフィン(H2TM-4-PyP)の合成
実施例1記載の合成法と同様にして目的物H2TM-4-PyPを得た。収量は45.2 mg、収率は68.2%であった。合成の確認は、先行報告に従い1H-NMRにより行った。
[Example 8]
Synthesis of the multi-electron redox catalyst "FeTM-4-PyP/Co-Salen/CB[10]" of the present invention consisting of FeTM-4-PyP/Co-Salen/CB[10].
Synthesis includes (1) synthesis of FeTM-4-PyP, (2) synthesis of CB[10], (3) synthesis of Co-Salen, (4) synthesis of FeTM-4-PyP/CB[10], ( 5) FeTM-4-PyP/Co-Salen/CB[10] was synthesized in 5 steps.
(1) As starting materials for the synthesis of FeTM-4-PyP, 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (manufactured by Aldrich), methyl p-toluenesulfonate (Tokyo Kasei Co., Ltd.) (manufactured by Kanto Kagaku) and iron (II) chloride tetrahydrate (manufactured by Kanto Kagaku).
(a) Synthesis of 5,10,15,20-tetra(4-methylpyridinium)-21H,23H-porphine (H2TM-4-PyP) In the same manner as in Example 1, the desired product H2TM-4- Got PyP. The yield was 45.2 mg and the yield was 68.2%. Synthesis was confirmed by 1H-NMR according to previous reports.

(b) Fe(III)-5,10,15,20-テトラ(4-メチルピリジニウム)-21H,23H-ポルフィン(FeTM-4-PyP)の合成

Figure 0007236722000029
H2TM-4-PyP(50 mg, 0.061 mmol)と塩化鉄(II)(77 mg, 0.61 mmol)を20 mLの水に溶解させ、塩酸を用いてpH 4に合成し、窒素雰囲気下100℃で加熱還流した。反応進行はシリカTLC(アセトニトリル/水/KNO3aq)=(8/2/1)により確認した。
反応後、析出した赤褐色沈殿をろ過により除去し、ろ液にヘキサフルオロリン酸アンモニウム(NH4PF6)を添加し、紫色固体を得た。紫色固体をアセトンに溶解させ、テトラブチルアンモニウムクロリド添加により生じた紫色固体をろ過により回収し、目的物FeTM-4-PyPを得た。収量は44.3 mg、収率は80%であった。
(2) CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3) Co-Salenの合成は、上述の実施例1と同様にして行い、目的物を得た。
(4) FeTM-4-PyP/CB[10]の合成
Figure 0007236722000030
FeTM-4-PyP 1.0mgを5mLの水に溶解させた。溶液にCB[10] 2.6mgを添加し、室温で10分間超音波処理した。未反応のCB[10]をフィルター濾過により除去し、FeTM-4-PyP /CB[10]を水溶液として得た。FeTM-4-PyP/CB[10]形成は定量的に進行した。合成の確認は、UV/visスペクトルにより行った。
(6)FeTM-4-PyP/Co-Salen/CB[10]の合成
FeTM-4-PyP/Co-Salen/CB[10]の合成は、Co-Salenの粉末をFeTM-4-PyP /CB[10]水溶液に加えることで反応を行い、目的物を得た。
Figure 0007236722000031
合成により得られた化合物の確認は、紫外可視吸収スペクトル測定により行った。結果を図9に示す。
図9に示す結果から明らかなように、600 nm付近にあるFeTM-4-PyP/CB[10]の吸収帯(Q band)が短波長シフトした。また、424 nmのFeTM-4-PyP/CB[10]由来の吸収帯(Soret band)の吸光度が低下した。このような吸収スペクトル変化は、芳香環同士の相互作用により観られる。従って、FeTM-4-PyP/CB[10]内部へのCo-Salenの包接、即ちFeTM-4-PyP/Co-Salen/CB[10]が形成されていることがわかる。 (b) Synthesis of Fe(III)-5,10,15,20-tetra(4-methylpyridinium)-21H,23H-porphine (FeTM-4-PyP)
Figure 0007236722000029
H2TM-4-PyP (50 mg, 0.061 mmol) and iron(II) chloride (77 mg, 0.61 mmol) were dissolved in 20 mL of water and adjusted to pH 4 using hydrochloric acid. Heated to reflux. Reaction progress was confirmed by silica TLC (acetonitrile/water/KNO3aq) = (8/2/1).
After the reaction, the deposited reddish brown precipitate was removed by filtration, and ammonium hexafluorophosphate (NH4PF6) was added to the filtrate to obtain a purple solid. The purple solid was dissolved in acetone, and the purple solid produced by the addition of tetrabutylammonium chloride was collected by filtration to obtain the desired product FeTM-4-PyP. The yield was 44.3 mg and the yield was 80%.
(2) Synthesis of CB[10] was carried out in the same manner as in Example 1 above to obtain the desired product.
(3) Synthesis of Co-Salen was carried out in the same manner as in Example 1 above to obtain the desired product.
(4) Synthesis of FeTM-4-PyP/CB[10]
Figure 0007236722000030
1.0 mg of FeTM-4-PyP was dissolved in 5 mL of water. 2.6 mg of CB[10] was added to the solution and sonicated for 10 minutes at room temperature. Unreacted CB[10] was removed by filter filtration to obtain FeTM-4-PyP/CB[10] as an aqueous solution. FeTM-4-PyP/CB[10] formation progressed quantitatively. Confirmation of synthesis was performed by UV/vis spectra.
(6) Synthesis of FeTM-4-PyP/Co-Salen/CB[10]
FeTM-4-PyP/Co-Salen/CB[10] was synthesized by adding Co-Salen powder to FeTM-4-PyP/CB[10] aqueous solution to obtain the desired product.
Figure 0007236722000031
Confirmation of the compound obtained by synthesis was performed by UV-visible absorption spectroscopy. The results are shown in FIG.
As is clear from the results shown in FIG. 9, the absorption band (Q band) of FeTM-4-PyP/CB[10] around 600 nm shifted to shorter wavelengths. In addition, the absorbance of the absorption band (Soret band) derived from FeTM-4-PyP/CB[10] at 424 nm decreased. Such absorption spectrum changes are observed due to interactions between aromatic rings. Therefore, it is found that Co-Salen is included inside FeTM-4-PyP/CB[10], that is, FeTM-4-PyP/Co-Salen/CB[10] is formed.

〔実施例9〕
FeTM-4-PyP/Co-Salen(OMe)/CB[10]からなる本発明の多電子酸化還元触媒「FeTM-4-PyP/Co-Salen(OMe)/CB[10] 」の合成。
合成は、(1)FeTM-4-PyPの合成、(2)CB[10]の合成、(3)Co-Salen(OMe)の合成、(4)FeTM-4-PyP/CB[10]の合成、(5)FeTM-4-PyP/ Co-Salen(OMe)/CB[10]の合成の5ステップで行った。
(1)FeTM-4-PyPの合成は、上述の実施例8と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3)Co-Salen(OMe)の合成は、上述の実施例4と同様にして行い、目的物を得た。
(4) FeTM-4-PyP/CB[10]の合成は、上述の実施例8と同様にして行い、目的物を得た。
(5) FeTM-4-PyP/ Co-Salen(OMe)/CB[10]の合成
FeTM-4-PyP/Co-Salen(OMe )/CB[10]の合成は、Co-Salen(OMe )の粉末をFeTM-4-PyP /CB[10]水溶液に加えることで反応を行い、目的物を得た。

Figure 0007236722000032
合成により得られた化合物の確認は紫外可視吸収スペクトル測定により行った、結果を図10に示す。
図10において、青線は FeTM-4-PyP/CB[10]の吸収スペクトルを、赤線は FeTM-4-PyP/Co-Salen(OMe)/CB[10]の吸収スペクトルを示す。差スペクトルによる評価の結果、400 nmに新たな吸収帯が観測された。これはCB[10]内部での、FeTM-4-PyP及びCo-Salen(OMe)間のπ-π電荷移動相互作用に由来すると考えられる。従って、FeTM-4-PyP/Co-Salen(OMe)/CB[10]が形成されていることがわかる。 [Example 9]
Synthesis of the multi-electron redox catalyst "FeTM-4-PyP/Co-Salen(OMe)/CB[10]" of the present invention consisting of FeTM-4-PyP/Co-Salen(OMe)/CB[10].
(1) Synthesis of FeTM-4-PyP, (2) Synthesis of CB[10], (3) Synthesis of Co-Salen(OMe), (4) Synthesis of FeTM-4-PyP/CB[10] (5) Synthesis of FeTM-4-PyP/Co-Salen(OMe)/CB[10].
(1) Synthesis of FeTM-4-PyP was carried out in the same manner as in Example 8 above to obtain the desired product.
(2) CB[10] was synthesized in the same manner as in Example 1 above to obtain the desired product.
(3) Co-Salen(OMe) was synthesized in the same manner as in Example 4 above to obtain the desired product.
(4) Synthesis of FeTM-4-PyP/CB[10] was carried out in the same manner as in Example 8 above to obtain the intended product.
(5) Synthesis of FeTM-4-PyP/Co-Salen(OMe)/CB[10]
FeTM-4-PyP/Co-Salen(OMe)/CB[10] was synthesized by adding Co-Salen(OMe) powder to FeTM-4-PyP/CB[10] aqueous solution. got stuff

Figure 0007236722000032
Confirmation of the compound obtained by the synthesis was carried out by ultraviolet-visible absorption spectrometry. The results are shown in FIG.
In FIG. 10, the blue line indicates the absorption spectrum of FeTM-4-PyP/CB[10], and the red line indicates the absorption spectrum of FeTM-4-PyP/Co-Salen(OMe)/CB[10]. As a result of evaluation by difference spectrum, a new absorption band was observed at 400 nm. This is attributed to the π-π charge transfer interaction between FeTM-4-PyP and Co-Salen(OMe) inside CB[10]. Therefore, it can be seen that FeTM-4-PyP/Co-Salen(OMe)/CB[10] is formed.

〔実施例10〕
FeTM-4-PyP/Fe-Salen(OMe)/CB[10]からなる本発明の多電子酸化還元触媒「FeTM-4-PyP/Fe-Salen(OMe)/CB[10]の合成
合成は、(1)FeTM-4-PyPの合成、(2)CB[10]の合成、(3)Fe-Salen(OMe)の合成、(4)FeTM-4-PyP/CB[10]の合成、(5)FeTM-4-PyP/ Fe-Salen(OMe)/CB[10]の合成の5ステップで行った。
(1)FeTM-4-PyPの合成は、上述の実施例8と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3)Fe-Salen(OMe)の合成は、上述の実施例5と同様にして行い、目的物を得た。
(4)FeTM-4-PyP/CB[10]の合成は、上述の実施例8と同様にして行い、目的物を得た。
(5) FeTM-4-PyP/Fe-Salen(OMe)/CB[10]の合成
FeTM-4-PyP/ Fe-Salen(OMe)/CB[10]の合成は、Fe-Salen(OMe)の粉末をFeTM-4-PyP /CB[10]水溶液に加えることで反応を行い、目的物を得た。

Figure 0007236722000033

合成により得られた化合物の確認は、紫外可視吸収スペクトル測定により行った。結果を図11に示す。
図11において、 青線は FeTM-4-PyP/CB[10]の、 赤線は FeTM-4-PyP/Fe-Salen(OMe)/CB[10]の吸収スペクトルである。 Fe-Salen(OMe)の粉末を添加し、超音波処理することでFeTM-4-PyP骨格由来の吸光度の減少が観られた。これはFe-Salen(OMe)の包接により、FeTM-4-PyP周りの環境が疎水的になったためであると考えられる。また、600 nm付近のFeTM-4-PyP/CB[10] 由来の吸収が短波長シフトした。これは、FeTM-4-PyPとFe-Salen(OMe)との会合によるものであると考えられる。従って、FeTM-4-PyP/Fe-Salen(OMe)/CB[10]が形成されていることがわかる。 [Example 10]
Synthesis of FeTM-4-PyP/Fe-Salen(OMe)/CB[10] multi-electron oxidation-reduction catalyst of the present invention "FeTM-4-PyP/Fe-Salen(OMe)/CB[10]" (1) Synthesis of FeTM-4-PyP, (2) Synthesis of CB[10], (3) Synthesis of Fe-Salen(OMe), (4) Synthesis of FeTM-4-PyP/CB[10], ( 5) FeTM-4-PyP/Fe-Salen(OMe)/CB[10] was synthesized in 5 steps.
(1) Synthesis of FeTM-4-PyP was carried out in the same manner as in Example 8 above to obtain the desired product.
(2) CB[10] was synthesized in the same manner as in Example 1 above to obtain the desired product.
(3) Synthesis of Fe-Salen(OMe) was carried out in the same manner as in Example 5 above to obtain the desired product.
(4) Synthesis of FeTM-4-PyP/CB[10] was carried out in the same manner as in Example 8 above to obtain the desired product.
(5) Synthesis of FeTM-4-PyP/Fe-Salen(OMe)/CB[10]
FeTM-4-PyP/Fe-Salen(OMe)/CB[10] was synthesized by adding FeTM-4-PyP/CB[10] powder to the FeTM-4-PyP/CB[10] aqueous solution. got stuff

Figure 0007236722000033

Confirmation of the compound obtained by synthesis was performed by UV-visible absorption spectroscopy. The results are shown in FIG.
In Fig. 11, the blue line is FeTM-4-PyP/CB[10], and the red line is FeTM-4-PyP/Fe-Salen(OMe)/CB[10]. Addition of Fe-Salen (OMe) powder and ultrasonic treatment reduced the absorbance derived from the FeTM-4-PyP skeleton. This is probably because Fe-Salen(OMe) inclusion made the environment around FeTM-4-PyP hydrophobic. In addition, the absorption derived from FeTM-4-PyP/CB[10] around 600 nm shifted to shorter wavelengths. This is believed to be due to association between FeTM-4-PyP and Fe-Salen (OMe). Therefore, it can be seen that FeTM-4-PyP/Fe-Salen(OMe)/CB[10] is formed.

〔実施例11〕
FeTM-4-PyP/Fe-Salen/CB[10]からなる本発明の多電子酸化還元触媒「FeTM-4-PyP/Fe-Salen/CB[10]」の合成
合成は、(1)FeTM-4-PyPの合成、(2)CB[10]の合成、(3)Fe-Salen(OMe)の合成、(4)FeTM-4-PyP/CB[10]の合成、(5)FeTM-4-PyP/ Fe-Salen/CB[10]の合成の5ステップで行った。
(1)FeTM-4-PyPの合成は、上述の実施例8と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3)Fe-Salenの合成は、上述の実施例2と同様にして行い、目的物を得た。
(4) FeTM-4-PyP/CB[10]の合成は、上述の実施例8と同様にして行い、目的物を得た。
(5) FeTM-4-PyP/ Fe-Salen/CB[10]の合成
FeTM-4-PyP/ Fe-Salen/CB[10]の合成は、Fe-Salenの粉末をFeTM-4-PyP /CB[10]水溶液に加えることで反応を行い、目的物を得た。

Figure 0007236722000034
合成により得られた化合物の確認は、紫外可視吸収スペクトル測定により行った。結果を図12に示す。
図12において、青線は FeTM-4-PyP/CB[10]の、 赤線: FeTM-4-PyP/Fe-Salen]CB[10]の吸収スペクトルである。Fe-Salenの粉末を添加し、超音波処理することでFeTM-4-PyP骨格由来の吸光度の減少が観られた。これは、Fe-Salenの包接によりFeTM-4-PyP周りの環境が疎水的になったためであると考えられる。また、600 nm付近のFeTM-4-PyP/CB[10] 由来の吸収が短波長シフトした。これは、FeTM-4-PyPとFe-Salenとの会合によるものであると考えられる。従って、FeTM-4-PyP/Fe-Salen/CB[10]が形成されていることがわかる。 [Example 11]
Synthesis of the multi-electron redox catalyst "FeTM-4-PyP/Fe-Salen/CB[10]" of the present invention consisting of FeTM-4-PyP/Fe-Salen/CB[10] Synthesis consists of (1) FeTM- Synthesis of 4-PyP, (2) synthesis of CB[10], (3) synthesis of Fe-Salen(OMe), (4) synthesis of FeTM-4-PyP/CB[10], (5) FeTM-4 -PyP/Fe-Salen/CB[10] was synthesized in five steps.
(1) Synthesis of FeTM-4-PyP was carried out in the same manner as in Example 8 above to obtain the desired product.
(2) CB[10] was synthesized in the same manner as in Example 1 above to obtain the desired product.
(3) Synthesis of Fe-Salen was carried out in the same manner as in Example 2 above to obtain the desired product.
(4) Synthesis of FeTM-4-PyP/CB[10] was carried out in the same manner as in Example 8 above to obtain the intended product.
(5) Synthesis of FeTM-4-PyP/Fe-Salen/CB[10]
FeTM-4-PyP/Fe-Salen/CB[10] was synthesized by adding Fe-Salen powder to FeTM-4-PyP/CB[10] aqueous solution to obtain the desired product.

Figure 0007236722000034
Confirmation of the compound obtained by synthesis was performed by UV-visible absorption spectroscopy. The results are shown in FIG.
In FIG. 12, the blue line is the absorption spectrum of FeTM-4-PyP/CB[10], and the red line is the absorption spectrum of FeTM-4-PyP/Fe-Salen]CB[10]. FeTM-4-PyP skeleton-derived absorbance decreased by adding Fe-Salen powder and sonicating. This is probably because Fe-Salen inclusion made the environment around FeTM-4-PyP hydrophobic. In addition, the absorption derived from FeTM-4-PyP/CB[10] around 600 nm shifted to shorter wavelengths. This is believed to be due to association between FeTM-4-PyP and Fe-Salen. Therefore, it can be seen that FeTM-4-PyP/Fe-Salen/CB[10] is formed.

〔実施例12〕
FeTM-4-PyP/Fe-Pyalen/CB[10]からなる本発明の多電子酸化還元触媒「FeTM-4-PyP/Fe-Pyalen/CB[10]の合成
合成は、(1)FeTM-4-PyPの合成、(2)CB[10]の合成、(3)Fe-Pyalenの合成、(4)FeTM-4-PyP/CB[10]の合成、(5)FeTM-4-PyP/ Fe-Pyalen/CB[10]の合成の5ステップで行った。
(1)FeTM-4-PyPの合成は、上述の実施例8と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3)Fe-Pyalenの合成は、上述の実施例7と同様にして行い、目的物を得た。
(4)FeTM-4-PyP/CB[10]の合成は、上述の実施例8と同様にして行い、目的物を得た。
(5) FeTM-4-PyP/ Fe-Pyalen /CB[10]の合成
FeTM-4-PyP/ Fe-Pyalen /CB[10]の合成は、Fe-Pyalen の粉末をFeTM-4-PyP /CB[10]水溶液に加えることで反応を行い、目的物を得た。

Figure 0007236722000035
合成により得られた化合物の確認は、紫外可視吸収スペクトル測定により行った。結果を図13に示す。
図13に示すように、濃度一定のFeTM-4-PyP/CB[10]に対し、異なる濃度のFe-Pyalenを逐次添加した結果、FeTM等吸収点を維持しながら有意な吸収スペクトル変化が観測された。また、FeTM-4-PyP/CB[10]由来のSoret帯の吸光度の減少及びQ帯の短波長シフトが観測された。これらは、CB[10]内部におけるFeTM-4-PyPとFe-Pyalenとの相互作用に由来する。従って、FeTM-4-PyP/Fe-Pyalen/CB[10]が形成されていることがわかる。 [Example 12]
Synthesis of FeTM-4-PyP/Fe-Pyalen/CB[10] multi-electron oxidation-reduction catalyst of the present invention "FeTM-4-PyP/Fe-Pyalen/CB[10]" Synthesis consists of (1) FeTM-4 -PyP synthesis, (2) CB[10] synthesis, (3) Fe-Pyalen synthesis, (4) FeTM-4-PyP/CB[10] synthesis, (5) FeTM-4-PyP/Fe The synthesis of -Pyalen/CB[10] was performed in five steps.
(1) Synthesis of FeTM-4-PyP was carried out in the same manner as in Example 8 above to obtain the desired product.
(2) CB[10] was synthesized in the same manner as in Example 1 above to obtain the desired product.
(3) Synthesis of Fe-Pyalen was carried out in the same manner as in Example 7 above to obtain the desired product.
(4) Synthesis of FeTM-4-PyP/CB[10] was carried out in the same manner as in Example 8 above to obtain the desired product.
(5) Synthesis of FeTM-4-PyP/Fe-Pyalen/CB[10]
FeTM-4-PyP/Fe-Pyalen/CB[10] was synthesized by adding Fe-Pyalen powder to FeTM-4-PyP/CB[10] aqueous solution to obtain the desired product.
Figure 0007236722000035
Confirmation of the compound obtained by synthesis was performed by UV-visible absorption spectroscopy. The results are shown in FIG.
As shown in Fig. 13, as a result of sequentially adding different concentrations of Fe-Pyalen to FeTM-4-PyP/CB[10] at a constant concentration, significant changes in absorption spectra were observed while maintaining the FeTM isosbestic point. was done. In addition, a decrease in the absorbance of the Soret band derived from FeTM-4-PyP/CB[10] and a short wavelength shift of the Q band were observed. These originate from the interaction of FeTM-4-PyP and Fe-Pyalen within CB[10]. Therefore, it can be seen that FeTM-4-PyP/Fe-Pyalen/CB[10] is formed.

〔実施例13〕
FeTM-4-PyP/Co-Pyalen/CB[10]からなる本発明の多電子酸化還元触媒「FeTM-4-PyP/Co-Pyalen/CB[10]の合成
合成は、(1)FeTM-4-PyPの合成、(2)CB[10]の合成、(3)Co-Pyalenの合成、(4)FeTM-4-PyP/CB[10]の合成、(5)FeTM-4-PyP/ Co-Pyalen/CB[10]の合成の5ステップで行った。
(1)FeTM-4-PyPの合成は、上述の実施例8と同様にして行い、目的物を得た。
(2)CB[10]の合成は、上述の実施例1と同様にして行い、目的物を得た。
(3)Co-Pyalenの合成は、上述の実施例6と同様にして行い、目的物を得た。
(4)FeTM-4-PyP/CB[10]の合成は、上述の実施例8と同様にして行い、目的物を得た。
(5) FeTM-4-PyP/Co-Pyalen/CB[10]の合成
FeTM-4-PyP/ Co -Pyalen /CB[10]の合成は、Co -Pyalen の粉末をFeTM-4-PyP /CB[10]水溶液に加えることで反応を行い、目的物を得た。

Figure 0007236722000036
合成により得られた化合物の確認は、紫外可視吸収スペクトル測定により行った。結果を図14に示す。
図14に示すように、濃度一定のFeTM-4-PyP/CB[10]に対して、異なる濃度のCo-Pyalenを逐次添加した結果、450 nm~500 nm付近における吸光度の増大及びQ帯の長波長シフトが観測された。これは、CB[10]内部におけるFeTM-4-PyPとCo-Pyalenとの電子的相互作用に由来する。従って、FeTM-4-PyP/Co-Pyalen/CB[10]が形成されていることがわかる。 [Example 13]
Synthesis of FeTM-4-PyP/Co-Pyalen/CB[10] multi-electron oxidation-reduction catalyst of the present invention "FeTM-4-PyP/Co-Pyalen/CB[10]" (2) Synthesis of CB[10], (3) Synthesis of Co-Pyalen, (4) Synthesis of FeTM-4-PyP/CB[10], (5) Synthesis of FeTM-4-PyP/Co The synthesis of -Pyalen/CB[10] was performed in five steps.
(1) Synthesis of FeTM-4-PyP was carried out in the same manner as in Example 8 above to obtain the desired product.
(2) CB[10] was synthesized in the same manner as in Example 1 above to obtain the desired product.
(3) Synthesis of Co-Pyalen was carried out in the same manner as in Example 6 above to obtain the desired product.
(4) Synthesis of FeTM-4-PyP/CB[10] was carried out in the same manner as in Example 8 above to obtain the desired product.
(5) Synthesis of FeTM-4-PyP/Co-Pyalen/CB[10]
FeTM-4-PyP/Co-Pyalen/CB[10] was synthesized by adding Co-Pyalen powder to FeTM-4-PyP/CB[10] aqueous solution to obtain the desired product.

Figure 0007236722000036
Confirmation of the compound obtained by synthesis was performed by UV-visible absorption spectroscopy. The results are shown in FIG.
As shown in Fig. 14, as a result of sequentially adding different concentrations of Co-Pyalen to FeTM-4-PyP/CB[10] at a constant concentration, the absorbance increased near 450 nm to 500 nm and the Q band decreased. A long wavelength shift was observed. This originates from the electronic interaction between FeTM-4-PyP and Co-Pyalen inside CB[10]. Therefore, it can be seen that FeTM-4-PyP/Co-Pyalen/CB[10] is formed.

[実施例14]
(trans-CoM4Py2P)2/CB[10]からなる多電子酸化還元触媒「(trans-CoM4Py2P)2/CB[10]」の合成
合成は、(1)trans-H2M4Py2Pの合成、(2)trans-CoM4Py2Pの合成、(3)(trans-CoM4Py2P)2/CB[10]の合成の3ステップで行った。
(1)trans-H2M4Py2Pの合成
出発原料として、ピロール(東京化成)、パラホルムアルデヒド(Aldrich)、4-ピリジンカルボアルデヒド(関東化学)、コバルト(III)アセチルアセトナートを用いた。
(a)ジピロメタンの合成

Figure 0007236722000037
ピロール200 mL(2.88mol)とパラホルムアルデヒド0.75g(25mmol)を混合し、窒素脱気した。60℃で加熱攪拌し、パラホルムアルデヒドを溶解させた。室温まで放冷し、トリフルオロ酢酸(TFA)を数滴加え一時間室温で攪拌した。次いで、水酸化ナトリウム0.75g(19mmol)を加え、室温でさらに40分攪拌した。攪拌後、反応溶液をエバポレートし、得られた粘性液体はクロロホルムを展開溶媒として用いたシリカゲルカラムクロマトグラフィーにより分離した。収量は1.8g、収率は49 %であった。合成の確認は、先行報告に従い1H NMRにより行った。
(b) trans-H24Py2Pの合成
Figure 0007236722000038
ジピロメタン1.8g (12mmol)をプロピオン酸24 mLに溶解させた。4-ピリジンカルボキシアルデヒド1.2mL (12mmol)を24mLのプロピオン酸に溶解させた。70℃に加熱したプロピオン酸30mLに上記二つのプロピオン酸溶液を徐々に添加し、得られた溶液を70℃で18時間攪拌した。反応後、プロピオン酸をエバポレートし、得られた黒色固体を塩基性アルミナ(クロロホルム/メタノール=20/1 )で分離しオリゴマーを除去した。次いで、シリカゲルクロマトグラフィー(クロロホルム/メタノール=95/5)で分離し、2番目に抽出された化合物を回収した。得られた化合物を高速液体クロマトグラフィー(HPLC)によりさらに分離し、trans-H24Py2P 51 mgを得た。収率は1.8%であった。合成の確認は先行報告に従い1H NMR測定により行った。
(b)trans-H2M4Py2Pの合成
Figure 0007236722000039
trans-H24Py2P 51 mg (0.11mmol)をクロロホルム:N,N-ジメチルホルムアミド(DMF)混合溶媒(4:1, 64 mL: 16 mL)に溶解させた。ヨードメタン3.3 mL (53mmol)を加え、室温で17時間攪拌した。反応後、溶液をエバポレートし、得られた固体を5 mLのDMFに溶解させ、80 mLのジエチルエーテルに滴下した。析出した紫色沈殿物をろ過により回収し、trans-H2M4Py2Pを得た。収率は定量的であった。合成の確認は、先行報告に従い1H NMR測定により行った。
(2)trans-CoM4Py2Pの合成
Figure 0007236722000040
trans-H2M4Py2P 14 mg(0.019 mmol)とコバルトアセチルアセトナート(Co(acac)3) 13,5mg(0.038mmol)をメタノール10 mLで加熱還流した。シリカゲルTLC (CH3CN/H2O/KNO3sat=8/2/1)によりtrans-H2M4Py2P 由来の蛍光が消失するまで反応を継続した。反応終了後、溶媒をエバポレートしクロロホルムで洗浄し、ろ過することで未反応Co(acac)3を除去した。ろ過により得られた固体を水に溶解させ、キレート樹脂(ダイヤイオンCR20)、イオン交換樹脂(アンバーライトIRA-400J Cl)で処理した。水をエバポレートすることでtrans-CoM4Py2Pを得た。収率は定量的であった。合成の確認は元素分析により行った。trans-CoM4Py2P・CH3Cl・3.7H2O (C33H33Cl6CoN6O4), Anal: C: 46.67, H: 3.92, N: 9.90. Found: C: 46.96, H: 3.83, N: 9.95.
(3)(trans-CoM4Py2P)2/CB[10]の合成
Figure 0007236722000041
trans-CoM4Py2P 1.0 mg (0.0015 mmol)を1.0 mLの水に溶解させた。粉末CB[10] 3.0 mg (0.0018 mmol)を加え、室温条件下で10分間超音波処理を行った。10分後、溶液をフィルターろ過し、(trans-CoM4Py2P)2/CB[10]を水溶液として得た。反応は定量的に進行した。(trans-CoM4Py2P)2/CB[10]形成により観測されるスペクトル変化を図15に示す。
図15における青線はtrans-CoM4Py2P単体の、赤線は(trans-CoM4Py2P)2/CB[10]の吸収スペクトルを示す。trans-CoM4Py2PをCB[10]に包接することにより、吸光度の減少及びブロード化が観測された。これは、ポルフィリン錯体の会合により観られる典型的なスペクトル変化である。このことから、CB[10]内部においてtrans-CoM4Py2Pが会合した構造、即ち(trans-CoM4Py2P)2/CB[10]が形成されていることがわかる。 [Example 14]
Synthesis of multi-electron redox catalyst "(trans - CoM4Py2P ) 2 /CB[10]" composed of (trans - CoM4Py2P) 2 /CB[10] (2) synthesis of trans-CoM4Py 2 P and (3) synthesis of (trans-CoM4Py 2 P) 2 /CB[10].
(1) Synthesis of trans-H 2 M4Py 2 P As starting materials, pyrrole (Tokyo Kasei), paraformaldehyde (Aldrich), 4-pyridinecarbaldehyde (Kanto Kagaku), and cobalt (III) acetylacetonate were used.
(a) Synthesis of dipyrromethane
Figure 0007236722000037
200 mL (2.88 mol) of pyrrole and 0.75 g (25 mmol) of paraformaldehyde were mixed and deaerated with nitrogen. The mixture was heated and stirred at 60°C to dissolve the paraformaldehyde. The mixture was allowed to cool to room temperature, several drops of trifluoroacetic acid (TFA) were added, and the mixture was stirred at room temperature for 1 hour. Then, 0.75 g (19 mmol) of sodium hydroxide was added, and the mixture was stirred at room temperature for an additional 40 minutes. After stirring, the reaction solution was evaporated, and the resulting viscous liquid was separated by silica gel column chromatography using chloroform as a developing solvent. The yield was 1.8 g, 49%. Synthesis was confirmed by 1 H NMR according to previous reports.
(b) Synthesis of trans- H24Py2P
Figure 0007236722000038
1.8 g (12 mmol) of dipyrromethane was dissolved in 24 mL of propionic acid. 1.2 mL (12 mmol) of 4-pyridinecarboxaldehyde was dissolved in 24 mL of propionic acid. The above two propionic acid solutions were gradually added to 30 mL of propionic acid heated to 70°C, and the resulting solution was stirred at 70°C for 18 hours. After the reaction, propionic acid was evaporated, and the resulting black solid was separated with basic alumina (chloroform/methanol=20/1) to remove oligomers. Then, separation was performed by silica gel chromatography (chloroform/methanol=95/5), and the second extracted compound was recovered. The resulting compound was further separated by high performance liquid chromatography (HPLC) to give 51 mg of trans- H24Py2P . Yield was 1.8%. Synthesis was confirmed by 1H NMR measurement according to previous reports.
(b) Synthesis of trans- H2M4Py2P
Figure 0007236722000039
51 mg (0.11 mmol) of trans-H 2 4Py 2 P was dissolved in a chloroform:N,N-dimethylformamide (DMF) mixed solvent (4:1, 64 mL: 16 mL). 3.3 mL (53 mmol) of iodomethane was added, and the mixture was stirred at room temperature for 17 hours. After reaction, the solution was evaporated and the solid obtained was dissolved in 5 mL of DMF and added dropwise to 80 mL of diethyl ether. The precipitated purple precipitate was collected by filtration to obtain trans-H 2 M4Py 2 P. Yields were quantitative. Synthesis was confirmed by 1H NMR measurement according to previous reports.
(2) Synthesis of trans- CoM4Py2P
Figure 0007236722000040
14 mg (0.019 mmol) of trans-H 2 M4Py 2 P and 13.5 mg (0.038 mmol) of cobalt acetylacetonate (Co(acac) 3 ) were heated to reflux with 10 mL of methanol. The reaction was continued until the fluorescence derived from trans- H2M4Py2P disappeared by silica gel TLC ( CH3CN / H2O / KNO3sat =8/2/1). After completion of the reaction, the solvent was evaporated, washed with chloroform, and filtered to remove unreacted Co(acac) 3 . The solid obtained by filtration was dissolved in water and treated with a chelate resin (Diaion CR20) and an ion exchange resin (Amberlite IRA-400J Cl). Evaporation of water gave trans-CoM4Py 2 P. Yields were quantitative. Confirmation of synthesis was performed by elemental analysis. trans- CoM4Py2P -CH3Cl - 3.7H2O ( C33H33Cl6CoN6O4 ), Anal : C: 46.67 , H: 3.92, N : 9.90 . Found: C: 46.96, H: 3.83 , N: 9.95.
(3) Synthesis of (trans- CoM4Py2P ) 2 /CB[10]
Figure 0007236722000041
1.0 mg (0.0015 mmol) of trans-CoM4Py 2 P was dissolved in 1.0 mL of water. Powdered CB[10] 3.0 mg (0.0018 mmol) was added, and sonicated for 10 minutes at room temperature. After 10 minutes, the solution was filtered to obtain (trans-CoM4Py 2 P) 2 /CB[10] as an aqueous solution. The reaction proceeded quantitatively. The observed spectral changes due to (trans-CoM4Py 2 P) 2 /CB[10] formation are shown in FIG.
The blue line in FIG. 15 indicates the absorption spectrum of trans-CoM4Py 2 P alone, and the red line indicates the absorption spectrum of (trans-CoM4Py 2 P) 2 /CB[10]. Inclusion of trans-CoM4Py 2 P into CB[10] reduced absorbance and broadening was observed. This is a typical spectral change observed due to the association of porphyrin complexes. This indicates that a structure in which trans-CoM4Py 2 P associates inside CB[10], that is, (trans-CoM4Py 2 P) 2 /CB[10] is formed.

[実施例15]
(trans-ZnM4Py2P)2/CB[10]からなる多電子酸化還元触媒「(trans-ZnM4Py2P)2/CB[10]」の合成。
合成は(1) trans-H2M4Py2Pの合成、(2) trans-ZnM4Py2Pの合成、(3) (trans-ZnM4Py2P)2/CB[10]の合成の3ステップで行った。
(1) trans-H2M4Py4Pは、先述した実施例14と同様にして行い、目的物を得た。
(2) trans-ZnM4Py2Pの合成

Figure 0007236722000042
trans-H2M4Py2P 17 mg (0.023 mmol)と塩化亜鉛(ZnCl2) 25 mg (0.183 mmol)を10 mLの水に溶解させ室温で17時間攪拌した。紫外可視吸収スペクトルを測定することで反応進行を追跡した。反応後、反応液をキレート樹脂(ダイヤイオンCR20)、イオン交換樹脂(アンバーライトIRA-400J Cl)で処理、エバポレートし目的物であるtrans-ZnM4Py2Pを得た。反応は定量的に進行した。合成の確認は、紫外可視吸収スペクトル測定により行った。
(3) (trans-ZnM4Py2P)2/CB[10]の合成
Figure 0007236722000043
trans-ZnM4Py2P 1.0 mg (0.0016 mmol)を1.0 mLの水に溶解させた。粉末CB[10] 4.5 mg (0.0027 mmol)を加え、室温条件下で10分間超音波処理を行った。10分後、溶液をフィルターろ過し、(trans-ZnM4Py2P)2/CB[10]を水溶液として得た。反応は定量的に進行した。(trans-ZnM4Py2P)2/CB[10]形成により観測されるスペクトル変化を図16に示す。
図16において青線は trans-ZnM4Py2P単体の、赤線は (trans-ZnM4Py2P)2/CB[10]の吸収スペクトルを示す。 trans-ZnM4Py2PをCB[10]に包接することにより、吸光度の減少及びブロード化が観測された。これは、ポルフィリン錯体の会合により観られる典型的なスペクトル変化である。このことから、CB[10]内部においてtrans-ZnM4Py2Pが会合した構造、即ち(trans-ZnM4Py2P)2/CB[10]が形成されていることが確認された。 [Example 15]
Synthesis of multi-electron redox catalyst "(trans- ZnM4Py2P ) 2 /CB[ 10 ]" consisting of (trans-ZnM4Py2P) 2 /CB[10].
The synthesis was performed in three steps: (1) synthesis of trans-H 2 M4Py 2 P, (2) synthesis of trans-ZnM4Py 2 P, and (3) synthesis of (trans-ZnM4Py 2 P) 2 /CB[10]. .
(1) trans-H 2 M4Py 4 P was prepared in the same manner as in Example 14 to obtain the desired product.
(2) Synthesis of trans- ZnM4Py2P
Figure 0007236722000042
17 mg (0.023 mmol) of trans-H 2 M4Py 2 P and 25 mg (0.183 mmol) of zinc chloride (ZnCl2) were dissolved in 10 mL of water and stirred at room temperature for 17 hours. The progress of the reaction was tracked by measuring the UV-visible absorption spectrum. After the reaction, the reaction solution was treated with a chelate resin (Diaion CR20) and an ion exchange resin (Amberlite IRA-400J Cl) and evaporated to obtain the target trans-ZnM4Py 2 P. The reaction proceeded quantitatively. Synthesis was confirmed by ultraviolet-visible absorption spectroscopy.
(3) Synthesis of (trans- ZnM4Py2P ) 2 /CB[10]
Figure 0007236722000043
1.0 mg (0.0016 mmol) of trans-ZnM4Py 2 P was dissolved in 1.0 mL of water. 4.5 mg (0.0027 mmol) of powder CB[10] was added, and sonicated for 10 minutes at room temperature. After 10 minutes, the solution was filtered to obtain (trans-ZnM4Py 2 P) 2 /CB[10] as an aqueous solution. The reaction proceeded quantitatively. FIG. 16 shows the observed spectral changes due to (trans-ZnM4Py 2 P) 2 /CB[10] formation.
In FIG. 16, the blue line indicates the absorption spectrum of trans-ZnM4Py 2 P alone, and the red line indicates the absorption spectrum of (trans-ZnM4Py 2 P) 2 /CB[10]. Inclusion of trans-ZnM4Py 2 P into CB[10] resulted in a decrease in absorbance and broadening. This is a typical spectral change observed due to the association of porphyrin complexes. From this, it was confirmed that a structure in which trans-ZnM4Py 2 P was associated inside CB[10], that is, (trans-ZnM4Py 2 P) 2 /CB[10] was formed.

[実施例16]
(trans-FeM4Py2P)2/CB[10]からなる多電子酸化還元触媒「(trans-FeM4Py2P)2/CB[10]」の合成
合成は、(1) trans-H2M4Py2Pの合成、(2) trans-FeM4Py2Pの合成、(3) (trans-FeM4Py2P)2/CB[10]の合成の3ステップで行った。
(1) trans-H2M4Py2Pの合成は、先述した実施例14と同様にして行い、目的物を得た。
(2) trans-FeM4Py2Pの合成

Figure 0007236722000044
trans-H2M4Py2P 35.0 mg (0.047 mmol)と塩化鉄(II)四水和物(FeCl2・4H2O) 123.0 mg (0.619 mmol)を10 mLの水に溶かし、塩酸を用いてpH 2.0に合成し、60℃で22時間攪拌した。シリカゲルTLC (CH3CN/H2O/KNO3sat=8/2/1)によりtrans-H2M4Py2P由来の蛍光が消失するまで反応を継続した。反応後、溶媒をエバポレートし、固体を水に溶解させ、キレート樹脂(ダイヤイオンCR20)、イオン交換樹脂(アンバーライトIRA-400J Cl)で処理した。水をエバポレートすることでtrans-FeM4Py2Pを得た。反応は定量的に進行した。合成の確認は、紫外可視吸収スペクトル測定により行った。
(3) (trans-FeM4Py2P)2/CB[10]の合成
Figure 0007236722000045
trans-FeM4Py2P 1.0 mg (0.0015 mmol)を1.0 mLの水に溶解させた。粉末CB[10] 4.5 mg (0.0027 mmol)を加え、室温条件下で10分間超音波処理を行った。10分後、溶液をフィルターろ過し、(trans-FeM4Py2P)2/CB[10]を水溶液として得た。反応は定量的に進行した。(trans-FeM4Py2P)2/CB[10]形成により観測されるスペクトル変化を図17に示す。
図17において青線は trans-FeM4Py2P単体の、赤線は (trans-FeM4Py2P)2/CB[10]の吸収スペクトルを示す。trans-FeM4Py2PをCB[10]に包接することにより、吸光度の減少及びブロード化が観測された。これは、ポルフィリン錯体の会合により観られる典型的なスペクトル変化である。このことから、CB[10]内部においてtrans-FeM4Py2Pが会合した構造、即ち(trans-FeM4Py2P)2/CB[10]が形成されていることが確認された。 [Example 16]
(trans- FeM4Py2P ) 2 /CB[10] multi-electron oxidation - reduction catalyst "(trans- FeM4Py2P ) 2 /CB[10]" Synthesis consists of (1) trans- H2M4Py2P (2) synthesis of trans-FeM4Py 2 P and (3) synthesis of (trans-FeM4Py 2 P) 2 /CB[10].
(1) Trans-H 2 M4Py 2 P was synthesized in the same manner as in Example 14 to obtain the desired product.
(2) Synthesis of trans- FeM4Py2P
Figure 0007236722000044
35.0 mg (0.047 mmol) of trans-H 2 M4Py 2 P and 123.0 mg (0.619 mmol) of iron(II) chloride tetrahydrate (FeCl 2 4H 2 O) were dissolved in 10 mL of water, and the pH was adjusted using hydrochloric acid. 2.0 and stirred at 60° C. for 22 hours. The reaction was continued until fluorescence derived from trans-H 2 M4Py 2 P disappeared by silica gel TLC (CH 3 CN/H 2 O/KNO 3 sat=8/2/1). After the reaction, the solvent was evaporated and the solid was dissolved in water and treated with chelate resin (Diaion CR20), ion exchange resin (Amberlite IRA-400J Cl). Evaporation of water gave trans-FeM4Py 2 P. The reaction proceeded quantitatively. Synthesis was confirmed by ultraviolet-visible absorption spectroscopy.
(3) Synthesis of (trans- FeM4Py2P ) 2 /CB[10]
Figure 0007236722000045
1.0 mg (0.0015 mmol) of trans-FeM4Py 2 P was dissolved in 1.0 mL of water. 4.5 mg (0.0027 mmol) of powder CB[10] was added, and sonicated for 10 minutes at room temperature. After 10 minutes, the solution was filtered to obtain (trans-FeM4Py 2 P) 2 /CB[10] as an aqueous solution. The reaction proceeded quantitatively. The observed spectral changes due to (trans-FeM4Py 2 P) 2 /CB[10] formation are shown in FIG.
In FIG. 17, the blue line indicates the absorption spectrum of trans-FeM4Py 2 P alone, and the red line indicates the absorption spectrum of (trans-FeM4Py 2 P) 2 /CB[10]. Inclusion of trans-FeM4Py 2 P into CB[10] reduced absorbance and broadening was observed. This is a typical spectral change observed due to the association of porphyrin complexes. From this, it was confirmed that a structure in which trans-FeM4Py 2 P was associated inside CB[10], that is, (trans-FeM4Py 2 P) 2 /CB[10] was formed.

[実施例17]
触媒反応の例として、(trans-CoM4Py2P)2/CB[10]の電気化学的水素生成反応について検討した。0.3mM (trans-CoM4Py2P)2/CB[10](Coイオン換算)を、50mM NaClを支持電解質として含む各種緩衝液に溶解させ、アルゴンバブリングを30分行い溶存酸素を除去した。グラッシーカーボン電極を作用電極、銀-塩化銀電極を参照電極、白金電極をカウンター電極としてそれぞれ用い、-1.5~0 V (vs Ag/AgCl)においてサイクリックボルタンメトリー測定を行った。結果を図18に示す。
図18に示すように、50mM 酢酸緩衝液 (pH 4.6)中では還元電流が観測された。一方、還元電流はより塩基性の条件(pH 7.0及びpH 11.1)では観測されなかった。このことから、還元電流はプロトン還元、即ち水素生成に由来することがわかる。従って、本発明の(trans-CoM4Py2P)2/CB[10]は、水中において電気化学的に水素を生成する有用な多電子酸化還元触媒であることがわかる。
[Example 17]
As an example of catalytic reactions, the electrochemical hydrogen production reaction of (trans-CoM4Py 2 P) 2 /CB[10] was investigated. 0.3 mM (trans-CoM4Py 2 P) 2 /CB[10] (calculated as Co ion) was dissolved in various buffer solutions containing 50 mM NaCl as a supporting electrolyte, and dissolved oxygen was removed by argon bubbling for 30 minutes. Cyclic voltammetry measurements were performed at −1.5 to 0 V (vs Ag/AgCl) using a glassy carbon electrode as a working electrode, a silver-silver chloride electrode as a reference electrode, and a platinum electrode as a counter electrode. The results are shown in FIG.
As shown in FIG. 18, reduction current was observed in 50 mM acetate buffer (pH 4.6). On the other hand, no reduction current was observed under more basic conditions (pH 7.0 and pH 11.1). From this, it can be seen that the reduction current originates from proton reduction, that is, hydrogen generation. Therefore, (trans-CoM4Py 2 P) 2 /CB[10] of the present invention is found to be a useful multi-electron redox catalyst for electrochemically producing hydrogen in water.

[実施例18]
触媒反応の例として、(trans-CoM4Py2P)2/CB[10]のグルコース改質による水素生成について検討した。 グルコース270 mg (1.5 mmol)と(trans-CoM4Py2P)2/CB[10] 4.5 mg (0.0015 mmol)を 2.0 mL の50 mM 酢酸緩衝液(pH 4,6)に溶解させ、98℃で14時間加熱還流を行った。反応後に発生した気体をガスビュレット系で捕集し、ガスクロマトグラフィーにより発生ガスを特定した。結果を図19(a)および(b)に示す。
図19(a)および(b)に示すように、グルコース改質反応後の混合ガスから水素及び二酸化炭素が検出された。発生した水素及び二酸化炭素を検量線を用いて定量した結果、13μmolの水素及び19μmolの二酸化炭素が発生していることがわかる。以上より、本発明の(trans-CoM4Py2P)2/CB[10]多電子酸化還元触媒は、グルコース改質反応により水素を生成する有用な触媒であることがわかる。
[Example 18]
As an example of catalytic reaction, we investigated hydrogen production by glucose reforming of (trans-CoM4Py 2 P) 2 /CB[10]. 270 mg (1.5 mmol) of glucose and 4.5 mg (0.0015 mmol) of (trans-CoM4Py 2 P) 2 /CB[10] were dissolved in 2.0 mL of 50 mM acetate buffer (pH 4.6) and incubated at 98 °C for 14 hours. Heated to reflux for 1 hour. The gas generated after the reaction was collected with a gas burette system, and the generated gas was identified by gas chromatography. The results are shown in FIGS. 19(a) and (b).
As shown in FIGS. 19(a) and (b), hydrogen and carbon dioxide were detected from the mixed gas after the glucose reforming reaction. As a result of quantifying the generated hydrogen and carbon dioxide using a calibration curve, it is found that 13 μmol of hydrogen and 19 μmol of carbon dioxide are generated. From the above, it can be seen that the (trans-CoM4Py 2 P) 2 /CB[10] multi-electron redox catalyst of the present invention is a useful catalyst for producing hydrogen by glucose reforming reaction.

[実施例19]
触媒反応の例として、「CoTM-4-PyP/Mo-Salen/CB[10]」の電気化学的窒素還元反応を検討した。50 mM 塩化ナトリウム(NaCl)を支持電解質として含んだ50 mM リン酸緩衝液(pH 7.4)にCoTM-4-PyP/Mo-Salen/CB[10]を溶解させた。得られた溶液をヘリウムあるいは窒素で30分以上バブリングした。ヘリウムバブリング存在下及び窒素存在下における還元電流を比較することで、CoTM-4-PyP/Mo-Salen/CB[10]の窒素還元反応を検討した。結果を図20に示す。
図20(a)及び(b)の比較より、-1.5~-1.0V(vs Ag/AgCl)において、窒素雰囲気下における還元電流の増大が観測された。これは、ヘリウム存在下ではプロトン還元(水素生成)が起こっていたが、窒素雰囲気下ではプロトン及び窒素の還元反応が起こっていることを示している。即ち、本発明のCoTM-4-PyP/Mo-Salen/CB[10]は、電気化学的に窒素を還元する有用な触媒であることがわかる。


[Example 19]
As an example of catalytic reaction, electrochemical nitrogen reduction reaction of ``CoTM-4-PyP/Mo-Salen/CB[10]'' was investigated. CoTM-4-PyP/Mo-Salen/CB[10] was dissolved in 50 mM phosphate buffer (pH 7.4) containing 50 mM sodium chloride (NaCl) as a supporting electrolyte. The resulting solution was bubbled with helium or nitrogen for 30 minutes or longer. We investigated the nitrogen reduction reaction of CoTM-4-PyP/Mo-Salen/CB[10] by comparing the reduction currents in the presence of helium bubbling and nitrogen. The results are shown in FIG.
From the comparison of FIGS. 20(a) and (b), an increase in reduction current was observed in a nitrogen atmosphere at −1.5 to −1.0 V (vs Ag/AgCl). This indicates that proton reduction (hydrogen generation) occurred in the presence of helium, but a reduction reaction of protons and nitrogen occurred in the nitrogen atmosphere. That is, the CoTM-4-PyP/Mo-Salen/CB[10] of the present invention is found to be a useful catalyst for electrochemically reducing nitrogen.


Claims (1)

7~14員環のククルビット構造を有する環状化合物と、
該環状化合物中に包摂される嵩高化合物とからなる触媒であって、
該嵩高化合物は、下記化学式(I)で表される金属ポルフィリン化合物と、下記化学式(I)で表される金属ポルフィリン化合物、下記化学式(II)で表される金属ピアレン又は下記化学式(III)で表される金属サレンとの2分子であり、当該2分子が共に上記金属ポルフィリン化合物である場合には両者共に同じ化合物であることを特徴とする多電子酸化還元触媒。
Figure 0007236722000046
Figure 0007236722000047
上記各式中、M1およびM2は、それぞれ同一または異なる原子であって、Fe、Co、MoまたはZnを示す。
R5~R8は、それぞれ同一または異なる基であって、水素原子、アルキル基、アルコキシ基を示す。
a cyclic compound having a 7- to 14-membered cucurbit structure;
and a bulky compound included in the cyclic compound,
The bulky compound includes a metal porphyrin compound represented by the following chemical formula (I), a metal porphyrin compound represented by the following chemical formula (I), a metal pialene represented by the following chemical formula (II), or the following chemical formula (III) A multi-electron oxidation-reduction catalyst characterized in that it is two molecules with a metal salen represented by and when both the two molecules are the above-mentioned metal porphyrin compound, both of them are the same compound .
Figure 0007236722000046
Figure 0007236722000047
In each of the above formulas, M1 and M2 are the same or different atoms and represent Fe, Co, Mo or Zn .
R5 to R8 are the same or different groups, each representing a hydrogen atom, an alkyl group or an alkoxy group.
JP2018223005A 2018-11-29 2018-11-29 Multi-electron redox catalyst Active JP7236722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018223005A JP7236722B2 (en) 2018-11-29 2018-11-29 Multi-electron redox catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018223005A JP7236722B2 (en) 2018-11-29 2018-11-29 Multi-electron redox catalyst

Publications (2)

Publication Number Publication Date
JP2020082002A JP2020082002A (en) 2020-06-04
JP7236722B2 true JP7236722B2 (en) 2023-03-10

Family

ID=70905369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018223005A Active JP7236722B2 (en) 2018-11-29 2018-11-29 Multi-electron redox catalyst

Country Status (1)

Country Link
JP (1) JP7236722B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038545B (en) * 2020-09-29 2023-05-02 河北中科莱特储能科技有限公司 Lithium-sulfur battery composite diaphragm and preparation method thereof
CN112038552B (en) * 2020-09-29 2023-08-01 深圳市泰能新材料有限公司 Bacterial cellulose composite lithium sulfur battery diaphragm

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100254890A1 (en) 2009-04-06 2010-10-07 Nanyang Technological University Method of forming a particulate porous metal oxide or metalloid oxide
US20180050331A1 (en) 2016-08-22 2018-02-22 Florida State University Research Foundation, Inc. Homogeneous Catalysts That Are Recoverable By Host Guest Interactions
JP2018034152A (en) 2016-08-23 2018-03-08 公立大学法人首都大学東京 Multi-electron oxidation-reduction catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100254890A1 (en) 2009-04-06 2010-10-07 Nanyang Technological University Method of forming a particulate porous metal oxide or metalloid oxide
US20180050331A1 (en) 2016-08-22 2018-02-22 Florida State University Research Foundation, Inc. Homogeneous Catalysts That Are Recoverable By Host Guest Interactions
JP2018034152A (en) 2016-08-23 2018-03-08 公立大学法人首都大学東京 Multi-electron oxidation-reduction catalyst

Also Published As

Publication number Publication date
JP2020082002A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
Yuan et al. Promoting photocatalytic CO2 reduction with a molecular copper purpurin chromophore
Kianfar et al. Synthesis, spectroscopy, electrochemistry and thermal study of Ni (II) and Cu (II) unsymmetrical N2O2 Schiff base complexes
Duan et al. Chemical and photochemical water oxidation catalyzed by mononuclear ruthenium complexes with a negatively charged tridentate ligand
Han et al. Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis
Pramanick et al. An azoaromatic ligand as four electron four proton reservoir: catalytic dehydrogenation of alcohols by its zinc (II) complex
Khandar et al. Synthesis, characterization and spectroscopic and electrochemical studies of new axially coordinated cobalt (III) salen (salen= N, N′-bis (salicylidene)-1, 2-ethylenediamine) complexes. The crystal structure of [CoIII (salen)(aniline) 2] ClO4
Farràs et al. Synthesis, Characterization, and Reactivity of Dyad Ruthenium‐Based Molecules for Light‐Driven Oxidation Catalysis
Jiang et al. Chemical and photocatalytic water oxidation by mononuclear Ru catalysts
Lei et al. Photocatalytic CO2 reduction with aminoanthraquinone organic dyes
Xu et al. Synthesis and catalytic water oxidation activities of ruthenium complexes containing neutral ligands
Giannoudis et al. Photosensitizers for H2 evolution based on charged or neutral Zn and Sn porphyrins
Bian et al. Two bifunctional RuII/ReI photocatalysts for CO2 reduction: A spectroscopic, photocatalytic, and computational study
Paul et al. Cerium‐Complex‐Catalyzed Oxidation of Arylmethanols under Atmospheric Pressure of Dioxygen and Its Mechanism through a Side‐On μ‐Peroxo Dicerium (IV) Complex
JP7236722B2 (en) Multi-electron redox catalyst
Taylor et al. Strong impact of intramolecular hydrogen bonding on the cathodic path of [Re (3, 3′-dihydroxy-2, 2′-bipyridine)(CO) 3Cl] and catalytic reduction of carbon dioxide
Yang et al. Nickel complex with internal bases as efficient molecular catalyst for photochemical H2 production
Tas et al. Cu (II), Co (II), Ni (II), Mn (II), and Fe (II) metal complexes containing N, N′-(3, 4-diaminobenzophenon)-3, 5-But2-salicylaldimine ligand: synthesis, structural characterization, thermal properties, electrochemistry, and spectroelectrochemistry
Moreira et al. Revisiting oxo-centered carbonyl-triruthenium clusters: investigating CO photorelease and some spectroscopic and electrochemical correlations
Mchiri et al. Insights into the new cadmium (II) metalloporphyrin: Synthesis, X-ray crystal structure, Hirshfeld surface analysis, photophysical and cyclic voltammetry characterization of the (morpholine){(meso-tetra (para-chloro-phenyl) porphyrinato} cadmium (II)
Hoque et al. Catalytic Oxidation of Water to Dioxygen by Mononuclear Ru Complexes Bearing a 2, 6‐Pyridinedicarboxylato Ligand
JP2018034152A (en) Multi-electron oxidation-reduction catalyst
Case et al. [Re (CO) 3 (5-PAN) Cl], a rhenium (i) naphthalimide complex for the visible light photocatalytic reduction of CO 2
Makhado et al. Chemical and electrochemical water oxidation mediated by bis (pyrazol-1-ylmethyl) pyridine-ligated Cu (i) complexes
Matlachowski et al. Synthesis and characterization of mono-and dinuclear phenanthroline-extended tetramesitylporphyrin complexes as well as UV-Vis and EPR studies on their one-electron reduced species
Şahin et al. Electrochemical and in-situ spectroelectrochemical properties of novel (5-(tert-butyl)-2-((3, 4-dicyanophenoxy) methyl) phenyl) methanolate substituted mononuclear metal phthalocyanines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7236722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150