JP7214936B1 - Antibacterial/antiviral composition and method for producing the same - Google Patents

Antibacterial/antiviral composition and method for producing the same Download PDF

Info

Publication number
JP7214936B1
JP7214936B1 JP2022025788A JP2022025788A JP7214936B1 JP 7214936 B1 JP7214936 B1 JP 7214936B1 JP 2022025788 A JP2022025788 A JP 2022025788A JP 2022025788 A JP2022025788 A JP 2022025788A JP 7214936 B1 JP7214936 B1 JP 7214936B1
Authority
JP
Japan
Prior art keywords
cuprous oxide
aqueous solution
particle size
average particle
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022025788A
Other languages
Japanese (ja)
Other versions
JP2023122215A (en
Inventor
悦雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022025788A priority Critical patent/JP7214936B1/en
Application granted granted Critical
Publication of JP7214936B1 publication Critical patent/JP7214936B1/en
Publication of JP2023122215A publication Critical patent/JP2023122215A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】本発明は、亜酸化銅を原料として得られる沈殿物の無い透明なコロイド分散液であって、抗菌・抗ウィルス性組成物およびその製造方法である。【解決手段】亜酸化銅を分散させた亜酸化銅懸濁溶液(スラリー溶液)に有機酸を加え加熱して溶解し、更に塩酸を加えて清澄化した溶液に、クエン酸3ナトリウムを用いてpH調整して得られた平均粒子径が10~100nmの沈殿物の無い水溶液であって、CuイオンやCu2O・CuO・CuCl・CuCl2などの銅化合物が混在する有色透明な分散液であり、長期間に亘って凝集沈殿せず、適切な無機バインダーを選定して配合すれば、優れた密着性のある、高い抗菌・抗ウィルス及び防藻性の水系組成物を提供することである。【選択図】図1Kind Code: A1 The present invention relates to an antibacterial/antiviral composition, which is a transparent colloidal dispersion free from precipitates obtained using cuprous oxide as a raw material, and a method for producing the same. SOLUTION: An organic acid is added to a cuprous oxide suspension solution (slurry solution) in which cuprous oxide is dispersed, heated and dissolved, and further hydrochloric acid is added to clarify the solution, and trisodium citrate is added to the solution. It is an aqueous solution with an average particle size of 10 to 100 nm obtained by adjusting the pH without precipitation, and is a colored and transparent dispersion in which copper compounds such as Cu ions and CuO, CuO, CuCl, and CuCl are mixed. To provide a highly antibacterial, antiviral and antialgal water-based composition which does not aggregate and precipitate over a period of time and has excellent adhesion when an appropriate inorganic binder is selected and blended. [Selection drawing] Fig. 1

Description

本発明は、亜酸化銅を原料として、Cuイオンおよび、コロイド粒子の主成分として、Cu(CCuCuClやCuOなどの銅化合物を含有する有色透明な溶液であって、優れた密着性を有する溶液であり、抗菌・抗ウイルス性組成物に関するものである。 The present invention uses cuprous oxide as a raw material, Cu ions, and as the main components of colloidal particles, a colored and transparent liquid containing copper compounds such as Cu 2 (C 6 H 4 O 7 ) , Cu 2 O , CuCl and CuO. The present invention relates to an antibacterial/antiviral composition, which is a solution having excellent adhesiveness.

従来、亜酸化銅分散液の凝集を抑え、分散性を向上させるためには、界面活性剤を使用する事が一般的であり、特許文献1のWO2014/132606公報の3頁目の段落0015にはリン酸エステル型アニオン界面活性剤を用い、当該分散液にはリン酸エステル型アニオン界面活性剤を含有することが記載されている。特許文献2のWO2019/045110公報の6頁目の13行目から17行目には、分散剤として可溶な界面活性剤等を使用して凝集を防ぐことが記載されている。また、特許文献3の特開2013-082654号公報、特許文献4の特開2016-003234号公報および特許文献5の特開2017-052880号公報の何れにも界面活性剤の使用が記載されている。 Conventionally, in order to suppress the aggregation of the cuprous oxide dispersion and improve the dispersibility, it is common to use a surfactant. uses a phosphate ester type anionic surfactant, and describes that the dispersion contains the phosphate ester type anionic surfactant. Patent Document 2, WO2019/045110, page 6, lines 13 to 17, describes the use of a soluble surfactant or the like as a dispersant to prevent aggregation. Further, Japanese Patent Application Laid-Open No. 2013-082654 of Patent Document 3, Japanese Patent Application Laid-Open No. 2016-003234 of Patent Document 4, and Japanese Patent Application Laid-Open No. 2017-052880 of Patent Document 5 all describe the use of a surfactant. there is

しかし、特許文献1の4頁目の段落0017によれば、界面活性剤の含有量が少ない場合には、分散液が凝集沈降して抗菌・抗ウィルス性能が低下し、逆に界面活性剤の含有量が多い場合にも、界面活性剤の残存量が多くなり、やはり抗菌・抗ウィルス性能が低下するという欠点が生じると言うことであった。 However, according to paragraph 0017 on page 4 of Patent Document 1, when the content of the surfactant is small, the dispersion liquid aggregates and settles, resulting in a decrease in antibacterial and antiviral performance. Even when the content is large, the amount of residual surfactant increases, and the drawback is that the antibacterial and antiviral performance is lowered.

その改善策として、界面活性剤を使用しないで、亜酸化銅を原料とする凝集・沈降しない、高い抗菌・抗ウィルス性能を有する分散液およびその製造方法を提供することで、銅イオンや銅化合物の有する抗菌・抗ウィルス性を高める効果である。 As an improvement measure, by providing a dispersion liquid having high antibacterial and antiviral performance that does not aggregate or precipitate from cuprous oxide as a raw material without using a surfactant and a method for producing the same, copper ions and copper compounds It is an effect that enhances the antibacterial and antiviral properties of

WO2014/132606号公報WO2014/132606 WO2019/045110号公報WO2019/045110 特開2013-082654号公報JP 2013-082654 A 特開2016-003234号公報JP 2016-003234 A 特開2017-052880号公報JP 2017-052880 A

松本健、木羽敏泰「高純度金属銅表面の酸化銅(1)と酸化銅(2)の分別定量」 1979年6月、第40回分析化学討論会における一部発表論文(https://www.jstage.jst.go.jp/article/bunsekikagaku1952/30/1/30_1_12/_pdf/-char/ja)Takeshi Matsumoto, Toshiyasu Kiba, "Separate determination of copper oxide (1) and copper oxide (2) on the surface of high-purity metallic copper", June 1979, Partial presentation at the 40th Analytical Chemistry Symposium (https:/ /www.jstage.jst.go.jp/article/bunsekikagaku1952/30/1/30_1_12/_pdf/-char/ja) 「安全な銅」一般社団法人日本銅センターHP(http://www.jcda.or.jp/recruit/tabid/87/Default.aspx)"Safe copper" Japan Copper Center website (http://www.jcda.or.jp/recruit/tabid/87/Default.aspx)

解決しようとする問題点は、界面活性剤を使用しないで、亜酸化銅すなわちCuOを原料とした沈殿物の無い透明なコロイド分散液の製造は非常に難しい点である。 The problem to be solved is that it is very difficult to prepare a sediment-free transparent colloidal dispersion from cuprous oxide, ie Cu 2 O, without the use of surfactants.

本発明は、酸化第1銅を主原料として、還元性の高い有機酸を用いて溶解し、少量の無機酸を添加して清澄化した後、有機酸のアルカリ塩でpH調整した、Cu2+イオン、Cu+イオンや、CuOやクエン酸銅やCuClやCuOなどの銅化合物が混在する透明な水溶液であって、各種基板に優れた密着性を持ち、界面活性剤を含有しない分散液であり、高い抗菌・抗ウィルス性を有することを最も主要な特徴とする。 The present invention uses cuprous oxide as the main raw material, dissolves it using a highly reducing organic acid, adds a small amount of inorganic acid to clarify it, and then adjusts the pH with an alkali salt of an organic acid. Cu 2+ A transparent aqueous solution in which ions, Cu + ions, and copper compounds such as Cu 2 O, copper citrate, CuCl, and CuO are mixed, and has excellent adhesion to various substrates, and does not contain a surfactant. The most important feature is that it has high antibacterial and antiviral properties.

本発明の亜酸化銅(古河ケミカル社製「微粒子亜酸化銅 FRC-05」:CuO含有量98.8重量%、乾燥減量0.1重量%、比表面積2.8m/g)を主原料とした分散液(以下、「亜酸化銅分散液」と称する)は、長期間に亘って凝集沈殿せず、塗装基板に対して適切な水性無機バインダーを使用すれば形成される塗膜は優れた密着性を有し、鉛筆硬度で7H~8H以上を有する強靱な膜となるため、耐久性に優れているという利点および、黄色ブドウ球菌に対する24時間後の抗菌活性値が4.6~4.9以上を有し、ウィルスに対する開始から10時間後のTCID50/mLが検出限界未満となるほどの高い抗ウィルス性能を有する利点がある。 The cuprous oxide of the present invention (Furukawa Chemical Co., Ltd. “Fine cuprous oxide FRC-05”: Cu 2 O content 98.8% by weight, loss on drying 0.1% by weight, specific surface area 2.8 m 2 /g) The dispersion used as the main raw material (hereinafter referred to as "cuprous oxide dispersion") does not coagulate and precipitate over a long period of time, and a coating film can be formed by using an appropriate aqueous inorganic binder for the coated substrate. Has excellent adhesion and forms a tough film with a pencil hardness of 7H to 8H or more, so it has the advantage of being excellent in durability, and the antibacterial activity value against Staphylococcus aureus after 24 hours is 4.6. ∼4.9 or higher, and has the advantage of having such a high antiviral performance that the TCID 50 /mL after 10 hours against the virus is below the limit of detection.

図1は亜酸化銅分散液の製造方法を示した工程図である。(実施例1)FIG. 1 is a process diagram showing a method for producing a cuprous oxide dispersion. (Example 1) 図2は亜酸化銅分散液(1)の粒度分布を示した図である。(実施例1)FIG. 2 is a diagram showing the particle size distribution of the cuprous oxide dispersion (1). (Example 1) 図3は亜酸化銅分散液(1)の自己相関関数を示した図である。(実施例1)FIG. 3 is a diagram showing the autocorrelation function of the cuprous oxide dispersion (1). (Example 1) 図2は亜酸化銅分散液(2)の粒度分布を示した図である。(実施例2)FIG. 2 is a diagram showing the particle size distribution of the cuprous oxide dispersion (2). (Example 2) 図3は亜酸化銅分散液(2)の自己相関関数を示した図である。(実施例2)FIG. 3 is a diagram showing the autocorrelation function of the cuprous oxide dispersion (2). (Example 2) 図2は亜酸化銅分散液(3)の粒度分布を示した図である。(実施例3)FIG. 2 is a diagram showing the particle size distribution of the cuprous oxide dispersion (3). (Example 3) 図3は亜酸化銅分散液(3)の自己相関関数を示した図である。(実施例3)FIG. 3 is a diagram showing the autocorrelation function of the cuprous oxide dispersion (3). (Example 3) 図2は亜酸化銅分散液(4)の粒度分布を示した図である。(実施例4)FIG. 2 is a diagram showing the particle size distribution of the cuprous oxide dispersion (4). (Example 4) 図3は亜酸化銅分散液(4)の自己相関関数を示した図である。(実施例4))FIG. 3 shows the autocorrelation function of the cuprous oxide dispersion (4). (Example 4)) 図4は亜酸化銅分散液の代用写真である。(実施例1)FIG. 4 is a substitute photograph of the cuprous oxide dispersion. (Example 1) 図5はウィルス不活化試験を示した図である。FIG. 5 shows a virus inactivation test.

(亜酸化銅分散液の製造方法)
図1に示す様な製造工程に基づいて、基本的な製造方法を説明する。
〔S1〕亜酸化銅(CuO)5gを水(HO)200mLに入れて、さらに水(HO)を300mL加えて、20℃~40℃で500rpmの回転数で撹拌して(pH6~7)、亜酸化銅懸濁液(スラリー溶液)を作る。
〔S2〕還元性のある有機酸であるクエン酸3gを加えて溶解させ、pH4のほぼ透明な水溶液を作る。
〔S3〕濃度35%の塩酸を6g加えて、60℃に温度を上げて、pH2~2.5の透明で赤色の水溶液とし、静置して清澄液を得る。
〔S4〕pH調整のため、還元機能のあるアルカリ性のクエン酸3ナトリウム3gを加えて溶解させ、pH4~5の透明な青緑色から緑色を帯びた水溶液とし、95℃以上で2~3分間沸騰させる。
〔S5〕約480mLの水(HO)を加えて、1000mLの亜酸化銅分散液であって、pH3.5~4.5の透明な水溶液が得られる。ただし、水溶液の色は、青みがかった緑色である青緑から緑色を帯びたものとなっている。
〔S6〕不純物を濾過する。
以上の工程では、界面活性剤などの分散剤が不要であり、当該工程で製造された亜酸化銅分散液は、当然界面活性剤の成分を含有しない透明なコロイド分散液であり、長期間に凝集しない分散水溶液が得られたが、当該分散液の発色が青緑色から緑色までの多様性を有している。尚、当該分散液の原料として使用した「微粒子亜酸化銅 FRC-05」の特定粒子径以下・以上の粒子量のパーセンテージを示す積分分布10%径であるD10は、0.47μm、50%径であるD50は0.75μm、90%径であるD90は1.57μmとなっている。また、上記の工程〔S2〕の有機酸としてアスコルビン酸やリンゴ酸を用いても構わないので、クエン酸にこだわるものではない。
(Method for producing cuprous oxide dispersion)
A basic manufacturing method will be described based on the manufacturing process shown in FIG.
[S1] Put 5 g of cuprous oxide (Cu 2 O) into 200 mL of water (H 2 O), add 300 mL of water (H 2 O), and stir at 500 rpm at 20° C. to 40° C. (pH 6-7), making cuprous oxide suspension (slurry solution).
[S2] 3 g of citric acid, which is a reducing organic acid, is added and dissolved to prepare an almost transparent aqueous solution of pH 4.
[S3] Add 6 g of hydrochloric acid having a concentration of 35% and raise the temperature to 60° C. to make a transparent red aqueous solution of pH 2 to 2.5.
[S4] To adjust the pH, add and dissolve 3 g of alkaline trisodium citrate, which has a reducing function, to make a clear bluish-green to greenish aqueous solution with a pH of 4 to 5, and boil at 95°C or higher for 2 to 3 minutes. Let
[S5] About 480 mL of water (H 2 O) is added to obtain 1000 mL of cuprous oxide dispersion with a pH of 3.5-4.5 and a clear aqueous solution. However, the color of the aqueous solution changes from bluish green to greenish green.
[S6] Impurities are filtered.
In the above steps, a dispersant such as a surfactant is not required, and the cuprous oxide dispersion produced in this step is naturally a transparent colloidal dispersion that does not contain a surfactant component, and can be used for a long time. A non-agglomerated dispersed aqueous solution was obtained, and the color of the dispersed solution varied from bluish green to green. In addition, D10, which is the 10% diameter of the integral distribution indicating the percentage of the amount of particles having a specific particle diameter or less of "fine particle cuprous oxide FRC-05" used as a raw material of the dispersion, is 0.47 μm, 50% diameter D50, which is 0.75 μm, and D90, which is 90% diameter, is 1.57 μm. In addition, since ascorbic acid or malic acid may be used as the organic acid in step [S2], citric acid is not limited.

(本願発明の分散液が凝集しない理由の推定)
本コロイド溶液が凝集・造粒して沈殿を生じないメカニズムの推定として、コロイド粒子の主な組成と考えられる亜酸化銅CuO、塩化第一銅CuCl、クエン酸銅Cu(Cを含有しているものと考えられる。
そして、これらの混在した微粒子を形成するのは、成分のクエン酸第銅の構造に起因するものと思われる。このように形成されたコロイド微粒子に存在するクエン酸銅の1分子中に配位するCu2+が2個、更にクエン酸が持つ3個のヒドロキシル基からHが脱離したC=Oが他の粒子のそれらと電荷で相互に反発し合うためであると考えられる。
以上のことから、本願発明の亜酸化銅分散液は、クエン酸第二銅をコロイドの主成分とする水系分散液であり、あるいは、CuO、CuCl、Cu(Cなどの銅化合物が混在したコロイド粒子を主成分とした銅含有分散水溶液であるとも考えている。
(Presumption of the reason why the dispersion liquid of the present invention does not aggregate)
As a presumption of the mechanism that this colloidal solution aggregates and granulates and does not cause precipitation, cuprous oxide Cu 2 O, cuprous chloride CuCl, copper citrate Cu 2 (C 6 H 4 O 7 ).
It is believed that the formation of these mixed fine particles is due to the structure of the cupric citrate component. In the colloidal fine particles formed in this way, there are two Cu 2+ coordinated in one molecule of copper citrate, and C=O- , in which H is eliminated from the three hydroxyl groups of citric acid. This is thought to be due to mutual repulsion with those of the particles of .
From the above, the cuprous oxide dispersion of the present invention is an aqueous dispersion containing cupric citrate as a main colloidal component, or Cu 2 O, CuCl, Cu 2 (C 6 H 4 O 7 ) is considered to be a copper-containing dispersed aqueous solution mainly composed of colloidal particles mixed with copper compounds such as ).

亜酸化銅分散液(1)を5倍に希釈した水溶液の粒度分布を測定した結果が図2であり、その自己相関関数を図3に示している。また、図10の右側は分散工程実施前の亜酸化銅懸濁溶液(スラリー溶液)であり、左側は当該亜酸化銅分散液のサンプルを示した代用写真であり、右側の水溶液は混濁しているが、左側の分散液は有色透明な水溶液となっている。当該亜酸化銅分散液(1)は、Cu2+と、かすかに存在するかもしれないCuなどのCuイオンと、CuOやCuOやCuClやCu(CなどのCu化合物が混在した状態であり、100Wの超音波を2分間照射して分散させた後、動的光散乱法で測定した。平均粒子径はキュムラント法によって算出した結果を表1に示している。当該測定は、某社に委託し、測定機器は、スペクトリス(株)製の「ゼータサイザーPro」を使用した。 FIG. 2 shows the result of measuring the particle size distribution of an aqueous solution obtained by diluting the cuprous oxide dispersion (1) 5 times, and FIG. 3 shows its autocorrelation function. In addition, the right side of FIG. 10 is a cuprous oxide suspension solution (slurry solution) before the dispersion step is performed, the left side is a substitute photograph showing a sample of the cuprous oxide dispersion, and the right side aqueous solution is turbid. However, the dispersion on the left is a colored and transparent aqueous solution. The cuprous oxide dispersion (1) contains Cu 2+ , Cu ions such as Cu + which may exist slightly, and Cu 2 O, CuO, CuCl, Cu 2 (C 6 H 4 O 7 ) , etc. The Cu compound was mixed, and was dispersed by irradiation with 100 W ultrasonic waves for 2 minutes, and then measured by the dynamic light scattering method. Table 1 shows the average particle size calculated by the cumulant method. The measurement was outsourced to a certain company, and the measuring instrument used was "Zetasizer Pro" manufactured by Spectris Co., Ltd.

Figure 0007214936000002
Figure 0007214936000002

上記の表1から、平均粒子径は65.19nmであり、自己相関関数は0.4041となっている。第1ピークの平均粒子径は22.82nmであり、第2ピークの平均粒子径は207.8nmであり、第3ピークの平均粒子径は5083nmの3つのピークを示す混合分散液であり、緩やかな減衰成分と急激な減衰成分が混じった自己相関関数を示している。 From Table 1 above, the average particle size is 65.19 nm and the autocorrelation function is 0.4041. The average particle size of the first peak is 22.82 nm, the average particle size of the second peak is 207.8 nm, and the average particle size of the third peak is 5083 nm. It shows an autocorrelation function with a mixture of smooth decay components and sharp decay components.

亜酸化銅分散液(1)と異なる日に製造した亜酸化銅分散液(2)を5倍に希釈した水溶液の粒度分布を測定した結果が図4であり、その自己相関関数を図5に示している。
表2の結果から、当該亜酸化銅分散液(2)の平均粒径は43.64nmであり、自己相関関数は0.6191である。また、第1ピークの平均粒子径は22.8nmであり、第2ピークの平均粒子径は211.3nmであり、第3ピークの平均粒子径は4316nmの3つのピークを示す混合分散液であり、やはり緩やかな減衰成分と急激な減衰成分が混じった自己相関関数を示している。
The result of measuring the particle size distribution of an aqueous solution obtained by diluting the cuprous oxide dispersion (2) produced on a different day from the cuprous oxide dispersion (1) by 5 times is shown in FIG. 4, and the autocorrelation function is shown in FIG. showing.
From the results in Table 2, the cuprous oxide dispersion (2) has an average particle size of 43.64 nm and an autocorrelation function of 0.6191. In addition, the average particle size of the first peak is 22.8 nm, the average particle size of the second peak is 211.3 nm, and the average particle size of the third peak is 4316 nm. , again shows an autocorrelation function with a mixture of gradual and rapid decay components.

Figure 0007214936000003
Figure 0007214936000003

亜酸銅分散液(1)、(2)と異なる日に製造した亜酸化銅分散液(3)を5倍に希釈した水溶液の粒度分布を測定した結果が図6であり、その自己相関関数を図7に示している。
表3の結果から、当該亜酸化銅分散液(3)の平均粒径は75.91nmであり、自己相関関数は0.4525である。また、第1ピークの平均粒子径は21.23nmであり、第2ピークの平均粒子径は208.1nmであり、第3ピークの平均粒子径は5114nmの3つのピークを示す混合分散液であり、やはり緩やかな減衰成分と急激な減衰成分が混じった自己相関関数を示している。
FIG. 6 shows the result of measuring the particle size distribution of an aqueous solution obtained by diluting the cuprous oxide dispersion (3) produced on a different day from the cuprous oxide dispersion (1) and (2) by 5 times, and the autocorrelation function is shown in FIG. is shown in FIG.
From the results in Table 3, the cuprous oxide dispersion (3) has an average particle size of 75.91 nm and an autocorrelation function of 0.4525. In addition, the average particle size of the first peak is 21.23 nm, the average particle size of the second peak is 208.1 nm, and the average particle size of the third peak is 5114 nm. , again shows an autocorrelation function with a mixture of gradual and rapid decay components.

Figure 0007214936000004
Figure 0007214936000004

亜酸銅分散液(1)、(2)、(3)と異なる日に製造した亜酸化銅分散液(4)を5倍に希釈した水溶液の粒度分布を測定した結果が図8であり、その自己相関関数を図9に示している。
表4の結果から、当該亜酸化銅分散液(3)の平均粒径は34.27nmであり、自己相関関数は0.5966 である。また、第1ピークの平均粒子径は23.5nmであり、第2ピークの平均粒子径は165.6nmであり、第3ピークの平均粒子径は4969nmの3つのピークを示す混合分散液であり、やはり緩やかな減衰成分と急激な減衰成分が混じった自己相関関数を示している。
The result of measuring the particle size distribution of an aqueous solution obtained by diluting the cuprous oxide dispersion (4) produced on a different day from the cuprous oxide dispersion (1), (2), (3) by 5 times is shown in FIG. Its autocorrelation function is shown in FIG.
From the results in Table 4, the cuprous oxide dispersion (3) has an average particle size of 34.27 nm and an autocorrelation function of 0.5966. Moreover, the average particle size of the first peak is 23.5 nm, the average particle size of the second peak is 165.6 nm, and the average particle size of the third peak is 4969 nm. , again shows an autocorrelation function with a mixture of gradual and rapid decay components.

Figure 0007214936000005
Figure 0007214936000005

実施例1~実施例4の結果から、本願発明の亜酸化銅分散液を5倍に希釈した水溶液は、全体の平均粒子径が34nm~75nmであり、3つの粒度分布を有する有色透明な水溶液であることが判明した。また、第1のピークの平均粒径は、21.23~23.5nmの範囲にあり、平均値は.59nmであり、第2のピークの平均粒径は、165.6~211.3nmの範囲にあり、平均値は198.2nmであり、第3のピークの平均粒径は、4316~5114nmの範囲にあり、平均値は4879.5nmであることを特徴とした分散液である。このように、3つの粒度ピークを有することを特徴とする本願発明の亜酸化銅分散液は、使用する有機酸や無機酸の組み合わせで、粒度ピークが1つになる場合もあり、2つになる場合がある。 From the results of Examples 1 to 4, the aqueous solution obtained by diluting the cuprous oxide dispersion of the present invention 5 times has an overall average particle size of 34 nm to 75 nm, and has three particle size distributions. turned out to be. Also, the average particle size of the first peak is in the range of 21.23 to 23.5 nm, and the average value is . 59 nm, the average particle size of the second peak ranges from 165.6 to 211.3 nm, the average value is 198.2 nm, and the average particle size of the third peak ranges from 4316 to 5114 nm. and an average value of 4879.5 nm. Thus, the cuprous oxide dispersion of the present invention, which is characterized by having three particle size peaks, may have one particle size peak depending on the combination of organic acids and inorganic acids used, and may have two. may become.

製造から半年以上経過した出願当時においても、何れの亜酸化銅分散液は、凝集・沈殿物が観察されないことから、界面活性剤を助剤として用いなくても分散効果が維持されていることも判明した。
尚、実施例1~4の亜酸化銅分散液の製造日は異なるが、凝集沈降しないため、粒度解析は同じ日に行なった。
Even at the time of filing, which had been more than half a year since the manufacture, no aggregation or sedimentation was observed in any of the cuprous oxide dispersions. found.
Although the production dates of the cuprous oxide dispersions of Examples 1 to 4 were different, the particle size analysis was performed on the same day because they did not coagulate and sediment.

(抗菌試験)
黄色ブドウ球菌を使って抗菌活性試験を「JIS Z 2801:2010 5」に準用して実施例1で作成した亜酸化銅分散液(1)を使用して行なった。実施例1の亜酸化銅分散液(1)の濃度を100とした場合、試料Aは1/100に希釈した水溶液を5cm角の試験片Aに塗布して乾燥させた表面に0.4mLの黄色ブドウ球菌を接種して4cm角のフィルムで被覆し、温度35±1℃、相対湿度90%以上で24時間培養した後の生菌数(個/cm)を測定した。同様に、試料Bは、亜酸化銅分散液を1/50に希釈した水溶液を5cm角の試験片Bに塗布して乾燥させて試験を行ない、試料Cは、亜酸化銅分散液を1/20に希釈した水溶液を5cm角の試験片Cに塗布して乾燥させて試験を行った。比較対象として、無加工試験片としてポリエチレンフィルムを使用した。結果として、表5で示す様に、試料Aでは、24時間後の生菌数が0.11なので、抗菌活性値は4.6となり、試料Bおよび試料Cでは生菌数が-0.2以下なので、抗菌活性値は4.9以上という数値を示し、抗菌性能基準が2.0以上とされていることから、当該試験において、試料A~Cはいずれも高い抗菌性能を有している。尚、抗菌活性値は、次式(数1)で算出した。
(Antibacterial test)
An antibacterial activity test using Staphylococcus aureus was performed using the cuprous oxide dispersion (1) prepared in Example 1 according to "JIS Z 2801:2010 5". When the concentration of the cuprous oxide dispersion (1) of Example 1 is 100, sample A is a 1/100 diluted aqueous solution applied to a 5 cm square test piece A and dried. Staphylococcus aureus was inoculated, covered with a 4 cm square film, cultured at a temperature of 35±1° C. and a relative humidity of 90% or higher for 24 hours, and then the number of viable bacteria (cells/cm 2 ) was measured. Similarly, for sample B, an aqueous solution diluted to 1/50 of the cuprous oxide dispersion was applied to a 5 cm square test piece B and dried for testing. An aqueous solution diluted to 20 was applied to a 5 cm square test piece C, dried, and tested. A polyethylene film was used as an unprocessed test piece for comparison. As a result, as shown in Table 5, in sample A, the viable count after 24 hours is 0.11, so the antibacterial activity value is 4.6, and in samples B and C, the viable count is -0.2. Therefore, the antibacterial activity value is 4.9 or more, and the antibacterial performance standard is 2.0 or more, so in the test, samples A to C all have high antibacterial performance. . The antibacterial activity value was calculated by the following formula (Equation 1).

Figure 0007214936000006
Figure 0007214936000006

Figure 0007214936000007
Figure 0007214936000007

(被膜強度)
実施例1の亜酸化銅分散液(1)を塗装基板に対し、適切な水性無機バインダー(例として、日産化学製コロイダルシリカXS等)を選定し適量を配合して塗布すれば、形成される乾燥塗膜は優れた密着性を有し、鉛筆硬度試験(JIS K5400)に準じて手書き法で測定したところ、鉛筆強度で7H~8H以上を有する強靱な膜となるため、耐久性に優れている。
(Coating strength)
The cuprous oxide dispersion (1) of Example 1 is applied to a coated substrate by selecting an appropriate aqueous inorganic binder (eg, colloidal silica XS manufactured by Nissan Chemical Industries, Ltd.) and applying an appropriate amount. The dry coating film has excellent adhesion, and when measured by a handwriting method according to the pencil hardness test (JIS K5400), it becomes a tough film with a pencil strength of 7H to 8H or more, so it has excellent durability. there is

(抗ウィルス試験)
本願発明の亜酸化銅分散液のウィルスの不活化効果試験を某衛生研究所に委託して行なった。供試微生物は、人の唾液からvero細胞(アフリカミドリザルの腎臓上皮由来株化細胞)を用いて培養した人由来分離株で、分離培養後、リアルタイムPCR検査を用いてSARS-CoV-2遺伝子の増幅を確認(厚生労働省通知法)したウィルス株を用いた。段落0011に記載の本願発明の亜酸化銅分散液の濃度を100とした場合、ウィルス不活化試験に用いた亜酸化銅分散液は25倍に希釈した水溶液を使用して、試験資材(1)~(4)としてそれぞれ10mL使用した。再現性の確認のため、製造日が異なる4つの亜酸化銅分散液(1)~(4)を用意して、同じ日に当該試験を行なうこととした。その試験結果を表6に示している。
比較対照として、リン酸緩衝液10mL使用して対照区とした。試験区1~4および対照区の水溶液から各1mLを分取して、10TCID50/mL以上の濃度のウィルス液を添加して、室温(25℃)で10時間静置した。
(Antiviral test)
A virus inactivation effect test of the cuprous oxide dispersion of the present invention was entrusted to a certain health research institute. The test microorganism is a human-derived isolate cultured from human saliva using vero cells (a cell line derived from the kidney epithelium of African green monkeys). A virus strain whose amplification was confirmed (Ministry of Health, Labor and Welfare notification method) was used. When the concentration of the cuprous oxide dispersion of the present invention described in paragraph 0011 is 100, the cuprous oxide dispersion used in the virus inactivation test is a 25-fold diluted aqueous solution, and the test material (1) 10 mL each was used as (4). In order to confirm reproducibility, four cuprous oxide dispersions (1) to (4) with different production dates were prepared and the test was performed on the same day. Table 6 shows the test results.
As a control, 10 mL of phosphate buffer was used as a control group. A 1 mL portion was taken from each of the aqueous solutions of Test Groups 1 to 4 and the control group, virus solution having a concentration of 10 6 TCID 50 /mL or more was added, and allowed to stand at room temperature (25° C.) for 10 hours.

Figure 0007214936000008
Figure 0007214936000008

10時間経過後の試験区のウィルス混合液をさらにそれぞれ10倍希釈し、96ウェルプレートに培養した細胞に各100μL接種して、室温37℃、CO濃度5%で5日間培養した。培養細胞を顕微鏡観察し、培養細胞に現れる細胞変異効果( Cytopathic effect: CPE)をもって、ウィルスの増殖を確認し、数2で示す計算式に基づいて、その濃度を算出したものを表6に示している。 After 10 hours, the virus mixture in the test group was further diluted 10-fold, and 100 μL each was inoculated into cells cultured in a 96-well plate and cultured at room temperature of 37° C. and CO 2 concentration of 5% for 5 days. The cultured cells were observed under a microscope, and the proliferation of the virus was confirmed by the cytopathic effect (CPE) that appeared in the cultured cells. ing.

Figure 0007214936000009
Figure 0007214936000009

表6の結果から、リン酸緩衝液を使った対照区では試験開始から10時間の経過までに、107.3から106.5TCID50/mLへウィルス量が自然減退しているが、その原因はつかめていない。一方、亜酸化銅分散液を用いた試験区1、3および4でのウィルス濃度は、検出限界濃度である102.5TCID50/mLとなり、99.99%以上の減少率が確認され、試験区2でもウィルス濃度は103.3TCID50/mLとなり99.93%の減少率が確認され、対照区の自然減少以上の効果があることが分かった。そこで、表6の結果をグラフとして示した図11からも、当該ウィルス不活化試験の減少していることが判明した。当該不活化試験の結果として、本願発明の亜酸化銅分散液は、高い抗ウィルス性組成物であることが確認された。 From the results in Table 6, in the control group using the phosphate buffer, the virus amount spontaneously decreased from 10 7.3 to 10 6.5 TCID 50 /mL within 10 hours from the start of the test, I haven't found the cause. On the other hand, the virus concentration in test groups 1, 3 and 4 using the cuprous oxide dispersion was 10 2.5 TCID 50 / mL, which is the detection limit concentration, and a reduction rate of 99.99% or more was confirmed. The virus concentration was 10 3.3 TCID 50 /mL in Test Group 2, and a reduction rate of 99.93% was confirmed, demonstrating an effect greater than the natural reduction in the control group. Therefore, from FIG. 11 showing the results of Table 6 as a graph, it was found that the virus inactivation test was decreased. As a result of the inactivation test, the cuprous oxide dispersion of the present invention was confirmed to be a highly antiviral composition.

本願発明の亜酸化銅分散液は、沈殿物のない有色透明なコロイド分散溶液であって、適切な無機バインダーを配合すれば、優れた密着性を有し、ガラス等の硬い塗装基板に塗布してできた塗装薄膜の硬度は、鉛筆硬度7H以上であることから、抗菌・抗ウイルス性能を必要とする用途として、医療現場や介護施設の施設内の装材として利用することができる。また、常温で半年以上の長期間に亘って、凝集沈殿が観察されない分散液であることから、保管が容易であり、高い抗菌性と高い抗ウイルス不活化性能を有する塗装材として利用することが可能である。本願発明の亜酸化銅分散液の色は緑色や青色などの有色透明な分散液であるが、一般社団法人日本銅センターHPの「安全な銅」によれば、緑青すなわち青水が安全であることは昭和59年8月には、厚生省(現 厚生労働省)が緑青猛毒説を間違いであることを認めていたとの記載からも安全である。
The cuprous oxide dispersion of the present invention is a colored and transparent colloidal dispersion without sediment, and if an appropriate inorganic binder is blended, it has excellent adhesion and can be applied to a hard coated substrate such as glass. Since the hardness of the coating thin film produced by this method is 7H or higher, it can be used as a material in medical facilities and nursing care facilities for applications that require antibacterial and antiviral performance. In addition, since it is a dispersion in which no coagulation and sedimentation is observed for a long period of half a year or more at room temperature, it is easy to store and can be used as a coating material with high antibacterial and antiviral inactivation properties. It is possible. The color of the cuprous oxide dispersion of the present invention is a colored and transparent dispersion such as green or blue. is safe from the statement that in August 1984, the Ministry of Health and Welfare (currently the Ministry of Health, Labor and Welfare) admitted that the verdigris deadly poison theory was wrong.

Claims (3)

亜酸化銅と塩化第一銅とクエン酸銅がコロイドの主成分である有色透明な銅含有分散水溶液であって、
界面活性剤を含有しない分散水溶液であって、
動的散乱法で測定し、キュムラント法によって算出した結果、3つの粒度分布(第1ピークの平均粒子径:21.23nm~23.5nm、第2ピークの平均粒子径:165.6nm~211.3nm、第3ピークの平均粒子径:4316nm~5114nm)を有し、全体の平均粒子径が34nm~75nmであることを特徴とする分散水溶液であって、
常温で長期間に亘って凝集沈殿しない、pH3.5~4.5の銅含有コロイド分散水溶液
Cuprous oxide, cuprous chloride, and copper citrate are the main components of the colloid, and is a colored and transparent copper-containing dispersed aqueous solution,
A dispersed aqueous solution containing no surfactant,
As a result of measuring by the dynamic scattering method and calculating by the cumulant method, three particle size distributions (average particle size of the first peak: 21.23 nm to 23.5 nm, average particle size of the second peak: 165.6 nm to 211.0 nm). 3 nm, the average particle size of the third peak: 4316 nm to 5114 nm), and the overall average particle size is 34 nm to 75 nm,
A copper-containing colloidal dispersion aqueous solution with a pH of 3.5 to 4.5 that does not coagulate and precipitate at room temperature for a long period of time .
塗装資材と、paint material;
請求項1に記載の界面活性剤を含有しない銅含有コロイド分散液を塗布して乾燥させた塗装表面と、A coated surface on which the surfactant-free copper-containing colloidal dispersion according to claim 1 is applied and dried;
からなる抗菌・抗ウイルス塗装材。An antibacterial and antiviral coating material consisting of.
〔S1〕亜酸化銅(CuO)5gを水(HO)200mLに入れて、さらに水(HO)を300mL加えて、20℃~40℃で500rpmの回転数で撹拌して、亜酸化銅懸濁液を作る工程を第1工程とし、
〔S2〕還元性のある有機酸であるクエン酸3gを加えて溶解させ、pH4のほぼ透明な水溶液を作る工程を第2工程とし、
〔S3〕濃度35%の塩酸を6g加えて、60℃に温度を上げて、pH2~2.5の透明で赤色の水溶液とし、静置して清澄液を得る工程を第3工程とし、
〔S4〕pH調整のため、還元機能のあるアルカリ性のクエン酸3ナトリウム3gを加えて溶解させ、pH4~5の透明な青緑色から緑色を帯びた水溶液とし、95℃以上で2~3分間沸騰させる工程を第4工程とし、
〔S5〕約480mLの水(HO)を加えて、1000mLの亜酸化銅分散液であって、pH3.5~4.5の有色透明な水溶液が得られる工程を第5工程とし、
〔S6〕不純物を濾過する工程を第6工程とからなる、
界面活性剤を含有しない、亜酸化銅と塩化第一銅とクエン酸銅をコロイドの主成分とする有色透明な銅含有分散水溶液の製造方法。
[S1] Put 5 g of cuprous oxide (Cu 2 O) into 200 mL of water (H 2 O), add 300 mL of water (H 2 O), and stir at 500 rpm at 20° C. to 40° C. , with the step of making a cuprous oxide suspension as the first step,
[S2] The second step is the step of adding and dissolving 3 g of citric acid, which is a reducing organic acid, to prepare an almost transparent aqueous solution with a pH of 4.
[S3] The third step is the step of adding 6 g of hydrochloric acid having a concentration of 35%, raising the temperature to 60° C. to form a transparent red aqueous solution with a pH of 2 to 2.5, and allowing the solution to stand still to obtain a clear liquid.
[S4] To adjust the pH, add and dissolve 3 g of alkaline trisodium citrate, which has a reducing function, to make a clear bluish-green to greenish aqueous solution with a pH of 4 to 5, and boil at 95°C or higher for 2 to 3 minutes. The step of causing is the fourth step,
[S5] The step of adding about 480 mL of water (H 2 O) to obtain 1000 mL of a cuprous oxide dispersion having a pH of 3.5 to 4.5 and a colored and transparent aqueous solution is the fifth step.
[S6] a step of filtering impurities, comprising a sixth step;
A method for producing a colored and transparent copper-containing dispersion aqueous solution containing no surfactant and containing cuprous oxide, cuprous chloride and copper citrate as main colloidal components.
JP2022025788A 2022-02-22 2022-02-22 Antibacterial/antiviral composition and method for producing the same Active JP7214936B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022025788A JP7214936B1 (en) 2022-02-22 2022-02-22 Antibacterial/antiviral composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022025788A JP7214936B1 (en) 2022-02-22 2022-02-22 Antibacterial/antiviral composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP7214936B1 true JP7214936B1 (en) 2023-01-31
JP2023122215A JP2023122215A (en) 2023-09-01

Family

ID=85111639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022025788A Active JP7214936B1 (en) 2022-02-22 2022-02-22 Antibacterial/antiviral composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP7214936B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007328A1 (en) 2003-07-17 2005-01-27 Asahi Kasei Medical Co., Ltd. Metal colloid solution
WO2014132606A1 (en) 2013-02-27 2014-09-04 パナソニック株式会社 Cuprous oxide particle dispersion, coating agent composition, and antibacterial/antiviral member
JP2015147987A (en) 2014-02-07 2015-08-20 石原ケミカル株式会社 Aqueous copper colloidal catalyst solution for electroless copper plating and electroless copper plating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007328A1 (en) 2003-07-17 2005-01-27 Asahi Kasei Medical Co., Ltd. Metal colloid solution
WO2014132606A1 (en) 2013-02-27 2014-09-04 パナソニック株式会社 Cuprous oxide particle dispersion, coating agent composition, and antibacterial/antiviral member
JP2015147987A (en) 2014-02-07 2015-08-20 石原ケミカル株式会社 Aqueous copper colloidal catalyst solution for electroless copper plating and electroless copper plating method

Also Published As

Publication number Publication date
JP2023122215A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
JP4740322B2 (en) Antibacterial resin composition containing silver-containing solution and steel sheet coated with resin composition
DE69816474T2 (en) Stabilized particles of their preparation and use
CN104837347B (en) Antimicrobial and antiviral property composition with and preparation method thereof
JP5112084B2 (en) Sintered beads based on zirconia and cerium oxide
EP3283573A1 (en) Pearlescent pigments based on monolithically constructed substrates, methods for producing same, and use of such pearlescent pigments
Olejnik et al. Cell-biological effects of zinc oxide spheres and rods from the nano-to the microscale at sub-toxic levels
US8877861B2 (en) One-pot synthetic method for synthesizing silver-containing waterborne polyurethane
CN110934153B (en) Zirconium phosphate carrier, zirconium phosphate copper-carrying antibacterial agent, zirconium phosphate antibacterial agent, preparation method and application thereof
WO2011052689A1 (en) Heat ray shielding composition and method for producing same
TWI640565B (en) Polymer latex particle composition containing nano silver particles
JP7214936B1 (en) Antibacterial/antiviral composition and method for producing the same
Punitha et al. Antifouling activities of β-cyclodextrin stabilized peg based silver nanocomposites
TWI666270B (en) An antibacterial composite and method for preparing the same
CN1600536A (en) Nano Laminar zirconium phosphate carrying inorganic antibiosis powder of silver and new preparation method
Sharma et al. One step synthesis of silver nanowires using fructose as a reducing agent and its antibacterial and antioxidant analysis
Rosaiah et al. Biosynthesis of selenium nanoparticles from Annona muricata fruit aqueous extract and investigation of their antioxidant and antimicrobial potentials
JP2015199992A (en) Alloy particulate dispersion liquid and method for producing the same
JP4134313B2 (en) Method for producing conductive powder
Lei et al. Synergistic effect of Ag and Cu on improving in vitro biological properties of K2Ti6O13 nanowires for potential biomedical applications
EP3472099A1 (en) Composite sols
TWI688622B (en) Coating composition having long-term antibacterial performance
TWI392697B (en) The silver particle-containing aqueous polyurethane
JP6952051B2 (en) Method for manufacturing infrared shielding material and tin oxide particles
CN114680106A (en) Antibacterial liquid, preparation method and application thereof, and antibacterial product
JP2019196440A (en) Coated film and aqueous composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

R150 Certificate of patent or registration of utility model

Ref document number: 7214936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150