JP7204793B2 - Powder material for additive manufacturing - Google Patents

Powder material for additive manufacturing Download PDF

Info

Publication number
JP7204793B2
JP7204793B2 JP2021017558A JP2021017558A JP7204793B2 JP 7204793 B2 JP7204793 B2 JP 7204793B2 JP 2021017558 A JP2021017558 A JP 2021017558A JP 2021017558 A JP2021017558 A JP 2021017558A JP 7204793 B2 JP7204793 B2 JP 7204793B2
Authority
JP
Japan
Prior art keywords
powder
raw material
material powder
binder
fluidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021017558A
Other languages
Japanese (ja)
Other versions
JP2022120580A (en
Inventor
友 高橋
英夫 中島
俊紀 岩崎
隆将 飯塚
欽之 加藤
Original Assignee
株式会社ExOne
株式会社パシフィックソーワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=82849079&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7204793(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社ExOne, 株式会社パシフィックソーワ filed Critical 株式会社ExOne
Priority to JP2021017558A priority Critical patent/JP7204793B2/en
Publication of JP2022120580A publication Critical patent/JP2022120580A/en
Priority to JP2022211201A priority patent/JP2023040127A/en
Application granted granted Critical
Publication of JP7204793B2 publication Critical patent/JP7204793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、バインダジェット法や選択焼結法等によって三次元物体を成形する際に用いる積層造形用粉末材料に関する。 The present invention relates to a powder material for additive manufacturing used when molding a three-dimensional object by a binder jet method, a selective sintering method, or the like.

従来、パウダーベッド上への積層造形用の原料粉末(金属粉や合金粉、あるいはセラミックス粉)を積層する工程と、積層した一層の原料粉末を所定形状に結合する工程とを交互に繰り返し、最終的に三次元体を得る積層造形法が知られている。この積層造形法としては、レーザビームや電子ビームを原料粉末に照射して直接焼結することを繰り返し、焼結部分を結合させて目的の三次元形状を得る選択焼結法がある。一方、積層した原料粉末にバインダを印刷し、得られた原料粉末とバインダとの結合体を焼結して焼結体を得るバインダジェット法は、安価、かつ効率的に実施可能であることから、近年、特に開発ならびに実用化が進んでいる(例えば、特許文献1、2等)。 Conventionally, the process of laminating raw material powder (metal powder, alloy powder, or ceramic powder) for lamination molding on a powder bed and the process of binding the laminated single layer of raw material powder into a predetermined shape are alternately repeated. Laminated manufacturing methods for obtaining three-dimensional bodies are known. As this layered manufacturing method, there is a selective sintering method in which raw material powder is directly sintered by irradiating it with a laser beam or an electron beam, and the sintered portions are joined to obtain a desired three-dimensional shape. On the other hand, the binder jet method, in which a binder is printed on the laminated raw material powder, and the combined body of the obtained raw material powder and the binder is sintered to obtain a sintered body, is inexpensive and can be carried out efficiently. , especially in recent years, development and practical use are progressing (for example, Patent Documents 1 and 2, etc.).

この種の積層造形技術の課題は、積層粉末の充填度が不安定になる点にある。図9は、上述したバインダジェット法において、パウダーベッド100上に供給された一層の原料粉末Pにバインダを印刷する前に、原料粉末Pを2段のローラ110により圧力をかけて表層を平滑に均す状態を模式的に示している。各ローラ110は矢印B方向に回転しながら、F方向に移動する。ここで、原料粉末Pは矢印M1および矢印M2の方向に圧力を受けながら各ローラ110に押されてF方向に移動する。この圧力により、原料粉末Pは不規則に再配列を受ける。原料粉末Pの充填密度が低いほど、粉末の再配列によるばらつきが大きくなる。 A problem with this type of layered manufacturing technology is that the filling degree of the layered powder becomes unstable. FIG. 9 shows that in the binder jet method described above, before printing a binder on one layer of the raw material powder P supplied on the powder bed 100, the raw material powder P is pressed by two-stage rollers 110 to smooth the surface layer. The leveling state is schematically shown. Each roller 110 moves in the F direction while rotating in the arrow B direction. Here, the raw material powder P is pushed by the rollers 110 and moved in the F direction while receiving pressure in the directions of the arrows M1 and M2. Due to this pressure, the raw material powder P undergoes random rearrangement. The lower the packing density of the raw material powder P, the greater the variation due to the rearrangement of the powder.

特開2005-120475号公報JP-A-2005-120475 特開2014-522331号公報JP 2014-522331 A

焼結後の三次元体に対して、高い強度および寸法ばらつきの少ない高い寸法精度がともに求められる場合、積層される原料粉末の充填密度を高めることが有効である。そこで、原料粉末の充填密度を効果的に高めることができる粉末材料が求められている。 When both high strength and high dimensional accuracy with little dimensional variation are required for the three-dimensional body after sintering, it is effective to increase the packing density of the raw material powder to be laminated. Therefore, there is a demand for a powder material that can effectively increase the packing density of the raw material powder.

本発明は上記事情に鑑みてなされたものであり、原料粉末の充填密度を効果的に高めることができ、その結果、高い強度およびばらつきの少ない高い寸法精度を備えた三次元積層体を得ることができる積層造形用粉末材料を提供することを目的とする。 The present invention has been made in view of the above circumstances, and it is possible to effectively increase the packing density of the raw material powder, and as a result, obtain a three-dimensional laminate having high strength and high dimensional accuracy with little variation. An object of the present invention is to provide a powder material for layered manufacturing that can be used.

上述した粉末積層による三次元体の造形技術においては、ナノシリカ等の流動化剤を添加することで原料粉末の充填性を高め、パウダーベッド上で原料粉末をローラ法やスキージング法で粉末を均す前に原料粉末の再配列を促進し充填密度を高くすることで、ローラ等による圧力で積層粉末の移動が可能な限り低減する。これは、ローラ等による積層粉末の不規則な再配列を大きく低減することになる。ローラ等の移動に原料粉末の再配列が影響され難くすることで、粉末積層時における積層体内の粉末の移動が制限される。その結果、積層体の重量ばらつきは低減される。また、重量ばらつきが低減した積層体は、収縮を伴う焼結後の寸法ばらつきも大幅に低減し、寸法精度を高めることができる。本発明者は、ナノサイズ粒子の流動化剤を0.0005wt%以上0.01wt%未満の割合で原料粉末に添加すると、積層粉末の充填密度が高まり、その後の積層体強度の向上および積層体の燒結体寸法ばらつきが低減することを見いだした。 In the above-mentioned 3D body modeling technology by powder lamination, the filling of the raw material powder is enhanced by adding a fluidizing agent such as nano silica, and the raw material powder is evened out on the powder bed by a roller method or a squeegee method. By promoting the rearrangement of the raw material powders and increasing the packing density before packing, the movement of the laminated powders due to pressure from rollers or the like is reduced as much as possible. This will greatly reduce random rearrangement of the layered powder by rollers or the like. By making the rearrangement of the raw material powder less likely to be affected by the movement of the rollers or the like, the movement of the powder within the laminate during powder lamination is restricted. As a result, the weight variation of the laminate is reduced. In addition, a laminated body with reduced weight variation can greatly reduce dimensional variation after sintering, which is accompanied by shrinkage, and can improve dimensional accuracy. The present inventors found that adding a fluidizing agent of nano-sized particles to the raw material powder at a rate of 0.0005 wt% or more and less than 0.01 wt% increases the packing density of the layered powder, and improves the strength of the subsequent layered body and the layered body. It was found that the variation in sintered body size was reduced.

本発明は上記知見に基づいてなされたものであり、(1)パウダーベッド上にホッパーから吐出されながら自然落下されつつ供給され、その表面が加圧されて150μm以下の厚さの一層の原料粉末層として繰り返し積層され、該一層の原料粉末層が形成されるごとに、該原料粉末層の一部が結合される積層造形用粉末材料であって、鉄鋼粉末からなる平均粒径が2~30μmの主原料粉末中に、一次粒子径が3~200nmの流動化剤が0.0005wt%以上0.01wt%未満の割合で添加されており、前記流動化剤は、SiO 粉末、TiO 粉末、Al 粉末のうちの一種、または二種以上の混合粉末であることを特徴とする。 The present invention has been made based on the above findings. (1) A single layer of raw material powder having a thickness of 150 μm or less, which is fed onto a powder bed while being discharged from a hopper and naturally falling, and whose surface is pressurized. A powder material for additive manufacturing, which is repeatedly laminated as a layer, and in which a part of the raw material powder layer is bonded each time the raw material powder layer is formed, the powder material made of steel powder and having an average particle size of 2 to 30 μm. A fluidizing agent having a primary particle size of 3 to 200 nm is added to the main raw material powder at a rate of 0.0005 wt% or more and less than 0.01 wt% , and the fluidizing agent is SiO 2 powder, TiO 2 powder , Al 2 O 3 powder, or a mixed powder of two or more kinds .

(2)本発明は、上記(1)において、前記流動化剤が0.005wt%以上0.01wt%未満の割合で添加されていることを特徴とする。
(3)本発明は、上記(1)において、前記流動化剤は、SiO末であることを特徴とする。
(2) The present invention is characterized in that in (1) above, the fluidizing agent is added at a rate of 0.005 wt % or more and less than 0.01 wt %.
(3) The present invention is characterized in that in (1) above, the fluidizing agent is SiO 2 powder .

(4)本発明は、上記(1)~(3)のいずれかにおいて、前記主原料粉末は、ステンレス、高速度鋼、ニッケル基耐熱鋼、低炭素鋼のうちの少なくとも一種であることを特徴とする。 (4) In any one of (1) to (3) above, the present invention is characterized in that the main raw material powder is at least one of stainless steel, high-speed steel, nickel-based heat-resistant steel, and low-carbon steel. and

本発明の主原料粉末としては、ステンレス、高速度鋼、ニッケル基耐熱鋼、低炭素鋼、アルミ合金及びチタン合金等の粉末冶金や金属射出成形法(MIM:Metal Injection Molding)等で使用されている粉末全般、またはアルミナや炭化ケイ素等のセラミック射出成形に使用されている粉末のうちの少なくとも一種、または二種以上の混合粉末が挙げられる。 The main raw material powder of the present invention is used in powder metallurgy such as stainless steel, high-speed steel, nickel-based heat-resistant steel, low-carbon steel, aluminum alloy and titanium alloy, and metal injection molding (MIM). general powders, or at least one kind of powders used for ceramic injection molding such as alumina and silicon carbide, or mixed powders of two or more kinds.

主原料粉末の平均粒径は、2μm未満では、微細粉末の均質な流動性と積層状態を得ることが困難である。一方、30μm超では、バインダジェット法で得た三次元の粉末成形体を通常の金属粉末の焼結温度で焼結した場合において、焼結密度が工業的に要求される95%以上を確保しにくい。したがって主原料粉末の平均粒径は2~30μmが適切であり、好ましくは5~15μm、さらに好ましくは7~10μmである。 If the average particle diameter of the main raw material powder is less than 2 μm, it is difficult to obtain a homogeneous fluidity and layered state of the fine powder. On the other hand, if the thickness exceeds 30 μm, the sintered density of 95% or more, which is industrially required, cannot be secured when a three-dimensional powder compact obtained by the binder jet method is sintered at a normal sintering temperature for metal powder. Hateful. Therefore, the average particle size of the main raw material powder is appropriately 2-30 μm, preferably 5-15 μm, more preferably 7-10 μm.

本発明の主原料粉末に添加する流動化剤は、SiO粉末、TiO粉末、Al粉末のうちの一種、または二種以上の混合粉末が好適に用いられる。これら流動化剤は、ナノサイズの超微粒子粉末であって、その一次粒子径は、3nm未満では、粒子の凝集が生じて主原料粉末との混合時に均質な分散状態が得られない。一方、200nm超では、製造する上で球状のナノ粒子が不規則化するため主原料粉末に対する潤滑効果(流動化効果)が低下する。したがって流動化剤の一次粒子径は3~200nmが適切であり、好ましくは7~100nm、さらに好ましくは7~40nmである。 As the fluidizing agent added to the main raw material powder of the present invention, one kind of SiO2 powder , TiO2 powder and Al2O3 powder, or a mixed powder of two or more kinds thereof is preferably used. These fluidizing agents are nano-sized ultrafine powders, and if the primary particle size is less than 3 nm, the particles agglomerate and a homogeneously dispersed state cannot be obtained when mixed with the main raw material powder. On the other hand, if it exceeds 200 nm, the spherical nanoparticles become irregular during production, and the lubricating effect (fluidizing effect) on the main raw material powder is reduced. Therefore, the primary particle size of the fluidizing agent is appropriately 3 to 200 nm, preferably 7 to 100 nm, more preferably 7 to 40 nm.

流動化剤の添加量は、0.0005wt%未満では、積層状態での充填密度を高める効果がなく、高い強度およびばらつきの少ない高い寸法精度が得られ難い。一方、0.01wt%超では、積層状態での充填密度を高める効果が飽和する。したがって流動化剤の添加量は0.0005wt%以上0.01wt%未満が適切であり、0.001~0.025wt%程度がより好ましい。 If the amount of the fluidizing agent added is less than 0.0005 wt %, there is no effect of increasing the packing density in the laminated state, and it is difficult to obtain high strength and high dimensional accuracy with little variation. On the other hand, if it exceeds 0.01 wt%, the effect of increasing the packing density in the laminated state is saturated. Therefore, the amount of fluidizing agent to be added is appropriately 0.0005 wt % or more and less than 0.01 wt %, and more preferably about 0.001 to 0.025 wt %.

本発明の積層造形用粉末材料によれば、原料粉末の充填密度を効果的に高めることができ、その結果、高い強度およびばらつきの少ない高い寸法精度を備えた三次元積層体を得ることができる。 According to the powder material for layered manufacturing of the present invention, the packing density of the raw material powder can be effectively increased, and as a result, a three-dimensional layered body having high strength and high dimensional accuracy with little variation can be obtained. .

三次元焼結体の成形方法の工程を模式的に示す図である。FIG. 2 is a diagram schematically showing steps of a method for forming a three-dimensional sintered body; 図1に示すホッパーによる原料粉末の積層の状況を示す断面図である。FIG. 2 is a cross-sectional view showing how raw material powders are stacked by the hopper shown in FIG. 1 ; 実施例の積層粉末の充填密度の結果を示すグラフである。4 is a graph showing packing density results of layered powders of Examples. 実施例の積層体の抗折力の結果を示すグラフである。4 is a graph showing the results of transverse rupture strength of laminates of Examples. 実施例の積層体の重量ばらつきの結果を示すグラフである。4 is a graph showing results of weight variation of laminates of Examples. 実施例の積層体の寸法ばらつきの結果を示すグラフである。4 is a graph showing the results of dimensional variations of laminates of Examples. 実施例の積層体の外観を示す写真である。1 is a photograph showing the appearance of a laminate of an example. 比較例の積層体の外観を示す写真である。It is a photograph which shows the external appearance of the laminated body of a comparative example. バインダジェット法において積層した原料粉末を均す状態を模式的に示している。1 schematically shows a state in which stacked raw material powders are flattened in the binder jet method.

以下、図面を参照して本発明の一実施形態を説明する。
図1は、バインダジェット法で三次元物体を積層造形し、造形した目的形状の結合体を焼結して焼結体を成形する方法の工程を模式的に示している。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 schematically shows the steps of a method of forming a sintered body by layer-forming a three-dimensional object by the binder jet method and sintering the formed combined body of a desired shape.

図1に示す焼結体の成形方法は、はじめに、図1(A)に示すように、所定の面積を有する水平にセットされたパウダーベッド11上に、ホッパー12から原料粉末Pを自然落下させつつ供給して敷き詰め、所定厚さの一層の原料粉末層PLを形成する。原料粉末層PLは、図2に示すように、ホッパー12と連動して移動するローラ13により表面が加圧されることで、平坦、かつ均一な厚さになるよう均される。一層の原料粉末層PLの厚さは例えば40~50μm、あるいは100μm前後程度とされるが、概ね150μm以下の範囲で適宜に設定される。 In the method for forming a sintered body shown in FIG. 1, first, as shown in FIG. The raw material powder layer PL having a predetermined thickness is formed by feeding and spreading the raw material powder. As shown in FIG. 2, the surface of the raw material powder layer PL is flattened to a uniform thickness by being pressed by a roller 13 that moves in conjunction with a hopper 12 . The thickness of the single raw material powder layer PL is, for example, 40 to 50 μm, or approximately 100 μm, but is set appropriately within a range of approximately 150 μm or less.

次に、図1(B)に示すように、積層した原料粉末層PLに、インクジェットディスペンサ14からバインダBを選択的に噴出させる。バインダBの噴出を受けた部分の原料粉末PはバインダBによって結合し硬化する。インクジェットディスペンサ14は、目的とする三次元の焼結体の形状に応じた三次元データに基づきコンピュータ制御されて、原料粉末層PL上を駆動させられる。 Next, as shown in FIG. 1B, the binder B is selectively jetted from the inkjet dispenser 14 onto the stacked raw material powder layers PL. The portion of the raw material powder P that has received the blowout of the binder B is bound by the binder B and hardened. The inkjet dispenser 14 is computer-controlled based on three-dimensional data corresponding to the desired three-dimensional shape of the sintered body, and is driven on the raw material powder layer PL.

次に、選択的にバインダBで結合させられた最初の原料粉末層PLの上に、再びホッパー12から原料粉末Pを供給するとともにローラ13で平坦化し、二層目の原料粉末層PLを積層する。次いで、二層目の原料粉末層PLに、インクジェットディスペンサ14からバインダBを選択的に噴出させ、原料粉末をバインダによって結合させる。 Next, the raw material powder P is supplied again from the hopper 12 onto the first raw material powder layer PL selectively bound with the binder B, and flattened by the roller 13 to form the second raw material powder layer PL. do. Next, the binder B is selectively ejected from the inkjet dispenser 14 onto the second raw material powder layer PL, and the raw material powder is bound by the binder.

このように、選択的にバインダBによる結合部分が形成された原料粉末層PL上に原料粉末Pを積層して次の原料粉末層PLを形成し、次いでその原料粉末層PLにバインダBを選択的に噴出させるという工程を多数回繰り返して、多層の原料粉末層PLの内部に、バインダBと原料粉末Pとの結合体Gを造形する(図1(C)に示す)。一体の三次元結合体を造形するため、上下に隣接して重畳する原料粉末層PLは少なくとも部分的にバインダBの供給部分が重畳して互いに結合し、これにより上下に連続する結合体Gが造形される。 In this way, the raw material powder P is layered on the raw material powder layer PL on which the bonding portion by the binder B is selectively formed to form the next raw material powder layer PL, and then the binder B is selected for the raw material powder layer PL. By repeating the step of ejecting the binder powder many times, a combined body G of the binder B and the raw material powder P is formed inside the multilayer raw material powder layer PL (shown in FIG. 1(C)). In order to form an integrated three-dimensional combined body, the raw material powder layers PL that are vertically adjacent and overlapped are combined with each other by at least partially overlapping the supply portion of the binder B, thereby forming a vertically continuous combined body G. molded.

次に、図1(D)に示すように、上記結合体Gを原料粉末層PLの内部から取り出す。結合体Gを原料粉末層PLの内部から取り出すには、結合体Gを囲んでおりバインダが印刷されておらず結合されていない積層された原料粉末Pを、例えば吸入ノズルを用いて吸入するなどの方法で除去することができる。バインダBで結合されていない原料粉末Pの除去方法はこれに限られず適宜方法が選択される。次いで、取り出した結合体Gを所定の焼結条件で焼結し、焼結体を得る。 Next, as shown in FIG. 1(D), the combined body G is taken out from the raw material powder layer PL. In order to take out the conjugate G from the inside of the raw material powder layer PL, the raw material powder P that surrounds the conjugate G, is not printed with a binder, and is not bound is inhaled using, for example, an inhalation nozzle. can be removed by The method of removing the raw material powder P that is not bound by the binder B is not limited to this, and any suitable method can be selected. Next, the combined body G taken out is sintered under predetermined sintering conditions to obtain a sintered body.

以上が本実施形態に係るバインダジェット法を用いた三次元形状の焼結体の成形方法である。続いて、上記原料粉末PおよびバインダBについて詳細を説明する。 The above is the method for forming a three-dimensional sintered body using the binder jet method according to the present embodiment. Next, the details of the raw material powder P and the binder B will be described.

[原料粉末]
原料粉末は、微細な主原料粉末中に、流動化剤として、超微粒子のSiO粉末、TiO粉末、Al粉末のうちの一種、または二種以上の混合粉末を微量添加したものとする。
[Raw material powder]
The raw material powder is obtained by adding a very small amount of one of ultrafine SiO 2 powder, TiO 2 powder, and Al 2 O 3 powder, or a mixed powder of two or more kinds thereof, as a fluidizing agent to the fine main raw material powder. and

・主原料粉末
主原料粉末としては、金属粉末またはセラミックス粉末が用いられる。この種の粉末としては、水アトマイズ粉末、ガスアトマイズ粉末等が挙げられる。金属粉末としては、ステンレス、高速度鋼、ニッケル基耐熱鋼、低炭素鋼等の粉末冶金や金属射出成形法(MIM:Metal Injection Molding)等で使用されている粉末全般が挙げられる。また、セラミックス粉末としては、アルミナや炭化ケイ素等の、セラミック射出成形に使用されている粉末のうちの少なくとも一種、または二種以上の混合粉末が挙げられる。
- Main raw material powder Metal powder or ceramic powder is used as the main raw material powder. Examples of this type of powder include water-atomized powder and gas-atomized powder. Examples of the metal powder include all powders used in powder metallurgy such as stainless steel, high-speed steel, nickel-based heat-resistant steel, and low-carbon steel, and metal injection molding (MIM). Ceramic powders include at least one kind of powders used in ceramic injection molding, such as alumina and silicon carbide, or mixed powders of two or more kinds.

主原料粉末の粒度は、平均粒径が2~30μmのものが用いられる。これは、2μm未満では、微細粉末の均質な流動性と積層状態を得ることが困難であり、30μm超では、バインダジェット法で得た三次元の粉末成形体を通常の金属粉末の焼結温度で焼結した場合において、焼結密度が工業的に要求される95%以上を確保しにくいという理由からである。この範囲中では、5~15μmが好ましく、7~10μmがさらに好ましい。例えば-22μmと表記される平均粒径が10μm程度の粉末、あるいは-15μmと表記される平均粒径が7.5μm程度の粉末が市販されており、これらが好適であって入手可能である。 As for the particle size of the main raw material powder, those having an average particle size of 2 to 30 μm are used. This is because, if it is less than 2 μm, it is difficult to obtain a homogeneous fluidity and layered state of the fine powder, and if it exceeds 30 μm, the three-dimensional powder compact obtained by the binder jet method is sintered at a normal metal powder sintering temperature. This is because it is difficult to ensure a sintered density of 95% or more, which is required industrially, when sintered at . Within this range, 5 to 15 μm is preferred, and 7 to 10 μm is more preferred. For example, a powder with an average particle size of about 10 μm, expressed as −22 μm, or a powder with an average particle size of about 7.5 μm, expressed as −15 μm, are commercially available, and these are suitable and available.

・流動化剤
本発明の流動化剤の粒度は、一次粒子径が3~200nmのものが用いられる。これは、3nm未満では、粒子の凝集が生じて主原料粉末との混合時に均質な分散状態が得られず、100nm超では、製造する上で球状のナノ粒子が不規則化するため主原料粉末に対する潤滑効果が低下するという理由からである。この範囲中では、7~100nmが好ましく、7~40nmがさらに好ましい。本発明の流動化剤としては、上記のようにSiO粉末、TiO粉末、Al粉末のうちの一種、または二種以上の混合粉末が用いられ、これらはいずれも同等の効果を示す。
Fluidizing agent The particle size of the fluidizing agent used in the present invention is one having a primary particle size of 3 to 200 nm. This is because if the particle diameter is less than 3 nm, the particles agglomerate and a homogeneous dispersion state cannot be obtained when mixed with the main raw material powder. This is because the lubricating effect on the Within this range, 7 to 100 nm is preferred, and 7 to 40 nm is more preferred. As the fluidizing agent of the present invention, one of SiO 2 powder, TiO 2 powder and Al 2 O 3 powder, or a mixed powder of two or more of them is used as described above. show.

流動化剤の上記主原料粉末に対する添加量は、0.0005wt%以上0.01wt%未満とされる。これは、0.0005wt%未満では、積層状態での充填密度を高める効果がなく、高い強度およびばらつきの少ない高い寸法精度が得られ難く、0.01wt%超では、積層状態での充填密度を高める効果が飽和するからである。この範囲中では、0.001~0.025wt%程度がより好ましい。 The amount of the fluidizing agent to be added to the main raw material powder is 0.0005 wt % or more and less than 0.01 wt %. This is because if it is less than 0.0005 wt%, there is no effect of increasing the packing density in the laminated state, and it is difficult to obtain high strength and high dimensional accuracy with little variation. This is because the effect of increasing is saturated. Within this range, about 0.001 to 0.025 wt% is more preferable.

[バインダ]
バインダは、エチレングリコールを10~25%含む混合溶液や、エチレングリコールモノブチルエーテルを2.5~10%含む混合溶液等が用いられるが、これらに限定はされず、適宜なものが選択される。
[Binder]
As the binder, a mixed solution containing 10 to 25% ethylene glycol, a mixed solution containing 2.5 to 10% ethylene glycol monobutyl ether, or the like is used, but the binder is not limited to these, and an appropriate one can be selected.

なお、本発明の粉末材料は、バインダジェット法に供される粉末に限定されず、レーザビームや電子ビームを原料粉末に照射して直接焼結することを繰り返し、焼結部分を結合させて目的の三次元形状を得る選択焼結法や、他の粉末積層法により三次元結合体を成形する技術にも適用することができる。 In addition, the powder material of the present invention is not limited to the powder to be subjected to the binder jet method, and the raw material powder is repeatedly sintered directly by irradiating the raw material powder with a laser beam or an electron beam, and the sintered parts are bonded to achieve the purpose. The selective sintering method for obtaining a three-dimensional shape of the powder and other powder layering methods for forming a three-dimensional combined body can also be applied.

[1]シリカ粉末の添加量と、粉末充填密度および積層体の抗折力
平均粒径が10μm(-22μm)のSUS316Lを主原料粉末とし、この主原料粉末中に、一次粒子径が30nmのシリカ粉末(AEROSIL(登録商標)RX300・日本アエロジル(株))を、無添加(0wt%)、0.0001wt%、0.0005wt%、0.005wt%、0.01wt%、0.02wt%の割合で添加した粉末をそれぞれ調製した。シリカ粉末が無添加(0wt%)の粉末を「試料1」、0.0001wt%添加の粉末を「試料2」、0.0005wt%添加の粉末を「試料3」、0.005wt%添加の粉末を「試料4」、0.01wt%添加の粉末を「試料5」、0.02wt%添加の粉末を「試料6」とする。試料3、4は本発明の範囲内である実施例、試料1、2、5、6は本発明の範囲外である比較例である。
[1] Amount of silica powder added, powder packing density, and transverse rupture strength of laminate SUS316L with an average particle size of 10 μm (−22 μm) is used as the main raw material powder, and the main raw material powder contains a primary particle size of 30 nm. Silica powder (AEROSIL (registered trademark) RX300, Nippon Aerosil Co., Ltd.) was added without addition (0 wt%), 0.0001 wt%, 0.0005 wt%, 0.005 wt%, 0.01 wt%, 0.02 wt% Powders added in proportions were prepared respectively. "Sample 1" for powder with no silica powder added (0 wt%), "Sample 2" for powder with 0.0001 wt% addition, "Sample 3" for powder with 0.0005 wt% addition, powder with 0.005 wt% addition is "Sample 4", the powder to which 0.01 wt% is added is "Sample 5", and the powder to which 0.02 wt% is added is "Sample 6". Samples 3 and 4 are examples within the scope of the invention, and samples 1, 2, 5 and 6 are comparative examples outside the scope of the invention.

試料1~6の原料粉末を用いて、図1および図2で模式的に示したようなバインダジェット法により同様形状の三次元結合体を造形した。造形した三次元結合体である積層体の充填密度(g/cm)と、積層体の抗折力をそれぞれ調べた。当該積層体は、積層粉末がバインダにより結合されて所定形状に成形されたものを乾燥させた焼結前の生の状態の三次元成形体である。充填密度の結果を図3に示し、抗折力の結果を図4に示す。 Using raw material powders of Samples 1 to 6, three-dimensional bonded bodies having similar shapes were formed by the binder jet method as schematically shown in FIGS. The packing density (g/cm 3 ) and the transverse rupture strength of the laminated body, which is a three-dimensional composite formed, were investigated. The laminate is a three-dimensional compact in a green state before sintering, which is obtained by drying the laminate powder that has been formed into a predetermined shape by bonding with a binder. The packing density results are shown in FIG. 3, and the transverse rupture strength results are shown in FIG.

なお、充填密度の測定は、「JIS Z 2512:2012 金属粉-タップ密度測定方法」に基づいて行い、抗折力の測定は、「JIS Z 2511:2006 金属粉-抗折試験による圧粉体強さ測定方法」に基づいて行った。 In addition, the measurement of the packing density is performed based on "JIS Z 2512: 2012 Metal powder - Tap density measurement method", and the measurement of the transverse rupture strength is performed based on "JIS Z 2511: 2006 Metal powder - Green compact by bending test. strength measurement method”.

図3によれば、原料粉末中のシリカ粉末の添加量が0.0001wt%から0.0005wt%に増量すると積層体においては粉末充填密度が飛躍的に高くなり、0.01wtを超えると積層体においては粉末充填密度が飽和する。また、図4によれば、原料粉末中のシリカ粉末の添加量が0.0001wt%から0.0005wt%に増量すると積層体の抗折力が飛躍的に高くなり、0.01wtを超えるとしだいに低くなる。したがって、原料粉末中のシリカ粉末の添加量が0.0005wt%以上0.01wt%未満の場合に、積層体の充填密度が上がり、それに伴い積層体強度が向上することが確かめられた。 According to FIG. 3, when the amount of silica powder added in the raw material powder is increased from 0.0001 wt% to 0.0005 wt%, the powder packing density in the laminate dramatically increases, and when the amount exceeds 0.01 wt%, the laminate At , the powder packing density saturates. Further, according to FIG. 4, when the amount of silica powder added in the raw material powder is increased from 0.0001 wt % to 0.0005 wt %, the transverse rupture strength of the laminate increases dramatically, and as soon as it exceeds 0.01 wt % lower to Therefore, it was confirmed that when the amount of silica powder added in the raw material powder was 0.0005 wt % or more and less than 0.01 wt %, the packing density of the laminate was increased, and the strength of the laminate was accordingly improved.

[2]シリカ粉末の添加量と、重量および寸法のばらつき
上記各試料1~6の原料粉末を用いて、同じ体積の三次元結合体として一辺が20mmの立方体を、図1および図2で模式的に示したようなバインダジェット法により各試料1~6につき6つずつ積層造形し、それら積層体の重量と寸法のばらつきを調べた。各試料1~6のそれぞれの6つの試験ピースについては、表1に示すようにNo.1~6とナンバリングした。寸法のばらつきは、積層造形した積層体の高さ方向の寸法(一辺の長さ)をそれぞれ測定して、ばらつきの程度を調べた。重量ばらつきの結果を表1および図5に示し、寸法ばらつきの結果を表2および図6に示す。
[2] Addition amount of silica powder and variations in weight and size Using the raw material powders of each of Samples 1 to 6 above, a cube with a side of 20 mm as a three-dimensional combined body of the same volume is schematically shown in FIGS. 1 and 2. Samples 1 to 6 were laminate-molded 6 times each by the binder jet method as indicated, and variations in weight and dimensions of the laminates were investigated. For each of the six test pieces of each of Samples 1-6, no. Numbered from 1 to 6. The degree of dimensional variation was examined by measuring the dimension in the height direction (the length of one side) of each layered body that was layered and manufactured. The weight variation results are shown in Table 1 and FIG. 5, and the dimensional variation results are shown in Table 2 and FIG.

Figure 0007204793000001
Figure 0007204793000001

Figure 0007204793000002
Figure 0007204793000002

表1、図5、および表2、図6によれば、原料粉末中のシリカ粉末の添加量が0.0005wt%以上であると、0.0005wt%を下回る場合よりも積層体の重量ばらつきおよび寸法ばらつきのいずれも、ばらつきの程度が低い。また、それらのばらつきの程度は、0.01wt%を超えても大きな変化がないと見受けられる。したがって、原料粉末中のシリカ粉末の添加量が0.0005wt%以上0.01wt%未満の場合に、積層体の重量および寸法のばらつきを低く抑えられることが確かめられた。 According to Tables 1, 5, 2, and 6, when the amount of silica powder added in the raw material powder is 0.0005 wt% or more, the weight variation and Any of the dimensional variations have a low degree of variation. Moreover, it seems that there is no great change in the extent of their variation even if the content exceeds 0.01 wt %. Therefore, it was confirmed that when the amount of silica powder added in the raw material powder was 0.0005 wt % or more and less than 0.01 wt %, variations in the weight and dimensions of the laminate could be kept low.

[3]積層体の成形性の観察
上記試料1(シリカ粉末:無添加の比較例)の原料粉末と、上記試料3(シリカ粉末:0.0005wt%添加の実施例)の原料粉末を用いて、図1および図2で模式的に示したようなバインダジェット法により、所定寸法(縦24.5mm、横24.5mm、厚さ6.35mm)の三次元体を積層体として複数造形し、その成形性を観察した。試料3による積層体を図7に示し、試料1による積層体を図8に示す。
[3] Observation of formability of laminated body Using raw material powder of sample 1 (silica powder: comparative example with no addition) and raw material powder of sample 3 (example with silica powder: 0.0005 wt% added) , By the binder jet method as schematically shown in FIGS. 1 and 2, a plurality of three-dimensional bodies having predetermined dimensions (length 24.5 mm, width 24.5 mm, thickness 6.35 mm) are formed as laminates, Its moldability was observed. A laminate according to sample 3 is shown in FIG. 7, and a laminate according to sample 1 is shown in FIG.

図8に示すように、原料粉末にシリカ粉末が無添加の場合、粉末の成形性が悪く砕けてしまい、所望の三次元結合体が得られていない。これに対し原料粉末中にシリカ粉末を0.0005wt%添加すると、積層体は良好に成形されて形状が保持される。したがって原料粉末中のシリカ粉末の添加量が0.0005wt%以上あると、積層体は良好に成形することができる。 As shown in FIG. 8, when no silica powder was added to the raw material powder, the powder had poor moldability and was broken, and the desired three-dimensional bonded body was not obtained. On the other hand, when 0.0005% by weight of silica powder is added to the raw material powder, the laminated body is well formed and its shape is maintained. Therefore, when the amount of silica powder added to the raw material powder is 0.0005 wt % or more, the laminate can be formed satisfactorily.

11…パウダーベッド
12…ホッパー
13…ローラ
14…インクジェットディスペンサ
P…原料粉末
PL…原料粉末層
B…バインダ
G…結合体
DESCRIPTION OF SYMBOLS 11... Powder bed 12... Hopper 13... Roller 14... Inkjet dispenser P... Raw material powder PL... Raw material powder layer B... Binder G... Combined body

Claims (4)

パウダーベッド上にホッパーから吐出されながら自然落下されつつ供給され、その表面が加圧されて150μm以下の厚さの一層の原料粉末層として繰り返し積層され、該一層の原料粉末層が形成されるごとに、該原料粉末層の一部が結合される積層造形用粉末材料であって、
鉄鋼粉末からなる平均粒径が2~30μmの主原料粉末中に、一次粒子径が3~200nmの流動化剤が0.0005wt%以上0.01wt%未満の割合で添加されており、
前記流動化剤は、SiO 粉末、TiO 粉末、Al 粉末のうちの一種、または二種以上の混合粉末であることを特徴とする積層造形用粉末材料。
It is discharged from the hopper onto the powder bed while being naturally dropped, and the surface is pressurized and repeatedly laminated as a single raw material powder layer with a thickness of 150 μm or less, and each time the single raw material powder layer is formed. and a powder material for layered manufacturing in which a part of the raw material powder layer is bonded,
A fluidizing agent having a primary particle size of 3 to 200 nm is added in a proportion of 0.0005 wt% or more and less than 0.01 wt% to a main raw material powder made of iron and steel powder having an average particle size of 2 to 30 μm ,
A powder material for additive manufacturing , wherein the fluidizing agent is one of SiO 2 powder, TiO 2 powder, and Al 2 O 3 powder, or a mixed powder of two or more of them .
前記流動化剤が0.005wt%以上0.01wt%未満の割合で添加されていることを特徴とする請求項1に記載の積層造形用粉末材料。 2. The powder material for additive manufacturing according to claim 1, wherein the fluidizing agent is added at a rate of 0.005 wt % or more and less than 0.01 wt %. 前記流動化剤は、SiO末であることを特徴とする請求項1に記載のバインダジェット法に用いる積層造形用粉末材料。 The powder material for additive manufacturing used in the binder jet method according to claim 1, wherein the fluidizing agent is SiO2 powder . 前記主原料粉末は、ステンレス、高速度鋼、ニッケル基耐熱鋼、低炭素鋼のうちの少なくとも一種であることを特徴とする請求項1~3のいずれかに記載のバインダジェット法に用いる積層造形用粉末材料。 Laminate manufacturing used for the binder jet method according to any one of claims 1 to 3, wherein the main raw material powder is at least one of stainless steel, high-speed steel, nickel-based heat-resistant steel, and low-carbon steel. for powdered materials.
JP2021017558A 2021-02-05 2021-02-05 Powder material for additive manufacturing Active JP7204793B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021017558A JP7204793B2 (en) 2021-02-05 2021-02-05 Powder material for additive manufacturing
JP2022211201A JP2023040127A (en) 2021-02-05 2022-12-28 Powder material for lamination molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021017558A JP7204793B2 (en) 2021-02-05 2021-02-05 Powder material for additive manufacturing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022211201A Division JP2023040127A (en) 2021-02-05 2022-12-28 Powder material for lamination molding

Publications (2)

Publication Number Publication Date
JP2022120580A JP2022120580A (en) 2022-08-18
JP7204793B2 true JP7204793B2 (en) 2023-01-16

Family

ID=82849079

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021017558A Active JP7204793B2 (en) 2021-02-05 2021-02-05 Powder material for additive manufacturing
JP2022211201A Pending JP2023040127A (en) 2021-02-05 2022-12-28 Powder material for lamination molding

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022211201A Pending JP2023040127A (en) 2021-02-05 2022-12-28 Powder material for lamination molding

Country Status (1)

Country Link
JP (2) JP7204793B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008581A1 (en) 2021-07-30 2023-02-02 富士フイルム株式会社 Fatty mass composition and meat alternative

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515542A (en) 1998-05-15 2002-05-28 ホガナス アクチボラゲット Iron-based composition for metallurgy containing flow agent and method of using the same
JP2004332016A (en) 2003-05-01 2004-11-25 Seiko Epson Corp Granulated metal powder, manufacturing method therefor, and metal powder
WO2015194678A1 (en) 2014-06-20 2015-12-23 株式会社フジミインコーポレーテッド Powder material to be used in powder lamination shaping and powder lamination shaping method using same
JP2019157217A (en) 2018-03-14 2019-09-19 株式会社ExOne Powder material for laminate molding used for binder jet method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395840B2 (en) * 2019-04-09 2023-12-12 セイコーエプソン株式会社 Powder for additive manufacturing and method for producing additively manufactured objects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515542A (en) 1998-05-15 2002-05-28 ホガナス アクチボラゲット Iron-based composition for metallurgy containing flow agent and method of using the same
JP2004332016A (en) 2003-05-01 2004-11-25 Seiko Epson Corp Granulated metal powder, manufacturing method therefor, and metal powder
WO2015194678A1 (en) 2014-06-20 2015-12-23 株式会社フジミインコーポレーテッド Powder material to be used in powder lamination shaping and powder lamination shaping method using same
JP2019157217A (en) 2018-03-14 2019-09-19 株式会社ExOne Powder material for laminate molding used for binder jet method

Also Published As

Publication number Publication date
JP2023040127A (en) 2023-03-22
JP2022120580A (en) 2022-08-18

Similar Documents

Publication Publication Date Title
Ziaee et al. Binder jetting: A review of process, materials, and methods
JP6861728B2 (en) Three-dimensional printing of cermet or cemented carbide
JP6519100B2 (en) Sinter-forming method, liquid binder, and sinter-formed product
JP6656911B2 (en) Modeling materials for use in powder additive manufacturing
JP6619039B2 (en) Powder material for additive manufacturing used in the binder jet method
JP6170994B2 (en) Materials for modeling for use in powder additive manufacturing
Mao et al. Binder jetting additive manufacturing of 316L stainless-steel green parts with high strength and low binder content: binder preparation and process optimization
JP2023040127A (en) Powder material for lamination molding
JP5863329B2 (en) Cemented carbide and method for producing the same
DE102013004182A1 (en) Printing material for use in 3D printers and process for the production of bodies by means of these printing materials and the use of the bodies produced by this process
WO2006062039A1 (en) Process for producing metal product and metal product
JP2005144870A (en) Method and apparatus for manufacturing three-dimensional molding
KR20190021490A (en) Aluminum alloy product and manufacturing method thereof
JP7201401B2 (en) Powder material for use in powder additive manufacturing, powder additive manufacturing method using the same, and modeled object
Peng et al. Effect of print path process on sintering behavior and thermal shock resistance of Al2O3 ceramics fabricated by 3D inkjet-printing
JP3633607B2 (en) Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography
JP7401242B2 (en) powder material
JP7117226B2 (en) Powder material for use in powder additive manufacturing, powder additive manufacturing method using the same, and modeled object
WO2018134202A1 (en) Method for producing hard metal bodies by means of 3d printing
JP7395840B2 (en) Powder for additive manufacturing and method for producing additively manufactured objects
JP6756994B1 (en) Manufacturing method of powder for additive manufacturing, manufacturing method of additive manufacturing, and manufacturing method of sintered body of additive manufacturing
JP2000160203A (en) Alloy powder, alloy sintered body and production thereof
TW202248429A (en) Aluminum powder mixture and method for producing aluminum sintered body
JP7347044B2 (en) Powder for additive manufacturing, additive manufacturing object, manufacturing method of additive manufacturing object, and manufacturing method of metal sintered compact
US20220226894A1 (en) Method for sintering objects formed with aluminum powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221228

R150 Certificate of patent or registration of utility model

Ref document number: 7204793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230821