JP7196846B2 - Capacitor and manufacturing method thereof - Google Patents

Capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP7196846B2
JP7196846B2 JP2019535638A JP2019535638A JP7196846B2 JP 7196846 B2 JP7196846 B2 JP 7196846B2 JP 2019535638 A JP2019535638 A JP 2019535638A JP 2019535638 A JP2019535638 A JP 2019535638A JP 7196846 B2 JP7196846 B2 JP 7196846B2
Authority
JP
Japan
Prior art keywords
hole
capacitor
sealing plate
case
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019535638A
Other languages
Japanese (ja)
Other versions
JPWO2019031432A1 (en
Inventor
敦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Publication of JPWO2019031432A1 publication Critical patent/JPWO2019031432A1/en
Application granted granted Critical
Publication of JP7196846B2 publication Critical patent/JP7196846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

本発明は、コンデンサケースを密封するとともに、ケース内の圧力を調整する封口技術に関する。
The present invention relates to a sealing technique for sealing a capacitor case and adjusting the pressure inside the case.

電解コンデンサなどのコンデンサは、コンデンサ素子と電解液との反応により水素ガスなどが発生することで内圧が徐々に上昇していく。コンデンサは、斯かる内圧がコンデンサケースの限界を超えた時の周囲への影響を抑えるために、コンデンサケースの所定位置を開放させる圧力弁を備えている。この圧力弁が作動した時がコンデンサの寿命である。
コンデンサの静電容量C(単位:〔F〕)は、陽極箔の陰極箔に対向する面の実効面積をS〔m2〕、陽極箔の表面に形成された酸化皮膜層の厚さをd〔m〕、酸化皮膜の比誘電率をεとすると、
8.854×10-12×ε・S/d ・・・(1)
となる。コンデンサは、高容量化が求められる一方、搭載される製品に対する容積の維持または小型化が求められる。大きさを維持しつつコンデンサを高容量化するため、電極箔の表面に形成する酸化皮膜層を薄くする、つまり、式(1)の厚さdを小さくする手法がとられている。ところで、コンデンサの耐圧は、酸化皮膜層の厚さに依存する。電極箔の酸化皮膜層を薄くするとその分陽極箔の耐圧は低下し、DC(Direct Current)電圧の印加により所謂漏れ電流(LC:Leakage Current)が増加する。陽極箔側において、漏れ電流が大きくなり、電極面に於ける電荷の移動が激しくなると、ファラデー則に則って、陰極箔側の反応量が大きくなり、陰極箔側において、水素ガスの発生量が増大し、ケースの内圧上昇につながる。
In a capacitor such as an electrolytic capacitor, the internal pressure gradually increases due to the generation of hydrogen gas or the like due to the reaction between the capacitor element and the electrolytic solution. Capacitors are equipped with pressure valves that open certain positions of the capacitor case in order to reduce the impact on the surroundings when such internal pressure exceeds the limits of the capacitor case. The life of the capacitor is reached when this pressure relief valve operates.
The capacitance C (unit: [F]) of the capacitor is defined by S [m 2 ] as the effective area of the surface of the anode foil facing the cathode foil, and d as the thickness of the oxide film layer formed on the surface of the anode foil. [m], where ε is the dielectric constant of the oxide film,
8.854×10−12×ε・S/d (1)
becomes. Capacitors are required to have a high capacity, but at the same time, they are required to maintain the volume or reduce the size of the product in which they are mounted. In order to increase the capacity of the capacitor while maintaining its size, a method of reducing the thickness d of the formula (1), that is, reducing the thickness d of the oxide film layer formed on the surface of the electrode foil, has been adopted. By the way, the withstand voltage of a capacitor depends on the thickness of the oxide film layer. As the oxide film layer of the electrode foil is made thinner, the withstand voltage of the anode foil is correspondingly lowered, and the application of a DC (Direct Current) voltage increases a so-called leakage current (LC: Leakage Current). When the leakage current increases on the anode foil side and the movement of charges on the electrode surface increases, the reaction amount on the cathode foil side increases according to Faraday's law, and the amount of hydrogen gas generated on the cathode foil side increases. increase, leading to an increase in the internal pressure of the case.

このようなガス発生によるケース内圧上昇に関し、コンデンサケース内に溜まったガスのみを外部に放出するためのガス透過部が封口板に形成された電解コンデンサがある(たとえば、特許文献1)。 Regarding the increase in case internal pressure due to gas generation, there is an electrolytic capacitor in which a sealing plate is formed with a gas permeable portion for releasing only the gas accumulated in the capacitor case to the outside (for example, Patent Document 1).

特開平8-335536号公報JP-A-8-335536

ところで、封口板はたとえば異なる性質の複数の部材を積層した積層体で形成されている。この封口板は、電解液の封止とともに発生したガスを透過することで、コンデンサの機能を維持させつつ、かつ高容量化したコンデンサの使用可能期間を延ばしている。
しかしながら、積層体を構成する部材のうち液体を封止する部材の剛性が足りない場合、発生したガスの内圧にガス調圧部が対抗できず、部材の異常変形やガス調圧部周囲の積層部分の剥離などが発生するおそれがある。このような積層体の剥離が発生すると、その剥離部分に電解液が侵入し、外部端子と封口板の境界面まで到達し、該境界面からコンデンサの外部への液漏れするおそれがある。
このように電解液が漏れ出た場合、コンデンサ周囲の基板や電子部品などに電解液が付着しそれらを破損させるおそれがあるなどの課題がある。
斯かる課題について特許文献1には開示がなく、解決することができない。
By the way, the sealing plate is formed of a laminate obtained by laminating a plurality of members having different properties, for example. By permeating the gas generated with the sealing of the electrolytic solution, the sealing plate maintains the function of the capacitor and extends the usable period of the high-capacity capacitor.
However, if the rigidity of the liquid-sealing member among the members constituting the laminate is insufficient, the gas pressure regulating section cannot withstand the internal pressure of the generated gas, resulting in abnormal deformation of the member and lamination around the gas pressure regulating section. Partial detachment may occur. If such peeling of the laminate occurs, the electrolytic solution may enter the peeled portion, reach the interface between the external terminal and the sealing plate, and leak from the interface to the outside of the capacitor.
When the electrolytic solution leaks out in this way, there is a problem that the electrolytic solution may adhere to the substrate and electronic parts around the capacitor and damage them.
Patent document 1 does not disclose such a problem, and cannot be solved.

そこで、本発明の目的は、コンデンサの封口板に十分な剛性を備えることでガス調圧機能の維持を図ることにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a sealing plate of a capacitor with sufficient rigidity to maintain a gas pressure regulating function.

上記目的を達成するため、本発明のコンデンサの一側面は、コンデンサ素子と、前記コンデンサ素子を収納するコンデンサケースと、前記コンデンサケースの開口部を封止する封口板とを備え、前記封口板は、ガスを透過する第1の部材とガスを封止する第2の部材が積層された積層体と、前記積層体の少なくとも前記第1の部材の平面部の一部が押圧される押圧部と、前記押圧部および前記押圧部の周囲の所定範囲に設定した薄肉部に重ならない位置で、前記積層体の前記第2の部材に形成されている貫通孔および該貫通孔を覆う前記第1の部材でガスを透過させて調圧するガス調圧部と
前記貫通孔の開口部に設置されて、前記貫通孔に対してガスを透過させるとともに液体の侵入を阻止する液遮断部とを備える。
To achieve the above object, one aspect of the capacitor of the present invention comprises a capacitor element, a capacitor case for housing the capacitor element, and a sealing plate for sealing an opening of the capacitor case, wherein the sealing plate is a laminated body in which a gas-permeable first member and a gas-sealing second member are laminated; , a through-hole formed in the second member of the laminate and the first through-hole covering the through-hole at a position not overlapping the pressing portion and a thin portion set in a predetermined range around the pressing portion; a gas pressure regulating unit that regulates pressure by allowing gas to permeate through a member ;
A liquid blocking part is provided at the opening of the through-hole to allow gas to permeate the through-hole and prevent liquid from entering the through-hole .

上記コンデンサにおいて、前記押圧部は、前記積層体に設置された端子部品を含み、前記貫通孔は、前記端子部品の設置位置から2.0ミリメートル以上離れた範囲に形成されてよい。
上記コンデンサにおいて、前記押圧部は、開口部側に沿って折り返された前記コンデンサケースの端部側と前記第1の部材との接触部であり、前記貫通孔は、前記端部の接触位置から前記積層体の中央方向に2.0ミリメートル以上離れた範囲に形成されてよい。
In the capacitor described above, the pressing portion may include a terminal component installed on the laminate, and the through hole may be formed in a range separated by 2.0 mm or more from the installation position of the terminal component.
In the above capacitor, the pressing portion is a contact portion between the first member and the end portion side of the capacitor case folded back along the opening portion side, and the through hole extends from the contact position of the end portion. It may be formed in a range separated by 2.0 mm or more in the central direction of the laminate.

記コンデンサにおいて、前記第1の部材は、硬度が、JIS K6253の規格に準拠し、50Hs以上でかつ85Hs以下のゴム材料であってよい。 In the capacitor described above , the first member may be a rubber material having a hardness of 50 Hs or more and 85 Hs or less in accordance with JIS K6253.

上記目的を達成するため、本発明のコンデンサ製造方法の一側面は、コンデンサ素子をコンデンサケースに収納する処理と、ガスを透過する第1の部材とガスを封止する第2の部材が積層された積層体の少なくとも前記第1の部材の平面部の一部が押圧される押圧部と、前記押圧部および前記押圧部の周囲の所定範囲に設定した薄肉部に重ならない位置で、前記積層体の前記第2の部材に形成されている貫通孔および該貫通孔を覆う前記第1の部材でガスを透過させて調圧するガス調圧部とを備える封口板の前記貫通孔の開口部に、前記貫通孔に対してガスを透過させるとともに液体の侵入を阻止する液遮断部を設置する処理と、前記封口版で前記コンデンサケースを封止する処理と、前記貫通孔から所定距離以上離れた位置で前記第1の部材と接触するように前記コンデンサケースの端部を前記封口板に折り返す処理とを含む。 In order to achieve the above object, one aspect of the capacitor manufacturing method of the present invention includes processing for housing a capacitor element in a capacitor case, and lamination of a first member that allows gas to pass through and a second member that seals gas. a pressing portion that presses at least a part of the flat portion of the first member of the laminated body, and a position that does not overlap the pressing portion and a thin portion set in a predetermined range around the pressing portion; At the opening of the through hole of a sealing plate provided with a through hole formed in the second member of and a gas pressure regulating part that regulates pressure by allowing gas to permeate through the first member covering the through hole, A process of installing a liquid blocking part that allows gas to pass through the through hole and prevents liquid from entering, a process of sealing the capacitor case with the sealing plate , and a position at least a predetermined distance away from the through hole. and folding back the end portion of the capacitor case to the sealing plate so as to come into contact with the first member.

本発明によれば、次のいずれかの効果が得られる。 ADVANTAGE OF THE INVENTION According to this invention, one of the following effects is acquired.

(1) ガス調圧部の機能低下を防止することで、コンデンサケース内の圧力上昇を抑制するとともに、コンデンサの寿命を延ばすことができる。 (1) By preventing functional deterioration of the gas pressure regulating part, it is possible to suppress pressure rise in the capacitor case and extend the life of the capacitor.

(2) 積層体の剛性が低い範囲を避けてガス調圧部を形成することで、積層体の剥離や積層体内部への電解液の侵入または積層体外部への電解液の流出を防止できる。 (2) Forming the gas pressure regulating part avoiding the area where the rigidity of the laminate is low can prevent the separation of the laminate, the penetration of the electrolyte into the laminate, or the outflow of the electrolyte to the outside of the laminate. .

(3) 積層体への接触により生じる押圧部の周囲を避けて貫通孔を形成することで、剛性の低い薄肉部にガス調圧部が形成されるのを防止できる。 (3) By forming the through hole avoiding the periphery of the pressed portion caused by contact with the laminate, it is possible to prevent the formation of the gas pressure regulating portion in the thin portion having low rigidity.

そして、本発明の他の目的、特徴および利点は、添付図面および各実施の形態を参照することにより、一層明確になるであろう。
Other objects, features and advantages of the present invention will become clearer with reference to the accompanying drawings and embodiments.

第1の実施の形態に係る封口板の外観構成例を示す図である。It is a figure which shows the example of an external appearance structure of the sealing board which concerns on 1st Embodiment. 封口板の部分断面を示す図である。It is a figure which shows the partial cross section of a sealing board. 封口板の端部を含む部分断面を示す図である。It is a figure which shows the partial cross section containing the edge part of a sealing plate. 実施例1に係るコンデンサの開口部側の外観構成例を示す図である。4 is a diagram showing an example of the external configuration of the opening side of the capacitor according to Example 1. FIG. コンデンサの内部構成例を示す断面図である。2 is a cross-sectional view showing an internal configuration example of a capacitor; FIG. 第2の実施の形態に係る封口板の構成例を示す図である。It is a figure which shows the structural example of the sealing board which concerns on 2nd Embodiment. Aは実施例2に係る封口板の構成例を示す断面図であり、Bは開口部の構成を示す部分拡大図である。A is a cross-sectional view showing a configuration example of a sealing plate according to Example 2, and B is a partially enlarged view showing a configuration of an opening. Aは実施例3に係る封口板の構成例を示す断面図であり、Bは開口部の構成を示す部分拡大図である。A is a cross-sectional view showing a configuration example of a sealing plate according to Example 3, and B is a partially enlarged view showing a configuration of an opening. 実験例1の結果を示す図である。FIG. 5 is a diagram showing the results of Experimental Example 1; 実験例2の結果を示す図である。FIG. 10 is a diagram showing the results of Experimental Example 2; 実験例3の計測結果を示す図である。FIG. 10 is a diagram showing measurement results of Experimental Example 3; 実験例3のコンデンサケースの膨張度合いを示すグラフである。10 is a graph showing the degree of expansion of the capacitor case of Experimental Example 3. FIG.

〔第1の実施の形態〕
<封口板2の構成>
図1は、第1の実施の形態に係る封口板の外観構成例を示している。図1に示す構成は一例であり、本発明が斯かる構成に限定されない。
[First embodiment]
<Structure of sealing plate 2>
FIG. 1 shows an external configuration example of a sealing plate according to the first embodiment. The configuration shown in FIG. 1 is an example, and the present invention is not limited to such a configuration.

図1のAに示す封口板2は、コンデンサ素子などを収納するケースの開口部を封止する手段の一例であり、たとえば機能の異なる複数の部材を積層した積層体である。封口板2は、設置されるケースの開口形状に応じた形状に形成されており、たとえば円形の開口部に設置する場合には、その開口部と同径またはそれに近い径の円盤状に形成される。そのほか、ケースの開口部が多角形の場合には、形状や大きさに合わせて形成される。
封口板2は、たとえば積層体の平面部が同形状であるゴム層4および樹脂層6を備える。
A sealing plate 2 shown in A of FIG. 1 is an example of means for sealing an opening of a case for housing a capacitor element or the like, and is, for example, a laminate in which a plurality of members having different functions are laminated. The sealing plate 2 is formed in a shape corresponding to the shape of the opening of the case in which it is installed. be. In addition, when the opening of the case is polygonal, it is formed according to the shape and size.
The sealing plate 2 includes, for example, a rubber layer 4 and a resin layer 6 whose plane portions of the laminate have the same shape.

ゴム層4は、本開示の第1の部材の一例であり、封口板2が設置されるケース内の気体を透過させるが、液体を遮断する機能を備える。ゴム層4は、たとえばエチレンプロピレンゴムやブチルゴム、シリコンゴムなどのゴム材料が採用される。これらゴム材料は、所定の柔軟性や弾性を発揮するものであり、たとえばJIS(Japanese Industrial Standards:日本工業規格)K6253(加硫ゴム及び熱可塑性ゴムの硬さ試験方法)に準拠した硬度として、好ましくは50〔Hs〕以上~85〔Hs〕以下の範囲内の材料が採用される。このゴム層4の硬度は一例であり、この値の範囲よりも低い値または高いものを用いてもよい。また、硬度の値は、たとえば封口板2またはこの封口板2を用いるコンデンサの製造または使用地域で採用されるJIS以外の規格に対し、この範囲と同等な性質となる値が設定されればよい。
さらに、このゴム層4の硬度は、たとえばコンデンサが設置される周囲の環境や使用地域の違い、または硬度計測の試験方法、使用・製造地域で設定された規格などにより、採用する値の範囲を異ならせてもよい。
また、ゴム層4は、0.7~1.5〔mm〕の範囲内に設定される。0.7〔mm〕より薄いと、発生したガスの内圧によりガス調圧部が膨れやすくなり、ガス調圧部周囲の樹脂層6との積層部分が剥離しやすくなる場合がある。1.5〔mm〕より厚いと、封口板2が厚くなり、コンデンサ20の大型化につながる。
The rubber layer 4 is an example of the first member of the present disclosure, and has a function of allowing gas to pass through the case in which the sealing plate 2 is installed, but blocking liquid. For the rubber layer 4, a rubber material such as ethylene propylene rubber, butyl rubber, silicone rubber, or the like is adopted. These rubber materials exhibit predetermined flexibility and elasticity. Preferably, a material within the range of 50 [Hs] to 85 [Hs] is adopted. The hardness of this rubber layer 4 is an example, and values lower or higher than this value range may be used. Further, the hardness value may be set to a value equivalent to this range for standards other than JIS that are adopted in areas where sealing plate 2 or capacitors using this sealing plate 2 are manufactured or used, for example. .
Furthermore, the hardness of the rubber layer 4 varies depending on the surrounding environment where the capacitor is installed, the area of use, the test method for hardness measurement, and the standards set by the area of use/manufacturing. can be different.
Further, the rubber layer 4 is set within the range of 0.7 to 1.5 [mm]. If the thickness is less than 0.7 [mm], the gas pressure regulating portion tends to swell due to the internal pressure of the generated gas, and the laminated portion with the resin layer 6 around the gas pressure regulating portion may easily peel off. If it is thicker than 1.5 [mm], the sealing plate 2 becomes thicker, leading to an increase in the size of the capacitor 20 .

樹脂層6は、本開示の第2の部材の一例であり、たとえば紙フェノール樹脂が用いられる。紙フェノール樹脂は、樹脂層6の基材であり、紙基材にフェノール系樹脂を含浸させた合成材料である。樹脂層6は、積層したゴム層4の形状を維持する封口板2の支持材として機能するほか、封口板2が設置されるケース内の気体および液体を遮断する。樹脂層6は、紙フェノール樹脂による単一の構成でよく、または図示しない他の材料を重ね合わせた積層の構成であってもよい。 The resin layer 6 is an example of the second member of the present disclosure, and paper phenolic resin is used, for example. The paper phenolic resin is a base material of the resin layer 6, and is a synthetic material obtained by impregnating a paper base material with a phenolic resin. The resin layer 6 functions as a supporting material for the sealing plate 2 to maintain the shape of the laminated rubber layer 4, and also blocks gas and liquid in the case in which the sealing plate 2 is installed. The resin layer 6 may have a single structure made of paper phenolic resin, or may have a laminated structure in which other materials (not shown) are superimposed.

さらに、封口板2は、平板部の中央側に複数の外部端子8を備えており、コンデンサの陽極端子8a、陰極端子8bとして機能する。外部端子8は、たとえば図示しない「L」字形状に形成されており、外部機器の基板等と接触させるために封口板2から突出した部分と、封口板2の平面部に平行に配置される部分とを備えており、リベット10により封口板2の平面部分に固定される。リベット10は、通電可能な金属材料または表面に金属メッキが施されており、外部端子8と電気的に接続されている。この外部端子8およびリベット10は、封口板2平板部を押圧する押圧部材であり、この押圧によってゴム層4が押し潰される部分または、押し潰される可能性がある部分が本開示の押圧部の一例である。このリベット10は、たとえば図1のBに示すように、外部端子8の一部を介して、リベット10の軸部を封口板2の平板面に貫通しており、この軸部よりも径大な押圧部が封口板2の平板面に圧着している。
そして封口板2の平板面には、外部端子8やリベット10の押圧部と重なる部分およびその周囲の所定範囲にリベット10の圧着による薄肉部Xが形成される。この薄肉部Xは、たとえば平面部に接触する外部端子8の形状と相似する形状となっている。薄肉部Xの形状は、たとえばゴム層4に対する外部端子8の接触形状が円形であれば、それに応じて円形またはそれに近い形状となる。薄肉部Xは、たとえばゴム層4を形成するゴム材料の硬度やリベット10の押圧力や押圧の深さなどの影響により形成範囲が異なる。
Further, the sealing plate 2 has a plurality of external terminals 8 on the central side of the flat plate portion, and functions as a positive terminal 8a and a negative terminal 8b of the capacitor. The external terminal 8 is formed, for example, in an "L" shape (not shown), and is arranged in parallel with a portion protruding from the sealing plate 2 to be brought into contact with a board of an external device, etc., and a plane portion of the sealing plate 2. and is fixed to the planar portion of the sealing plate 2 by rivets 10. As shown in FIG. The rivet 10 is made of a conductive metal material or plated with a metal on its surface, and is electrically connected to the external terminal 8 . The external terminal 8 and the rivet 10 are pressing members that press the flat plate portion of the sealing plate 2, and the portion where the rubber layer 4 is crushed or likely to be crushed by this pressing is the pressing portion of the present disclosure. An example. As shown in FIG. 1B, for example, the rivet 10 penetrates the flat plate surface of the sealing plate 2 through a portion of the external terminal 8 and has a larger diameter than the shaft. A pressing portion is pressed against the flat plate surface of the sealing plate 2 .
A thin portion X is formed on the flat plate surface of the sealing plate 2 by crimping the rivet 10 at a portion overlapping the external terminal 8 and the pressing portion of the rivet 10 and a predetermined range around the portion. The thin portion X has a shape similar to the shape of the external terminal 8 that contacts the flat portion, for example. For example, if the shape of the contact of the external terminal 8 with the rubber layer 4 is circular, the shape of the thin portion X is circular or nearly circular. The thin portion X varies in formation range depending on, for example, the hardness of the rubber material forming the rubber layer 4, the pressing force of the rivet 10, the pressing depth, and the like.

そのほか封口板2には、樹脂層6側の平面部上に貫通孔12が形成されている。この貫通孔12は、一端側は外部に開放されており樹脂層6内にガスや液体が流入可能となっている。また他端側は積層されたゴム層4によって覆われている。この貫通孔12および開口端を覆うゴム層4の一部は、本開示のガス調圧部の一例であり、貫通孔12に侵入するガスや液体のうち、ガスのみがゴム層4を透過して封口板2を透過する。また封口板2は、ゴム層4が液体を遮断することで、この封口板2によって封止したケース内部のガス圧を調整する。
貫通孔12は、たとえば外部端子8やリベット10により生じるゴム層4の薄肉部Xと重ならない位置に形成される。そのほか、封口板2に外部端子8やリベット10以外の押圧部材によってゴム層4に薄肉部Xを形成する場合、その薄肉部Xに対しても重ならない位置に貫通孔12が形成される。
In addition, the sealing plate 2 is formed with a through hole 12 on the plane portion on the resin layer 6 side. One end of the through hole 12 is open to the outside so that gas or liquid can flow into the resin layer 6 . The other end side is covered with a laminated rubber layer 4 . The part of the rubber layer 4 that covers the through hole 12 and the open end is an example of the gas pressure regulating portion of the present disclosure, and of the gas and liquid that enter the through hole 12, only the gas passes through the rubber layer 4. passes through the sealing plate 2. The sealing plate 2 adjusts the gas pressure inside the case sealed by the sealing plate 2 by blocking the liquid with the rubber layer 4 .
The through hole 12 is formed at a position that does not overlap the thin portion X of the rubber layer 4 caused by the external terminal 8 or the rivet 10, for example. In addition, when a thin portion X is formed in the rubber layer 4 by a pressing member other than the external terminal 8 or the rivet 10 in the sealing plate 2, the through hole 12 is formed at a position that does not overlap the thin portion X either.

<外部端子からガス調圧部の位置>
図2は、封口板の部分断面を示している。
封口板2には、たとえば図2に示すように、外部端子8およびリベット10の貫通部分の周囲にゴム層4の薄肉部Xが広がる。薄肉部Xは、たとえば外部端子8やリベット10が接触する部分の厚さdxが最も小さくなり、その接触部から離間するのに応じて、押圧していない厚さd1となっていく。この薄肉部Xの厚さdxは、たとえば離間する距離に応じて比例的に変化する場合や、または押圧部分からの距離に応じて厚さの変化量が異なる場合も含む。
ガス調圧部として機能する貫通孔12は、薄肉部Xの範囲外に形成される。貫通孔12は、外部端子8またはリベット10の端部から所定距離L1として、1.5〔mm〕より離間した範囲内、より好ましくは、2.0〔mm〕以上離れた範囲内に形成される。つまり、薄肉部Xは、ゴム層4の材質や硬度、厚さd1の大きさ、リベット10の押圧力などのいずれかまたはこれらの2つ以上を組み合せた条件の影響を受ける。そこで、封口板2では、たとえば予め設定したゴム層4の条件に対する薄肉部Xの形成範囲を求めておき、その薄肉部Xの形成範囲よりも離間した範囲にガス調圧部を形成する。
<Position of the gas pressure regulator from the external terminal>
FIG. 2 shows a partial cross section of the sealing plate.
In the sealing plate 2, for example, as shown in FIG. 2, a thin portion X of the rubber layer 4 spreads around the penetrating portion of the external terminal 8 and the rivet 10. As shown in FIG. The thin portion X has the smallest thickness dx at the portion with which the external terminal 8 and the rivet 10 contact, for example, and the thickness d1 at which the thin portion X is not pressed becomes smaller as the distance from the contact portion increases. For example, the thickness dx of the thin portion X may change proportionally according to the separation distance, or may vary depending on the distance from the pressed portion.
A through-hole 12 functioning as a gas pressure regulating portion is formed outside the range of the thin portion X. As shown in FIG. The through hole 12 is formed within a range of 1.5 [mm] or more, preferably 2.0 [mm] or more, as a predetermined distance L1 from the end of the external terminal 8 or the rivet 10. be. That is, the thin portion X is affected by any one of the material and hardness of the rubber layer 4, the size of the thickness d1, the pressing force of the rivet 10, or a combination of two or more of these conditions. Therefore, in the sealing plate 2, for example, the forming range of the thin portion X for the conditions of the rubber layer 4 set in advance is obtained, and the gas pressure adjusting portion is formed in a range separated from the forming range of the thin portion X.

貫通孔12の形成処理では、たとえば封口板2の平面部にある一の外部端子8またはリベット10のみから離間させる所定距離L1を判断するのではなく、平面部にある全てまたは所定数の外部端子8またはリベット10から所定距離L1分離間しているか否かを判断する。これにより、封口板2の平板面のうち、たとえば陽極端子8aと陰極端子8bが対向する範囲は、これらの外部端子のいずれかまたは両方による薄肉部Xの範囲内となる可能性があり、貫通孔12が形成できない場合がある。
貫通孔12の開口径L2は、ガス調圧部として透過させたいガスの種類や封止するコンデンサケース内のガス発生量に基づいて設定すればよく、たとえば1.0〔mm〕に設定すればよい。
In the process of forming the through holes 12, for example, instead of determining the predetermined distance L1 to be separated from only one external terminal 8 or rivet 10 on the flat portion of the sealing plate 2, all or a predetermined number of external terminals on the flat portion are determined. 8 or whether or not the rivet 10 is separated by a predetermined distance L1. As a result, of the flat plate surface of the sealing plate 2, for example, the range where the anode terminal 8a and the cathode terminal 8b face each other may be within the range of the thin portion X formed by either or both of these external terminals. In some cases, the holes 12 cannot be formed.
The opening diameter L2 of the through hole 12 may be set based on the type of gas to be permeated as the gas pressure regulating portion and the amount of gas generated in the sealed capacitor case. good.

<封口板端部からガス調圧部の位置>
図3は、封口板の端部を含む部分断面を示している。
この封口板2では、たとえば積層体の平面において、外周端から平面部の中央方向に向けて、所定距離L3離間した範囲内にガス調圧部である貫通孔12が樹脂層6に形成される。この所定距離L3には、たとえばコンデンサケースに対する加締め処理によりケースの先端部14側が折り返され、封口板に圧接する距離L4と、このケース先端側から所定距離L5が含まれる。ケース先端部14が折り返される距離L4は、たとえば1.5~4.0〔mm〕であり、またケース先端部からの距離L5は、たとえば1.5〔mm〕よりも大きい値、またより好ましくは、2.0〔mm〕以上の値が設定される。
ケース先端部14は、たとえばコンデンサケースと封口板2との接触状態を安定化させるとともに、封口板2の周面とケースとの接合部分に対する異物混入防止などのために、折り返され、所定の圧力を伴ってゴム層4を押し潰す。つまりゴム層4には、ケース先端部14により押圧部が形成されることで、その押圧部分およびその周囲の所定範囲に封口板2の薄肉部Xが形成される。つまりケースの先端部14は押圧部材の一例である。
<Position of the gas pressure regulating part from the edge of the sealing plate>
FIG. 3 shows a partial cross section including the edge of the sealing plate.
In the sealing plate 2, for example, on the plane of the laminate, a through hole 12, which is a gas pressure adjusting portion, is formed in the resin layer 6 within a range spaced apart by a predetermined distance L3 from the outer peripheral edge toward the center of the plane. . This predetermined distance L3 includes, for example, a distance L4 where the front end portion 14 side of the case is folded back by crimping the capacitor case and pressed against the sealing plate, and a predetermined distance L5 from this front end side of the case. The distance L4 by which the case tip portion 14 is folded back is, for example, 1.5 to 4.0 [mm], and the distance L5 from the case tip portion is, for example, a value larger than 1.5 [mm], and more preferably. is set to a value of 2.0 [mm] or more.
The case tip 14 is folded back to stabilize the contact state between the capacitor case and the sealing plate 2, for example, and to prevent foreign matter from entering the joint portion between the peripheral surface of the sealing plate 2 and the case. to crush the rubber layer 4. That is, the rubber layer 4 is formed with a pressing portion by the case front end portion 14, and a thin portion X of the sealing plate 2 is formed in the pressing portion and a predetermined range around it. That is, the tip portion 14 of the case is an example of a pressing member.

なお、貫通孔12の形成位置の決定では、たとえば薄肉部Xか否かを計測して管理してもよく、またはリベット10の押圧力やゴム層4を形成する材質やその硬度の情報に基づいて、予め実験室などで計測した情報を利用してもよい。 In determining the formation position of the through hole 12, for example, whether or not it is the thin portion X may be measured and managed, or based on information on the pressing force of the rivet 10, the material forming the rubber layer 4, and its hardness. Alternatively, information measured in advance in a laboratory or the like may be used.

<封口板2の製造工程> <Manufacturing process of sealing plate 2>

ここで、封口板2の製造工程の一例を説明する。 Here, an example of the manufacturing process of the sealing plate 2 will be described.

(A)積層材の生成処理
この処理では、たとえば紙フェノール樹脂材を生成する。ここで生成される材料は、たとえばプリプレグ(Prepreg)と呼ばれる半硬化状態のものである。紙フェノール樹脂材の生成では、たとえば紙基材に架橋前のフェノール樹脂をアルコールなどに溶解したものを含浸させ、加熱や乾燥により半硬化状態にして生成する。そして形成されたプリプレグの紙フェノール樹脂材とゴム材料の平面部同士を重ね合わせて積層材を作る。そしてこの積層材を加熱圧着して一体化させる。これによりゴム層4と樹脂層6を備えた積層材が生成される。
(B)封口板の形成処理
この処理では、封口板2を所定の形状に成形する処理を行う。生成された積層材は、たとえばプレス加工によって封口板2の形状および寸法に打ち抜かれる。このとき、積層材は、たとえばプレス機の剪断刃によって切断される。
(C)ガス調圧部の形成処理
プレス加工によって成形された積層材は、たとえば外部端子8やリベット10の設置位置、および/または積層体の外周から中央方向に向けて予め設定された距離をとった範囲内に貫通孔12を複数個形成する。貫通孔12は、たとえば専用のドリルなどの工具を利用し、樹脂層6の平面部が露出した面から切削していき、ゴム層4が積層する部分までの厚さ分を削る。
(D)その他の処理
封口板2には、たとえば外部端子8をリベット10の一部を介して、積層体の中央側に貫通させる。リベット10の押圧力は、たとえば予め設定された値を利用すればよく、たとえば積層体またはゴム層4の厚さやゴム層4の硬度等に応じて設定されればよい。リベット10を利用した外部端子8の設置では、たとえば外部端子8を封口板2に密着させるため、ゴム層4が所定の厚さdxになるように押圧力を設定し、封口板2に外部端子8を設置すればよい。
(A) Laminated material production process In this process, for example, a paper phenol resin material is produced. The material produced here is in a semi-cured state called, for example, prepreg. In producing a paper phenolic resin material, for example, a paper substrate is impregnated with a solution of a phenolic resin before cross-linking dissolved in alcohol or the like, and heated and dried to produce a semi-cured state. Then, the planar portions of the paper phenolic resin material and the rubber material of the prepreg thus formed are overlaid to form a laminated material. Then, this laminated material is heat-pressed to be integrated. Thus, a laminate having the rubber layer 4 and the resin layer 6 is produced.
(B) Sealing plate forming process In this process, the sealing plate 2 is formed into a predetermined shape. The produced laminated material is punched into the shape and size of the sealing plate 2 by, for example, pressing. At this time, the laminate is cut, for example, by shearing blades of a press.
(C) Process for Forming Gas Pressure Regulating Portion The laminated material formed by press working has, for example, the installation positions of the external terminals 8 and the rivets 10, and/or a predetermined distance from the outer circumference of the laminated body toward the center. A plurality of through holes 12 are formed within the range. The through-hole 12 is formed by cutting from the surface where the flat portion of the resin layer 6 is exposed, using a tool such as a dedicated drill, to shave the thickness up to the portion where the rubber layer 4 is laminated.
(D) Other processing In the sealing plate 2, for example, the external terminal 8 is penetrated through a part of the rivet 10 to the central side of the laminate. The pressing force of the rivet 10 may be, for example, a preset value, and may be set according to the thickness of the laminate or the rubber layer 4, the hardness of the rubber layer 4, and the like. When installing the external terminals 8 using the rivets 10 , for example, in order to bring the external terminals 8 into close contact with the sealing plate 2 , the pressing force is set so that the rubber layer 4 has a predetermined thickness dx, and the external terminals are attached to the sealing plate 2 . 8 should be installed.

〔第1の実施の形態の効果〕 [Effects of the first embodiment]

斯かる構成によれば、以下のような効果が得られる。 According to such a configuration, the following effects are obtained.

(1) 封口板に生じた薄肉部Xに重なる範囲に貫通孔を含むガス調圧部を形成しないのでゴム層の剛性が維持でき、コンデンサケースなどから貫通孔に負荷される内圧によりゴム層が異常に膨張するのを防止できる。
(2) 薄肉部Xによるゴム層の剛性低下を防止するため、ゴム層からガスを透過させるガス調圧機能を維持でき、コンデンサの寿命を伸ばすことができる。
(3) 薄肉部Xの範囲にガス調圧部を設けないことで、ゴム層と樹脂層で形成された積層体の一部の剥離や破損を防止できる。
(4) また、剛性が維持されたゴム層によって積層体の一部に剥離や損傷を生じさせず、剥離部分にコンデンサの電解液が侵入することや残留することがないので、ガス調圧部の機能低下を防止することができる。
(5) ガス調圧部から電解液の漏洩を防止でき、外部端子または外部端子が接続する基板や機器と電解液とが接触し、ショートするのを防止できる。
(6) ゴム材料の硬度や外部端子、リベットの大きさ、もしくは押圧力に対し、予め平板面上での薄肉部Xが生じる範囲を想定して、貫通孔の形成位置を設定することで、封口板の形成負荷が軽減できる。
(1) Since the gas pressure regulating part including the through-hole is not formed in the area overlapping the thin-walled part X generated in the sealing plate, the rigidity of the rubber layer can be maintained, and the internal pressure applied to the through-hole from the capacitor case, etc. causes the rubber layer to break down. Abnormal expansion can be prevented.
(2) Since the rigidity of the rubber layer is prevented from being lowered by the thin portion X, the gas pressure regulating function of allowing gas to permeate through the rubber layer can be maintained, and the life of the capacitor can be extended.
(3) By not providing the gas pressure regulating portion in the range of the thin portion X, it is possible to prevent part of the laminate formed of the rubber layer and the resin layer from being peeled off or damaged.
(4) In addition, the rubber layer that maintains its rigidity does not cause peeling or damage to a part of the laminate, and the electrolytic solution of the capacitor does not enter or remain in the peeled part, so the gas pressure regulator functional deterioration can be prevented.
(5) Leakage of the electrolyte from the gas pressure regulating section can be prevented, and short-circuiting due to contact between the external terminal or the substrate or device to which the external terminal is connected and the electrolyte can be prevented.
(6) By setting the formation position of the through-hole, assuming in advance the range where the thin-walled portion X will occur on the flat plate surface with respect to the hardness of the rubber material, the size of the external terminal, the rivet, or the pressing force, The load for forming the sealing plate can be reduced.

図4は、実施例1に係るコンデンサの外観構成例を示している。
このコンデンサ20は、たとえば図4に示すように、コンデンサ素子30(図5)を内部に収納するケース22の開口部24が封口板2によって密閉される。封口板2は、ゴム層4がケース22の外部に露出し、樹脂層6がケース22の内側に配置される。
ケース22の開口部24側は、ケース22の端部が折り返されており、封口板2の外周面に沿って平面部を覆っている。そのほか、ケース22の側面には、ケース22内に配置される封口板2の周面に合せてケースの一部を凹ませた加締め部が形成され、ケース22内における封口板2を押圧し、または凹部内に封口板2を載置させて、封口板2の配置位置を固定している。
FIG. 4 shows an external configuration example of the capacitor according to the first embodiment.
In this capacitor 20, for example, as shown in FIG. 4, a sealing plate 2 seals an opening 24 of a case 22 that accommodates a capacitor element 30 (FIG. 5). The sealing plate 2 has the rubber layer 4 exposed to the outside of the case 22 and the resin layer 6 arranged inside the case 22 .
The end portion of the case 22 is folded back on the side of the opening 24 of the case 22 to cover the flat portion along the outer peripheral surface of the sealing plate 2 . In addition, on the side surface of the case 22, a crimping portion is formed by recessing a part of the case to match the peripheral surface of the sealing plate 2 arranged in the case 22, and presses the sealing plate 2 in the case 22. Alternatively, the arrangement position of the sealing plate 2 is fixed by placing the sealing plate 2 in the recess.

封口板2には、たとえば陽極端子8aや陰極端子8bを挟んだ位置に貫通孔12が4つ形成されており、この貫通孔12を通過したガスをゴム層4を透過させてコンデンサ外に排出する。 The sealing plate 2 has, for example, four through holes 12 at positions sandwiching the anode terminal 8a and the cathode terminal 8b. do.

このケース22は、たとえば図5に示すように有底筒状の容器であって、内部にコンデンサ素子30や図示しない電解液、その他のものを収納する収納部を備える。ケース22の底部には、たとえば図示しない所定形状の脆弱部が形成されており、ケース22内部の圧力が一定値以上と成った時にこの脆弱部が破損するように構成されている。この脆弱部は、たとえば封口板2が破損する値よりも低い圧力で破損するように設定されている。このようにコンデンサ20は、内部圧力の上昇に対して、予め意図した部分を破損させることで、コンデンサ自身やコンデンサが設置される機器に対して重大な損傷を与えるのを回避させている。
コンデンサ素子30は、電極箔やセパレータを巻回した巻回素子であり、ケース22の収納部に収納可能な大きさおよび形状に形成される。コンデンサ素子30は、たとえば図示しない電極箔である陽極箔や陰極箔が絶縁体であるセパレータを介して積層された状態で所定の方向に巻回されている。この巻回端面に対向して封口板2の平板部分を配置する。
コンデンサ素子30は、一端側の巻回面に陽極箔および陰極箔からそれぞれタブ32a、32bが突出しており、このタブ32a、32bが封口板2の陽極端子8aまたは陰極端子8bに接続される。
<コンデンサの製造工程>
コンデンサ20の製造工程として、コンデンサ素子30は、タブ32a、32bと陽極端子8a、陰極端子8bが接続すると、ケース22の収納部内に収納される。
ケース22は、収納部内にコンデンサ素子30などを入れた後、開口部24側の先端部14を封口板2側に折り返して封止状態にする。
そのほかケース22は、たとえば封口板2の下部側に近い位置または封口板2に重なる位置に対して、外部から押圧して加締め溝を形成することで、封口板2とケース22を密着状態にさせる。ケース22の先端部14は、封口板2のゴム層4を押圧するように接触させる。これによりコンデンサの内部圧力が上昇しても、封口板2がケース22から離脱するのを阻止できる。
The case 22 is, for example, a cylindrical container with a bottom as shown in FIG. 5, and has a storage portion for storing the capacitor element 30, an electrolyte (not shown), and other items. A fragile portion (not shown) having a predetermined shape is formed at the bottom of the case 22, and is configured to break when the pressure inside the case 22 exceeds a certain value. This fragile portion is set to break at a pressure lower than the value at which the sealing plate 2 breaks, for example. In this manner, the capacitor 20 avoids serious damage to the capacitor itself and the equipment in which the capacitor is installed by breaking the intended parts in advance against the increase in internal pressure.
Capacitor element 30 is a wound element in which electrode foil and a separator are wound, and is formed in a size and shape that can be accommodated in a storage portion of case 22 . Capacitor element 30 is wound in a predetermined direction in a state in which, for example, electrode foils (not shown) such as anode foil and cathode foil are laminated with a separator as an insulator interposed therebetween. A flat plate portion of the sealing plate 2 is arranged so as to face this winding end surface.
Capacitor element 30 has tabs 32a and 32b protruding from the anode foil and the cathode foil on the winding surface on one end side, respectively.
<Capacitor manufacturing process>
As a manufacturing process of the capacitor 20, the capacitor element 30 is housed in the housing portion of the case 22 when the tabs 32a and 32b are connected to the anode terminal 8a and the cathode terminal 8b.
After the capacitor element 30 and the like are placed in the housing portion of the case 22, the front end portion 14 on the opening portion 24 side is folded back toward the sealing plate 2 side to be in a sealed state.
In addition, the case 22 is pressurized from the outside at a position close to the lower side of the sealing plate 2 or at a position overlapping the sealing plate 2, for example, to form a crimping groove so that the sealing plate 2 and the case 22 are brought into close contact with each other. Let The tip portion 14 of the case 22 is brought into contact with the rubber layer 4 of the sealing plate 2 so as to press it. As a result, even if the internal pressure of the capacitor rises, it is possible to prevent the sealing plate 2 from separating from the case 22 .

コンデンサ20では、長時間の使用や使用環境などにより電解液が化学反応を起こしてガスが発生し、ケースの内部圧が上昇していく。封口板2は、この内部圧の上昇に対し、発生した水素ガスHGを貫通孔12内に取込み、ゴム層4を透過させて所定量ずつケース22外部に排出していく。
また、このケース22の内圧上昇により電解液が封口板2側に接触した場合、この電解液は貫通孔12内に侵入してもゴム層4によって堰き止められ、ケース22外部に流出するのを防止している。
In the capacitor 20, the electrolytic solution undergoes a chemical reaction due to long-term use and use environment, gas is generated, and the internal pressure of the case increases. In response to this increase in internal pressure, the sealing plate 2 takes in the generated hydrogen gas HG into the through hole 12, permeates the rubber layer 4, and discharges the hydrogen gas HG to the outside of the case 22 by a predetermined amount.
Further, when the electrolytic solution comes into contact with the sealing plate 2 side due to the increase in the internal pressure of the case 22, even if the electrolytic solution enters the through hole 12, it is blocked by the rubber layer 4 and is prevented from flowing out of the case 22. are preventing.

なお、図5に示すコンデンサ20は、開口部24を上方に向けて配置する場合を示したがこれに限らない。コンデンサ20を利用する機器に従って、開口部24を横方向または下方向に向けて配置される場合も含まれる。 Although the capacitor 20 shown in FIG. 5 is arranged with the opening 24 facing upward, the present invention is not limited to this. A case in which the opening 24 is directed laterally or downward is also included according to the equipment that utilizes the capacitor 20 .

<実施例1の効果> <Effect of Example 1>

斯かる構成によれば、第1の実施の形態に示す効果に加えて、以下のような効果が得られる。 According to such a configuration, the following effects can be obtained in addition to the effects shown in the first embodiment.

(1) ケース22に対し、封口板2が隙間無く配置されるとともに、封口板2のゴム層4によって電解液が堰き止められるので、ケース22外部に電解液などが噴出するのを防止できる。 (1) The sealing plate 2 is arranged with no gap in relation to the case 22, and the rubber layer 4 of the sealing plate 2 blocks the electrolytic solution.

(2) ケース22の先端部14を折り返して封口板2のゴム層4に圧接させることで、封口板2の端面側周囲がケース22と強固に一体化できる。 (2) By folding back the tip portion 14 of the case 22 and pressing it against the rubber layer 4 of the sealing plate 2 , the periphery of the end surface of the sealing plate 2 can be firmly integrated with the case 22 .

(3) 封口板2とケース22との一体化とともに、貫通孔12およびゴム層4によるガス圧調整部によってケース22の内圧の上昇が抑えられるので、コンデンサ20の寿命を延ばすことができる。 (3) As the sealing plate 2 and the case 22 are integrated, the increase in the internal pressure of the case 22 is suppressed by the gas pressure adjusting portion formed by the through hole 12 and the rubber layer 4, so that the life of the capacitor 20 can be extended.

〔第2の実施の形態〕
図6は、第2の実施の形態に係る封口板の構成例を示している。図6に示す構成は一例であり、本発明が斯かる構成に限定されない。また、図6において、図1ないし図3と同一部分には同一の符号を付している。
この封口板2は、第1の実施の形態や実施例1に示す構成とともに、以下のような構成を備える。
封口板2は、たとえば図6に示すように、ガス調圧部である貫通孔12内に液体の侵入を阻止する液遮断栓40が挿入されている。この液遮断栓40は、本発明の液遮断部の一例であり、コンデンサ素子と電解液との反応により生じた反応ガスは透過し、電解液などの液体成分は浸透しないポリプロピレンやセラミックなどのプラスチックまたは樹脂材料で構成される。また液遮断栓40は、たとえば所定の形状に成形されており、貫通孔12内部に挿入されたものでもよく、または貫通孔12内に液状やゲル状の樹脂材料を充填し、貫通孔12の内部形状に合わせて成形されたものでもよい。
[Second embodiment]
FIG. 6 shows a configuration example of a sealing plate according to the second embodiment. The configuration shown in FIG. 6 is an example, and the present invention is not limited to such a configuration. Moreover, in FIG. 6, the same reference numerals are given to the same parts as in FIGS.
This sealing plate 2 has the following configuration in addition to the configuration shown in the first embodiment and the first embodiment.
The sealing plate 2 has, for example, as shown in FIG. 6, a liquid cutoff plug 40 inserted into the through hole 12, which is the gas pressure regulating section, to prevent liquid from entering. The liquid shut-off plug 40 is an example of the liquid shut-off part of the present invention, and is made of plastic such as polypropylene or ceramic, through which reaction gas generated by the reaction between the capacitor element and the electrolytic solution permeates, but through which liquid components such as the electrolytic solution do not permeate. Or it is composed of a resin material. The liquid shutoff plug 40 may be molded into a predetermined shape, for example, and inserted into the through hole 12. Alternatively, the through hole 12 may be filled with a liquid or gel resin material, and the through hole 12 may be filled with a liquid or gel resin material. It may be molded according to the internal shape.

液遮断栓40は、貫通孔12の内部全体に充填または挿入されればよく、または少なくともコンデンサ素子が配置されるケース22内に向いた貫通孔12の開口部を塞げばよい。これにより、貫通孔12の開口部に向けて流動してきた電解液や凝縮した水分などは、液遮断栓40によって貫通孔12の内部に侵入することができない。
液遮断栓40は、封口板2の製造時に形成されればよく、たとえば貫通孔12を形成後に樹脂材料の充填または挿入を行う。また液遮断栓40は、封口板2にリベット10を設置した後や、封口板2をケース22に設置する前段階で樹脂材料の充填または挿入を行ってもよい。
また、 コンデンサの製造処理では、上記第1の実施の形態で示した封口板2の製造工程に加え、液遮断部の設置処理として、貫通孔12内に固形の液遮断栓40を挿入するほか、液状やゲル状の樹脂材料を充填する処理を行えばよい。
The liquid blocking plug 40 may be filled or inserted into the entire interior of the through hole 12, or at least block the opening of the through hole 12 facing the inside of the case 22 where the capacitor element is arranged. As a result, the electrolytic solution, condensed water, and the like that have flowed toward the opening of the through-hole 12 cannot enter the through-hole 12 due to the liquid blocking plug 40 .
The liquid shut-off plug 40 may be formed when the sealing plate 2 is manufactured. For example, the resin material is filled or inserted after the through-hole 12 is formed. The liquid block plug 40 may be filled or inserted with a resin material after the rivet 10 is installed on the sealing plate 2 or before the sealing plate 2 is installed on the case 22 .
In addition, in the manufacturing process of the capacitor, in addition to the manufacturing process of the sealing plate 2 shown in the first embodiment, as the process of installing the liquid blocking part, a solid liquid blocking plug 40 is inserted into the through hole 12. Alternatively, a process of filling with a liquid or gel resin material may be performed.

<第2の実施の形態の効果>
斯かる構成によれば、第1の実施の形態および実施例1と同様の効果が得られるとともに、以下のような効果が期待できる。
(1) 液遮断栓40により貫通孔12内に電解液などの水分を侵入させないことで、貫通孔12の内壁やゴム層4の表面に付着した水滴によるガス調圧機能の低下が防止できる。
(2) 貫通孔12の開口部に液遮断栓40を配置することで、水滴によりガス調圧部の入口部分が遮断されるのを防止できる。
(3) 封口板2が下向き、または傾斜する状態に設置されるなど、コンデンサの設置状態に関わらず、液遮断栓40によってケース22内の電解液を貫通孔12内に侵入させないことで、封口板2のガス調圧機能を維持することができる。
<Effects of Second Embodiment>
According to such a configuration, the same effects as those of the first embodiment and the first embodiment can be obtained, and the following effects can be expected.
(1) By preventing moisture such as electrolyte from entering the through-hole 12 with the liquid blocking plug 40, it is possible to prevent deterioration of the gas pressure regulation function due to water droplets adhering to the inner wall of the through-hole 12 and the surface of the rubber layer 4.
(2) By arranging the liquid shutoff plug 40 at the opening of the through hole 12, it is possible to prevent the inlet of the gas pressure regulator from being shut off by water droplets.
(3) Regardless of how the capacitor is installed, such as when the sealing plate 2 faces downward or is inclined, the liquid shut-off plug 40 prevents the electrolytic solution in the case 22 from entering the through hole 12, thereby sealing the capacitor. The gas pressure regulation function of the plate 2 can be maintained.

図7は、実施例2に係る封口板の構成例を示している。
この封口板2では、たとえば図7のAに示すように、貫通孔12の開口部から一部を突出させる液遮断栓50を用いている。この液遮断栓50は、たとえば一端側が貫通孔12内に挿入され、他端側が貫通孔12の開口部から突出して配置されている。
液遮断栓50は、たとえば図7のBに示すように、貫通孔12内に挿入された遮断部52と、開口部から突出した液体分離部54を備える。
FIG. 7 shows a configuration example of the sealing plate according to the second embodiment.
In this sealing plate 2, for example, as shown in A of FIG. For example, one end of the liquid blocking plug 50 is inserted into the through hole 12 and the other end protrudes from the opening of the through hole 12 .
The liquid blocking plug 50 includes, for example, a blocking portion 52 inserted into the through hole 12 and a liquid separation portion 54 projecting from the opening, as shown in FIG. 7B.

この遮断部52は、少なくとも貫通孔12の開口部側を塞いで、貫通孔12内への電解液の侵入を阻止する部分である。遮断部52とゴム層4との間には、たとえば液遮断栓50の長さや挿入量に応じた空間部が形成される。
液体分離部54は、貫通孔12の開口部、またはこの開口部に設置される遮断部52上に液体が滞留するのを防止する機能部の一例である。この液体分離部54は、遮断部52に対し、ケースの内側に延伸して形成されている。すなわち、液体分離部54は、封口板2の表面よりも突出して形成されることで、ケース内で発生した水滴を樹脂層6の表面から離間させ、滞留し難くさせる。また、液遮断栓50は、液体分離部54が樹脂層6よりも突出することで、ケース内に対する表面積を多くとることができる。これにより、ケース内で生じた水滴が樹脂層6の表面に付着しても、貫通孔12内の遮断部52側へのガスの透過経路を確保することができる。
The blocking portion 52 is a portion that blocks at least the opening side of the through hole 12 to prevent the electrolyte from entering the through hole 12 . A space is formed between the blocking portion 52 and the rubber layer 4 according to, for example, the length and insertion amount of the liquid blocking plug 50 .
The liquid separating portion 54 is an example of a functional portion that prevents liquid from remaining on the opening of the through-hole 12 or on the blocking portion 52 installed in this opening. The liquid separating portion 54 is formed to extend toward the inside of the case with respect to the blocking portion 52 . That is, the liquid separating portion 54 is formed so as to protrude from the surface of the sealing plate 2, thereby separating the water droplets generated in the case from the surface of the resin layer 6 and making it difficult for the water droplets to stay. In addition, the liquid blocking plug 50 can secure a large surface area with respect to the inside of the case by protruding the liquid separating portion 54 from the resin layer 6 . As a result, even if water droplets generated in the case adhere to the surface of the resin layer 6, a gas permeation path to the blocking portion 52 side in the through hole 12 can be secured.

なお、遮断部52と液体分離部54は、貫通孔12の開口部分を境界として機能分けしたものであり、液遮断栓50の挿入量によってそれぞれの長さが決まる。また、液遮断栓50は、遮断部52と液体分離部54が一体に形成したものに限られず、別部材で構成され、貫通孔12の開口部で一体化してもよい。 The blocking portion 52 and the liquid separation portion 54 are functionally divided by the opening of the through hole 12 as a boundary, and the length of each is determined by the amount of insertion of the liquid blocking plug 50 . Further, the liquid shutoff plug 50 is not limited to the one in which the shutoff part 52 and the liquid separation part 54 are integrally formed, and may be formed of separate members and integrated at the opening of the through hole 12 .

液遮断栓50の全体の長さは、たとえば貫通孔12の深さ、つまり樹脂層6の厚さに対して短く形成されてもよく、または同等の長さ、もしくは貫通孔12よりも長く形成してもよい。貫通孔12の内部では、たとえば液遮断栓50の先端部をゴム層4に接触させてもよく、または液遮断栓50とゴム層4との間に空間部を形成するように挿入量を調整すればよい。
なお、貫通孔12に対する液遮断栓50の挿入処理では、液体分離部54が貫通孔12の外部に形成されればよい。
The entire length of the liquid blocking plug 50 may be formed shorter than the depth of the through-hole 12 , that is, the thickness of the resin layer 6 , or may be formed to have an equivalent length or longer than the through-hole 12 . You may Inside the through-hole 12, for example, the tip of the liquid blocking plug 50 may be brought into contact with the rubber layer 4, or the insertion amount may be adjusted so as to form a space between the liquid blocking plug 50 and the rubber layer 4. do it.
In addition, in the process of inserting the liquid block plug 50 into the through hole 12 , the liquid separating portion 54 may be formed outside the through hole 12 .

〔実施例2の効果〕
斯かる構成によれば、上記実施の形態と同様の効果が得られるとともに、以下のような効果が期待できる。
(1) 貫通孔12から液遮断栓50の一部を突出させることで、封口板2の表面に付着した液体が液遮断栓50の全体を覆い難くなり、貫通孔12を通じたガス調圧部の機能を確保することができる。
(2) 貫通孔12に対して液遮断栓50の一部を突出した状態にすればよく、樹脂材料の充填量や液遮断栓50の挿入量の調整および管理などが不要であり、加工処理の簡易化が図れる。
[Effect of Example 2]
According to such a configuration, the same effects as those of the above-described embodiment can be obtained, and the following effects can be expected.
(1) By protruding a part of the liquid shutoff plug 50 from the through hole 12, it becomes difficult for the liquid adhering to the surface of the sealing plate 2 to cover the entire liquid shutoff plug 50, and the gas pressure regulating part through the through hole 12 is prevented. functions can be ensured.
(2) The liquid blocking plug 50 may be partially protruded from the through-hole 12, and the filling amount of the resin material and the insertion amount of the liquid blocking plug 50 do not need to be adjusted and managed. can be simplified.

図8は、実施例3に係る封口板の構成例を示している。
この封口板2では、たとえば図8のAに示すように、貫通孔12の開口部を覆うように、液遮断膜60が設置されている。この液遮断膜60は、本発明の液遮断部の一例であり、気液分離機能を有する樹脂材料であって、少なくとも貫通孔12の開口部と、その周縁部分の所定範囲を覆う面積で形成されている。この液遮断膜60は、たとえば樹脂層6の表面に図示しない接着剤などの固定手段により密着されている。
液遮断膜60は、たとえば図8のBに示すように、貫通孔12の開口部を覆う遮断部62と、この遮断部62と一体に形成され、開口部の周囲を覆う液体分離部64を備える。
なお、遮断部62と液体分離部64は、貫通孔12の開口部を境界として機能分けしたものである。液遮断膜60は、遮断部62と液体分離部64が別部材で構成され、貫通孔12の開口部で一体化したものでもよい。
FIG. 8 shows a configuration example of a sealing plate according to the third embodiment.
In this sealing plate 2, as shown in FIG. 8A, for example, a liquid blocking film 60 is installed so as to cover the opening of the through hole 12. As shown in FIG. The liquid blocking film 60 is an example of the liquid blocking portion of the present invention, and is made of a resin material having a gas-liquid separation function, and is formed with an area covering at least the opening of the through hole 12 and a predetermined range of the peripheral edge portion thereof. It is The liquid blocking film 60 is adhered, for example, to the surface of the resin layer 6 by fixing means such as an adhesive (not shown).
For example, as shown in FIG. 8B, the liquid blocking film 60 includes a blocking portion 62 that covers the opening of the through hole 12 and a liquid separating portion 64 that is integrally formed with the blocking portion 62 and covers the periphery of the opening. Prepare.
It should be noted that the blocking portion 62 and the liquid separation portion 64 are functionally separated with the opening of the through hole 12 as a boundary. In the liquid blocking film 60 , the blocking portion 62 and the liquid separation portion 64 may be configured as separate members and integrated at the opening of the through hole 12 .

液遮断膜60は、たとえば図示しないケース内側に向けられる面が平面状に形成されてもよく、またはケース内側に向けて中央部分を頂点に突出させるように傾斜状に形成してもよい。この場合、液遮断膜60は、たとえば一面側は樹脂層6の表面に対して平行に形成されるとともに、反対面側は貫通孔12の開口部中心側に向けて膜の厚さを異ならせればよい。これにより、樹脂層6との間は密着状態を維持するとともに、遮断部62上に水滴が滞留するのを防止できる。 The liquid blocking film 60 may have a flat surface facing the inside of the case (not shown), or may be inclined so that the central portion protrudes toward the inside of the case at the apex. In this case, the liquid blocking film 60 is formed parallel to the surface of the resin layer 6 on one side, and has a different thickness toward the center of the opening of the through hole 12 on the opposite side. Just do it. As a result, it is possible to maintain close contact with the resin layer 6 and prevent water droplets from remaining on the blocking portion 62 .

〔実施例3の効果〕
斯かる構成によれば、上記実施の形態と同様の効果が得られるとともに、以下のような効果が期待できる。
(1) 貫通孔12の開口部およびその周縁部分を液遮断膜60で覆うことで、封口板2の表面に付着した液体が貫通孔12を塞ぐのを防止でき、貫通孔12を通じたガス調圧部の機能を確保することができる。
(2) 貫通孔12を基準に液遮断膜60を貼付けることで、貫通孔12に対する電解液などの水分の侵入を防止でき、加工処理の簡易化が図れる。

<実験例1>
[Effect of Example 3]
According to such a configuration, the same effects as those of the above-described embodiment can be obtained, and the following effects can be expected.
(1) By covering the opening of the through-hole 12 and its peripheral portion with the liquid blocking film 60, the liquid adhering to the surface of the sealing plate 2 can be prevented from blocking the through-hole 12, and the gas can be adjusted through the through-hole 12. The function of the pressure section can be secured.
(2) By sticking the liquid blocking film 60 on the basis of the through hole 12, it is possible to prevent water such as electrolyte from entering the through hole 12, thereby simplifying the processing.

<Experimental example 1>

次に、封口板のガス圧調整性能についての実験例を示す。図9は、実験例1の結果を示す図である。
この実験では、封口板2のガス調圧部の形成位置とその調整機能との関係を測定する。具体的には、封口板2の外部端子8と貫通孔12との距離(L1)によって、ガス調圧部が正常に機能するか否かを判断している。
この実験で用いたコンデンサは、サイズがφ30×40〔L〕、定格が450〔V〕、390〔μF〕、電解紙がクラフト紙であり、電解液がエチレングリコールを主溶媒としている。そして封口板2は、外部端子8のゴム層4との接触部のうち最外周部分と貫通孔12との間の距離(L1)を、それぞれ1.0〔mm〕、1.5〔mm〕、2.0〔mm〕、3.0〔mm〕に設定したものをそれぞれ5個ずつ用意した。
また、試験条件は、周囲環境下105〔℃〕で450〔WV〕の電圧を印加し、実験開始時0〔時間〕、開始後500〔時間〕、1000〔時間〕、2000〔時間〕、5000〔時間〕後の電解液の液漏れ状況を観測した。
Next, an experimental example of the gas pressure adjustment performance of the sealing plate will be shown. 9 is a diagram showing the results of Experimental Example 1. FIG.
In this experiment, the relationship between the formation position of the gas pressure regulating portion of the sealing plate 2 and its regulating function is measured. Specifically, the distance (L1) between the external terminal 8 of the sealing plate 2 and the through hole 12 determines whether or not the gas pressure regulating section functions normally.
The capacitor used in this experiment has a size of φ30×40 [L], a rating of 450 [V] and 390 [μF], an electrolytic paper made of kraft paper, and an electrolytic solution containing ethylene glycol as a main solvent. In the sealing plate 2, the distance (L1) between the outermost peripheral portion of the contact portion of the external terminal 8 with the rubber layer 4 and the through hole 12 is 1.0 [mm] and 1.5 [mm], respectively. , 2.0 [mm] and 3.0 [mm] were prepared respectively.
In addition, the test conditions were as follows: a voltage of 450 [WV] was applied at 105 [°C] in the ambient environment; After [time], the state of electrolyte leakage was observed.

全ての条件において、実験開始時は、電解液の液漏れはなく、異常なしとなっている。
(1) 外部端子と貫通孔との距離(L1)が1.0〔mm〕の場合
500〔時間〕経過時に、用意したコンデンサの5個中2個について、封口板2のゴム層4の外部端子8周辺に液漏れが確認された。
1000〔時間〕経過時に、残りのコンデンサの3個中3個について、封口板2のゴム層4の外部端子8周辺に液漏れが確認された。
(2) 外部端子と貫通孔との距離(L1)が1.5〔mm〕の場合
実験開始から1000〔時間〕経過まで電解液が漏れることはなく、異常なしとなった。しかし、2000〔時間〕経過時に、用意したコンデンサの5個中1個について、封口板2のゴム層4の外部端子8周辺に液漏れが確認された。また5000〔時間〕経過時に残りのコンデンサの4個中2個について、封口板2のゴム層4の外部端子8周辺に液漏れが確認された。
(3) 外部端子と貫通孔との距離(L1)が2.0〔mm〕の場合
実験開始から5000〔時間〕経過しても、コンデンサに電解液が漏れることはなく、異常なしとなった。
(4) 外部端子と貫通孔との距離(L1)が3.0〔mm〕の場合
実験開始から5000〔時間〕経過しても、コンデンサに電解液が漏れることはなく、異常なしとなった。
Under all conditions, at the start of the experiment, there was no leakage of the electrolyte and no abnormality was found.
(1) When the distance (L1) between the external terminal and the through-hole is 1.0 [mm] After 500 [hours] have passed, two out of the five prepared capacitors are exposed to the outside of rubber layer 4 of sealing plate 2. Liquid leakage was confirmed around the terminal 8 .
After 1000 [hours] had passed, liquid leakage was confirmed around the external terminals 8 of the rubber layer 4 of the sealing plate 2 in 3 of the remaining 3 capacitors.
(2) When the distance (L1) between the external terminal and the through-hole is 1.5 [mm] There was no leakage of the electrolytic solution for 1000 [hours] from the start of the experiment, and there was no abnormality. However, after 2000 [hours] elapsed, liquid leakage was confirmed around the external terminal 8 of the rubber layer 4 of the sealing plate 2 in one of the five capacitors prepared. Further, after 5000 [hours] had passed, liquid leakage was confirmed around the external terminals 8 of the rubber layer 4 of the sealing plate 2 in two of the remaining four capacitors.
(3) When the distance (L1) between the external terminal and the through-hole is 2.0 [mm] Even after 5000 [hours] have passed since the start of the experiment, the electrolyte did not leak into the capacitor, and there was no abnormality. .
(4) When the distance (L1) between the external terminal and the through-hole is 3.0 [mm] Even after 5000 [hours] have passed since the start of the experiment, the electrolyte did not leak into the capacitor and there was no abnormality. .

この実験例1の結果から、外部端子の設置位置から1.5〔mm〕のまでの範囲には、リベット10の押圧によって生じた薄肉部Xがあり、この薄肉部X部分に貫通孔12があると、コンデンサへの印加開始から2000〔時間〕が経過するまでに電解液が封口板2のゴム層4の外部端子8周辺から漏れ出る。これは、ケース22内で発生したガスは、貫通孔12を塞ぐゴム層4を封口板2の外側に向かって膨らむように押圧するが、貫通孔12が薄肉部X部分にあると、貫通孔12を覆う部分のゴム層4の厚さも薄くなるため、膨らみやすくなる。そうすると、貫通孔12を覆う部分のゴム層4は樹脂層6から離れる方向に膨らむため、ゴム層4の伸びが許容量を超えると、貫通孔12の周辺からゴム層4が樹脂層6と剥離する。剥離が外部端子8まで到達すると、電解液の液出経路が形成される。つまり、電解液が貫通孔12から剥離したゴム層4と樹脂層6の間および外部端子8と封口板2との境界面を通って、外部に漏れ出すことにより、液漏れが生じる。
従って、本願発明のように、封口板2は、外部端子の設置位置から2.0〔mm〕以上離間させた範囲にガス調圧部を形成することで、貫通孔12を覆うゴム層4の厚さは薄くならないため、ケース内部に生じる水素ガスの内圧によってもゴム層4が外側に向かって膨らまず、ゴム層4と樹脂層6との剥離を抑制し、液漏れを生じさせずにコンデンサを5000〔時間〕以上利用可能にすることができる。

<実験例2>
From the results of Experimental Example 1, there is a thin portion X formed by pressing the rivet 10 in a range of 1.5 mm from the installation position of the external terminal, and the through hole 12 is formed in the thin portion X portion. If there is, the electrolytic solution leaks from the periphery of the external terminal 8 of the rubber layer 4 of the sealing plate 2 before 2000 [hours] have elapsed since the start of application to the capacitor. The gas generated in the case 22 presses the rubber layer 4 that closes the through hole 12 so as to swell toward the outside of the sealing plate 2 . Since the thickness of the rubber layer 4 covering the portion 12 is also reduced, it becomes easier to swell. Then, since the rubber layer 4 covering the through hole 12 swells in the direction away from the resin layer 6 , when the elongation of the rubber layer 4 exceeds the allowable amount, the rubber layer 4 separates from the resin layer 6 around the through hole 12 . do. When the detachment reaches the external terminal 8, a flow path for the electrolytic solution is formed. In other words, the electrolyte leaks out through the gap between the rubber layer 4 and the resin layer 6 separated from the through hole 12 and the interface between the external terminal 8 and the sealing plate 2, causing liquid leakage.
Therefore, as in the present invention, the sealing plate 2 has a gas pressure regulating portion formed in a range spaced apart from the installation position of the external terminal by 2.0 mm or more, so that the rubber layer 4 covering the through hole 12 is formed. Since the thickness is not reduced, the rubber layer 4 does not swell outward due to the internal pressure of hydrogen gas generated inside the case. can be made available for over 5000 [hours].

<Experimental example 2>

次に、封口板のガス圧調整性能についての実験例を示す。図10は、実験例2の結果を示す図である。
この実験では、封口板2のガス調圧部の形成位置とその調整機能との関係を測定する。具体的には、封口板の平面部とケース先端部を折り返して接触した部分と、貫通孔12との距離(L5)によって、ガス調圧部が正常に機能するか否かを判断する。
この実験例2で用いたコンデンサの定格やサイズ、試験条件は、実験例1と同様である。
また、封口板2に形成した貫通孔の位置は、加締め後のゴム層のケース先端部との距離(L5)を、それぞれ1.0〔mm〕、1.5〔mm〕、2.0〔mm〕、3.0〔mm〕に設定したものをそれぞれ5個ずつ用意した。
Next, an experimental example of the gas pressure adjustment performance of the sealing plate will be shown. 10 is a diagram showing the results of Experimental Example 2. FIG.
In this experiment, the relationship between the formation position of the gas pressure regulating portion of the sealing plate 2 and its regulating function is measured. Specifically, it is determined whether or not the gas pressure regulating section functions normally based on the distance (L5) between the portion where the flat portion of the sealing plate and the tip of the case are folded back and contact with the through hole 12 .
The rating, size, and test conditions of the capacitor used in Experimental Example 2 are the same as in Experimental Example 1.
The positions of the through-holes formed in the sealing plate 2 are such that the distance (L5) between the crimped rubber layer and the tip of the case is 1.0 [mm], 1.5 [mm], and 2.0 mm, respectively. [mm] and 5 sets of 3.0 [mm] were prepared respectively.

この実験の結果を図10に示す。
全ての条件において、実験開始時は、電解液の液漏れはなく、異常なしとなっている。
(1) ケース先端部と貫通孔との距離(L5)が1.0〔mm〕の場合
500〔時間〕経過時に、用意したコンデンサの5個中2個について、封口板2のゴム層4の貫通孔12を覆う部分に液漏れが確認された。
1000〔時間〕経過時に、残りのコンデンサの3個中3個について、封口板2のゴム層4の貫通孔12を覆う部分に液漏れが確認された。
貫通孔が電解液で満たされたため、これ以降の計測結果はない。
(2) ケース先端部と貫通孔との距離(L5)が1.5〔mm〕の場合
実験開始から500〔時間〕経過まで電解液が漏れることはなく、異常なしとなった。しかし、1000〔時間〕経過時に、用意したコンデンサの5個中1個について、封口板2のゴム層4の貫通孔12を覆う部分に液漏れが確認された。また2000〔時間〕経過時に残った全てのコンデンサについて、封口板2のゴム層4の貫通孔12を覆う部分に液漏れが確認された。
(3) ケース先端部と貫通孔との距離(L5)が2.0〔mm〕の場合
実験開始から5000〔時間〕経過しても、コンデンサに電解液が漏れることはなく、異常なしとなった。
(4) ケース先端部と貫通孔との距離(L5)が3.0〔mm〕の場合
実験開始から5000〔時間〕経過しても、コンデンサに電解液が漏れることはなく、異常なしとなった。
The results of this experiment are shown in FIG.
Under all conditions, at the start of the experiment, there was no leakage of the electrolyte and no abnormality was found.
(1) When the distance (L5) between the tip of the case and the through-hole is 1.0 [mm] After 500 [hours] have elapsed, the rubber layer 4 of the sealing plate 2 of 2 out of 5 prepared capacitors Liquid leakage was confirmed in the portion covering the through hole 12 .
After 1000 [hours] had passed, three of the remaining three capacitors were confirmed to have leaked from the portion of the rubber layer 4 of the sealing plate 2 covering the through hole 12 .
Since the through-hole was filled with electrolyte, there are no further measurement results.
(2) When the distance (L5) between the tip of the case and the through-hole is 1.5 [mm] There was no leakage of the electrolytic solution until 500 [hours] had elapsed from the start of the experiment, and no abnormality was found. However, after 1000 [hours] elapsed, liquid leakage was confirmed in the portion covering the through hole 12 of the rubber layer 4 of the sealing plate 2 in one of the five prepared capacitors. Further, in all the capacitors remaining after 2000 [hours] elapsed, liquid leakage was confirmed in the portion of the rubber layer 4 of the sealing plate 2 covering the through hole 12 .
(3) When the distance (L5) between the tip of the case and the through hole is 2.0 [mm] Even after 5000 [hours] have passed since the start of the experiment, no electrolyte leaked into the capacitor and no abnormality was found. rice field.
(4) When the distance (L5) between the tip of the case and the through-hole is 3.0 [mm] Even after 5000 [hours] have passed from the start of the experiment, no electrolyte leaked into the capacitor and no abnormality was found. rice field.

この実験例2の結果から、ケース先端部から1.5〔mm〕のまでの範囲には、ケース先端部による加締めによって生じた薄肉部Xがあり、この薄肉部Xに貫通孔12があると、コンデンサへの印加開始から2000〔時間〕が経過するまでに電解液が封口板2のゴム層4の貫通孔12を覆う部分から漏れ出る。これは、ケース22内で発生したガスは、貫通孔12を塞ぐゴム層4を封口板2の外側に向かって膨らむように押圧するが、貫通孔12が薄肉部X部分にあると、貫通孔12を覆う部分のゴム層4の厚さも薄くなるため、膨らみやすくなる。そうすると、貫通孔12を覆う部分のゴム層4は樹脂層6から離れる方向に膨らむため、ゴム層4の伸びが許容量を超えると、ゴム層4の貫通孔12を覆う部分は、ひび割れが生じ、電解液が外部に漏れ出すことにより、液漏れが生じる。また、前述同様、ゴム層4の伸びが許容量を超えると、貫通孔12の周辺からゴム層4が樹脂層6と剥離し、剥離が外部端子8や封口板2の外周まで到達すると、電解液の液出経路が形成されることがある。
また、実験例1の結果と比較すると、封口板のゴム層を押圧する押圧部材が外部端子またはケース先端部かの違いに依らず、貫通孔までの距離や経過時間に対する液漏れの結果が同一またはそれに近いものとなった。すなわち、封口板のガス調圧部は、薄肉部Xが形成される距離に依存する。
従って、本願発明のように、封口板は、外部端子のゴム層との接触部およびケースの先端部の接触位置から2.0〔mm〕以上離間させた範囲にガス調圧部を形成することで、ケース内部に生じる水素ガスの排出機能が維持でき、コンデンサを5000〔時間〕以上利用可能にすることができる。

<実験例3>
From the results of this Experimental Example 2, there is a thin portion X formed by crimping by the case tip portion within a range of 1.5 mm from the case tip portion, and this thin portion X has a through hole 12. Then, the electrolytic solution leaks out from the portion of the rubber layer 4 of the sealing plate 2 covering the through hole 12 until 2000 [hours] have elapsed since the start of application to the capacitor. The gas generated in the case 22 presses the rubber layer 4 that closes the through hole 12 so as to swell toward the outside of the sealing plate 2 . Since the thickness of the rubber layer 4 covering the portion 12 is also reduced, it becomes easier to swell. As a result, the portion of the rubber layer 4 covering the through-hole 12 swells in the direction away from the resin layer 6, so if the elongation of the rubber layer 4 exceeds the allowable amount, the portion of the rubber layer 4 covering the through-hole 12 cracks. , the electrolyte leaks to the outside, causing liquid leakage. Also, as described above, when the elongation of the rubber layer 4 exceeds the allowable amount, the rubber layer 4 separates from the resin layer 6 from the periphery of the through hole 12, and when the separation reaches the external terminal 8 or the outer periphery of the sealing plate 2, electrolysis occurs. A liquid outflow path may be formed.
In addition, when compared with the results of Experimental Example 1, regardless of whether the pressing member that presses the rubber layer of the sealing plate is the external terminal or the tip of the case, the results of liquid leakage with respect to the distance to the through-hole and the elapsed time are the same. or something close to it. That is, the gas pressure adjusting portion of the sealing plate depends on the distance at which the thin portion X is formed.
Therefore, as in the present invention, the sealing plate should be provided with a gas pressure regulating portion in a range separated by 2.0 [mm] or more from the contact portion of the external terminal with the rubber layer and the contact position of the tip of the case. Therefore, the function of discharging hydrogen gas generated inside the case can be maintained, and the capacitor can be used for 5000 hours or more.

<Experimental example 3>

次に、ガス調圧機能の状態についての実験例を示す。図11は実験例3の計測結果を示しており、図12はコンデンサケースの膨張度合いを示している。
この実験では、ガス調圧機能とコンデンサケース内の膨張状態との関係を測定する。具体的には、コンデンサケースの膨張状態から封口板2のガス調圧機能の効果の判断と、液遮断部によるガス調圧機能の維持について判断する。
Next, an experimental example regarding the state of the gas pressure regulating function will be shown. FIG. 11 shows the measurement results of Experimental Example 3, and FIG. 12 shows the degree of expansion of the capacitor case.
In this experiment, the relationship between the gas pressure regulation function and the expansion state inside the capacitor case is measured. Specifically, the effect of the gas pressure regulating function of the sealing plate 2 and the maintenance of the gas pressure regulating function by the liquid blocking portion are determined from the expansion state of the capacitor case.

この実験例3では、サイズがφ30×40〔L〕、定格が450〔V〕、390〔μF〕、電解紙がクラフト紙であり、電解液がエチレングリコールを主溶媒としたコンデンサを用いている。そして封口板2は、貫通孔12と外部端子8との距離(L1)が約8.2〔mm〕であり、貫通孔12とケース先端部間距離(L5)を約4.2〔mm〕としている。さらに、この封口板2は、実験側の構成として、樹脂層6に中空の貫通孔12を備えたもの(第1の実施の形態)、貫通孔12の内部に液遮断部40としてシリコン樹脂を封入したもの(第2の実施の形態)、貫通孔12の開口部およびその周縁部分をPP(ポリプロピレン)テープで覆ったもの(実施例3)を準備している。
また、封口板2は、実験比較例として、貫通孔12を備えないもの(比較例1)や、貫通孔12の内部に電解液が侵入したもの(比較例2)を準備した。
各条件において、コンデンサは5個ずつ用いている。
そして、試験条件は、周囲環境下105〔℃〕で450〔WV〕の電圧を印加し、実験開始時0〔時間〕、開始後250〔時間〕、500〔時間〕経過後のケースの膨張量を計測し、5個の平均値を算出する。
In Experimental Example 3, a capacitor with a size of φ30×40 [L], a rating of 450 [V] and 390 [μF], an electrolytic paper made of kraft paper, and an electrolytic solution containing ethylene glycol as a main solvent is used. . The sealing plate 2 has a distance (L1) between the through-hole 12 and the external terminal 8 of approximately 8.2 [mm], and a distance (L5) between the through-hole 12 and the tip of the case of approximately 4.2 [mm]. and Further, the sealing plate 2 has, as a configuration on the experimental side, a hollow through-hole 12 in the resin layer 6 (first embodiment), and silicone resin is filled inside the through-hole 12 as a liquid blocking portion 40 . An enclosed one (second embodiment) and one in which the opening of the through-hole 12 and its peripheral portion were covered with a PP (polypropylene) tape (Example 3) were prepared.
As for the sealing plate 2, as experimental comparative examples, one without the through holes 12 (Comparative Example 1) and one in which the electrolyte penetrated into the through holes 12 (Comparative Example 2) were prepared.
Five capacitors are used for each condition.
Then, the test conditions were as follows: a voltage of 450 [WV] was applied at 105 [°C] in the ambient environment, and the amount of expansion of the case after 0 [hour] at the start of the experiment, 250 [hours] after the start, and 500 [hours]. is measured and the average value of 5 is calculated.

この実験の結果を図11に示す。
(1) 貫通孔12にシリコン樹脂を封入した第2の実施の形態に示す構成では、250〔時間〕経過後のケース膨張量が0.53〔mm〕であり、500〔時間〕経過後のケース膨張量が0.58〔mm〕となった。
(2) 貫通孔12の開口部をPPテープで覆った実施例3に示す構成では、250〔時間〕経過後のケース膨張量が0.6〔mm〕であり、500〔時間〕経過後のケース膨張量が0.6〔mm〕となった。
(3) 貫通孔12の開口部が開放された第1の実施の形態に示す構成では、250〔時間〕経過後のケース膨張量が0.52〔mm〕であり、500〔時間〕経過後のケース膨張量が0.52〔mm〕となった。
(4) 貫通孔を備えない封口板を利用した比較例1では、250〔時間〕経過後のケース膨張量が0.67〔mm〕であり、500〔時間〕経過後のケース膨張量が0.74〔mm〕となった。
(5) 貫通孔12の内部に電解液が侵入した状態の比較例2では、250〔時間〕経過後のケース膨張量が0.65〔mm〕であり、500〔時間〕経過後のケース膨張量が0.7〔mm〕となった。
The results of this experiment are shown in FIG.
(1) In the configuration shown in the second embodiment in which the through hole 12 is filled with silicon resin, the expansion amount of the case after 250 [hours] is 0.53 [mm], and after 500 [hours] The expansion amount of the case was 0.58 [mm].
(2) In the configuration shown in Example 3, in which the opening of the through-hole 12 was covered with the PP tape, the amount of expansion of the case after 250 [hours] was 0.6 [mm], and after 500 [hours] The expansion amount of the case was 0.6 [mm].
(3) In the configuration shown in the first embodiment in which the opening of the through hole 12 is open, the amount of expansion of the case after 250 [hours] is 0.52 [mm], and after 500 [hours] case expansion amount was 0.52 [mm].
(4) In Comparative Example 1 using a sealing plate without a through hole, the amount of expansion of the case after 250 [hours] was 0.67 [mm], and the amount of expansion of the case after 500 [hours] was 0. .74 [mm].
(5) In Comparative Example 2 in which the electrolyte penetrated into the through hole 12, the amount of case expansion after 250 [hours] was 0.65 [mm], and the case expansion after 500 [hours] had passed. The amount became 0.7 [mm].

時間経過に応じたケースの変化状態を図12に示す。
斯かる計測結果は、たとえば図12に示すように、貫通孔12を備えた構成のうち、実施例3(計測結果(2))と第1の実施の形態(計測結果(3))では、コンデンサに電圧を印加して実験開始から250時間経過後について、時間経過に関わらず、ケースの膨張量は同じ大きさに維持されている。すなわち、貫通孔12を含むガス調圧機能によりケース内で発生したガスが排出されることで、ケースの膨張が抑えられている。
FIG. 12 shows how the cases change over time.
For example, as shown in FIG. 12, such measurement results are obtained in the third embodiment (measurement result (2)) and the first embodiment (measurement result (3)) among the structures provided with the through holes 12. After 250 hours from the start of the experiment after the voltage was applied to the capacitor, the amount of expansion of the case was maintained at the same magnitude regardless of the passage of time. That is, the expansion of the case is suppressed by discharging the gas generated in the case by the gas pressure regulating function including the through hole 12 .

第2の実施の形態(計測結果(1))では、250〔時間〕から500〔時間〕の間にケースの膨張が進んでいるが、ガス調圧機能を備えない比較例1、2(計測結果(4)、(5))に比べてケースの膨張量は小さい値となっている。この結果から、膨らみ量が大きいほどガスが透過せず、内圧が上昇し、ケースの底部が膨らむことが示されている。 In the second embodiment (measurement result (1)), the expansion of the case progresses between 250 [hours] and 500 [hours]. Compared to the results (4) and (5)), the amount of expansion in the case is a small value. From this result, it is shown that the larger the amount of swelling, the less gas permeates, the higher the internal pressure, and the more the bottom of the case swells.

第1の実施の形態(計測結果(3))と比較例1(計測結果(4))とを対比すると、貫通孔12およびゴム層4を含むガス調圧機能によって、ケース内部のガスの放出ができ、ケースを膨張させないことが示されている。
また、ガス調圧部を備える第2の実施の形態(計測結果(1))および実施例3(計測結果(2))と、比較例2(計測結果(5))とを対比すると、貫通孔12内に電解液が侵入することでガス調圧機能が低下または機能しないことが明らかとなった。
Comparing the first embodiment (measurement result (3)) with the comparative example 1 (measurement result (4)), it can be seen that the gas pressure regulating function including the through hole 12 and the rubber layer 4 releases the gas inside the case. It has been shown to be possible and not bloat the case.
Further, when comparing the second embodiment (measurement result (1)) and the third embodiment (measurement result (2)) provided with a gas pressure regulating section with the comparative example 2 (measurement result (5)), the penetration It has become clear that the gas pressure regulation function is lowered or does not function due to the intrusion of the electrolytic solution into the hole 12 .

斯かる実験例3から、封口板2にガス調圧部を備えることで、コンデンサの動作によって発生するガスによりケースの膨張が抑えられることが明らかとなった。また、ガス調圧機能を構成する貫通孔12に対し、電解液などの水分が侵入することで、ガス調圧機能の低下が生じるおそれが確認できた。
従って、本願発明のように、コンデンサの使用条件や設置環境、設置状態により、封口板2に対して電解液が侵入するおそれがある場合には、ガス調圧部に対して液遮断部を備えることが望ましい。
From Experimental Example 3, it is clear that the expansion of the case due to the gas generated by the operation of the capacitor can be suppressed by providing the gas pressure regulating portion in the sealing plate 2 . Moreover, it was confirmed that the gas pressure regulation function might deteriorate due to the intrusion of moisture such as the electrolytic solution into the through hole 12 that constitutes the gas pressure regulation function.
Therefore, as in the present invention, when there is a possibility that the electrolyte may enter the sealing plate 2 depending on the usage conditions, installation environment, and installation state of the capacitor, a liquid blocking section is provided for the gas pressure regulating section. is desirable.

〔他の実施の形態〕 [Other embodiments]

以上説明した実施形態について、その特徴事項や変形例を以下に列挙する。 Features and modifications of the embodiments described above are listed below.

(1) 上記実施の形態では、ガス調圧部である貫通孔12の開口形状が円形の場合を示したがこれに限らない。貫通孔12は、円形以外の多角形状に形成されてもよい。
(2) 封口板2に形成された複数の貫通孔12について、全て同じ径で形成される場合に限らない。貫通孔12は、たとえば配置される位置や数に応じて開口径を異ならせてもよい。
(3) 貫通孔12は、たとえばゴム層4を形成するゴム材料の硬度に応じて、開口数や開口位置、開口径を設定してもよい。
(4) 上記実施の形態では、封口板2の製造処理において、樹脂層6のみを削ることで貫通孔12を形成する場合を示したがこれに限らない。貫通孔12の形成処理では、ゴム層4の表面側の一部まで削ってもよい。これにより貫通孔12内にガスを透過しない樹脂層6を残留させないことで、ガス調圧部の機能を発揮することができる。
(1) In the above embodiment, the opening shape of the through-hole 12, which is the gas pressure regulating portion, is circular, but it is not limited to this. The through hole 12 may be formed in a polygonal shape other than a circular shape.
(2) The plurality of through holes 12 formed in the sealing plate 2 are not limited to all having the same diameter. The through-holes 12 may have different opening diameters, for example, depending on the position and number of them.
(3) The number of openings, opening positions, and opening diameters of the through holes 12 may be set according to the hardness of the rubber material forming the rubber layer 4, for example.
(4) In the above-described embodiment, in the manufacturing process of the sealing plate 2, the case where the through holes 12 are formed by scraping only the resin layer 6 is shown, but the present invention is not limited to this. In the process of forming the through-holes 12, the surface side of the rubber layer 4 may be partly scraped. As a result, the gas-impermeable resin layer 6 does not remain in the through hole 12, so that the function of the gas pressure regulating section can be exhibited.

以上説明したように、本発明の最も好ましい実施の形態等について説明した。本発明は、上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiment and the like of the present invention have been described. The invention is not limited to the above description. Various modifications and changes are possible for those skilled in the art based on the gist of the invention described in the claims or disclosed in the detailed description. It goes without saying that such modifications and changes are included in the scope of the present invention.

本発明のコンデンサおよびその製造方法によれば、封口板の平面部に形成された薄肉部を回避してガス調圧部を形成することで、封口板によるガス透過機能を維持するこができ、コンデンサの寿命を維持させるなど、有用である。
According to the capacitor and the manufacturing method thereof of the present invention, the gas pressure regulating portion is formed by avoiding the thin portion formed on the planar portion of the sealing plate, so that the gas permeation function of the sealing plate can be maintained. It is useful for maintaining the life of the capacitor.

2 封口板
4 ゴム層
6 樹脂層
8 外部端子
8a 陽極端子
8b 陰極端子
10 リベット
12 貫通孔
14 ケース先端部
20 コンデンサ
22 ケース
24 開口部
30 コンデンサ素子
32a、32b タブ
40、50 液遮断栓
52、62 遮断部
54、64 液体分離部
60 液遮断膜
2 sealing plate 4 rubber layer 6 resin layer 8 external terminal 8a anode terminal 8b cathode terminal 10 rivet 12 through hole 14 case tip 20 capacitor 22 case 24 opening 30 capacitor element 32a, 32b tabs 40, 50 liquid block plug 52, 62 Blocking parts 54, 64 Liquid separating part 60 Liquid blocking membrane

Claims (5)

コンデンサ素子と、
前記コンデンサ素子を収納するコンデンサケースと、
前記コンデンサケースの開口部を封止する封口板と、
を備え、前記封口板は、
ガスを透過する第1の部材とガスを封止する第2の部材が積層された積層体と、
前記積層体の少なくとも前記第1の部材の平面部の一部が押圧される押圧部と、
前記押圧部および前記押圧部の周囲の所定範囲に設定した薄肉部に重ならない位置で、前記積層体の前記第2の部材に形成されている貫通孔および該貫通孔を覆う前記第1の部材でガスを透過させて調圧するガス調圧部と、
前記貫通孔の開口部に設置されて、前記貫通孔に対してガスを透過させるとともに液体の侵入を阻止する液遮断部と、
を備えることを特徴とするコンデンサ。
a capacitor element;
a capacitor case that houses the capacitor element;
a sealing plate that seals the opening of the capacitor case;
wherein the sealing plate is
a laminated body in which a first member that permeates gas and a second member that seals gas are laminated;
a pressing portion that presses at least a part of the planar portion of the first member of the laminate;
a through hole formed in the second member of the laminate and a first member covering the through hole at a position not overlapping the pressing portion and a thin portion set in a predetermined range around the pressing portion; a gas pressure regulating unit that regulates the pressure by allowing gas to permeate through the
a liquid blocker installed at the opening of the through-hole to allow gas to pass through the through-hole and prevent liquid from entering;
A capacitor comprising:
前記押圧部は、前記積層体に設置された端子部品を含み、
前記貫通孔は、前記端子部品の設置位置から2.0ミリメートル以上離れた範囲に形成されていることを特徴とする、請求項1に記載のコンデンサ。
The pressing part includes a terminal component installed on the laminate,
2. The capacitor according to claim 1, wherein said through-hole is formed in a range separated by 2.0 mm or more from the installation position of said terminal component.
前記押圧部は、開口部側に沿って折り返された前記コンデンサケースの端部側と前記第1の部材との接触部であり、
前記貫通孔は、前記端部の接触位置から前記積層体の中央方向に2.0ミリメートル以上離れた範囲に形成されていることを特徴とする、請求項1または請求項2に記載のコンデンサ。
the pressing portion is a contact portion between the first member and the end portion side of the capacitor case folded back along the opening portion side,
3. The capacitor according to claim 1, wherein said through-hole is formed in a range of 2.0 mm or more away from the contact position of said end toward the center of said laminate.
前記第1の部材は、硬度が、JIS K6253の規格に準拠し、50Hs以上でかつ85Hs以下のゴム材料であることを特徴とする請求項1ないし請求項のいずれかに記載のコンデンサ。 4. The capacitor according to any one of claims 1 to 3 , wherein said first member is made of a rubber material having a hardness of 50 Hs or more and 85 Hs or less in accordance with JIS K6253. コンデンサの製造方法であって、
コンデンサ素子をコンデンサケースに収納する処理と、
ガスを透過する第1の部材とガスを封止する第2の部材が積層された積層体の少なくとも前記第1の部材の平面部の一部が押圧される押圧部と、前記押圧部および前記押圧部の周囲の所定範囲に設定した薄肉部に重ならない位置で、前記積層体の前記第2の部材に形成されている貫通孔および該貫通孔を覆う前記第1の部材でガスを透過させて調圧するガス調圧部とを備える封口板の前記貫通孔の開口部に、前記貫通孔に対してガスを透過させるとともに液体の侵入を阻止する液遮断部を設置する処理と、
前記封口版で前記コンデンサケースを封止する処理と、
前記貫通孔から所定距離以上離れた位置で前記第1の部材と接触するように前記コンデンサケースの端部を前記封口板に折り返す処理と、
を含むことを特徴とするコンデンサの製造方法。
A method for manufacturing a capacitor,
a process of housing the capacitor element in a capacitor case;
a pressing portion for pressing at least a part of a plane portion of the first member of a laminated body in which a first member permeable to gas and a second member for sealing gas are laminated; Gas is permeated through a through-hole formed in the second member of the laminate and the first member covering the through-hole at a position not overlapping a thin-walled portion set in a predetermined range around the pressing portion. A process of installing a liquid blocking part that allows gas to pass through the through hole and prevents liquid from entering into the through hole in the opening of the through hole of the sealing plate provided with a gas pressure adjusting part that adjusts the pressure by
a process of sealing the capacitor case with the sealing plate ;
a process of folding back the end of the capacitor case to the sealing plate so as to contact the first member at a position spaced apart from the through hole by a predetermined distance or more;
A method of manufacturing a capacitor, comprising:
JP2019535638A 2017-08-10 2018-08-06 Capacitor and manufacturing method thereof Active JP7196846B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017154969 2017-08-10
JP2017154969 2017-08-10
PCT/JP2018/029364 WO2019031432A1 (en) 2017-08-10 2018-08-06 Capacitor and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2019031432A1 JPWO2019031432A1 (en) 2020-08-20
JP7196846B2 true JP7196846B2 (en) 2022-12-27

Family

ID=65271970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019535638A Active JP7196846B2 (en) 2017-08-10 2018-08-06 Capacitor and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP7196846B2 (en)
WO (1) WO2019031432A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177322A (en) 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Capacitor
JP2009063593A (en) 2004-08-11 2009-03-26 Nippon Telegr & Teleph Corp <Ntt> Ozone gas detecting element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011638Y2 (en) * 1979-10-26 1985-04-17 日本ケミコン株式会社 Explosion-proof device for electrolytic capacitors
JPH08335536A (en) * 1995-06-06 1996-12-17 Marcon Electron Co Ltd Electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063593A (en) 2004-08-11 2009-03-26 Nippon Telegr & Teleph Corp <Ntt> Ozone gas detecting element
JP2008177322A (en) 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Capacitor

Also Published As

Publication number Publication date
JPWO2019031432A1 (en) 2020-08-20
WO2019031432A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
US20120282499A1 (en) Electrochemical cell
WO2006025306A1 (en) Closed type capacitor
KR101923302B1 (en) Storage cell, exterior film and storage module
KR101070677B1 (en) Electrochemical Cell with Gas Permeable Membrane
JP2008109074A (en) Electrolytic capacitor
JP6278176B2 (en) Method for manufacturing power storage device provided with gas vent valve
KR101920992B1 (en) Storage cell, exterior film and storage module
JP2023078220A (en) Capacitor
JP2014209526A (en) Power storage device
JP7196846B2 (en) Capacitor and manufacturing method thereof
KR101920991B1 (en) Storage cell, exterior film and storage module
CN111448632B (en) Sealing plate, capacitor, and method for manufacturing sealing plate
JP6225499B2 (en) Explosion-proof device for sealed electrochemical devices
KR101923303B1 (en) Storage cell, exterior film and storage module
US20220344104A1 (en) Electrolytic Capacitor With Controlling Element For Gas Diffusion
JP6489124B2 (en) Capacitor
WO2022070595A1 (en) Capacitor and method for manufacturing same
JP6937140B2 (en) Capacitor seal plates, methods for manufacturing capacitors and seal plates
JP6191015B2 (en) Electrolytic capacitor
US20240170227A1 (en) Power storage device
JP2022055636A (en) Capacitor and manufacturing method thereof
JP2022055637A (en) Capacitor and manufacturing method thereof
JP2020191373A (en) Winding power storage device and manufacturing method thereof
JP6264526B2 (en) Power storage device
JP2013207031A (en) Pressure valve for capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7196846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150