JP7223378B2 - Floating offshore wind power generator - Google Patents

Floating offshore wind power generator Download PDF

Info

Publication number
JP7223378B2
JP7223378B2 JP2020077205A JP2020077205A JP7223378B2 JP 7223378 B2 JP7223378 B2 JP 7223378B2 JP 2020077205 A JP2020077205 A JP 2020077205A JP 2020077205 A JP2020077205 A JP 2020077205A JP 7223378 B2 JP7223378 B2 JP 7223378B2
Authority
JP
Japan
Prior art keywords
floating body
tower
radial
wind power
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020077205A
Other languages
Japanese (ja)
Other versions
JP2021172211A (en
Inventor
悟 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020077205A priority Critical patent/JP7223378B2/en
Publication of JP2021172211A publication Critical patent/JP2021172211A/en
Application granted granted Critical
Publication of JP7223378B2 publication Critical patent/JP7223378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Landscapes

  • Wind Motors (AREA)

Description

本発明は、浮体式洋上風力発電装置とその浮体に関する。 The present invention relates to a floating offshore wind power generator and its floating body.

風力発電は、環境負荷の少ないクリーンな再生可能エネルギーを利用する発電方式として期待が大きい。 Expectations are high for wind power generation as a power generation method that utilizes clean, renewable energy with little environmental impact.

風力発電装置は当初より陸上部に設置されてきたが、陸上部では環境問題や風車の大型化に限界があることなどから、洋上に風力発電装置を設置する事例が増えてきている。 Wind power generators have been installed on land since the beginning, but due to environmental problems and limitations on increasing the size of wind turbines on land, the number of cases where wind power generators are installed offshore is increasing.

洋上風力発電は、安定した風が得られ、装置の設置に適した海域の面積も広大にあることで、有望視されている。 Offshore wind power generation is viewed as promising because it provides stable winds and has a vast sea area suitable for installation of equipment.

洋上風力発電装置には着底式と浮体式があるが、水深が50mより浅い海域では着底式風力発電装置が適切と考えられ、それより深い海域では浮体式風力発電装置が有利と考えられている。 There are two types of offshore wind power generators: the bottom-mounted type and the floating type. The bottom-mounted type wind power generator is considered to be suitable for water depths shallower than 50m, while the floating wind power generator is considered advantageous for deeper waters. ing.

浮体式洋上風力発電装置の浮体としては、特許文献1~5にも開示されているスパー型、セミサブ型、バージ型が導入されている。 A spar type, a semi-sub type, and a barge type, which are also disclosed in Patent Documents 1 to 5, have been introduced as floating bodies for floating offshore wind power generators.

スパー型はその形態と構造上、水深が100m以上の海域に用いられ、水深の浅いところには適用できない。 Due to its shape and structure, the spar type is used in water depths of 100 m or more, and cannot be used in shallow water.

スパー型が適用できない水深が50~100mの浅い海域に適用できる浮体方式としてセミサブ型やバージ型の浮体の導入が図られているが、これらの浮体式洋上風力発電装置は実績も浅く、コスト的に経済ベースに乗れるレベルでの発電所建設には至っておらず、建設ストの低減と新たな技術的展開が望まれている。 Semi-sub-type and barge-type floating structures are being introduced as floating structures that can be applied to shallow waters of 50 to 100 m where the spar type cannot be applied. However, the construction of power plants has not yet reached a level that can be used on an economic basis, and it is desired to reduce construction strikes and develop new technologies.

セミサブ型浮体は水線面が小さく、波や潮流から受ける影響が小さいため浮体が安定しているが、構造が複雑になるため製作に高度の技術を必要とすることが課題である。一方、バージ型浮体の場合は波力、波圧を受けると、浮体の揺動が大きくなるほか、重量の低減にも課題がある。 The semi-submersible type floating body has a small waterline and is less affected by waves and tides, so the floating body is stable. On the other hand, in the case of a barge-type floating body, when subjected to wave force and wave pressure, the rocking of the floating body increases, and there is also the problem of weight reduction.

風力発電装置は、高いタワーの上部に大径のローターと重量が大きいナセルを設置したトップヘビーな構造物であるため、洋上風力発電装置の転倒を防ぐことができる安定した浮体が必要であるが、従来のバージ型、セミサブ型とも転倒を防ぐために巨大な浮体となっていた。 A wind power generator is a top-heavy structure in which a large-diameter rotor and a heavy nacelle are installed on top of a tall tower, so a stable floating body that can prevent the offshore wind power generator from tipping over is required. Both the conventional barge type and semi-sub type had a huge floating body to prevent overturning.

一方、浮体式洋上風力発電装置の別の大きな課題は、浮体が高い波浪と大きな波力受けることに鑑み、浮体の強度確保のために断面は大きく重量も大きいものとなっていた。しかしその重い浮体を浮かせるためには、断面をさらに大きくして大きな重量にせざるを得ないため、建設費が高くなり、経済コストを下げることが困難であった。 On the other hand, another major problem with floating offshore wind power generators is that, in view of the fact that the floating body receives high waves and large wave force, the floating body must have a large cross section and a large weight in order to ensure the strength of the floating body. However, in order to float such a heavy floating body, it is necessary to increase the cross section and increase the weight, which increases the construction cost and makes it difficult to reduce the economic cost.

また、大きくて重たい浮体が大きな波力を受けると、これを支持する係留力も大きなものとなるため、係留索、アンカーに要する建設コストも高くなるという問題も派生する。 In addition, when a large and heavy floating body receives a large wave force, the mooring force to support it also becomes large.

特開2009-248792号公報JP 2009-248792 A 特開2010-280301号公報Japanese Patent Application Laid-Open No. 2010-280301 特開2013-35361号公報JP 2013-35361 A 特開2014-173586号公報JP 2014-173586 A 特開2018-173011号公報JP 2018-173011 A

そこで本発明は、浮体式洋上風力発電装置において、風荷重にたいして安定であり、浮体が受ける波浪と波力の影響をできるだけ小さくして、浮体の軽量化を計ることを第一の課題とする。 Therefore, the first object of the present invention is to reduce the weight of the floating body by making it stable against the wind load, minimizing the influence of waves and wave force on the floating body as much as possible.

また、従来の洋上風力発電装置の製作、設置においては、浮体は造船所のドックで製作し,設置はドックから現場へ曳航していたが、本発明では、洋上風力発電装置を設置する現地近くのヤードでの製作、組立が可能で、ドックでの製造や設置場所までの曳航を要しない浮体を提供することを第二の課題とする。 In addition, in the conventional manufacturing and installation of offshore wind turbine generators, the floating body was manufactured at the dock of the shipyard and the installation was towed from the dock to the site. A second object is to provide a floating body that can be manufactured and assembled at a yard and does not require manufacturing at a dock or towing to an installation site.

即ち本発明は、浮体式洋上風力発電装置の浮体について、上記課題を解決するための工夫を施し、浮体式洋上風力発電装置の軽量化、構造の単純化を図り、施工性の向上を図って建設コストの低減を図ることを課題とする。 That is, the present invention devises a floating body for an offshore floating wind power generator to solve the above-mentioned problems, thereby reducing the weight of the offshore floating wind power generator, simplifying the structure, and improving workability. The challenge is to reduce construction costs.

上記課題の解決を目的としてなされた本発明の浮体式洋上風力発電装置の構成は、風力発電のローターとナセルが設置されるタワーを中心として、タワー基部に浮力室を設け、このタワー基部の水平方向に放射状に設けた複数の鋼管製の浮力を有する放射梁と、前記放射梁の先端に略環状に結合される鋼管製の浮力を有する外周梁とを備え、前記タワー、前記放射梁、前記外周梁がそれぞれ水に浮く浮力を有することを特徴とする。 The configuration of the floating offshore wind power generator of the present invention, which has been made for the purpose of solving the above problems, is centered on a tower in which a wind power generation rotor and nacelle are installed, and a buoyancy chamber is provided at the base of the tower. a plurality of buoyant radial beams made of steel pipes radially provided in a direction; It is characterized in that each of the peripheral beams has buoyancy to float on water.

前記鋼管製の放射梁と鋼管製の外周梁の中間部に、可撓継手を備えた構成とすることもできる。 A flexible joint may be provided between the radial beam made of steel pipes and the peripheral beam made of steel pipes.

本明細書では、前記タワー基部に結合された複数の放射梁とこの放射梁の先端部に環状に結合される外周梁が形成する浮体を、イカダ型浮体浮体ともいう。
因みに、現状では水深が浅い海に設置する浮体式洋上風力発電装置は、浮体構造としてセミサブ型、バージ型が適用されているが、内海、湾内、島影等の海象条件の穏やかな海面での浮体構造としては、軽量化が可能である本発明のイカダ型浮体が適している。
In this specification, a floating body formed by a plurality of radial beams coupled to the tower base and outer peripheral beams annularly coupled to the tips of the radial beams is also referred to as a raft-type floating body.
By the way, at present, semi-sub type and barge type floating structures are applied to floating offshore wind turbines installed in the shallow sea, but floating structures on the surface of the sea with calm sea conditions such as inland seas, bays, shadows of islands, etc. As for the structure, the raft-type floating body of the present invention, which can be made lighter, is suitable.

前記外周梁または放射梁には係留索を取り付け、係留索の他端をアンカーに取り付けて洋上風力発電装置を係留する。 A mooring cable is attached to the outer peripheral beam or the radial beam, and the other end of the mooring cable is attached to an anchor to moor the offshore wind power generator.

前記タワー基部の浮力室は、タワー、ローター、ナセルの重量を支えて、自力で浮く浮力を有する。
前記放射梁と外周梁は、自力で浮く浮力とともに余剰浮力を有し、自重と浮力の力をもって風荷重や波浪荷重に対しタワーを安定的に支持し、過大な傾きや転倒を防止する。
The buoyancy chamber at the base of the tower has the buoyancy to support the weight of the tower, rotor and nacelle and to float on its own.
The radial beams and the peripheral beams have surplus buoyancy as well as self-sustaining buoyancy, and use their own weight and buoyancy to stably support the tower against wind and wave loads, preventing excessive tilting and overturning.

外周梁は波力、潮流力を受け持ち、放射梁やタワーに直接大きな波圧、潮流力が作用するのを抑止する。 The outer beams take charge of the wave force and tidal force, and suppress the large wave pressure and tidal force from directly acting on the radial beam and the tower.

また、外周梁又は放射梁は、取り付けられた係留索からの係留荷重を受けもつ。 The perimeter or radial beams also carry mooring loads from attached mooring lines.

前記浮力室、放射梁、外周梁によるイカダ型浮体全体の浮力は、安定して浮くこと、及び付着生物の付着重量等も考慮すると、浮体重量の2~3倍程度が好ましい。 The buoyancy of the whole raft-type floating body due to the buoyancy chamber, radial beams, and peripheral beams is preferably about 2 to 3 times the weight of the floating body in consideration of stable floatation and the weight of attached organisms.

またイカダ型浮体浮体の放射梁と外周梁は、鋼管を材料とするが、鋼管を使うことによって多くのメリットが得られる。 The radial beams and peripheral beams of the raft-type floating body are made of steel pipes, and many advantages can be obtained by using steel pipes.

すなわち、鋼管はその製造工場などで量産される関係で比較的安価であり、また浮体製造の作業量、特に溶接量を少なくして、浮体製造作業の単純化、省力化を計ることができる。 That is, steel pipes are relatively inexpensive because they are mass-produced at their manufacturing factories, etc., and the amount of work involved in manufacturing the floating body, especially the amount of welding, can be reduced to simplify and save labor.

また、浮体の構造面でみると、鋼板によるボックス構造に対し、鋼管は水圧や波圧等の面圧に強く、補強リブもほとんど必要としない In terms of the structure of the float, steel pipes are more resistant to surface pressure such as water pressure and wave pressure than box structures made of steel plates, and hardly require reinforcing ribs.

さらに鋼管は、鋼管を使用した浮体が波を被って水没しても浮力を保つように、水密構造とするのに適している。 Furthermore, steel pipes are suitable for forming a watertight structure so that even if a floating body using steel pipes is hit by waves and submerged in water, it maintains its buoyancy.

流体力学面から見た場合、鋼管はボックス構造と比較して、流体力(波力、潮流力)を受けることが小さく(抗力係数が小)、浮体の設計上でも有利である。 From the viewpoint of hydrodynamics, steel pipes are less subject to hydrodynamic forces (wave force, tidal current force) (lower drag coefficient) than box structures, and are advantageous in designing floating bodies.

施工面からみた場合、イカダ型浮体浮体は鋼管梁の構造で洋上風力発電装置の設置場所近くのヤードでフランジ継手を用いて現場継手にすることが容易であり、従来型の浮体のように造船所のドックで製作して設置現場に曳航することを必要としない。 From the construction point of view, the raft-type floating body has a structure of steel pipe beams, and it is easy to make on-site joints using flange joints in the yard near the installation site of the offshore wind power generation equipment. It does not need to be built at a local dock and towed to the installation site.

ここで本発明のイカダ型浮体浮体の外周梁の平面形状は原則円形とするが、円形とすることにより外周梁は波力を集中して受けることを避けることできる。 In principle, the planar shape of the outer peripheral beams of the raft-type floating body of the present invention is circular.

上記のイカダ型浮体浮体は波浪の小さな内海、内湾、島影部に設置する洋上風力発電装置に適用できる。しかし、海象条件の厳しい海域に設置するためには、浮体強度を上げる必要があり、そのため断面を大きくすると重量が大きくなって、大きな浮力を得る必要が生じ、さらに断面を大きくすることになって、浮体の軽量化には覚束ない。 The above-mentioned raft-type floating body can be applied to offshore wind power generators installed in inland seas, bays, and island shadows where waves are small. However, in order to install it in a sea area with severe sea conditions, it is necessary to increase the strength of the float. , there is no way to reduce the weight of the floating body.

また、従来タイプの浮体が波浪により破壊する原因は、部材が鋼材であり、鋼材の剛性は大きく、波浪に対して柔軟に変形できないで、波の大きな荷重を直接受けてしまうことにある。しかるにゴムやプラスチックのように容易に弾性変形する部材を浮体の構造に取り込めば、浮体全体が波動に従って変形できる(良好な波乗り性を発揮する)から、波の影響を小さくして、大きな断面力の発生と破壊を抑えることができる。 In addition, the reason why the conventional type floats are destroyed by waves is that the members are made of steel, which has a high rigidity and cannot be flexibly deformed against waves, so that it directly receives a large load of waves. However, if a member that easily deforms elastically, such as rubber or plastic, is incorporated into the structure of the floating body, the entire floating body can be deformed according to the waves (exhibiting good wave-riding properties). It is possible to suppress the occurrence and destruction of

このため本発明では、放射梁と外周梁の中間部に可撓継手を設けて、浮体の変形性能を良好にして、波浪に対して波乗り性を良くし、大きな断面力の発生を防ぐようにしている。 For this reason, in the present invention, a flexible joint is provided between the radial beam and the outer peripheral beam to improve the deformation performance of the float, improve the surfability against waves, and prevent the generation of large cross-sectional force. ing.

前記可撓継手は外周梁と放射梁の変形性能を良好にし、発生する断面力を小さくする役割を果たして、本発明のイカダ型浮体浮体の軽量化とコスト面での経済性に寄与する。 The flexible joints improve the deformation performance of the outer beams and the radial beams, play a role in reducing the generated cross-sectional force, and contribute to the weight reduction and cost efficiency of the raft-type floating body of the present invention.

なお、浮体の長さと波長の比が1に近い場合、浮体には激しい縦揺れ、上下動が発生するが、浮体の可撓継手を放射梁や外周梁の途中に設けることによって、浮体の剛体長さを短くすると、波長の長い厳しい波浪域での縦揺れ、上下動を小さくすることができる。 When the length-to-wavelength ratio of the float is close to 1, the float is subject to strong pitching and vertical movements. If the length is shortened, it is possible to reduce pitching and vertical motion in severe wave regions with long wavelengths.

本発明によれば、軽量で、施工性が良好な浮体式洋上風力発電装置とこの発電装置に好適な浮体を提供することができる。 Advantageous Effects of Invention According to the present invention, it is possible to provide a floating offshore wind power generator that is lightweight and has good workability, and a floating body that is suitable for this power generator.

本発明のイカダ型浮体浮体を用いた浮体式洋上風力発電装置の斜視図。1 is a perspective view of a floating offshore wind turbine generator using a raft-type floating body of the present invention; FIG. 図1の浮体式洋上風力発電装置の浮体に可撓継手を組込んだ例の斜視図。FIG. 2 is a perspective view of an example in which a flexible joint is incorporated in the floating body of the floating offshore wind turbine generator of FIG. 1; 可撓継手の働きを説明するための模式図。Schematic diagram for explaining the action of the flexible joint. 可撓継手の一例の構造を説明するための正面図。The front view for demonstrating the structure of an example of a flexible joint. 図4のA-A線断面図。FIG. 5 is a cross-sectional view along the line AA of FIG. 4; 図4のB-B線断面図。FIG. 5 is a cross-sectional view along the line BB of FIG. 4; 可撓継手が曲げ変形したときの正面図。The front view when the flexible joint bends and deforms.

図1は本発明のイカダ型浮体を用いた洋上風力発電装置の実施形態の一例を示す図である。 FIG. 1 is a diagram showing an example of an embodiment of an offshore wind power generator using a raft-type floating body of the present invention.

本発明のイカダ型浮体の洋上風力発電装置は、タワー1を中心として、タワー基部に浮力室2を備え、浮力室2の水平方向に水密にした複数の鋼管製の放射梁3を備えると共に、前記放射梁3の先端が平面視略円形になる水密にした鋼管製の外周梁4に連結されてイカダ型浮体を形成し、前記タワー基部の浮力室2、放射梁3、外周梁4による浮力によって水上に浮いている。 The offshore wind power generator of the raft-type floating body of the present invention has a tower 1 as the center, a buoyancy chamber 2 at the base of the tower, and a plurality of radial beams 3 made of steel pipes that are watertight in the horizontal direction of the buoyancy chamber 2. The tip of the radial beam 3 is connected to a watertight outer peripheral beam 4 made of a steel pipe that is substantially circular in plan view to form a raft-type floating body. floating on the water by

前記イカダ型浮体は係留索5によりアンカー(図では省略)に係留されている。 The raft-type floating body is moored to anchors (not shown) by mooring ropes 5 .

図示した本発明の浮体式洋上風力発電装置は、一例として出力2MWのローター6、ナセ7をタワー1の上端部に搭載しており、前記ローター6の直径82m、タワー1の高さ80m、タワー基部の直径4.5mである。イカダ型浮体の放射梁3の本数は6本、外周梁4は直径64mの円形に配置されていて、放射梁3と外周梁4の部材断面は直径3.5mの鋼管となっている。なお外周梁4の直径の上記数値、及び放射梁3と外周梁4の部材断面の上記数値は一例であるから、外周梁4の直径を54m、放射梁3と外周梁4の部材断面を3.9mと3.5mとすることもある。 In the illustrated floating offshore wind power generator of the present invention, as an example, a rotor 6 with an output of 2 MW and a plinth 7 are mounted on the upper end of the tower 1. The diameter of the rotor 6 is 82 m, the height of the tower 1 is 80 m, the tower The diameter of the base is 4.5 m. The number of radial beams 3 of the raft-type floating body is six, and the outer peripheral beams 4 are arranged in a circle with a diameter of 64 m. The above numerical values for the diameter of the outer peripheral beam 4 and the above numerical values for the member cross sections of the radial beam 3 and the outer peripheral beam 4 are examples. .9m and 3.5m are also available.

タワー1はその基部の断面を大きくし、直径を8m、長さを水面下10m程度まで伸ばして浮力室2とし、浮力室2はタワー1、ローター6とナセル7の重量に対して浮くことのできる大きさの浮力を有している。 The cross section of the base of the tower 1 is enlarged to form a buoyancy chamber 2 with a diameter of 8m and a length of 10m below the water surface. It has enough buoyancy.

タワー1が浮力室2を有し、自力で浮いていることは、放射梁3にかかる負担を小さくすることに役立っている。 The fact that the tower 1 has a buoyancy chamber 2 and floats on its own helps reduce the load on the radial beams 3 .

放射梁3は、浮力を有して浮いていて、自重と浮力により外周梁4と共にタワー1を支持し、タワー1が転倒しないように支える。 The radial beams 3 have buoyancy and float, support the tower 1 together with the peripheral beams 4 by their own weight and buoyancy, and support the tower 1 so that it does not topple over.

一般に風力発電装置はトップヘビーで風荷重を受け転倒し易い構造であるが、本発明ではイカダ型浮体の放射梁3を長く、外周梁4の円形を大きくすることにより、安定な浮体構造とすることができる。 In general, wind turbine generators are top-heavy and tend to overturn under wind load. However, in the present invention, the radial beams 3 of the raft-type floating body are long and the circular shape of the outer peripheral beams 4 is enlarged to provide a stable floating body structure. be able to.

また、タワー1の基部(図示した例では浮力室2)と放射梁3の接続部は、風圧や波力を受けるとき、大きい力が集中するので溶接によりリブで補強し、剛体結合する。 Also, when the base of the tower 1 (the buoyancy chamber 2 in the illustrated example) and the radial beam 3 are connected, a large force is concentrated when subjected to wind pressure and wave force, so they are reinforced with ribs by welding and rigidly connected.

放射梁3の本数は、ここでは6本となっているが、4本、8本であってもよい。 Although the number of radial beams 3 is six here, it may be four or eight.

外周梁4は、放射梁3と一体になってタワー1の安定起立に寄与するが、波浪や潮流を直接受け持ち、タワー1や放射梁3への影響を小さくする浮消波提の役割も担っている。 The outer beams 4 are integrated with the radial beams 3 to contribute to the stable erection of the tower 1, but they also directly receive waves and tidal currents and play the role of a floating wave bank that reduces the influence on the tower 1 and the radial beams 3. ing.

外周梁4又は放射梁3は、係留金具8を備え、係留索5を連結して係留荷重を受け持っている。 The outer peripheral beam 4 or the radial beam 3 is provided with mooring fittings 8 and connects mooring ropes 5 to bear the mooring load.

外周梁4の形状は基本的には円形であるが、多角形とすることもできる。 The shape of the peripheral beam 4 is basically circular, but may be polygonal.

図面上では省略しているが、タワー1、放射梁3、外周梁4には点検や修理のために水密式のマンホールが設けられる。 Although not shown in the drawing, the tower 1, radial beams 3, and peripheral beams 4 are provided with watertight manholes for inspection and repair.

放射梁3と外周梁4の材料としては、浮力が得られること、水圧に耐えられること、水密構造としやすいこともあって鋼管が適している。 As the material for the radial beams 3 and the peripheral beams 4, steel pipes are suitable because they can provide buoyancy, can withstand water pressure, and are easy to form a watertight structure.

鋼管構造の本発明のイカダ型浮体は鋼板構造の浮体と比較してリブ部材が少なくて済むこと、円形のため波や潮流の流体力を受けることが小さくて済み、浮体の軽量化が可能となる。 The raft-type floating body of the present invention, which has a steel pipe structure, requires fewer rib members than a floating body with a steel plate structure. Become.

外周梁4の平面形状が円形であることは、場所により波の位相が異なるため、外周梁4は最大波圧を同時に受けることがない。 The circular planar shape of the outer peripheral beam 4 prevents the outer peripheral beam 4 from receiving the maximum wave pressure at the same time because the phases of the waves differ depending on the location.

イカダ型浮体はフランジ継手9を設けることにより、工場で鋼管部材を製作し、台船で現場へ運搬し、クレーン船を用いて浮体を組立、浮体を現場に浮かべてタワー1、ローター6、ナセル7を組み立てて完成することができる。 A raft-type floating body is manufactured by manufacturing steel pipe members at a factory by providing a flange joint 9, transporting it to the site using a barge, assembling the floating body using a crane ship, floating the floating body on the site, and constructing the tower 1, the rotor 6, and the nacelle. 7 can be assembled and completed.

本発明のイカダ型浮体は主要部分が鋼管製であることにより製作にドックを要しないこと、曳航が不要なことにより、これが従来型式の浮体に比して大きな利点となる。 The main part of the raft-type floating body of the present invention is made of steel pipes, so that it does not require a dock for its manufacture and does not require towing, which is a great advantage over conventional floating bodies.

イカダ型浮体は、現場設置が容易であり、アンカーを所定位置に設置してイカダ型浮体とアンカーを連結するだけで設置が完了する。 The raft-type floating body is easy to install on site, and the installation is completed only by installing an anchor at a predetermined position and connecting the raft-type floating body and the anchor.

このように現場設置が容易であることのほかに、使用完了後の撤去、解体も容易であるから、設置現場の海洋環境を損なうことが少ない。 In addition to the ease of on-site installation, it is also easy to remove and dismantle after use, so there is little damage to the marine environment at the installation site.

内海で波浪が比較的穏やか海域では、上述したようなイカダ型浮体を用いた洋上風力発電装置が大きな利便性を発揮する。 In inland seas where waves are relatively calm, offshore wind turbine generators using a raft-type floating body as described above are very convenient.

しかし、上記の洋上風力発電装置を外海に設置した場合、放射梁3と外周梁4は波浪の影響により大きな断面力を生じて破壊されてしまう。 However, if the above offshore wind turbine generator is installed in the open sea, the radial beams 3 and the outer peripheral beams 4 will be destroyed due to the large cross-sectional force caused by the influence of waves.

上記破壊を回避するため放射梁3や外周梁4の断面を大きくすると重量が大となり、大きな重量物を浮かせるため、さらに断面を大きくする必要が生じ、浮体重量の軽量化が困難となる。 If the cross sections of the radial beams 3 and the peripheral beams 4 are increased in order to avoid the above destruction, the weight increases, and the cross section needs to be further increased to float a large heavy object, making it difficult to reduce the weight of the floating body.

また、工場製作が可能な鋼管の直径は4m程度であり、それ以上の大きさの鋼管を使用することは製作上もコスト面でも望ましくない。 In addition, the diameter of a steel pipe that can be manufactured in a factory is about 4 m, and it is not desirable to use a steel pipe with a diameter larger than that in terms of manufacturing and cost.

鋼管断面の大型化、浮体の大重量化を避けるためには、波力と波の衝撃力を避けることが必要である。 In order to avoid increasing the steel pipe cross-section and weight of the floating body, it is necessary to avoid wave force and wave impact force.

このため本発明では、放射梁3と外周梁4の中間部に可撓継手10を設けて、イカダ型浮体に波乗りに必要な変形性能もたせるようにした。 For this reason, in the present invention, a flexible joint 10 is provided between the radial beam 3 and the outer peripheral beam 4 to give the raft-type floating body the deformation performance necessary for surfing.

図2は可撓継手10を備えるイカダ型浮体を用いた本発明浮体式洋上風力発電装置の一例の斜視図であり、放射梁3と外周梁4にはそれぞれ6体の可撓継手10が設けられている。 FIG. 2 is a perspective view of an example of the floating offshore wind turbine generator of the present invention using a raft-type floating body provided with flexible joints 10. Six flexible joints 10 are provided on each of the radial beams 3 and the outer peripheral beams 4. It is

図3は前記可撓継手10の働きを説明するための模式図である。図3は、可撓継手10を有する本発明のイカダ型浮体を用いた洋上風力発電装置が、一例として波高8m、波長100mの波にもまれるときの状況を模式的に示したものであり、浮体は可撓継手10の部分で曲がり、波形に追従して波に乗っている。 FIG. 3 is a schematic diagram for explaining the function of the flexible joint 10. As shown in FIG. FIG. 3 schematically shows a situation when an offshore wind power generator using the raft-type floating body of the present invention having a flexible joint 10 is hit by a wave of 8 m in height and 100 m in wavelength as an example. , the floating body bends at the flexible joint 10 and rides the wave following the wave.

図3は模式図であるから浮体式洋上風力発電装置が波の上で変位して表現されているが、実際には浮体式洋上風力発電装置はほぼ定点で波の位相の変化とともに図示したような、イカダ型浮体の変形とタワー1の傾き姿勢をとる。 Since FIG. 3 is a schematic diagram, the floating offshore wind power generator is expressed as being displaced above the waves. , deformation of the raft-type floating body and inclination of the tower 1.

図3の場合イカダ型浮体の放射梁3と外周梁4の屈折角は一例として±13.5°となっており、可撓継手10にはそれ以上の変型性能が要求される。 In the case of FIG. 3, the angle of refraction between the radial beam 3 and the peripheral beam 4 of the raft-type floating body is, for example, ±13.5°, and the flexible joint 10 is required to have deformation performance greater than that.

また、可撓継手10には、強度的に放射梁3、外周梁4と同程度の強度が要求される。 In addition, the flexible joint 10 is required to have a strength comparable to that of the radial beam 3 and the peripheral beam 4 in terms of strength.

図4は可撓継手10の一例の構造図であり、ゴムまたは熱可塑性エラストマーを主体として形成されるものである。 FIG. 4 is a structural diagram of an example of the flexible joint 10, which is mainly made of rubber or thermoplastic elastomer.

シリンダー型のゴム(外径350cm、内径250cm、長さ1.6m)10aは、両端が張りだして鍔部10bを具備している。 A cylinder-shaped rubber (350 cm in outer diameter, 250 cm in inner diameter, 1.6 m in length) 10a has both ends protruding and provided with a collar portion 10b.

ゴム10aの鰐部10bの両側に鋼フランジ9aを配置してゴム10aと鋼フランジ9aを接着するとともに、L型の抑え金具10cにてゴム10aの鍔部10bを内外全周にわたって抑え込み、L型の押さえ金具10cは鋼フランジ9aに溶接固定されている。 Steel flanges 9a are arranged on both sides of the alligator portion 10b of the rubber 10a, and the rubber 10a and the steel flange 9a are bonded together. The presser fitting 10c is welded and fixed to the steel flange 9a.

鋼フランジ9aとゴム10aの接着強度と鍔部10bのゴムのせん断強度により鋼フランジ9aとゴム10aが一体となって可撓継手10として働く。 The steel flange 9a and the rubber 10a work together as a flexible joint 10 due to the adhesive strength between the steel flange 9a and the rubber 10a and the shear strength of the rubber of the flange portion 10b.

鋼フランジ9aにジベルを溶接しておき、ゴム10aにジベルを埋め込み接着することにより、鋼フランジ9aとゴム10aの一体化を計ることもできる。 It is also possible to integrate the steel flange 9a and the rubber 10a by welding a dowel to the steel flange 9a and embedding and adhering the dowel to the rubber 10a.

鋼フランジ9aの外周部には、ボルト継手用の孔が明けられ、放射梁3または外周梁4の鋼フランジ9aとボルト9bで結合して可撓継手10を形成する。 A hole for a bolted joint is formed in the outer peripheral portion of the steel flange 9a, and the steel flange 9a of the radial beam 3 or the outer peripheral beam 4 is joined with the bolt 9b to form a flexible joint 10. As shown in FIG.

図5は、図3のイカダ型浮体の放射梁3が波に乗って可撓継手10部分が曲げ変形した時の拡大図である。 FIG. 5 is an enlarged view when the radial beam 3 of the raft-type floating body of FIG. 3 rides on waves and the flexible joint 10 is bent and deformed.

ゴム10aのシリンダー部が曲げ変形して放射梁3、外周梁4が波乗りに必要な屈折角13.5°が得られている。 The cylindrical portion of the rubber 10a is bent and deformed, so that the radial beam 3 and the outer peripheral beam 4 have a refraction angle of 13.5°, which is necessary for wave riding.

可撓継手10の働きにより、イカダ型浮体は波に乗り、放射梁3と外周梁4にかかる荷重を減らし、大きな断面力の発生を防ぐことができるから、放射梁3と外周梁4を経済性ある断面の大きさに抑えることができる。 By the action of the flexible joint 10, the raft-type floating body rides on the waves, reduces the load applied to the radial beam 3 and the peripheral beam 4, and prevents the generation of a large cross-sectional force. It is possible to suppress the size of the cross section to a reasonable size.

実施例では、放射梁3と外周梁4の変形性能と強度性能を満たすために、ゴム10aは15MPa以上の高強度で、ヤング率は15MPa程度の高硬度のものが望ましいが、これに限られるものではない。 In the embodiment, in order to satisfy the deformation performance and strength performance of the radial beams 3 and the peripheral beams 4, it is desirable that the rubber 10a has a high strength of 15 MPa or more and a high hardness of about 15 MPa in Young's modulus, but it is limited to this. not a thing

厳しい波浪の海域においても、イカダ型浮体を用いた本発明の浮体式洋上風力発電装置は可撓継手10の働きにより、イカダ型浮体は波に乗り、放射梁3、外周梁4にかかる荷重を減らし、大きな断面力の発生を防ぎ、放射梁3と外周梁4を経済性ある断面の大きさに抑えることができる。 Even in a sea area with severe waves, the floating offshore wind turbine generator of the present invention using a raft-type floating body rides on the waves due to the action of the flexible joints 10, and the load applied to the radial beams 3 and the outer peripheral beams 4 is reduced. It is possible to reduce the size of the radial beam 3 and the peripheral beam 4 to an economically efficient cross-sectional size by preventing generation of a large cross-sectional force.

本実施例によれば、経済性に優れる浮体式洋上風力発電装置の浮体として、波浪の穏やかな海域においては図1のイカダ型浮体を、波浪の厳しい海域においては可撓継手を有する図2のイカダ型の浮体を提供することができる。 According to this embodiment, the raft-type floating body shown in FIG. 1 is used as a floating body for a floating offshore wind power generator with excellent economic efficiency, and the raft-type floating body shown in FIG. A raft type floating body can be provided.

1 タワー
2 浮力室
3 放射梁
4 外周梁
5 係留索
6 ローター
7 ナセル
8 係留金具
9 フランジ継手
9a フランジ
9b ボルト
10 可撓継手
10a ゴム
10b ゴム(鍔部)
10c 抑え金具

1 Tower 2 Buoyancy Chamber 3 Radial Beam 4 Peripheral Beam 5 Mooring Cable 6 Rotor 7 Nacelle 8 Mooring Bracket 9 Flange Joint 9a Flange 9b Bolt 10 Flexible Joint 10a Rubber 10b Rubber (Flange)
10c holding metal fittings

Claims (4)

風力発電のローターとナセルが設置されるタワーの基部にそのタワーの下方に延びた浮力室を設けるとともに、前記タワーの基部の水平方向であって水面に浮く位置に、放射状に複数の鋼管製の放射梁を設け、その鋼管製の放射梁の先端を略環状に結ぶ鋼管製の外周梁を設け、前記浮力室を含むタワー、前記放射梁、前記外周梁がそれぞれに有する浮力をもって水に浮く浮体式洋上風力発電装置。 A buoyancy chamber extending downwards from the tower is provided at the base of the tower where the wind turbine rotor and nacelle are installed. A floating body that floats on water with buoyancy possessed by each of the tower including the buoyancy chamber, the radial beam, and the peripheral beam, provided with a radial beam and a steel pipe peripheral beam that connects the ends of the steel pipe radial beam in a substantially annular shape. type offshore wind power generator. 前記鋼管製の放射梁と前記鋼管製の外周梁の中間部に、ゴム又は熱可塑性エラストマー製の筒型の可撓継手を備えている請求項1の浮体式洋上風力発電装置。 2. A floating offshore wind power generator according to claim 1, wherein a cylindrical flexible joint made of rubber or thermoplastic elastomer is provided at an intermediate portion between said radial beam made of steel pipe and said peripheral beam made of steel pipe . 上部にローターとナセルを備えるタワーの下部を水面に浮く浮体で支持する洋上風力発電装置における前記浮体を、前記タワーの基部にそのタワーの下方に延びた浮力室を設けるとともに、前記タワーの基部の水平方向であって水面に浮く位置に、放射状に設けた浮力を有する鋼管製の複数の放射梁と、前記複数の放射梁の先端を略環状に結んだ浮力を有する鋼管製の外周梁を備えてイカダ型に形成した浮体。 An offshore wind power generator in which the lower part of a tower having a rotor and a nacelle at its upper part is supported by a floating body that floats on the surface of the water , and a buoyancy chamber extending downward from the tower is provided at the base of the tower, and a buoyancy chamber extending downward from the tower is provided at the base of the tower. Equipped with a plurality of buoyant steel pipe radial beams radially provided at positions that float on the water surface in the horizontal direction, and a buoyant steel pipe outer peripheral beam that connects the ends of the plurality of radial beams in a substantially annular shape. A raft-shaped floating body. 前記鋼管製の放射梁と前記鋼管製の外周梁の中間部に、ゴム又は熱可塑性エラストマー製の筒型の可撓継手を備えている請求項3のイカダ型に形成した浮体。
4. A raft-shaped floating body according to claim 3, wherein cylindrical flexible joints made of rubber or thermoplastic elastomer are provided at intermediate portions of said radial beams made of steel pipes and said peripheral beams made of steel pipes.
JP2020077205A 2020-04-24 2020-04-24 Floating offshore wind power generator Active JP7223378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020077205A JP7223378B2 (en) 2020-04-24 2020-04-24 Floating offshore wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020077205A JP7223378B2 (en) 2020-04-24 2020-04-24 Floating offshore wind power generator

Publications (2)

Publication Number Publication Date
JP2021172211A JP2021172211A (en) 2021-11-01
JP7223378B2 true JP7223378B2 (en) 2023-02-16

Family

ID=78279590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020077205A Active JP7223378B2 (en) 2020-04-24 2020-04-24 Floating offshore wind power generator

Country Status (1)

Country Link
JP (1) JP7223378B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7444909B2 (en) 2022-01-31 2024-03-06 太平電業株式会社 Caisson and floating structure floats
WO2024122183A1 (en) * 2022-12-09 2024-06-13 株式会社ブリヂストン Water-borne device and method for controlling water-borne device
CN116161185B (en) * 2023-03-27 2024-07-05 中国建筑第五工程局有限公司 Self-damping self-balancing lightweight floating type offshore wind power foundation platform

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510524A (en) 2002-12-17 2006-03-30 エナーテック アーゲー Floating base for generating wind energy and its construction and method of use
JP2006298207A (en) 2005-04-21 2006-11-02 Shimizu Corp Floating body structure
JP2015174617A (en) 2014-03-18 2015-10-05 賢治 町筋 Flotation-type structure, and movable joint for use in the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510524A (en) 2002-12-17 2006-03-30 エナーテック アーゲー Floating base for generating wind energy and its construction and method of use
JP2006298207A (en) 2005-04-21 2006-11-02 Shimizu Corp Floating body structure
JP2015174617A (en) 2014-03-18 2015-10-05 賢治 町筋 Flotation-type structure, and movable joint for use in the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
嶋田健司ら,"洋上風力発電のためのセミサブ浮体の構造最適化について",海岸工学論文集,日本,土木学会,2007年,第54巻,p.916-920,DOI: 10.2208/proce1989.54.916,ISSN 1884-8222(online),0914-7897(print)

Also Published As

Publication number Publication date
JP2021172211A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP7223378B2 (en) Floating offshore wind power generator
EP3115600B1 (en) Flare-type tensile legs floating wind turbine base, offshore wind turbine and construction method
CA2747541C (en) Removable offshore wind turbines with pre-installed mooring system
CN112009634A (en) Submersible active support structure in offshore installations
CN112523969B (en) Truss inhaul cable type floating offshore wind turbine structure
CN110949633A (en) Barge type floating fan system and floating fan platform
KR101620900B1 (en) Sea floating wind generating deice with tidal adaptation
JP6675207B2 (en) Offshore wind power generation equipment and its construction method
TWI714708B (en) Offshore wind power generation equipment and construction method thereof
CN112879237B (en) Compliance type floats formula fan basis and fan system
US20180118309A1 (en) Floating mounting having a depth-variable horizontal cross-section
CN113086115A (en) Shallow sea wind power semi-submersible platform provided with anti-heaving stand column
WO2022135729A1 (en) Floating structure having ellipsoid buoyant members
WO2023135166A1 (en) Hull structure for a semi-submersible wind power turbine platform
CN116280048A (en) Ball-like type offshore floating type photovoltaic floating body structure and implementation method thereof
CN212508652U (en) Floating type foundation of offshore wind turbine generator set with grid type structure
CN212716998U (en) Automatic cross basic of driftage floats formula offshore wind power generation device
KR102588979B1 (en) Floating offshore structures and floating offshore power plant having the same
KR102523952B1 (en) Tower-integrated offshore wind-force floating body and its manufacturing method
CN219635447U (en) Ball-like type offshore floating type photovoltaic floating body structure
KR102682918B1 (en) Offshore platform integrated wave power generation system
KR102637606B1 (en) Floating offshore structures and floating offshore power plant having the same
KR102624042B1 (en) Floating offshore structures and floating offshore power plant having the same
JP7459024B2 (en) Offshore wind power generation equipment
EP4238863A1 (en) Floating offshore structure and floating offshore power generation apparatus having same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230127

R150 Certificate of patent or registration of utility model

Ref document number: 7223378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150