JP7205970B2 - 熱輸送システム及び輸送機 - Google Patents

熱輸送システム及び輸送機 Download PDF

Info

Publication number
JP7205970B2
JP7205970B2 JP2018245270A JP2018245270A JP7205970B2 JP 7205970 B2 JP7205970 B2 JP 7205970B2 JP 2018245270 A JP2018245270 A JP 2018245270A JP 2018245270 A JP2018245270 A JP 2018245270A JP 7205970 B2 JP7205970 B2 JP 7205970B2
Authority
JP
Japan
Prior art keywords
pump
heat
working fluid
temperature
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018245270A
Other languages
English (en)
Other versions
JP2020106205A (ja
Inventor
悠 春木
佳司 坂川
和英 袴田
亮介 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2018245270A priority Critical patent/JP7205970B2/ja
Priority to EP19901815.1A priority patent/EP3904811A4/en
Priority to US17/418,248 priority patent/US12000658B2/en
Priority to PCT/JP2019/050595 priority patent/WO2020138077A1/ja
Publication of JP2020106205A publication Critical patent/JP2020106205A/ja
Application granted granted Critical
Publication of JP7205970B2 publication Critical patent/JP7205970B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D13/08Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned the air being heated or cooled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/34Conditioning fuel, e.g. heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • H05K7/20881Liquid coolant with phase change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0674Environmental Control Systems comprising liquid subsystems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0216Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having particular orientation, e.g. slanted, or being orientation-independent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0291Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes comprising internal rotor means, e.g. turbine driven by the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0021Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for aircrafts or cosmonautics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、ループ型ヒートパイプを利用した熱輸送システム、及び、それを備えた輸送機に関する。
従来、作動流体の相変化を利用して高密度な熱輸送を行うループ型ヒートパイプの技術が知られている。このようなループ型ヒートパイプを利用した熱輸送システムは、例えば、コンピュータや家電などの電子機器の冷却に利用されてきた。ループ型ヒートパイプとしては、毛細管力及び/又は重力を利用して作動流体を循環させるものがある。
ループ型ヒートパイプは、蒸発器、凝縮器、蒸発器と凝縮器とを連絡する蒸気管、及び、凝縮器と蒸発器とを連絡する液管によって形成された閉ループを有する。閉ループには、作動流体が封入される。蒸発器では、液相の作動流体が発熱体から伝わる熱で加熱されて、その一部が気体に変化する。気液二相の作動流体は圧力差や浮力によって蒸気管内を移動し、凝縮器に到達する。凝縮器では、作動流体が冷却されて液体に変化する。液相の作動流体は毛細管力及び/又は重力によって蒸発器へ還流する。このようにして、ループ型ヒートパイプでは、作動流体が二相閉ループを循環することで蒸発器から凝縮器へ熱が輸送され、蒸発器と熱的に接続された発熱体が冷却される。
上記のループ型ヒートパイプのうち、作動流体の循環に重力を利用するものにおいては、凝縮器よりも蒸発部を下方に配置することで効果的な熱輸送能力が得られるが、それが設置の制約となる。そこで、特許文献1では、ループ型ヒートパイプの設置自由度を高めるために、ループ型ヒートパイプの戻り液管にポンプを設置し、ポンプで作動流体を強制循環させることが提案されている。
特開2017-17199号公報
電子機器の高性能化及び小型化が急速に進み、近年では、これらの機器を多数搭載した船舶、鉄道車両、自動車、及び航空機などの輸送機におけるサーマルマネージメントへの要求も高まりつつある。上記のような作動流体の循環に重力を利用したループ型ヒートパイプを含む熱輸送システムを搭載した輸送機では、機体の姿勢が時々刻々と変化することから、姿勢の変化により作動流体を循環させる駆動力が低下し、熱輸送量が低下するという課題がある。
特許文献1のようにポンプを備えたループ型ヒートパイプであれば、作動流体が定量的に循環することから安定した熱輸送量が確保されるが、ポンプの駆動のために外部エネルギーを常時必要とする。
本発明は以上の事情に鑑みてされたものであり、その目的は、ループ型ヒートパイプを利用した熱輸送システム及びそれを備える輸送機において、ループ型ヒートパイプの姿勢が変化しても安定した熱輸送量が得られること、及び、外部エネルギーの消費量を抑えることを両立するものを提案することにある。
本発明の一態様に係る熱輸送システムは、輸送機に搭載される熱輸送システムであって、
熱源からの受熱により液相の作動流体の少なくとも一部を気体に変化させる蒸発器、前記蒸発器より上方に配置され気相の前記作動流体を液体に変化させる凝縮器、前記蒸発器の出口と前記凝縮器の入口とを連絡する蒸気管、及び、前記凝縮器の出口と前記蒸発器の入口とを連絡する液管を含み、前記作動流体が封入されたループ型ヒートパイプと、
前記液管又は前記蒸気管に設けられて、前記作動流体へ循環駆動力を与えるポンプと、
前記ループ型ヒートパイプの姿勢の傾きを検出する傾斜センサと、
前記傾きに基づいて前記ポンプの動作を制御するコントローラとを備え、
前記液管内の前記作動流体は、前記ポンプの停止時に、前記ポンプからの作用を受けずに前記凝縮器から前記蒸発器へ流れ、前記ポンプの稼働時に、前記ポンプからの作用を受けて前記凝縮器から前記蒸発器へ強制的に流れるものである。
そして、前記コントローラは、前記傾きが所定の傾き閾値を超えるときは前記ポンプを稼働させ、前記傾きが前記傾き閾値以下のときは前記ポンプを停止させる。
上記の熱輸送システムによれば、ループ型ヒートパイプの姿勢の傾きが閾値以下のとき、つまり、定常運転時は、ポンプは停止しており、外部エネルギーを必要とすることなく作動流体がループ型ヒートパイプを巡る。ループ型ヒートパイプの姿勢の傾きが閾値を超えるときは、重力による作動流体の循環駆動力が低下するが、それを補うようにポンプによって作動流体に循環駆動力が与えられる。このようにして、熱輸送システムでは、ループ型ヒートパイプの姿勢の変化に拘わらず、安定して作動流体が循環するので、安定した熱輸送量が得られる。また、上記の熱輸送システムではポンプの稼働のために外部エネルギーを必要とするが、ポンプは所定の条件のときにのみ稼働しそれ以外では停止しているので、ポンプが常時稼働する場合と比較して外部エネルギーの消費量を抑えることができる。このように、本発明の熱輸送システムでは、ループ型ヒートパイプの姿勢が変化しても安定した熱輸送量を得ること、及び、外部エネルギーの消費量を抑えることを両立できる。
また、本発明の一態様に係る熱輸送システムは、輸送機に搭載される熱輸送システムであって、
熱源からの受熱により液相の作動流体の少なくとも一部を気体に変化させる蒸発器、前記蒸発器より上方に配置され気相の前記作動流体を液体に変化させる凝縮器、前記蒸発器の出口と前記凝縮器の入口とを連絡する蒸気管、及び、前記凝縮器の出口と前記蒸発器の入口とを連絡する液管を含み、前記作動流体が封入されたループ型ヒートパイプと、
前記液管又は前記蒸気管に設けられて、前記作動流体へ循環駆動力を与えるポンプと、
前記ループ型ヒートパイプの姿勢の傾きを検出する傾斜センサと、
前記熱源の温度を検出する温度センサと、
前記ポンプの動作を制御するコントローラとを備え、
前記液管内の前記作動流体は、前記ポンプの停止時に、前記ポンプからの作用を受けずに前記凝縮器から前記蒸発器へ流れ、前記ポンプの稼働時に、前記ポンプからの作用を受けて前記凝縮器から前記蒸発器へ強制的に流れるものである。
そして、前記コントローラは、
前記傾きが所定の傾き閾値を超えた場合に、前記熱源の温度が所定の第1の温度閾値を超えていれば前記ポンプを稼働させ、前記熱源の温度が第1の温度閾値以下であれば前記ポンプを停止させ、
前記傾きが所定の傾き閾値以下の場合に、前記熱源の温度が所定の第2の温度閾値を超えていれば前記ポンプを稼働させ、前記熱源の温度が前記第2の温度閾値以下であれば前記ポンプを停止させる。
上記の熱輸送システムでは、ループ型ヒートパイプの姿勢の傾きが傾き閾値を超える場合であっても、熱源の温度が第1の温度閾値以下であれば、冷却が十分であるとしてポンプ6を停止させる又は停止を継続させることにより、外部エネルギーを必要とすることなく作動流体がループ型ヒートパイプを巡る。よって、より経済的にループ型ヒートパイプの熱輸送量を安定化させることができる。一方、上記の熱輸送システムでは、ループ型ヒートパイプの姿勢の傾きが傾き閾値以下の場合であっても、熱源の温度が第2の温度閾値を超えていれば、ポンプを稼働させる又は稼働を継続させることにより、作動媒体の循環駆動力が補助される。よって、蒸発器による熱源の冷却能力を安定化させることができる。このように、上記の熱輸送システムでは、ポンプの稼働のために外部エネルギーを必要とするが、ポンプ6は所定の条件のときにのみ稼働しそれ以外では停止しているので、ポンプ6が常時稼働する場合と比較して外部エネルギーの消費量を抑えることができる。よって、上記の熱輸送システムでは、ループ型ヒートパイプの姿勢が変化しても安定した伝熱特性を発揮すること、及び、外部エネルギーの消費量を抑えることを両立できる。
また、本発明の一態様に係る輸送機は、発熱体と、前記発熱体を熱源として前記作動流体を蒸発させる前記蒸発器を含む前記熱輸送システムとを備えることを特徴としている。
前述の通り、熱輸送システムでは、ループ型ヒートパイプの姿勢の変化に拘わらず、安定して作動流体が循環し、安定した熱輸送量が得られる。よって、このような熱輸送システムは、姿勢が逐次変化する輸送機に搭載された発熱体の冷却のために好適である。
本発明によれば、ループ型ヒートパイプを利用した熱輸送システム及びそれを備える輸送機であって、ループ型ヒートパイプの姿勢が変化しても安定した熱輸送量を得ること、及び、外部エネルギーの消費量を抑えることを両立するものを提供できる。
図1は、本発明の一実施形態に係る熱輸送システムの概略構成を示す図である。 図2は、図1のポンプとして電動式ポンプを採用した熱輸送システムの概略構成を示す図である。 図3は、図1のポンプとして磁性流体駆動式ポンプを採用した熱輸送システムの概略構成を示す図である。 図4は、図1のポンプとしてタンク圧式ポンプを採用した熱輸送システムの概略構成を示す図である。 図5は、熱輸送システムにおける傾き監視処理の流れを示すフローチャートである。 図6は、熱輸送システムにおける温度監視処理の流れを示すフローチャートである。 図7は、熱輸送システムにおける温度監視処理の流れの変形例を示すフローチャートである。 図8は、熱輸送システムを航空機に適用した例を示す図である。
〔熱輸送システム1の構成〕
次に、図面を参照して本発明の実施の形態を説明する。図1は、本発明の一実施形態に係る熱輸送システム1の概略構成を示す図である。
図1に示す熱輸送システム1は、ループ型ヒートパイプ10と、ループ型ヒートパイプ10に設けられたポンプ6と、傾斜センサ7と、温度センサ8と、コントローラ9とを備える。
〔ループ型ヒートパイプ10〕
ループ型ヒートパイプ10は、自然循環型のループ型サーモサイフォン式ヒートパイプである。ループ型ヒートパイプ10は、蒸発器2、蒸気管4、凝縮器3、及び、戻り液管5により形成された二相閉ループを有する。二相閉ループ内は、空気などの非凝縮性ガスが脱気されたうえで、作動流体が封入されている。作動流体は、特に限定されず、従来ヒートパイプの作動流体として使用されている凝縮性の流体(例えば、水、アルコール、アンモニア、フルオロカーボン、ハイドロフルオロカーボン、ハイドロフルオロエーテル、及び、それらの混合液など)であってよい。
蒸発器2は、例えば、伝熱板21と、内部に作動流体収容室23を形成するハウジング22とを備える。伝熱板21は、例えばサーマルグリスや伝熱シートを介して熱源99と熱的に接続される。熱源99は、例えば、電子部品などの発熱体であってよい。この蒸発器2では、作動流体収容室23内の作動流体が伝熱板21を介して熱源99から吸熱し、その一部が沸騰して気体に変化する。このようにして沸騰蒸気と液体の二相の作動流体は、蒸発器2の出口と凝縮器3の入口とを連絡する蒸気管4内を圧力差や浮力によって移動し、凝縮器3へ到達する。
凝縮器3は、蒸発器2よりも上方に設置される。凝縮器3には冷却流路(図示略)が形成されており、二相の作動流体は冷却流路を通過するうちに放熱し、冷却されて液体に変化する。液相の作動流体は、凝縮器3の出口と蒸発器2の入口とを連絡する液管5内を重力によって降下し、蒸発器2へ還流する。
上記のループ型ヒートパイプ10は、作動流体の循環方式をパッシブモードとアクティブモードとに切り替え可能である。パッシブモードでは、ポンプ6は停止しており、作動流体は相変化と重力を利用してループ型ヒートパイプ10を自然循環する。つまり、パッシブモードのループ型ヒートパイプ10では、ヘッドによる圧力差によって作動流体が循環する。また、アクティブモードでは、ポンプ6が稼働しており、作動流体はポンプ6から与えられた循環駆動力と重力とによってループ型ヒートパイプ10を循環する。
〔ポンプ6〕
ポンプ6は、ループ型ヒートパイプ10の液管5に設けられるが、ポンプ6は気体が通過すると動作が不安定となるため、確実に液相の作動流体が流れる液管5の下流側部分に設けられるとよい。液管5には、ポンプ6の停止時に、作動流体がポンプ6からの作用を受けずに凝縮器3から蒸発器2へ流れ、ポンプ6の稼働時に、作動流体がポンプ6からの作用を受けて凝縮器3から蒸発器2へ強制的に流れるように流路5aが形成されている。
ポンプ6は、作動流体にループ型ヒートパイプ10を流れる駆動力(循環駆動力)を与える装置と定義される。ポンプ6は、特に限定されないが、例えば、電動式ポンプ6A(図2、参照)、磁性流体駆動式ポンプ6B(図3、参照)、又は、タンク圧式ポンプ6C(図4、参照)が採用されてよい。また、本実施形態においては、ポンプ6は液管5に設けられているが、ポンプ6は蒸気管4に設けられていてもよい。
図2は、図1のポンプ6として電動式ポンプ6Aを採用した熱輸送システム1の概略構成を示す図である。図2に示す電動式ポンプ6Aは、液管5中に配置されたケーシング65と、ケーシング65に収容された羽根車66と、羽根車66を回転駆動する電動モータ67とを含む。但し、電動式ポンプ6Aの構成はこれに限定されず、公知の電動式ポンプが採用されてよい。電動モータ67の駆動と停止、即ち、電動式ポンプ6Aの稼働と停止は、コントローラ9によって制御される。停止中の電動式ポンプ6Aは作動流体の流れを阻害することから、液管5には作動流体が電動式ポンプ6Aを迂回して蒸発器2へ流れるバイパス管59が設けられている。
上記構成のポンプ6Aが設けられたループ型ヒートパイプ10において、液管5の作動流体は、パッシブモードではポンプ6Aを迂回してバイパス管59を流れ、アクティブモードではポンプ6Aによって蒸発器2へ圧送される。
図3は、図1のポンプ6として磁性流体駆動式ポンプ6Bを採用した熱輸送システム1の概略構成を示す図である。図3に示す磁性流体駆動式ポンプ6Bは、液管5を流れる作動流体を加熱するヒータ62と、液管5を流れる作動流体に磁場を印加する電磁石61とを含む。なお、電磁石61は永久磁石であっても良い。ヒータ62の加熱と非加熱との切り替え、及び、電磁石61による磁場の印加と非印加との切り替えは、コントローラ9によって制御される。作動流体は、母液に磁性微粒子が分散した感温性磁性流体であって、常温域において温度上昇に伴い磁化が著しく減少する性質をもつ。液管5のうちヒータ62で加熱されている部分を加熱領域と称し、電磁石61により磁場が印加されている部分を磁場印加領域と称する。磁気印加領域の下流側部分と加熱領域の上流側部分とが重複している。但し、液管5において凝縮器3と接続される側を上流側とし、蒸発器2と接続される側を下流側とする。
上記構成のポンプ6Bにおいて、アクティブモード(即ち、ポンプ稼働時)では、電磁石61によって磁気印加領域に非一様磁場が印加され、当該磁気印加領域のうち磁場の強さが最大の位置よりも下流側がヒータ62によって加熱される。感温性磁性流体は、その感温磁化特性により温度上昇に伴って磁化の大きさが減少し、磁気体積力が小さくなる。そのため、加熱領域の作動流体は下流側へ向かうに従って磁気体積力が減少し、これによって作動流体を下流側へ流す駆動力が生じる。なお、作動流体の循環駆動力の大きさは、加熱領域の加熱の程度(温度)によって調整することが可能である。
また、上記構成のポンプ6Bにおいて、パッシブモード(即ち、ポンプ停止時)では、電磁石61による磁気印加とヒータ62による加熱とが停止される。これにより、作動流体はポンプ6Bから何らの作用を受けることなく液管5を流れる。なお、電磁石61が永久磁石である場合は、ヒータ62による加熱が停止されることで、上流と下流の磁気体積力の差が無くなり、作動流体の循環が停止される。
図4は、図1のポンプ6としてタンク圧式ポンプ6Cを採用した熱輸送システム1の概略構成を示す図である。図4に示すタンク圧式ポンプ6Cは、液管5の途中に設けられたタンク64と、液管5においてタンク64よりも上流側に設けられたヒータ63とを含む。ヒータ63の加熱と非加熱との切り替えは、コントローラ9によって制御される。
上記構成のポンプ6Cにおいて、アクティブモード(即ち、ポンプ稼働時)では、ヒータ63によって液管5を流れる作動流体が加熱される。これにより、作動流体の一部が気体に変化し、気泡を含む作動流体がタンク64へ流入してタンク64内の圧力が上昇し、タンク64から蒸発器2へ作動流体が強制的に流れる。
また、上記構成のポンプ6Cにおいて、パッシブモード(即ち、ポンプ停止時)では、ヒータ63による加熱が停止される。これにより、作動流体はポンプ6Cから何らの作用を受けることなく液管5を流れる。
〔傾斜センサ7〕
傾斜センサ7は、ループ型ヒートパイプ10の所定の基準姿勢からの傾きを計測するための傾き情報を検出する。ループ型ヒートパイプ10では、重力の作用で作動流体を循環させるために、作動流体循環に伴う圧力損失と、蒸発器2よりも凝縮器3に液作動流体が偏ることで生じるヘッド差とが釣り合っていなければならない。一般に、ループ型ヒートパイプ10は、水平面に設置され、蒸発器2と凝縮器3とが上記ヘッド差が釣り合うような高低差をもって配置される。そこで、ループ型ヒートパイプ10の基準姿勢は、例えば、ループ型ヒートパイプ10が水平面に設置されたときのループ型ヒートパイプ10の姿勢としてよい。傾斜センサ7は、ループ型ヒートパイプ10自身に取り付けられていてよい。或いは、傾斜センサ7は、ループ型ヒートパイプ10が据え付けられる床などの、ループ型ヒートパイプ10と一体的に挙動する要素に取り付けられていてよい。傾斜センサ7として、加速度センサ、又はジャイロセンサを利用したものが知られている。
一般的な輸送機は、機体の傾きを検出する傾斜センサと、その傾斜センサの検出値に基づいて機体の傾きを表示する指示計とを備える。そこで、熱輸送システム1が輸送機に搭載される場合には、機体の傾きを表示する指示計の値が傾き情報として用いられてよい。
また、一般的な輸送機は、機体の姿勢を変化させるために、その指令を入力する操縦器(例えば、操縦桿、操舵輪など)を備える。そこで、熱輸送システム1が輸送機に搭載される場合には、操縦器に入力された機体の操縦指令(浮上指令、潜水指令、降下指令、旋回指令など)が傾き情報として用いられてよい。
〔温度センサ8〕
温度センサ8は、蒸発器2へ熱を与える熱源99(即ち、冷却対象)の温度を計測するための温度情報を検出する。温度センサ8は、様々な種類の公知の温度センサの中から熱源99の温度を計測するために適したものが選択される。
〔コントローラ9〕
コントローラ9は、傾斜センサ7及び温度センサ8と有線又は無線で電気的に接続されており、これらの検出値を取得する。また、コントローラ9は、ポンプ6と有線又は無線で電気的に接続されており、ポンプ6に制御信号を送信することにより、ポンプ6の動作を制御する。
コントローラ9は、いわゆるコンピュータであって、例えば、マイクロコントローラ、CPU、MPU、PLC、DSP、ASIC又はFPGA等の演算処理装置90a(プロセッサ)と、ROM、RAM等の揮発性及び不揮発性の記憶装置90bとを有する(いずれも図示せず)。記憶装置90bには、演算処理装置が実行するプログラム、各種固定データ等が記憶されている。コントローラ9では、記憶装置90bに記憶されたプログラム等のソフトウェアを演算処理装置90aが読み出して実行することにより、前述の機能部を実現するための処理が行われる。なお、コントローラ9は単一のコンピュータによる集中制御により各処理を実行してもよいし、複数のコンピュータの協働による分散制御により各処理を実行してもよい。
〔傾き監視処理の流れ〕
ここで、コントローラ9によるループ型ヒートパイプ10の傾き監視処理の流れを説明する。コントローラ9では、演算処理装置90aが記憶装置90bから傾き監視プログラムを読み出してそれを実行することにより、傾き監視部91、温度監視部92、及び、ポンプ制御部93としての機能するための各種処理を行う。傾き監視プログラムは、傾き監視モジュール、温度監視モジュール、及びポンプ制御を含み、コントローラ9に傾き監視処理を行わせる。図5は、コントローラ9による傾き監視処理の流れを示すフローチャートである。
図5に示すように、コントローラ9の傾き監視部91は、傾斜センサ7から傾きに係る情報を取得する(ステップS1)。傾き監視部91は、取得した傾きと所定の傾き閾値とを比較することにより、ループ型ヒートパイプ10の傾きを監視する(ステップS2)。
ループ型ヒートパイプ10では、基準姿勢から姿勢が変化すると、蒸発器2と凝縮器3との高低差の変化によりヘッド差が変化し、作動流体の流動特性の低下や熱抵抗の変化に伴って伝熱性能が低下する。このようなループ型ヒートパイプ10の伝熱性能の低下の許容範囲に基づいて、傾き閾値が設定されてよい。ループ型ヒートパイプ10の傾きが増大すると、やがてドライアウト(蒸発器2に作動流体が戻らなくなる現象)が生じ、熱輸送が停止する。このようなドライアウトが生じないように、傾き閾値が設定されてもよい。傾き閾値は、ループ型ヒートパイプ10に固有の値であり、ループ型ヒートパイプ10の設計値(即ち、蒸発器2及び凝縮器3の構造、基準姿勢における蒸発器2と凝縮器3との高低差、蒸気管4及び液管5の長さや径、作動流体封入量など)に基づいて実験により又はシミュレーションにより予め求められ、コントローラ9に設定される。
定常状態の熱輸送システム1はパッシブモードにある。ループ型ヒートパイプ10の傾きが傾き閾値以下であれば(ステップS2でNO)、熱輸送システム1はパッシブモードとされ、ポンプ6が停止(又は、停止が維持)される(ステップS3)。一方、ループ型ヒートパイプ10の傾きが傾き閾値を超える値であれば(ステップS2でYES)、熱輸送システム1はアクティブモードとされ、ポンプ6が稼働(又は、稼働が維持)される(ステップS4)。具体的には、傾き監視部91は、傾きが傾き閾値を超える値であれば、ポンプ制御部93にポンプ6を稼働させる信号を出力する。ここで、ポンプ6は、作動流体の循環流量が所定の値に維持されるように、作動流体に循環駆動力を与えてよい。傾き監視部91は、処理をステップS1に戻して、ループ型ヒートパイプ10の傾きの監視を継続し、求めた傾きが傾き閾値以下となれば、ポンプ制御部93にポンプ6を停止させる信号を出力する。
〔温度監視処理の流れ〕
続いて、コントローラ9による温度監視処理の流れを説明する。図6は、コントローラ9による温度監視処理の流れを示すフローチャートである。前述の傾き監視処理と温度監視処理とは、並行して行われてもよいし、それらのうち一方の処理が優先されてもよい。
図6に示すように、コントローラ9の温度監視部92は、温度センサ8から熱源99の温度情報を取得し(ステップS11)、取得した温度情報に基づいて熱源99の温度を求める(ステップS12)。ここで、温度監視部92は、温度センサ8から取得した情報が熱源99の温度を直接的に示すものであれば、上記のステップS11,S12は温度センサ8から熱源99の温度を取得するステップとして併合されてよい。温度監視部92は、熱源99の温度と所定の温度閾値とを比較することにより、熱源99の温度を監視する(ステップS13)。
定常状態の熱輸送システム1はパッシブモードにある。熱源99の温度が温度閾値以下であれば(ステップS13でNO)、熱輸送システム1はパッシブモードとされ、ポンプ6が停止(又は、停止が維持)される(ステップS14)。一方、熱源99の温度が温度閾値を超える値であれば(ステップS13でYES)、熱輸送システム1はアクティブモードとされ、ポンプ6が稼働(又は、稼働が維持)される(ステップS15)。具体的には、温度監視部92は、取得した温度が温度閾値を超える値であれば、ポンプ制御部93にポンプ6を稼働させる信号を出力する。温度監視部92は、処理をステップS11に戻して熱源99の温度の監視を継続し、求めた温度が温度閾値以下となれば、ポンプ制御部93にポンプ6を停止させる信号を出力する。
以上に説明したように、本実施形態に係る熱輸送システム1は、熱源99からの受熱により液相の作動流体の少なくとも一部を気体に変化させる蒸発器2、蒸発器2より上方に配置され気相の作動流体を液体に変化させる凝縮器3、蒸発器2の出口と凝縮器3の入口とを連絡する蒸気管4、及び、凝縮器3の出口と蒸発器2の入口とを連絡する液管5を含み、作動流体が封入されたループ型ヒートパイプ10と、液管5又は蒸気管4に設けられて、作動流体へ循環駆動力を与えるポンプ6と、ループ型ヒートパイプ10の姿勢の傾きを検出する傾斜センサ7と、傾きに基づいてポンプ6の動作を制御するコントローラ9とを備える。液管5内の作動流体は、ポンプ6の停止時に、ポンプ6からの作用を受けずに凝縮器3から蒸発器2へ流れ、ポンプ6の稼働時に、ポンプ6からの作用を受けて凝縮器3から蒸発器2へ強制的に流れる。コントローラ9は、傾きが所定の傾き閾値を超えるときはポンプ6を稼働させ、傾きが傾き閾値以下のときはポンプ6を停止させる。
換言すれば、コントローラ9は、傾き監視プログラム及び傾き閾値を記憶した記憶装置90bと、傾き監視プログラムを実行する演算処理装置90aとを備え、傾き監視プログラムは、演算処理装置90aに、傾きが所定の傾き閾値を超えるときはポンプ6を稼働させ、傾きが傾き閾値以下のときはポンプ6を停止させるように構成されている。
上記の熱輸送システム1によれば、ループ型ヒートパイプ10の姿勢の傾きが閾値以下のとき、つまり、定常運転時は、ポンプ6は停止しており、外部エネルギーを必要とすることなく作動流体がループ型ヒートパイプ10を巡る。ループ型ヒートパイプ10の姿勢の傾きが閾値を超えるときは、重力による作動流体の循環駆動力が低下するが、それを補うようにポンプ6によって作動流体に循環駆動力が与えられる。このようにして、熱輸送システム1では、ループ型ヒートパイプ10の姿勢の変化に拘わらず、安定して作動流体が循環するので、安定した熱輸送量が得られる。また、上記の熱輸送システム1ではポンプ6の稼働のために外部エネルギーを必要とするが、ポンプ6は所定の条件のときにのみ稼働しそれ以外では停止しているので、ポンプ6が常時稼働する場合と比較して外部エネルギーの消費量を抑えることができる。このように、本発明の熱輸送システム1では、ループ型ヒートパイプ10の姿勢が変化しても安定した伝熱特性を発揮すること、及び、外部エネルギーの消費量を抑えることを両立できる。
本実施形態に示したように、上記の熱輸送システム1は、蒸発器2の作動流体へ熱を与える熱源99の温度を検出する温度センサ8を更に備えていてよい。この場合、コントローラ9は、温度センサ8から熱源99の温度を取得して、温度が所定の温度閾値を超えるときはポンプ6を動作させ、温度が温度閾値以下のときはポンプ6を停止させる。
このように、作動流体の自然循環流量では熱源99を十分に冷却できないとき、即ち、作動流体の循環流量が不足しているときには、不足する循環流量を補うようにポンプ6によって作動流体に駆動力が与えられることにより、作動流体の循環流量が増大し、熱輸送システム1の熱輸送量を増大させることができる。その結果、熱輸送システム1の伝熱特性を高め、熱源99を確実に所望の温度へ冷却することができる。
また、本実施形態に示したように、上記の熱輸送システム1において、ポンプ6は液管5に設けられた電動式ポンプ6Aであって、液管5はポンプ6を迂回して作動流体を流すバイパス管59を含んでいてよい。
これにより、ポンプ6Aの停止時は、作動流体はポンプ6Aを迂回してバイパス管59を流れるので、作動流体の流れがポンプ6Aによって阻害されない。
また、本実施形態に示したように、上記の熱輸送システム1において、作動流体が感温性磁性流体であり、ポンプ6Bは、液管5を流れる作動流体に非一様磁場を印加する磁石61と、磁場の印加によって磁化された作動流体を加熱するヒータ62とを有していてよい。
このようなポンプ6Bでは、停止中のポンプ6Bが当該ポンプ6Bが設置された液管5を流れる作動流体に作用しない。よって、ポンプ6Aを迂回するバイパス管59を備える場合と比較して、圧力損失を抑え、その結果、熱輸送システム1の伝熱特性を高めることができる。また、作動流体が磁石61やヒータ62と直接に接触しなく、機械駆動部がないためメンテナンスが容易であり、耐久性も高い。その上、上記構成のポンプ6Bは、電動ポンプを使用する場合と比較して、省電力である。
また、本実施形態に示したように、上記の熱輸送システム1において、ポンプ6Cは、液管の途中に設けられたタンク64と、タンク64内又はタンク64よりも作動流体の流れの上流側に設けられたヒータ63とを含み、ヒータ63の加熱により発生した蒸気の圧力によって作動流体へ循環駆動力を与えるものであってよい。
このようなポンプ6Cでは、停止中のポンプ6Cが当該ポンプ6Cが設置された液管5を流れる作動流体に作用しない。よって、ポンプ6Aを迂回するバイパス管59を備える場合と比較して、圧力損失を抑え、その結果、熱輸送システム1の伝熱特性を高めることができる。また、ポンプ6Cは駆動部を含まないのでメンテナンスが容易であり、高寿命である。
〔傾き監視処理の流れの変形例〕
前述の通り、熱輸送システム1で傾き監視処理と温度監視処理とが独立して行われてもよいが、これらの処理を組み合わせることによって、より経済的にループ型ヒートパイプ10の熱輸送量を安定化させることができ、蒸発器2による熱源99の冷却能力を安定化させることができる。
図7は、コントローラ9による傾き監視処理の流れの変形例を示すフローチャートである。なお、コントローラ9の記憶部には、傾き閾値、第1の温度閾値、及び、第2の温度閾値が予め記憶されている。
図7に示すように、コントローラ9の傾き監視部91は、傾斜センサ7から傾きに係る情報を取得する(ステップS31)。傾き監視部91は、取得した傾きと所定の傾き閾値とを比較することにより、ループ型ヒートパイプ10の傾きを監視する(ステップS32)。
傾き監視部91は、傾きが所定の傾き閾値を超えた場合に(ステップS32でYES)、温度センサ8から熱源99の温度を取得して(ステップS33)、熱源99の温度と所定の第1の温度閾値とを比較する(ステップS34)。傾き監視部91は、熱源99の温度が第1の温度閾値を超えていれば(ステップS34でYES)、ポンプ制御部93にポンプ6を稼働させる信号を出力して(ステップS35)、処理をステップS31に戻す。傾き監視部91は、熱源99の温度が第1の温度閾値以下であれば(ステップS34でNO)、ポンプ制御部93にポンプ6を停止させる信号を出力する(ステップS36)、処理をステップS31に戻す。
一方、傾き監視部91は、傾きが所定の傾き閾値以下の場合に(ステップS32でNO)、温度センサ8から熱源99の温度を取得して(ステップS37)、熱源99の温度と所定の第2の温度閾値とを比較する(ステップS38)。傾き監視部91は、熱源99の温度が第9の温度閾値を超えていれば(ステップS38でYES)、ポンプ制御部93にポンプ6を稼働させる信号を出力して(ステップS39)、処理をステップS31に戻す。傾き監視部91は、熱源99の温度が第1の温度閾値以下であれば(ステップS38でNO)、ポンプ制御部93にポンプ6を停止させる信号を出力して(ステップS40)、処理をステップS31に戻す。
ループ型ヒートパイプ10の傾きが傾き閾値を超えた場合は、傾きが傾き閾値以下の場合と比較して熱輸送能力が低いので、後者の場合よりも熱源99の温度が低いときから作動媒体の循環駆動力をポンプ6で補助して熱輸送能力を高めておくのがよい。そこで、第1の温度閾値は、第2の温度閾値と同じであるか、それよりも低いことが望ましい。これにより、作動媒体の循環駆動力が低下して熱源99の冷却が不十分となる前にポンプ6を動作させることができるので、熱源99の過度な温度上昇を予防することができる。
以上に説明した通り、熱輸送システム1のコントローラ9は、傾きが所定の傾き閾値を超えた場合に、熱源99の温度が所定の第1の温度閾値を超えていればポンプ6を稼働させ、熱源99の温度が第1の温度閾値以下であればポンプ6を停止させ、傾きが所定の傾き閾値以下の場合に、熱源99の温度が所定の第2の温度閾値を超えていればポンプ6を稼働させ、熱源99の温度が第2の温度閾値以下であればポンプ6を停止させる。
換言すれば、コントローラ9は、変形例に係る傾き監視プログラム、傾き閾値、第1温度閾値及び第2温度閾値を記憶した記憶装置90bと、変形例に係る傾き監視プログラムを実行する演算処理装置90aとを備え、変形例に係る傾き監視プログラムは、演算処理装置90aに、傾きが所定の傾き閾値を超えた場合に、熱源99の温度が所定の第1の温度閾値を超えていればポンプ6を稼働させ、熱源99の温度が第1の温度閾値以下であればポンプ6を停止させ、傾きが所定の傾き閾値以下の場合に、熱源99の温度が所定の第2の温度閾値を超えていればポンプ6を稼働させ、熱源99の温度が第2の温度閾値以下であればポンプ6を停止させるように構成されている。
上記の熱輸送システム1では、ループ型ヒートパイプ10の姿勢の傾きが傾き閾値を超える場合であっても、熱源99の温度が第1の温度閾値以下であれば、冷却が十分であるとしてポンプ6を停止させる又は停止を継続させることにより、外部エネルギーを必要とすることなく作動流体がループ型ヒートパイプを巡る。よって、より経済的にループ型ヒートパイプ10の熱輸送量を安定化させることができる。一方、上記の熱輸送システム1では、ループ型ヒートパイプ10の姿勢の傾きが傾き閾値以下の場合であっても、熱源99の温度が第2の温度閾値を超えていれば、ポンプ6を稼働させる又は稼働を継続させることにより、作動媒体の循環駆動力が補助される。よって、蒸発器2による熱源99の冷却能力を安定化させることができる。このように、上記の熱輸送システム1では、ポンプ6の稼働のために外部エネルギーを必要とするが、ポンプ6は所定の条件のときにのみ稼働しそれ以外では停止しているので、ポンプ6が常時稼働する場合と比較して外部エネルギーの消費量を抑えることができる。よって、上記の熱輸送システム1では、ループ型ヒートパイプ10の姿勢が変化しても安定した伝熱特性を発揮すること、及び、外部エネルギーの消費量を抑えることを両立できる。
〔熱輸送システム1を搭載した輸送機〕
次に、上記の熱輸送システム1を輸送機に適用した例を説明する。熱輸送システム1は、船舶(潜水艇を含む)、鉄道車両、自動車、及び航空機などの輸送機に搭載された発熱体を冷却するために利用することができる。図8は、熱輸送システム1を輸送機の一例としての航空機50に適用した例を示す図である。
図8には、航空機50の胴体51及び主翼53の一部が示されている。胴体51は、外板52と、外板52より客室側に設けられた内壁54とを含む複層構造を有する。外板52と内壁54との間には、冷却室55が形成されている。冷却室55内は、飛行中に地上よりも著しく低温の外気(外部流体の一例)に晒される外板52から伝わる冷熱によって低温となっている。或いは、外板52に冷却室55と連通される空気入口と空気出口とが設けられ、飛行中の冷却室55にラムエアが導入されてもよい。また、飛行中に地上よりも著しく低温の外気に晒される主翼53の内部には燃料タンク57が設けられている。燃料タンク57及びそれに貯溜された燃料は外気によって冷却される。
上記の航空機50には、2組の熱輸送システム1が搭載されている。一方の熱輸送システム1は、胴体51の床上に設置された熱源99を冷却するためのものであり、熱源99と熱的に接続された蒸発器2と、冷却室55内に配置された凝縮器3と、蒸発器2と凝縮器3との間を接続する蒸気管4及び液管5と、液管5に設けられたポンプ6とを含む。冷却室55内には、凝縮器3に強制的に通気させるためのファン56が設けられている。この凝縮器3は、外気により冷却される冷却室55内の気体に放熱する。換言すれば、凝縮器3では、外気の冷熱を利用して作動流体を凝縮させることができる。しかも、航空機50では、飛行中に外気が常温よりも著しく低くなるので、蒸発器2が熱的に接続された熱源99と凝縮器3が放熱する媒体(冷却室55内の気体)との温度差が大きくなり、熱輸送システム1で高効率な熱輸送を行うことができる。
もう一方の熱輸送システム1は、胴体51内の床下に設置された熱源99を冷却するためのものであり、熱源99と熱的に接続された蒸発器2と、燃料タンク57内の液相内に配置された凝縮器3と、蒸発器2と凝縮器3との間を接続する蒸気管4及び液管5と、液管5に設けられたポンプ6とを含む。この凝縮器3は、外気により冷却される燃料に放熱する。換言すれば、凝縮器3では、外気の冷熱を利用して作動流体を凝縮させることができる。しかも、航空機50では、飛行中に外気が常温よりも著しく低くなるので、蒸発器2が熱的に接続された熱源99と凝縮器3が放熱する媒体(燃料)との温度差が大きくなり、熱輸送システム1で高効率な熱輸送を行うことができる。但し、燃料タンク57は外部流体と積極的な熱交換を行うものでなくてもよい。
以上に説明したように、本実施形態に係る輸送機(例えば、航空機50)は、熱源99と、熱源99からの受熱により作動流体を蒸発させる蒸発器2を含む熱輸送システム1とを備える。前述の通り、熱輸送システム1では、ループ型ヒートパイプ10の姿勢の変化に拘わらず、安定して作動流体が循環し、安定した熱輸送量が得られる。よって、このような熱輸送システム1は、姿勢が逐次変化する輸送機に搭載された熱源99の冷却のために好適である。なお、熱源99は、特に限定されないが、例えば、制御盤やエンジンコントロールユニット(ECU)やその他コンピュータなどの発熱部品を含む電子機器、軸受などの摩擦熱が生じる機械部品、及び、電池などの発熱体や、客室空気などが挙げられる。
本実施形態に示したように、上記輸送機は、外部流体に晒される外板52、及び、外板52の内側に配置された室内壁54を有し、外板52と室内壁54との間に形成された冷却室55に凝縮器3が配置されていてよい。
このように、輸送機に搭載される熱輸送システム1では、外部流体(外気)の冷熱を利用して作動流体を凝縮させることができる。特に、外気が常温よりも著しく低くなるような環境で使用される輸送機では、蒸発器2が熱的に接続された熱源99と凝縮器3が放熱する媒体との温度差が大きくなり、熱輸送システム1で高効率な熱輸送を行うことができる。
また、本実施形態に示したように、上記輸送機は、燃料タンク57を有し、燃料タンク57の液相内に凝縮器3が配置されていてよい。
このように、輸送機に搭載される熱輸送システム1では、熱容量の大きい燃料タンク57を利用して作動流体を凝縮させることができる。特に、燃料タンク57が低温の外部流体と積極的な熱交換を行う場合には、蒸発器2が熱的に接続された熱源99と凝縮器3が放熱する媒体との温度差が大きくなり、熱輸送システム1でより高効率な熱輸送を行うことができる。
以上に本発明の好適な実施の形態を説明したが、本発明の思想を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。
例えば、上記実施形態のループ型ヒートパイプ10はサーモサイフォン式に限られずウィック式が採用されてもよい。ウィック式のループ型ヒートパイプでは、凝縮器3から蒸発器2への作動流体を還流させるために、ウィックにおける作動流体の毛細管力を利用するが、重力も利用する。よって、本発明をウィック式のループ型ヒートパイプを備える熱輸送システムに適用しても前述と同様の効果が得られる。
1 :熱輸送システム
2 :蒸発器
3 :凝縮器
4 :蒸気管
5 :液管
5a :流路
6 :ポンプ
7 :傾斜センサ
8 :温度センサ
9 :コントローラ
90a :演算処理装置
89b :記憶装置
10 :ループ型ヒートパイプ
21 :伝熱板
22 :ハウジング
23 :作動流体収容室
50 :航空機(輸送機の一例)
51 :胴体
52 :外板
53 :主翼
54 :内壁
55 :冷却室
56 :ファン
57 :燃料タンク
59 :バイパス管
61 :電磁石
62,63 :ヒータ
64 :タンク
65 :ケーシング
66 :羽根車
67 :電動モータ
91 :傾き監視部
92 :温度監視部
93 :ポンプ制御部
99 :熱源

Claims (10)

  1. 輸送機に搭載される熱輸送システムであって、
    熱源からの受熱により液相の作動流体の少なくとも一部を気体に変化させる蒸発器、前記蒸発器より上方に配置され気相の前記作動流体を液体に変化させる凝縮器、前記蒸発器の出口と前記凝縮器の入口とを連絡する蒸気管、及び、前記凝縮器の出口と前記蒸発器の入口とを連絡する液管を含み、前記作動流体が封入されたループ型ヒートパイプと、
    前記液管又は前記蒸気管に設けられて、前記作動流体へ循環駆動力を与えるポンプと、
    前記ループ型ヒートパイプの姿勢の傾きを検出する傾斜センサと、
    前記傾きに基づいて前記ポンプの動作を制御するコントローラとを備え、
    前記液管内の前記作動流体は、前記ポンプの停止時に、前記ポンプからの作用を受けずに前記凝縮器から前記蒸発器へ流れ、前記ポンプの稼働時に、前記ポンプからの作用を受けて前記凝縮器から前記蒸発器へ強制的に流れ、
    前記コントローラは、前記傾きが所定の傾き閾値を超えるときは前記ポンプを稼働させ、前記傾きが前記傾き閾値以下のときは前記ポンプを停止させる、
    熱輸送システム。
  2. 輸送機に搭載される熱輸送システムであって、
    熱源からの受熱により液相の作動流体の少なくとも一部を気体に変化させる蒸発器、前記蒸発器より上方に配置され気相の前記作動流体を液体に変化させる凝縮器、前記蒸発器の出口と前記凝縮器の入口とを連絡する蒸気管、及び、前記凝縮器の出口と前記蒸発器の入口とを連絡する液管を含み、前記作動流体が封入されたループ型ヒートパイプと、
    前記液管又は前記蒸気管に設けられて、前記作動流体へ循環駆動力を与えるポンプと、
    前記ループ型ヒートパイプの姿勢の傾きを検出する傾斜センサと、
    前記熱源の温度を検出する温度センサと、
    前記ポンプの動作を制御するコントローラとを備え、
    前記液管内の前記作動流体は、前記ポンプの停止時に、前記ポンプからの作用を受けずに前記凝縮器から前記蒸発器へ流れ、前記ポンプの稼働時に、前記ポンプからの作用を受けて前記凝縮器から前記蒸発器へ強制的に流れ、
    前記コントローラは、
    前記傾きが所定の傾き閾値を超えた場合に、前記熱源の温度が所定の第1の温度閾値を超えていれば前記ポンプを稼働させ、前記熱源の温度が第1の温度閾値以下であれば前記ポンプを停止させ、
    前記傾きが所定の傾き閾値以下の場合に、前記熱源の温度が所定の第2の温度閾値を超えていれば前記ポンプを稼働させ、前記熱源の温度が前記第2の温度閾値以下であれば前記ポンプを停止させる、
    熱輸送システム。
  3. 前記第1の温度閾値は前記第2の温度閾値より低い、請求項2に記載の熱輸送システム。
  4. 前記液管は、前記ポンプを迂回して前記作動流体を流すバイパス管を含む、
    請求項1又は2に記載の熱輸送システム。
  5. 前記作動流体が感温性磁性流体であり、前記ポンプは、前記液管を流れる前記作動流体に非一様磁場を印加する磁石と、磁場の印加によって磁化された前記作動流体を加熱するヒータとを有する、
    請求項1又は2に記載の熱輸送システム。
  6. 前記ポンプは、前記液管の途中に設けられたタンクと、前記タンク内又は前記タンクよりも前記作動流体の流れの上流側に設けられたヒータとを含み、前記ヒータの加熱により発生した蒸気の圧力によって前記作動流体へ循環駆動力を与える、
    請求項1又は2に記載の熱輸送システム。
  7. 前記熱源の温度を検出する温度センサを更に備え、
    前記コントローラは、前記温度センサから前記熱源の温度を取得して、前記温度が所定の温度閾値を超えるときは前記ポンプを動作させ、前記温度が前記温度閾値以下のときは前記ポンプを停止させる、
    請求項1に記載の熱輸送システム。
  8. 発熱体と、前記発熱体を熱源として前記作動流体を蒸発させる前記蒸発器を含む請求項1~7のいずれか一項に記載の熱輸送システムとを備える、
    輸送機。
  9. 外部流体に晒される外板、及び、前記外板の内側に配置された室内壁を有し、前記外板と前記室内壁との間に形成された冷却室に前記凝縮器が配置されている、
    請求項8に記載の輸送機。
  10. 燃料タンクを有し、前記燃料タンクの液相内に前記凝縮器が配置されている、
    請求項8に記載の輸送機。
JP2018245270A 2018-12-27 2018-12-27 熱輸送システム及び輸送機 Active JP7205970B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018245270A JP7205970B2 (ja) 2018-12-27 2018-12-27 熱輸送システム及び輸送機
EP19901815.1A EP3904811A4 (en) 2018-12-27 2019-12-24 HEAT TRANSPORT SYSTEM AND CONVEYING DEVICE
US17/418,248 US12000658B2 (en) 2018-12-27 2019-12-24 Heat transport system and transportation machine
PCT/JP2019/050595 WO2020138077A1 (ja) 2018-12-27 2019-12-24 熱輸送システム及び輸送機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018245270A JP7205970B2 (ja) 2018-12-27 2018-12-27 熱輸送システム及び輸送機

Publications (2)

Publication Number Publication Date
JP2020106205A JP2020106205A (ja) 2020-07-09
JP7205970B2 true JP7205970B2 (ja) 2023-01-17

Family

ID=71125713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018245270A Active JP7205970B2 (ja) 2018-12-27 2018-12-27 熱輸送システム及び輸送機

Country Status (4)

Country Link
US (1) US12000658B2 (ja)
EP (1) EP3904811A4 (ja)
JP (1) JP7205970B2 (ja)
WO (1) WO2020138077A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220346279A1 (en) * 2021-04-21 2022-10-27 Aic Inc. Temperature controlling method of liquid cooling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047529A1 (ja) 2016-09-09 2018-03-15 株式会社デンソー 機器温調装置
JP2019113301A (ja) 2017-12-22 2019-07-11 株式会社デンソー 機器温調装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN147351B (ja) * 1976-01-16 1980-02-09 Rilett John W
JPS60159565A (ja) 1984-01-26 1985-08-21 株式会社島津製作所 ヒ−トパイプ熱交換器を有する航空機用空調装置
JPS62112991A (ja) * 1985-11-13 1987-05-23 Gadelius Kk 熱交換器とその運転方法
JPH01111197A (ja) * 1987-10-23 1989-04-27 Akutoronikusu Kk 熱伝達装置
JP3348402B2 (ja) 1991-08-02 2002-11-20 三機工業株式会社 冷暖房装置
US5725049A (en) * 1995-10-31 1998-03-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Capillary pumped loop body heat exchanger
JPH10231814A (ja) * 1997-02-18 1998-09-02 Tdk Corp 流体の流れ制御方法および流体の流れ制御装置
JPH11183066A (ja) * 1997-12-24 1999-07-06 Toshiba Corp 熱輸送用ヒートパイプ装置
JP2003314910A (ja) * 2002-04-24 2003-11-06 Matsushita Electric Ind Co Ltd 半導体素子冷却装置およびその制御方法
JP4507207B2 (ja) * 2004-12-03 2010-07-21 株式会社ダ・ビンチ 磁性対流熱循環ポンプ
US20060162903A1 (en) * 2005-01-21 2006-07-27 Bhatti Mohinder S Liquid cooled thermosiphon with flexible partition
US9548504B2 (en) 2012-01-24 2017-01-17 University Of Connecticut Utilizing phase change material, heat pipes, and fuel cells for aircraft applications
US9146059B2 (en) * 2012-05-16 2015-09-29 The United States Of America, As Represented By The Secretary Of The Navy Temperature actuated capillary valve for loop heat pipe system
JP6172945B2 (ja) 2013-01-09 2017-08-02 株式会社Kri 磁性流体駆動装置並びにそれを用いた熱輸送装置及び動力発生装置
JP6596986B2 (ja) 2015-07-01 2019-10-30 富士通株式会社 冷却部品及び電子機器
JP6737241B2 (ja) * 2017-06-16 2020-08-05 株式会社デンソー サーモサイフォン

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047529A1 (ja) 2016-09-09 2018-03-15 株式会社デンソー 機器温調装置
JP2019113301A (ja) 2017-12-22 2019-07-11 株式会社デンソー 機器温調装置

Also Published As

Publication number Publication date
EP3904811A1 (en) 2021-11-03
WO2020138077A1 (ja) 2020-07-02
US20220090866A1 (en) 2022-03-24
JP2020106205A (ja) 2020-07-09
US12000658B2 (en) 2024-06-04
EP3904811A4 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
CN103282222B (zh) 空调设备和用于其运行的方法
US7849697B2 (en) Air-conditioning apparatus using thermoelectric device
US20140311704A1 (en) Cooling Apparatus
JP6375109B2 (ja) 熱伝導率が高く再利用可能な熱防護システム
CN109196966A (zh) 自动驾驶车辆的减热***
US20150068703A1 (en) Thermal management system and method of assembling the same
JP6828821B2 (ja) 相変化冷却装置および相変化冷却方法
JP2012504522A (ja) 宇宙船のモジュール式熱プラットホーム
US6230790B1 (en) Thermal control system for spacecraft
CN111129663B (zh) 车载热管理***和车辆
US7394655B1 (en) Absorptive cooling for electronic devices
US20130050931A1 (en) System and method for cooling a processing system
CN110892225B (zh) 设备温度调节装置
JP7205970B2 (ja) 熱輸送システム及び輸送機
WO2019039187A1 (ja) 電池温調装置
US20220065548A1 (en) Loop heat pipe and transportation machine
JP2017525120A (ja) 自動車側の電気エネルギ貯蔵器を温度調節する装置
US20050262861A1 (en) Method and apparatus for controlling cooling with coolant at a subambient pressure
US20090107663A1 (en) System and Method for Cooling Structures Having Both an Active State and an Inactive State
JP2006057925A (ja) 2相流体ループ式熱輸送装置
US20220082335A1 (en) Loop heat pipe and transportation machine
JP7271170B2 (ja) 蒸発器及びループ型ヒートパイプ
JP2013169955A (ja) 自動車用の熱回収装置、自動車用の暖房システムおよびこれを用いた自動車
US9914545B2 (en) Aircraft heat exchange system including a thermoelectric device
JP2010206892A (ja) インバータの冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221223

R150 Certificate of patent or registration of utility model

Ref document number: 7205970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150