JP7213761B2 - EXPOSURE APPARATUS AND ARTICLE MANUFACTURING METHOD - Google Patents

EXPOSURE APPARATUS AND ARTICLE MANUFACTURING METHOD Download PDF

Info

Publication number
JP7213761B2
JP7213761B2 JP2019113049A JP2019113049A JP7213761B2 JP 7213761 B2 JP7213761 B2 JP 7213761B2 JP 2019113049 A JP2019113049 A JP 2019113049A JP 2019113049 A JP2019113049 A JP 2019113049A JP 7213761 B2 JP7213761 B2 JP 7213761B2
Authority
JP
Japan
Prior art keywords
aberration
substrate
exposure apparatus
optical system
projection optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019113049A
Other languages
Japanese (ja)
Other versions
JP2020204739A (en
JP2020204739A5 (en
Inventor
宏亮 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019113049A priority Critical patent/JP7213761B2/en
Priority to TW109114012A priority patent/TWI803747B/en
Priority to KR1020200070656A priority patent/KR20200144483A/en
Priority to CN202010556563.4A priority patent/CN112099318B/en
Publication of JP2020204739A publication Critical patent/JP2020204739A/en
Publication of JP2020204739A5 publication Critical patent/JP2020204739A5/ja
Application granted granted Critical
Publication of JP7213761B2 publication Critical patent/JP7213761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70325Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Prostheses (AREA)

Description

本発明は、露光装置、および物品製造方法に関する。 The present invention relates to an exposure apparatus and an article manufacturing method.

近年の半導体デバイスの高集積化の進展に伴い、露光装置にも光学性能のさらなる向上が求められている。露光装置の光学性能の向上を阻害する要因として、光学性能が投影光学系内外の気圧変化や温度変化等の環境変化の影響を受けることが挙げられる。 2. Description of the Related Art As semiconductor devices have become highly integrated in recent years, there is a demand for further improvement in optical performance of exposure apparatuses. One of the factors that hinder the improvement of the optical performance of the exposure apparatus is that the optical performance is affected by environmental changes such as atmospheric pressure changes and temperature changes inside and outside the projection optical system.

このような環境変化に対しては、投影光学系内の空間に屈折率の異なる2種類以上の気体を供給し、気体の混合率を変えることにより空間の屈折率を変化させて倍率収差を補正する手法がある(例えば特許文献1,2)。 In response to such environmental changes, two or more types of gases with different refractive indices are supplied to the space within the projection optical system, and the mixing ratio of the gases is changed to change the refractive index of the space and correct the magnification aberration. There is a technique to do (for example, patent documents 1 and 2).

特開平5-210049号公報JP-A-5-210049 特開平5-144700号公報JP-A-5-144700

気体の混合率を変えて投影光学系の光学性能を補正する場合には、投影光学系の空間内に気体が置換されて光学性能が安定するまでに長時間を要する。従来、露光装置は、光学性能が安定するまで露光を停止し待機していた。そのため、露光装置のダウンタイムが長くなりスループットが低下していた。 When correcting the optical performance of the projection optical system by changing the mixture ratio of the gas, it takes a long time to replace the gas in the space of the projection optical system and stabilize the optical performance. Conventionally, an exposure apparatus stops exposure and waits until optical performance stabilizes. As a result, the downtime of the exposure apparatus is lengthened and the throughput is lowered.

本発明は、例えば、投影光学系の光学性能の補正性能とスループットの両立に有利な露光装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide, for example, an exposure apparatus that is advantageous in achieving both correction performance of the optical performance of a projection optical system and throughput.

本発明の一側面によれば、基板を露光する露光装置であって、マスクのパターンを前記基板に投影する投影光学系と、互いに屈折率が異なる複数の気体を予め設定された混合率である設定混合比で混合して得られる混合気体を、前記投影光学系の内部の光学素子間の空間に供給する供給部と、前記設定混合比を制御することにより前記投影光学系の結像特性を補正して前記基板を露光する制御部と、を有し、前記制御部は、前記供給部により一定の混合比で混合気体を供給したときの前記結像特性の推移を示す応答特性を取得し、前記設定混合比を目標混合比に設定して前記基板を露光する際、前記結像特性が定常状態に遷移する前の過渡期間中は、前記設定混合比を、前記応答特性に基づいて前記目標混合比を補正して得られる値に設定して前記基板を露光することを特徴とする露光装置が提供される。 According to one aspect of the present invention, there is provided an exposure apparatus for exposing a substrate, comprising: a projection optical system for projecting a pattern of a mask onto the substrate; a supply unit that supplies a gas mixture obtained by mixing at a set mixture ratio to a space between optical elements inside the projection optical system; and an imaging characteristic of the projection optical system that controls the set mixture ratio. a control unit for correcting and exposing the substrate, wherein the control unit acquires response characteristics indicating transition of the imaging characteristics when the gas mixture is supplied by the supply unit at a constant mixing ratio. , when exposing the substrate with the set mixture ratio set to the target mixture ratio, during a transient period before the imaging characteristic transitions to a steady state, the set mixture ratio is set to the target mixture ratio based on the response characteristic. An exposure apparatus is provided that exposes the substrate by setting a value obtained by correcting the target mixture ratio.

本発明によれば、例えば、投影光学系の光学性能の補正性能とスループットの両立に有利な露光装置を提供することができる。 According to the present invention, for example, it is possible to provide an exposure apparatus that is advantageous in achieving both correction performance of the optical performance of the projection optical system and throughput.

実施形態における露光装置の構成を示す図。1 is a diagram showing the configuration of an exposure apparatus according to an embodiment; FIG. 実施形態における投影光学系の光学性能の補正を伴う露光処理を示すフローチャート。4 is a flowchart showing exposure processing accompanied by optical performance correction of the projection optical system in the embodiment. 混合気体置換中の収差の応答特性の例を示す図。FIG. 5 is a diagram showing an example of the response characteristic of aberration during replacement of mixed gas; 混合気体の混合比の変化に対する球面収差の変化量が比例関係にあることを示す図。FIG. 5 is a diagram showing that the amount of change in spherical aberration is proportional to the change in the mixture ratio of the mixed gas;

以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. In addition, the following embodiments do not limit the invention according to the scope of claims. Although multiple features are described in the embodiments, not all of these multiple features are essential to the invention, and multiple features may be combined arbitrarily. Furthermore, in the accompanying drawings, the same or similar configurations are denoted by the same reference numerals, and redundant description is omitted.

図1は、実施形態における露光装置1の構成を示す図である。一例において、露光装置1は、ステップ・アンド・リピート方式でマスク3のパターンを基板10に露光する露光装置である。ただし、本発明は、ステップ・アンド・スキャン方式その他の露光装置にも適用することができる。 FIG. 1 is a diagram showing the configuration of an exposure apparatus 1 according to an embodiment. In one example, the exposure apparatus 1 is an exposure apparatus that exposes the pattern of the mask 3 onto the substrate 10 in a step-and-repeat manner. However, the present invention can also be applied to step-and-scan exposure apparatuses and other exposure apparatuses.

照明系2は、波長約365nmの水銀ランプ、波長約248nmのKrFエキシマレーザー、波長約193nmのArFエキシマレーザー等の不図示の光源からの光を調整してマスク3を照明する。マスク3は、例えば石英ガラスで構成され、基板10上に転写されるべきパターン(例えば回路パターン)が形成されている。マスクステージ4は、マスク3を保持し、例えばリニアモータを利用して、マスク3の位置および姿勢の少なくとも1つを調整することができる。マスクステージ4の駆動は制御部25によって制御される。 The illumination system 2 adjusts light from a light source (not shown) such as a mercury lamp with a wavelength of about 365 nm, a KrF excimer laser with a wavelength of about 248 nm, an ArF excimer laser with a wavelength of about 193 nm, and illuminates the mask 3 . The mask 3 is made of quartz glass, for example, and has a pattern (for example, a circuit pattern) to be transferred onto the substrate 10 formed thereon. The mask stage 4 holds the mask 3 and can adjust at least one of the position and orientation of the mask 3 using, for example, a linear motor. Driving of the mask stage 4 is controlled by the controller 25 .

投影光学系5は、マスク3のパターンを所定の倍率(例えば1/4倍)で基板10上に投影する。基板10は、例えばガラスプレートやシリコンウエハなどからなる基板である。基板10の表面には感光剤11が塗布されている。投影光学系5は、複数の光学素子6(例えば、レンズやミラーや開口絞りなどの光学要素)を含む。複数の光学素子6のうちの一部の光学素子は、調整部7によって、位置、姿勢、形状及び温度の少なくとも1つを調整可能である。 The projection optical system 5 projects the pattern of the mask 3 onto the substrate 10 at a predetermined magnification (for example, 1/4 times). The substrate 10 is a substrate made of, for example, a glass plate or a silicon wafer. A photosensitive agent 11 is applied to the surface of the substrate 10 . The projection optical system 5 includes a plurality of optical elements 6 (for example, optical elements such as lenses, mirrors, and aperture stops). At least one of the position, posture, shape, and temperature of some of the optical elements 6 can be adjusted by the adjuster 7 .

基板ステージ9は、基板10を保持し、例えばリニアモータを利用して、基板10の位置および姿勢の少なくとも1つを調整することができる。基板ステージ9の駆動は制御部25に制御される。レーザー干渉計14は、基板ステージ9の近傍に配置され、基板ステージ9に配置されたバーミラー12へレーザー光を照射することにより基板ステージ9の位置を計測する。 The substrate stage 9 holds the substrate 10 and can adjust at least one of the position and orientation of the substrate 10 using, for example, a linear motor. Driving of the substrate stage 9 is controlled by the controller 25 . The laser interferometer 14 is arranged near the substrate stage 9 and measures the position of the substrate stage 9 by irradiating the bar mirror 12 arranged on the substrate stage 9 with laser light.

露光装置1は、互いに屈折率が異なる複数の気体を混合して得られる混合気体を、投影光学系5の内部の光学素子間の空間に供給する供給部30を有する。供給部30において、気体供給部15,16は、互いに屈折率が異なる複数の気体を混合器19へ供給する。複数の気体は、例えば、ヘリウム、窒素、酸素、二酸化炭素、乾燥空気等のうちから選択される複数の気体でありうる。給気量調整器17,18はそれぞれ、気体供給部15,16からの気体の供給量を調整する。混合器19は、気体供給部15,16から供給された少なくとも2種類の異なる気体を混合し、混合気体を給気配管21を介して投影光学系5へ供給する。濃度計測器20は、混合気体における各気体の濃度を測定する。このような供給部30により、予め設定された混合率である設定混合比で混合して得られる混合気体を供給することができる。 The exposure apparatus 1 has a supply unit 30 that supplies a mixed gas obtained by mixing a plurality of gases having different refractive indices to spaces between optical elements inside the projection optical system 5 . In the supply unit 30 , the gas supply units 15 and 16 supply a plurality of gases having different refractive indices to the mixer 19 . The plurality of gases can be, for example, a plurality of gases selected from among helium, nitrogen, oxygen, carbon dioxide, dry air, and the like. Air supply amount regulators 17 and 18 adjust the amount of gas supplied from gas supply units 15 and 16, respectively. The mixer 19 mixes at least two different gases supplied from the gas supply units 15 and 16 and supplies the mixed gas to the projection optical system 5 via the air supply pipe 21 . The concentration measuring instrument 20 measures the concentration of each gas in the mixed gas. Such a supply unit 30 can supply a mixed gas obtained by mixing at a preset mixing ratio.

投影光学系5に供給された混合気体は、光学素子6を支持する調整部7に設けられた通気孔8を介して光学素子間の空間に拡散する。通気孔8は、調整部7ではなく光学素子6を固定的に支持する不図示の部材にあってもよい。排気部22は、投影光学系5から排気配管24を介して気体を排出する。排気配管24には、排気部22からの排気量を調節する排気量調整部23が設けられている。制御部25は、気圧計26で計測された気圧値に基づいて、排気量調整部23を制御して投影光学系5の内外の気圧差がなくなるように排気量を調整する。 The mixed gas supplied to the projection optical system 5 is diffused into the space between the optical elements through the ventilation holes 8 provided in the adjusting section 7 that supports the optical elements 6 . The ventilation hole 8 may be provided in a member (not shown) that fixedly supports the optical element 6 instead of the adjustment section 7 . The exhaust unit 22 exhausts gas from the projection optical system 5 through an exhaust pipe 24 . The exhaust pipe 24 is provided with an exhaust amount adjusting section 23 that adjusts the exhaust amount from the exhaust section 22 . The control unit 25 controls the exhaust amount adjustment unit 23 based on the air pressure value measured by the barometer 26 to adjust the exhaust amount so that the pressure difference between the inside and outside of the projection optical system 5 disappears.

検出器13は、投影光学系5を透過した光を検出する。検出器13は、例えば、干渉計および光強度センサの少なくともいずれかを含みうる。制御部25は、検出器13での検出結果に基づいて、投影光学系5の露光領域内の各点における波面収差を計測することができる。また、制御部25は、検出器13での検出結果に基づいて、投影光学系5の歪曲収差を計測することもできる。ここで、歪曲収差は、例えば、像平面上の実際の像高が理想像高からどれだけずれているかを表す量であり、像平面上(露光領域内)の各点で測定し得る。なお、検出器13は、周知のいかなる構成をも適用することができるので、ここでは詳しい構造及び動作の説明は省略する。 A detector 13 detects the light transmitted through the projection optical system 5 . Detector 13 may include, for example, an interferometer and/or a light intensity sensor. The control unit 25 can measure the wavefront aberration at each point within the exposure area of the projection optical system 5 based on the detection result of the detector 13 . The controller 25 can also measure the distortion aberration of the projection optical system 5 based on the detection result of the detector 13 . Here, the distortion aberration is, for example, an amount representing how much the actual image height on the image plane deviates from the ideal image height, and can be measured at each point on the image plane (within the exposure area). Since any well-known configuration can be applied to the detector 13, a detailed description of its structure and operation is omitted here.

調整部7は、結像特性を調整するもので、ここでは例えば、投影光学系5の複数の光学素子6のうちの一部の光学素子の位置、姿勢、形状及び温度の少なくとも1つを調整する。調整部7は、例えば、光軸方向(図1に示すZ方向)および光軸方向と垂直な方向に駆動する機構、光学素子を支持する支持部を駆動する機構、光学素子に応力(光学素子を押す力又は引く力)を付加する機構、光学素子を加熱または冷却する機構等を含む。調整部7におけるこれらの駆動は制御部25によって制御される。ただし、調整部は、投影光学系5の光学素子6の駆動、マスクステージ4の駆動、基板ステージ9の駆動のうちの少なくとも1つを行うことにより、結像特性を調整するものであればよい。 The adjustment unit 7 adjusts imaging characteristics, and here, for example, adjusts at least one of the position, orientation, shape, and temperature of some optical elements among the plurality of optical elements 6 of the projection optical system 5. do. The adjustment unit 7 includes, for example, a mechanism for driving in the optical axis direction (the Z direction shown in FIG. 1) and a direction perpendicular to the optical axis direction, a mechanism for driving a supporting portion that supports the optical element, and a mechanism for applying stress to the optical element (optical element and a mechanism for applying a force to push or pull, a mechanism for heating or cooling an optical element, and the like. These drives in the adjustment section 7 are controlled by the control section 25 . However, the adjusting unit may adjust the imaging characteristics by performing at least one of driving the optical element 6 of the projection optical system 5, driving the mask stage 4, and driving the substrate stage 9. .

制御部25は、露光装置1の各部の動作を統括的に制御する。制御部25は、CPUおよびメモリを含むコンピュータによって構成されうる。本実施形態においてはとりわけ、制御部25は、供給部30に設定される設定混合比を制御することにより投影光学系5の結像特性を補正して基板を露光する制御部として機能する。また、制御部25は、検出器13での検出結果に基づいて、調整部7による光学素子6の調整量および基板ステージ9の調整量を算出し、算出した光学素子6の調整量および基板ステージ9の調整量に基づいて、調整部7および基板ステージ9を制御する。 The control unit 25 comprehensively controls the operation of each unit of the exposure apparatus 1 . The control unit 25 can be configured by a computer including a CPU and memory. Particularly in this embodiment, the control unit 25 functions as a control unit that corrects the imaging characteristics of the projection optical system 5 by controlling the set mixing ratio set in the supply unit 30 and exposes the substrate. Further, the control unit 25 calculates the amount of adjustment of the optical element 6 and the amount of adjustment of the substrate stage 9 by the adjustment unit 7 based on the detection result of the detector 13, and calculates the amount of adjustment of the optical element 6 and the amount of adjustment of the substrate stage. The adjustment unit 7 and the substrate stage 9 are controlled based on the adjustment amount of 9 .

以下、実施形態における投影光学系5の光学性能(結像特性)の露光処理について説明する。結像特性を表す指標として複数の収差成分がある。例えば、結像特性は、球面収差、倍率収差、歪曲収差、像面湾曲、非点収差、コマ収差のうちの少なくとも1つを含みうる。ここでは具体例を示すため、複数の収差成分のうちの第1収差成分として、球面収差を補正対象とする。また、第1収差成分以外の他の収差成分として、倍率収差と歪曲収差が発生することを想定する。 The exposure processing of the optical performance (imaging characteristics) of the projection optical system 5 in the embodiment will be described below. There are a plurality of aberration components as indices representing imaging characteristics. For example, the imaging properties may include at least one of spherical aberration, magnification aberration, distortion, field curvature, astigmatism, and coma. Here, in order to show a specific example, spherical aberration is to be corrected as the first aberration component among the plurality of aberration components. Also, it is assumed that magnification aberration and distortion aberration occur as aberration components other than the first aberration component.

実施形態における補正処理において、制御部25は、供給部30により一定の混合比で混合気体を供給したときの結像特性の推移を示す応答特性を事前に取得しておく。制御部25は、設定混合比を目標混合比に設定して基板を露光する際、結像特性が定常状態に遷移する前の過渡期間中は、設定混合比を、応答特性に基づいて目標混合比を補正した値に設定して基板を露光する。図2は、このような露光処理の具体例を示すフローチャートである。S101で、制御部25は、供給部30により一定の混合比で混合気体を供給したときの結像特性の推移を示す応答特性を取得する。ここでは、このような応答特性のデータは予め計測またはシミュレーションによって得られており、制御部25のメモリに記憶されているものとする。 In the correction process according to the embodiment, the control unit 25 acquires in advance the response characteristic that indicates the transition of the imaging characteristic when the gas mixture is supplied by the supply unit 30 at a constant mixing ratio. When exposing the substrate with the set mixture ratio set to the target mixture ratio, the control unit 25 sets the set mixture ratio to the target mixture ratio based on the response characteristics during a transitional period before the imaging characteristics transition to a steady state. The substrate is exposed by setting the ratio to the corrected value. FIG. 2 is a flowchart showing a specific example of such exposure processing. In S<b>101 , the control unit 25 acquires response characteristics that indicate changes in imaging characteristics when the gas mixture is supplied by the supply unit 30 at a constant mixing ratio. Here, it is assumed that such response characteristic data is obtained in advance by measurement or simulation and is stored in the memory of the control section 25 .

本実施形態において、応答特性は、球面収差、倍率収差、および歪曲収差それぞれについての応答特性を含みうる。図3に、それらの応答特性の例を示す。ここでいう応答特性とは、供給部30により一定の混合比で混合気体を供給したときの収差の推移(置換時間に対する収差の変化)を示すものである。(a)は球面収差、(b)は倍率収差、(c)は歪曲収差、の応答特性の例である。投影光学系内にパージガスを供給しても、空間全体がすぐに置換することはできず、このような応答特性を呈する。例えば(a)に示されるように、球面収差には、定常状態となる前に非定常状態の期間(過渡期間)がある。これら取得した各応答特性のデータは制御部25の不図示のメモリに記憶される。 In this embodiment, the response characteristics may include response characteristics for each of spherical aberration, magnification aberration, and distortion. FIG. 3 shows an example of their response characteristics. The response characteristic here indicates the transition of aberration (change in aberration with respect to replacement time) when the gas mixture is supplied by the supply unit 30 at a constant mixing ratio. (a) is an example of spherical aberration, (b) is a magnification aberration, and (c) is an example of a distortion aberration. Even if the purge gas is supplied into the projection optical system, the entire space cannot be immediately replaced, exhibiting such response characteristics. For example, as shown in (a), spherical aberration has a period of non-steady state (transient period) before becoming a steady state. The obtained data of each response characteristic are stored in a memory (not shown) of the control unit 25 .

S102で、制御部25は、露光による収差量の変化を計測する。例えば、露光に伴い投影光学系5が露光エネルギーを吸収することにより結像特性が変動しうる(露光収差)。そこで制御部25は、検出器13での検出結果を所定の予測式に適用して、結像特性(ここでは球面収差)の変動を予測し、これによって補正量を決定することができる。あるいは制御部25は、検出器13での検出結果に基づいて、各照明条件において発生する露光熱に対する収差の変化を計測してもよい。また、制御部25は、投影光学系5が設置されている空間の大気圧を、気圧計26によって計測する。 In S102, the control unit 25 measures the change in aberration due to exposure. For example, the absorption of exposure energy by the projection optical system 5 during exposure may change the imaging characteristics (exposure aberration). Therefore, the control unit 25 can apply the detection result of the detector 13 to a predetermined prediction formula to predict fluctuations in imaging characteristics (here, spherical aberration), and thereby determine the amount of correction. Alternatively, the control unit 25 may measure changes in aberration with respect to exposure heat generated under each illumination condition, based on the detection results of the detector 13 . Also, the control unit 25 measures the atmospheric pressure of the space in which the projection optical system 5 is installed by the barometer 26 .

S103で、制御部25は、S102で求められた収差変化量を補償する屈折率を求め、その屈折率に対応する目標混合比を決定する。屈折率と目標混合比との対応関係は、予め数式あるいはテーブルによって規定されているものとする。また、制御部25は、S102で計測された大気圧の値に基づいて大気圧の変化の影響によって発生している球面収差の量を算出し、これを補正量に加えてもよい。大気圧の変化によって発生する球面収差の量の決定方法としては、例えば、気圧変化に対する球面収差の変化量を計測して算出した気圧敏感度係数と気圧変化量との積によって求める方法がある。 In S103, the controller 25 obtains a refractive index that compensates for the amount of change in aberration obtained in S102, and determines a target mixture ratio corresponding to that refractive index. It is assumed that the correspondence relationship between the refractive index and the target mixture ratio is defined in advance by a formula or table. Further, the control unit 25 may calculate the amount of spherical aberration caused by the influence of changes in the atmospheric pressure based on the value of the atmospheric pressure measured in S102, and add this to the correction amount. As a method of determining the amount of spherical aberration caused by changes in atmospheric pressure, for example, there is a method of obtaining the product of the atmospheric pressure sensitivity coefficient calculated by measuring the amount of change in spherical aberration with respect to changes in atmospheric pressure and the amount of change in atmospheric pressure.

混合比の決定は、例えば次のように行われる。混合気体の混合比の変化(すなわち屈折率の変化)に対する球面収差の変化量は、図4に示すように比例関係にある。この関係に基づいて、光学シミュレーションによって、投影光学系のレンズ空間の屈折率に対する球面収差量の比例定数を算出することが可能である。また、制御部25は、S102で計測された収差の変化に基づいて、露光に使用する照明条件での露光熱による投影光学系5の球面収差の発生量を予測し、それを補正量に加えてもよい。 The determination of the mixing ratio is performed, for example, as follows. The amount of change in spherical aberration with respect to the change in the mixture ratio of the mixed gas (that is, the change in refractive index) has a proportional relationship as shown in FIG. Based on this relationship, it is possible to calculate the proportional constant of the amount of spherical aberration with respect to the refractive index of the lens space of the projection optical system by optical simulation. Based on the change in aberration measured in S102, the control unit 25 predicts the amount of spherical aberration generated in the projection optical system 5 due to exposure heat under the illumination conditions used for exposure, and adds it to the correction amount. may

以下の処理は、設定混合比をここで決定された目標混合比に設定して基板を露光する際の処理となる。 The following processing is processing when the set mixture ratio is set to the target mixture ratio determined here and the substrate is exposed.

S104で、制御部25は、他の収差成分である倍率収差と歪曲収差それぞれの、混合気体置換中における許容範囲(補正可能範囲)を決定する。このような補正可能範囲については、予め露光レシピに規定されていてもよい。 In S104, the control unit 25 determines the allowable range (correctable range) of each of the other aberration components, ie, the magnification aberration and the distortion aberration, during the gas mixture replacement. Such a correctable range may be defined in the exposure recipe in advance.

S105で、制御部25は、投影光学系5に対する気体の給排気の制御を開始する。具体的には、制御部25は、S103で決定された目標混合比に従い、給気量調整器17,18を調整し、混合器19へ流入する気体の流量を調整する。混合器19で混合された気体は、投影光学系5の内外の圧力差が発生しないように排気量調整部23で排気量が調整されながら投影光学系5に供給される。これによって球面収差が補正される。 In S<b>105 , the control unit 25 starts controlling gas supply and exhaust to the projection optical system 5 . Specifically, the control unit 25 adjusts the air supply amount adjusters 17 and 18 according to the target mixture ratio determined in S103 to adjust the flow rate of the gas flowing into the mixer 19 . The gas mixed in the mixer 19 is supplied to the projection optical system 5 while the exhaust amount is adjusted by the exhaust amount adjustment unit 23 so that the pressure difference between the inside and the outside of the projection optical system 5 does not occur. This corrects spherical aberration.

S106で、制御部25は、不図示の搬送機構を介して露光対象の基板を搬入(ロード)する。ロードされた基板は基板ステージ9によって保持される。 In S106, the control unit 25 carries in (loads) the substrate to be exposed via a transport mechanism (not shown). The loaded substrate is held by the substrate stage 9 .

S107では、制御部25は、現在の時点が、結像特性(ここでは球面収差)が定常状態に遷移する前の過渡期間中であるか否かを判定する。過渡期間中である場合、S108で、制御部25は、設定混合比を、応答特性に基づいて目標混合比を補正して得られる値に設定する。具体的には、S101で得られた球面収差の応答特性(図3(a))から現在時刻に対応する収差量を割り出し、その収差量に対応する補正量でもって目標混合比を補正する。このように本実施形態では、混合気体の目標混合比のアクティブ補正を行う。 In S107, the control unit 25 determines whether or not the current time is in a transition period before the imaging characteristic (here, spherical aberration) transitions to a steady state. If it is during the transitional period, in S108, the control unit 25 sets the set mixture ratio to a value obtained by correcting the target mixture ratio based on the response characteristics. Specifically, the aberration amount corresponding to the current time is calculated from the spherical aberration response characteristic (FIG. 3A) obtained in S101, and the target mixture ratio is corrected by the correction amount corresponding to the aberration amount. Thus, in this embodiment, active correction of the target mixture ratio of the mixed gas is performed.

ただし、このような混合比のアクティブ補正を行った場合には、他の収差成分も新たに発生しうるので、それに対する補正が必要になりうる。他の収差成分の補正は、調整部7によって、その補正可能範囲を超えないように行う。そこでS109では、制御部25は、他の収差成分はS104で決定された許容範囲(補正可能範囲)内であるか否かを判定する。他の収差成分が許容範囲内である場合は、S110で、制御部25は、調整部7を制御して他の収差成分を補正する。他の収差成分が調整部7による補正可能範囲を超えて変化する場合は、調整部7による補正が可能になるまで、露光を停止とする(S111)。このとき、補正可能範囲になるまで混合気体の供給を続け、その間、露光装置1の露光は停止するようにしてもよい。現在の時点が過渡期間の経過後、すなわち定常状態の期間である場合(S107でNO)、S112で、制御部25は、設定混合比をS103で決定された目標混合比に設定する。 However, when such active correction of the mixture ratio is performed, other aberration components may be newly generated, and correction for them may be necessary. Other aberration components are corrected by the adjusting section 7 so as not to exceed the correctable range. Therefore, in S109, the control unit 25 determines whether or not the other aberration components are within the allowable range (correctable range) determined in S104. If the other aberration components are within the allowable range, in S110, the control section 25 controls the adjustment section 7 to correct the other aberration components. If other aberration components change beyond the correctable range of the adjuster 7, exposure is stopped until the adjuster 7 can correct (S111). At this time, the supply of the mixed gas may be continued until the correctable range is reached, and the exposure of the exposure apparatus 1 may be stopped during this time. If the current point in time is after the transient period has elapsed, that is, in the steady state period (NO in S107), in S112, the control unit 25 sets the set mixture ratio to the target mixture ratio determined in S103.

その後、S113で、制御部25は、基板の露光を実施する。露光完了後、S114で、制御部25は、搬送機構を制御して基板を搬出(アンロード)する。S115で、制御部25は、次の処理すべき基板があるかどうかを判断する。次の基板がある場合には、S102に戻って処理を繰り返す。予定されていた全ての基板の処理が完了した場合、本処理は終了する。 After that, in S113, the control unit 25 exposes the substrate. After the exposure is completed, in S114, the controller 25 controls the transport mechanism to unload the substrate. At S115, the control unit 25 determines whether there is a next substrate to be processed. If there is a next board, the process returns to S102 and repeats the process. When all scheduled substrates have been processed, the process ends.

上記の例では、球面収差を補正するために混合気体を供給することについて説明したが、補正対象を、倍率収差、歪曲収差、像面湾曲、非点収差、コマ収差等にすることもできる。また、上記の例では、調整部7で補正する他の収差成分を倍率収差および歪曲収差としたが、球面収差、像面湾曲、コマ収差等とすることもできる。 In the above example, supplying a gas mixture for correcting spherical aberration has been described, but the correction target can also be magnification aberration, distortion aberration, curvature of field, astigmatism, coma aberration, and the like. Further, in the above example, the other aberration components to be corrected by the adjustment unit 7 are magnification aberration and distortion aberration, but spherical aberration, curvature of field, coma aberration, and the like may also be used.

以上の処理によれば、他の収差成分(倍率収差および歪曲収差)が調整部7による補正可能範囲を超えない限りにおいて、露光処理を停止せずに所望の球面収差を得ることが可能となる。これにより、投影光学系の光学性能の補正性能とスループットの両立を図ることができる。 According to the above processing, as long as the other aberration components (magnification aberration and distortion aberration) do not exceed the correctable range of the adjustment unit 7, it is possible to obtain the desired spherical aberration without stopping the exposure processing. . As a result, it is possible to achieve both the correction performance of the optical performance of the projection optical system and the throughput.

<物品製造方法の実施形態>
本発明の実施形態に係る物品製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品製造方法は、基板に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
<Embodiment of article manufacturing method>
INDUSTRIAL APPLICABILITY The article manufacturing method according to the embodiment of the present invention is suitable for manufacturing articles such as microdevices such as semiconductor devices and elements having fine structures. The method for manufacturing an article according to the present embodiment includes a step of forming a latent image pattern on a photosensitive agent applied to a substrate using the above exposure apparatus (a step of exposing the substrate), and and developing the substrate. In addition, such manufacturing methods include other well-known steps (oxidation, deposition, deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, etc.). The article manufacturing method of the present embodiment is advantageous in at least one of article performance, quality, productivity, and production cost compared to conventional methods.

発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the embodiments described above, and various modifications and variations are possible without departing from the spirit and scope of the invention. Accordingly, the claims are appended to make public the scope of the invention.

1:露光装置、2:照明系、3:マスク、5:投影光学系、9:基板ステージ、10:基板、25:制御部、30:供給部 1: exposure apparatus, 2: illumination system, 3: mask, 5: projection optical system, 9: substrate stage, 10: substrate, 25: control unit, 30: supply unit

Claims (12)

基板を露光する露光装置であって、
マスクのパターンを前記基板に投影する投影光学系と、
互いに屈折率が異なる複数の気体を予め設定された混合率である設定混合比で混合して得られる混合気体を、前記投影光学系の内部の光学素子間の空間に供給する供給部と、
前記設定混合比を制御することにより前記投影光学系の結像特性を補正して前記基板を露光する制御部と、を有し、
前記制御部は、
前記供給部により一定の混合比で混合気体を供給したときの前記結像特性の推移を示す応答特性を取得し、
前記設定混合比を目標混合比に設定して前記基板を露光する際、前記結像特性が定常状態に遷移する前の過渡期間中は、前記設定混合比を、前記応答特性に基づいて前記目標混合比を補正して得られる値に設定して前記基板を露光する
ことを特徴とする露光装置。
An exposure apparatus for exposing a substrate,
a projection optical system that projects a mask pattern onto the substrate;
a supply unit for supplying a mixed gas obtained by mixing a plurality of gases having different refractive indices at a preset mixing ratio, to a space between optical elements inside the projection optical system;
a control unit that corrects the imaging characteristics of the projection optical system by controlling the set mixing ratio to expose the substrate;
The control unit
Acquiring a response characteristic indicating a transition of the imaging characteristic when the gas mixture is supplied at a constant mixing ratio by the supply unit;
When exposing the substrate with the set mixture ratio set to the target mixture ratio, during a transition period before the imaging characteristics transition to a steady state, the set mixture ratio is set to the target mixture ratio based on the response characteristics. An exposure apparatus that exposes the substrate by setting the mixture ratio to a value obtained by correcting the mixture ratio.
前記制御部は、前記過渡期間の経過後は、前記設定混合比を前記目標混合比に設定して前記基板を露光することを特徴とする請求項1に記載の露光装置。 2. The exposure apparatus according to claim 1, wherein after the transitional period has elapsed, the controller sets the set mixture ratio to the target mixture ratio and exposes the substrate. 前記結像特性を調整する調整部を更に有し、
前記制御部は、前記設定混合比を制御することにより、前記結像特性として、複数の収差成分のうちの第1収差成分を補正し、
前記調整部は、前記過渡期間中に前記制御部により前記設定混合比が変更されたことに応じて、前記結像特性として、前記第1収差成分以外の他の収差成分を補正する
ことを特徴とする請求項1または2に記載の露光装置。
further comprising an adjustment unit that adjusts the imaging characteristics;
The control unit corrects a first aberration component of a plurality of aberration components as the imaging characteristic by controlling the set mixing ratio,
The adjustment section corrects other aberration components other than the first aberration component as the imaging characteristic in accordance with the change of the set mixing ratio by the control section during the transitional period. 3. The exposure apparatus according to claim 1 or 2, wherein
前記マスクを保持するマスクステージと、
前記基板を保持する基板ステージと、を更に有し、
前記調整部は、前記投影光学系の光学素子の駆動、前記マスクステージの駆動、および前記基板ステージの駆動のうちの少なくとも1つを行うことにより、前記結像特性を調整する、ことを特徴とする請求項3に記載の露光装置。
a mask stage holding the mask;
a substrate stage that holds the substrate,
The adjustment unit adjusts the imaging characteristics by performing at least one of driving an optical element of the projection optical system, driving the mask stage, and driving the substrate stage. 4. The exposure apparatus according to claim 3.
前記他の収差成分の補正量が前記調整部による補正可能範囲を超えているときは、前記制御部は、前記調整部による補正が可能になるまで前記基板の露光を停止することを特徴とする請求項3または4に記載の露光装置。 When the correction amount of the other aberration component exceeds the correctable range of the adjustment unit, the control unit stops the exposure of the substrate until the adjustment unit becomes capable of correction. 5. An exposure apparatus according to claim 3 or 4. 前記結像特性は、球面収差、倍率収差、歪曲収差、像面湾曲、非点収差、コマ収差のうちの少なくとも1つを含むことを特徴とする請求項3乃至5のいずれか1項に記載の露光装置。 6. The imaging characteristic according to any one of claims 3 to 5, wherein the imaging characteristics include at least one of spherical aberration, magnification aberration, distortion, field curvature, astigmatism, and coma. exposure equipment. 前記第1収差成分は球面収差であり、前記他の収差成分は、倍率収差および歪曲収差であることを特徴とする請求項3乃至5のいずれか1項に記載の露光装置。 6. An exposure apparatus according to claim 3, wherein said first aberration component is spherical aberration, and said other aberration components are magnification aberration and distortion aberration. 前記応答特性は、球面収差、倍率収差、および歪曲収差それぞれについての応答特性を含むことを特徴とする請求項7に記載の露光装置。 8. An exposure apparatus according to claim 7, wherein said response characteristics include response characteristics for spherical aberration, magnification aberration, and distortion aberration. 前記複数の気体は、ヘリウム、窒素、酸素、二酸化炭素、乾燥空気のうちから選択される複数の気体であることを特徴とする請求項1乃至7のいずれか1項に記載の露光装置。 8. An exposure apparatus according to claim 1, wherein said plurality of gases are selected from among helium, nitrogen, oxygen, carbon dioxide and dry air. 前記投影光学系が設置されている空間の大気圧を計測する気圧計を更に有し、
前記制御部は、前記気圧計により計測された大気圧の値に基づいて、大気圧の変化の影響によって発生した前記結像特性の変化量を求め、該変化量に基づいて前記結像特性の補正量を求める
ことを特徴とする請求項1乃至9のいずれか1項に記載の露光装置。
further comprising a barometer for measuring atmospheric pressure in the space where the projection optical system is installed;
The control unit obtains the amount of change in the imaging characteristic caused by the influence of the atmospheric pressure change based on the value of the atmospheric pressure measured by the barometer, and determines the imaging characteristic based on the amount of change. 10. The exposure apparatus according to any one of claims 1 to 9, wherein a correction amount is obtained.
前記投影光学系を透過した光を検出する検出器を更に有し、
前記制御部は、前記検出器を用いて、前記投影光学系が露光エネルギーを吸収することによって生じる前記結像特性の変化量を求め、該変化量に基づいて前記結像特性の補正量を求める
ことを特徴とする請求項1乃至9のいずれか1項に記載の露光装置。
further comprising a detector for detecting light transmitted through the projection optical system;
The control unit uses the detector to determine the amount of change in the imaging characteristic caused by the absorption of the exposure energy by the projection optical system, and determines the amount of correction of the imaging characteristic based on the amount of change. 10. The exposure apparatus according to any one of claims 1 to 9, characterized in that:
請求項1乃至11のいずれか1項に記載の露光装置を用いて基板を露光する工程と、
前記露光された基板を現像する工程と、
を含み、前記現像された基板から物品を製造することを特徴とする物品製造方法。
exposing a substrate using the exposure apparatus according to any one of claims 1 to 11;
developing the exposed substrate;
and manufacturing an article from the developed substrate.
JP2019113049A 2019-06-18 2019-06-18 EXPOSURE APPARATUS AND ARTICLE MANUFACTURING METHOD Active JP7213761B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019113049A JP7213761B2 (en) 2019-06-18 2019-06-18 EXPOSURE APPARATUS AND ARTICLE MANUFACTURING METHOD
TW109114012A TWI803747B (en) 2019-06-18 2020-04-27 Exposure device, and article manufacturing method
KR1020200070656A KR20200144483A (en) 2019-06-18 2020-06-11 Exposure apparatus, and article manufacturing method
CN202010556563.4A CN112099318B (en) 2019-06-18 2020-06-17 Exposure apparatus and article manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019113049A JP7213761B2 (en) 2019-06-18 2019-06-18 EXPOSURE APPARATUS AND ARTICLE MANUFACTURING METHOD

Publications (3)

Publication Number Publication Date
JP2020204739A JP2020204739A (en) 2020-12-24
JP2020204739A5 JP2020204739A5 (en) 2022-06-06
JP7213761B2 true JP7213761B2 (en) 2023-01-27

Family

ID=73749659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019113049A Active JP7213761B2 (en) 2019-06-18 2019-06-18 EXPOSURE APPARATUS AND ARTICLE MANUFACTURING METHOD

Country Status (4)

Country Link
JP (1) JP7213761B2 (en)
KR (1) KR20200144483A (en)
CN (1) CN112099318B (en)
TW (1) TWI803747B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022114969A1 (en) * 2022-06-14 2023-12-14 Carl Zeiss Smt Gmbh Method for heating an optical element and optical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519101A (en) 2000-11-07 2004-06-24 エイエスエムエル ユーエス, インコーポレイテッド Method and system for changing optical imaging performance by changing refractive index
JP2004281697A (en) 2003-03-14 2004-10-07 Canon Inc Aligner and method for correcting aberration
JP2005051147A (en) 2003-07-31 2005-02-24 Nikon Corp Exposure method and exposure device
JP2019028402A (en) 2017-08-03 2019-02-21 キヤノン株式会社 Exposure method, exposure equipment, and production method of article

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213814A (en) * 1985-03-20 1986-09-22 Hitachi Ltd Projection exposure device
JP3218631B2 (en) * 1991-07-09 2001-10-15 株式会社ニコン Projection exposure equipment
JPH05144700A (en) * 1991-11-22 1993-06-11 Canon Inc Projection aligner and manufacture of semiconductor device using the same
JPH05210049A (en) * 1992-01-31 1993-08-20 Matsushita Electric Ind Co Ltd Method and device for correcting magnification of projecting lens
JPH11195602A (en) * 1997-10-07 1999-07-21 Nikon Corp Projection exposing method and device
EP1030351A1 (en) * 1997-11-12 2000-08-23 Nikon Corporation Exposure apparatus, apparatus for manufacturing devices, and method of manufacturing exposure apparatuses
JP3278407B2 (en) * 1998-02-12 2002-04-30 キヤノン株式会社 Projection exposure apparatus and device manufacturing method
JPH11260712A (en) * 1998-03-12 1999-09-24 Nikon Corp Aligner and method
JP2001230193A (en) * 2000-02-18 2001-08-24 Canon Inc Wave front aberration measuring method and projection aligner
WO2006053751A2 (en) * 2004-11-18 2006-05-26 Carl Zeiss Smt Ag Projection lens system of a microlithographic projection exposure installation
JP6238580B2 (en) * 2013-06-07 2017-11-29 キヤノン株式会社 Exposure apparatus, exposure method, and device manufacturing method using them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519101A (en) 2000-11-07 2004-06-24 エイエスエムエル ユーエス, インコーポレイテッド Method and system for changing optical imaging performance by changing refractive index
JP2004281697A (en) 2003-03-14 2004-10-07 Canon Inc Aligner and method for correcting aberration
JP2005051147A (en) 2003-07-31 2005-02-24 Nikon Corp Exposure method and exposure device
JP2019028402A (en) 2017-08-03 2019-02-21 キヤノン株式会社 Exposure method, exposure equipment, and production method of article

Also Published As

Publication number Publication date
TWI803747B (en) 2023-06-01
JP2020204739A (en) 2020-12-24
CN112099318B (en) 2024-01-02
KR20200144483A (en) 2020-12-29
CN112099318A (en) 2020-12-18
TW202101132A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
JP3500619B2 (en) Projection exposure equipment
KR100847633B1 (en) Method and program for calculating exposure dose and focus position in exposure apparatus, and device manufacturing method
JP4495046B2 (en) Lithographic apparatus, apparatus with illumination system, apparatus with projection system, optical element of lithographic apparatus and device manufacturing method
JP2002359184A (en) Duv scanner for controlling linewidth by mask error factor compensation
JP4726830B2 (en) Lithographic apparatus, control system, and device manufacturing method
JP2006332659A (en) Lithographic characteristic improvement
JPH05144701A (en) Projection aligner and fabrication of semiconductor element using the same
US20040156026A1 (en) Exposure apparatus and exposure method
US20090153828A1 (en) Exposure apparatus, exposure method, and device fabrication method
JP7213761B2 (en) EXPOSURE APPARATUS AND ARTICLE MANUFACTURING METHOD
US9229312B2 (en) Exposure apparatus, measurement method, stabilization method, and device fabrication method
US11199784B2 (en) Exposure apparatus and article manufacturing method
JP2010123790A (en) Projection exposure device, calibration method of measurement standard in displacement measuring means, and manufacturing method of device
US20180143543A1 (en) Exposure apparatus and method of manufacturing article
TW200839843A (en) Stage apparatus, control system, exposure apparatus, and device manufacturing method
JP5006762B2 (en) Exposure apparatus and device manufacturing method
JP2014239162A (en) Exposing device, exposing method, and manufacturing method of device using these
JPH09153444A (en) Projection x-ray aligner
JP2020204739A5 (en)
JPH0963923A (en) X-ray projection aligner
JP7213757B2 (en) Exposure apparatus and article manufacturing method
JP2010267684A (en) Method and apparatus for exposure, and substrate temperature regulator
JP2006019561A (en) Exposure method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R151 Written notification of patent or utility model registration

Ref document number: 7213761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151