JP7196685B2 - Bearing walls and wall materials - Google Patents

Bearing walls and wall materials Download PDF

Info

Publication number
JP7196685B2
JP7196685B2 JP2019033169A JP2019033169A JP7196685B2 JP 7196685 B2 JP7196685 B2 JP 7196685B2 JP 2019033169 A JP2019033169 A JP 2019033169A JP 2019033169 A JP2019033169 A JP 2019033169A JP 7196685 B2 JP7196685 B2 JP 7196685B2
Authority
JP
Japan
Prior art keywords
load
wall
opening
bearing wall
openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019033169A
Other languages
Japanese (ja)
Other versions
JP2020139269A (en
Inventor
良道 河合
繁明 藤内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019033169A priority Critical patent/JP7196685B2/en
Publication of JP2020139269A publication Critical patent/JP2020139269A/en
Application granted granted Critical
Publication of JP7196685B2 publication Critical patent/JP7196685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)

Description

本発明は、耐力壁及び壁面材に関する。 The present invention relates to load-bearing walls and wall coverings.

特許文献1には、物の上下の水平部材に接合される一対の縦材と、一対の縦材に接合され、複数のバーリング孔が上下に1列に形成された壁面材と、を備える耐力壁が開示されている。この耐力壁では、壁面材に形成されるバーリング孔の形状が円形とされている。 In Patent Document 1, a pair of vertical members joined to the upper and lower horizontal members of an object, and a wall member joined to the pair of vertical members and having a plurality of burring holes formed in a row vertically are provided. A wall is disclosed. In this load-bearing wall, the shape of the burring hole formed in the wall surface material is circular.

特許5805893号公報Japanese Patent No. 5805893

ところで、耐力壁の壁面材には、配管や配線のために複数の貫通孔が形成されていることがある。この貫通孔は、壁面材の耐力等を考慮して円形とされることが多い。しかし、市場では、円形の貫通孔を形成した耐力壁と比べて、地震の初期から終局までの耐力が略同等であり、さらに、軽量化も図れる耐力壁の開発が望まれている。 By the way, the wall material of the load-bearing wall may have a plurality of through-holes for piping and wiring. This through hole is often circular in consideration of the bearing strength of the wall material. However, in the market, there is a demand for the development of a load-bearing wall that has approximately the same load-bearing capacity from the beginning to the end of an earthquake and is also lighter than load-bearing walls with circular through holes.

本発明は上記事実を考慮し、地震の初期から終局までの耐力を確保しつつ、軽量化を図れる耐力壁及び壁面材を提供することを課題とする。 In view of the above facts, it is an object of the present invention to provide a load-bearing wall and a wall surface material that can reduce the weight while ensuring the load-bearing force from the beginning to the end of an earthquake.

本発明の第1態様の耐力壁は、上下方向に延びる一対の縦材と、一対の前記縦材にそれぞれ接合され、縁部に環状リブが設けられた開口部が前記上下方向に間隔をあけて1列形成された壁面材と、を備え、前記開口部の形状は、偶数個の角部を有する多角形状であり、前記壁面材には、前記上下方向に延びる直線に対して左右対称で且つ前記直線上に前記開口部の対向する前記角部の頂点同士が位置するように前記開口部が形成されている。 The load-bearing wall of the first aspect of the present invention comprises a pair of vertical members extending in the vertical direction, and openings each joined to the pair of vertical members and provided with annular ribs on the edges thereof being spaced apart in the vertical direction. and a wall surface member formed in a row with the opening having an even number of corners, wherein the wall surface member is symmetrical with respect to the straight line extending in the vertical direction. In addition, the opening is formed such that the apexes of the opposing corners of the opening are positioned on the straight line.

第1態様の耐力壁では、壁面材に形成された開口部の形状を偶数個の角部を有する多角形状としているため、多角形状の開口部における内接円の大きさを円形の開口部の大きさ以上とすることで、円形の開口部よりも壁面材に対する開口面積を大きくすることができる。これにより、耐力壁の軽量化を図ることができる。
また、上記耐力壁では、多角形状の開口部を上下方向に延びる直線に対して左右対称で且つ当該直線上に対向する角部の頂点同士が位置するように壁面材に形成している。このため、上記耐力壁では、地震の初期から終局までの耐力を、円形の開口部が形成された壁面材を有する耐力壁と略同程度に確保することができる。
In the load-bearing wall of the first aspect, since the shape of the opening formed in the wall surface material is a polygonal shape having an even number of corners, the size of the inscribed circle in the polygonal opening is the same as that of the circular opening. By setting the size to be larger than that of the circular opening, the opening area to the wall surface material can be made larger than that of the circular opening. This makes it possible to reduce the weight of the bearing wall.
Further, in the load-bearing wall, the polygonal opening is formed in the wall surface material so that the vertexes of the corners facing each other on the straight line are positioned symmetrically with respect to the straight line extending in the vertical direction. Therefore, the load-bearing wall can ensure a load-bearing force from the beginning to the end of an earthquake to substantially the same extent as a load-bearing wall having a wall surface material with a circular opening formed therein.

本発明の第2態様の耐力壁は、第1態様の耐力壁において、隣接する前記開口部の大きさが同じである。 A load-bearing wall according to a second aspect of the present invention is the load-bearing wall according to the first aspect, in which the adjacent openings have the same size.

第2態様の耐力壁では、隣接する開口部の大きさを同じ大きさにしていることから、例えば、隣接する開口部の大きさが異なる構成と比べて、開口部毎に作用する応力が一定となるため、地震の初期から終局までの耐力を確保しやすい。また、壁面材の製造も容易になる。 In the load-bearing wall of the second aspect, since the adjacent openings are of the same size, the stress acting on each opening is constant compared to, for example, a configuration in which the adjacent openings are of different sizes. Therefore, it is easy to secure the bearing strength from the beginning to the end of an earthquake. In addition, it becomes easy to manufacture the wall material.

本発明の第3態様の耐力壁は、第1態様又は第2態様の耐力壁において、前記開口部は、角部の頂点を前記直線上に配置した正方形状である。 A load-bearing wall according to a third aspect of the present invention is the load-bearing wall according to the first aspect or the second aspect, wherein the opening has a square shape with corner vertices arranged on the straight line.

第3態様の耐力壁では、開口部の形状を上下方向に延びる直線上に角部の頂点を配置した正方形状としていることから、内接円の大きさが同一の正多角形状の中で最も開口面積を大きくすることができるため、軽量化をさらに図ることができる。 In the load-bearing wall of the third aspect, the shape of the opening is a square with the vertices of the corners arranged on a straight line extending in the vertical direction. Since the opening area can be increased, the weight can be further reduced.

本発明の第4態様の耐力壁は、第1態様~第3態様のいずれか一態様において、前記上下方向に隣接する前記開口部の中心間距離が、一対の前記縦材と前記壁面材との接合点間の水平距離よりも短い。 A load-bearing wall according to a fourth aspect of the present invention, in any one of the first to third aspects, is such that the distance between the centers of the openings adjacent to each other in the vertical direction is the same as that of the pair of vertical members and the wall member. less than the horizontal distance between the junction points of

第4態様の耐力壁では、壁面材において、上下方向に隣接する開口部の中心間距離を一対の縦材と壁面材との接合点間の水平距離よりも短くしている。このため、耐力壁に地震による水平荷重が耐力壁に伝達された際に、壁面材では、一方の縦材と壁面材との接合部と開口部との水平方向の中間部、及び、他方の縦材と壁面材との接合部と開口部との水平方向の中間部におけるせん断応力(ミーゼス応力)値が上下方向に隣接する開口部間の上下方向の中間部のせん断応力値よりも低くなる。これにより、一対の縦材に生じる水平方向へのせん断応力が低減される。その結果、壁面材において上下方向に隣接する開口部間の上下方向の中間部が変形する前に、壁面材と縦材との接合部が変形することが抑制され、地震エネルギーを安定して吸収することが可能となる。 In the load-bearing wall of the fourth aspect, in the wall surface material, the distance between the centers of vertically adjacent openings is shorter than the horizontal distance between the joint points of the pair of vertical members and the wall surface material. For this reason, when a horizontal load due to an earthquake is transmitted to the load-bearing wall, in the wall material, the horizontal middle part between the joint between one vertical member and the wall material and the opening and the other The shear stress (Mises stress) value at the horizontal intermediate part between the joint between the vertical member and the wall material and the opening becomes lower than the shear stress value at the vertical intermediate part between the vertically adjacent openings. . This reduces the horizontal shear stress that occurs in the pair of longitudinal members. As a result, deformation of the joints between the wall material and the vertical members is suppressed before the vertical intermediate portion between the vertically adjacent openings in the wall material deforms, stably absorbing the seismic energy. It becomes possible to

本発明の第5態様の壁面材は、上下方向に延びる一対の縦材にそれぞれ接合される壁面材であって、前記上下方向に間隔をあけて形成され、偶数個の角部を有する多角形状の開口部と、前記開口部の縁部に設けられた環状リブと、を備え、前記上下方向に延びる直線に対して左右対称で且つ前記直線上に前記開口部の対向する前記角部の頂点同士が位置している。 A wall surface member according to a fifth aspect of the present invention is a wall surface member that is joined to a pair of vertical members extending in the vertical direction, and is formed in a polygonal shape having an even number of corners and is formed with an interval in the vertical direction. and an annular rib provided at the edge of the opening, symmetrical with respect to the straight line extending in the vertical direction and on the straight line. are located together.

第5態様の壁面材では、開口部の形状を偶数個の角部を有する多角形状としているため、多角形状の開口部における内接円の大きさを円形の開口部の大きさ以上とすることで、円形の開口部よりも壁面材に対する開口面積を大きくすることができる。これにより、壁面材の軽量化を図ることができる。
また、上記壁面材では、多角形状の開口部を上下方向に延びる直線に対して左右対称で且つ当該直線上に対向する角部の頂点同士が位置するように形成している。このため、上記壁面材では、地震の初期から終局までの耐力を、円形の開口部が形成された壁面材と略同程度に確保することができる。
In the wall surface material of the fifth aspect, since the shape of the opening is polygonal with an even number of corners, the size of the inscribed circle in the polygonal opening must be equal to or greater than the size of the circular opening. , the opening area to the wall surface material can be made larger than that of the circular opening. As a result, it is possible to reduce the weight of the wall surface material.
Further, in the wall surface material, the polygonal opening is formed symmetrically with respect to a straight line extending in the vertical direction, and is formed such that the vertexes of the corners facing each other on the straight line are positioned. For this reason, the above-mentioned wall surface material can ensure the strength from the beginning to the end of an earthquake to substantially the same extent as a wall surface material in which a circular opening is formed.

本発明によれば、地震の初期から終局までの耐力を確保しつつ、軽量化を図れる耐力壁及び壁面材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the load-bearing wall and wall surface material which can achieve weight reduction can be provided, ensuring the bearing force from the beginning to the end of an earthquake.

本発明の一実施形態の耐力壁の正面図である。1 is a front view of a load-bearing wall according to one embodiment of the invention; FIG. 図1に示される耐力壁の枠材の正面図である。Figure 2 is a front view of the frame member of the bearing wall shown in Figure 1; 図1の矢印3Xで指し示す部分を拡大した拡大図である。2 is an enlarged view of a portion indicated by an arrow 3X in FIG. 1; FIG. 地震の終局時において図1に示される耐力壁の各部位に作用する力を矢印で示す図3に対応する部分の拡大図である。FIG. 4 is an enlarged view of the portion corresponding to FIG. 3 showing by arrows the forces acting on each part of the bearing wall shown in FIG. 1 at the end of an earthquake; 図1の5X-5X線に沿って切断した耐力壁の断面図である。5X is a cross-sectional view of the bearing wall taken along line 5X-5X of FIG. 1; FIG. 図1の6X-6X線に沿って切断した耐力壁の断面図である。6X is a cross-sectional view of the bearing wall taken along line 6X-6X of FIG. 1; FIG. 本発明のその他の実施形態の耐力壁の開口部周辺の拡大図である。FIG. 11 is an enlarged view of the opening and the vicinity of the load-bearing wall of another embodiment of the present invention; 本発明のその他の実施形態の耐力壁の開口部周辺の拡大図である。FIG. 11 is an enlarged view of the opening and the vicinity of the load-bearing wall of another embodiment of the present invention; 比較例1の耐力壁の開口部周辺の拡大図である。4 is an enlarged view of the periphery of the opening of the load-bearing wall of Comparative Example 1. FIG. 比較例2の耐力壁の開口部周辺の拡大図である。FIG. 11 is an enlarged view of the periphery of the opening of the load-bearing wall of Comparative Example 2; 比較例3の耐力壁の開口部周辺の拡大図である。FIG. 11 is an enlarged view of the periphery of the opening of the load-bearing wall of Comparative Example 3; 比較例4の耐力壁の開口部周辺の拡大図である。FIG. 11 is an enlarged view of the periphery of the opening of the load-bearing wall of Comparative Example 4; 比較例5の耐力壁の開口部周辺の拡大図である。FIG. 11 is an enlarged view of the periphery of the opening of the load-bearing wall of Comparative Example 5; 耐力壁の層間変化角に対する水平荷重の変化の特性を示すグラフである。4 is a graph showing the characteristics of change in horizontal load with respect to the inter-story change angle of the load-bearing wall.

図1~図6を用いて本発明の一実施形態に係る耐力壁及び壁面材について説明する。なお、図中に示された矢印Uは、本実施形態の耐力壁が適用される建物の上方向を示している。また、図中に示された矢印Wは、耐力壁の幅方向を示している。なお、本実施形態では、耐力壁の幅方向と建物の水平方向が一致している。 A load-bearing wall and a wall surface material according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6. FIG. The arrow U shown in the drawing indicates the upward direction of the building to which the load-bearing wall of this embodiment is applied. An arrow W shown in the drawing indicates the width direction of the load-bearing wall. In addition, in this embodiment, the width direction of the load-bearing wall and the horizontal direction of the building match.

図1に示されるように、本実施形態の耐力壁20は、枠材22と、壁面材50と、を備えている。 As shown in FIG. 1 , the load-bearing wall 20 of this embodiment includes a frame member 22 and a wall member 50 .

図1及び図2に示されるように、枠材22は、矩形状に形成されている。この枠材22は、水平方向に間隔をあけて配置され、上下方向に延びる縦枠材24、26、28と、縦枠材24、26、28の各々の上端を水平方向につなぐ横枠材30と、縦枠材24、26、28の各々の下端を水平方向につなぐ横枠材32と、備えている。 As shown in FIGS. 1 and 2, the frame member 22 is formed in a rectangular shape. The frame members 22 are arranged at intervals in the horizontal direction, and vertically extending vertical frame members 24, 26 and 28, and horizontal frame members that horizontally connect the upper ends of the vertical frame members 24, 26 and 28. 30 and a horizontal frame member 32 that horizontally connects the lower ends of the vertical frame members 24, 26, and 28, respectively.

なお、本実施形態の縦枠材24、26、28は、本発明における縦材の一例である。 The vertical frame members 24, 26, and 28 of the present embodiment are examples of vertical members in the present invention.

(縦枠材24)
図2に示されるように、縦枠材24は、枠材22の幅方向(図中矢印W方向)一方側(図2及び図5では左側)の部分を形成している。なお、本実施形態では、枠材22の幅方向と耐力壁20の幅方向は一致している。
(Vertical frame member 24)
As shown in FIG. 2, the vertical frame member 24 forms one side (the left side in FIGS. 2 and 5) of the frame member 22 in the width direction (direction of arrow W in the drawing). In this embodiment, the width direction of the frame member 22 and the width direction of the load-bearing wall 20 match.

この縦枠材24は、図5及び図6に示されるように、幅方向外側の外枠部分を形成する角形鋼管34と、幅方向内側の内枠部分を形成し、縦枠材26側(言い換えると、枠材22の幅方向他方側(図2及び図5では右側))が開放された断面がC字形状の形鋼36と、を備えている。 As shown in FIGS. 5 and 6, the vertical frame member 24 is formed of a rectangular steel pipe 34 forming an outer frame portion on the outer side in the width direction and an inner frame portion on the inner side in the width direction. In other words, the frame member 22 is provided with a section steel 36 having a C-shaped cross section with the other side in the width direction (the right side in FIGS. 2 and 5) opened.

角形鋼管34は、断面が正方形状とされており、枠材22の厚み方向(図中矢印T方向)に2つ並べて配置されている。これらの角形鋼管34は、溶接により接合されている。 The square steel pipes 34 have a square cross section and are arranged side by side in the thickness direction of the frame member 22 (in the direction of the arrow T in the drawing). These square steel pipes 34 are joined by welding.

形鋼36は、リップ溝形鋼であり、ウェブ部36Aの外面が角形鋼管34の枠内側(枠材22の内側)の面に接合されている。具体的には、形鋼36は、2つの角形鋼管34にドリルねじ38を用いてそれぞれ接合されている。なお、本発明は上記構成に限定されず、例えば、溶接などの他の方法を用いて形鋼36と角形鋼管34を接合してもよい。また、形鋼36の内面には、断面C字状の補強部材40が接合されている。この補強部材40は、溝形鋼であり、ウェブ部40Aの外面及び両フランジ部40Bの外面が形鋼36のウェブ部36Aの内面及び両フランジ部36Bの内面にそれぞれ接合されている。なお、形鋼36と補強部材40の接合方法は、特に限定されない。例えば、溶接で形鋼36と補強部材40を接合してもよい。 The section steel 36 is a lip channel steel, and the outer surface of the web portion 36A is joined to the surface of the square steel pipe 34 on the inner side of the frame (the inner side of the frame member 22). Specifically, the section steel 36 is joined to two square steel pipes 34 using drill screws 38 . The present invention is not limited to the above configuration, and for example, the shaped steel 36 and square steel pipe 34 may be joined using other methods such as welding. A reinforcing member 40 having a C-shaped cross section is joined to the inner surface of the shaped steel 36 . The reinforcing member 40 is channel steel, and the outer surface of the web portion 40A and the outer surfaces of both flange portions 40B are joined to the inner surface of the web portion 36A and the inner surfaces of both flange portions 36B of the section steel 36, respectively. In addition, the joining method of the shaped steel 36 and the reinforcing member 40 is not particularly limited. For example, the shaped steel 36 and the reinforcing member 40 may be joined by welding.

(縦枠材26)
図2に示されるように、縦枠材26は、縦枠材24と縦枠材28の間に配置されており、枠材22の幅方向中央部に位置する部分を形成している。
(Vertical frame member 26)
As shown in FIG. 2 , the vertical frame member 26 is arranged between the vertical frame member 24 and the vertical frame member 28 and forms a portion of the frame member 22 located at the center in the width direction.

この縦枠材26は、図5及び図6に示されるように、縦枠材28側(言い換えると、枠材22の幅方向他方側)が開放された断面がC字形状の形鋼42と、を備えている。 As shown in FIGS. 5 and 6, the vertical frame member 26 is composed of a shaped steel 42 having a C-shaped cross section with the vertical frame member 28 side (in other words, the other side in the width direction of the frame member 22) opened. , is equipped with

(縦枠材28)
図2に示されるように、縦枠材28は、枠材22の幅方向他方側(図2及び図5では右側)の部分を形成している。
(Vertical frame member 28)
As shown in FIG. 2, the vertical frame member 28 forms a portion of the frame member 22 on the other side in the width direction (the right side in FIGS. 2 and 5).

この縦枠材28は、図5及び図6に示されるように、縦枠材26を挟んで縦枠材24と対称に構成されている。具体的には、縦枠材28は、外枠部分を形成する角形鋼管34と、内枠部分を形成し、縦枠材26側(言い換えると、枠材22の幅方向一方側(図2及び図5では左側))が開放された形鋼36と、形鋼36を補強する補強部材40とを備えている。 As shown in FIGS. 5 and 6, the vertical frame member 28 is constructed symmetrically with the vertical frame member 24 with the vertical frame member 26 interposed therebetween. Specifically, the vertical frame member 28 includes a square steel pipe 34 that forms the outer frame portion and an inner frame portion that forms the vertical frame member 26 side (in other words, one side in the width direction of the frame member 22 (FIGS. 2 and 3). In FIG. 5, the left side )) is provided with an open shaped steel 36 and a reinforcing member 40 that reinforces the shaped steel 36 .

図2に示されるように、横枠材30は、断面が矩形状の角形鋼管によって形成されている。この横枠材30には、縦枠材24、26、28の各々の上端がねじやボルト等のファスナー又は溶接等によって接合されている。 As shown in FIG. 2, the horizontal frame member 30 is formed of a rectangular steel pipe having a rectangular cross section. Upper ends of the vertical frame members 24, 26, and 28 are joined to the horizontal frame member 30 by fasteners such as screws and bolts, or by welding.

図2に示されるように、横枠材32は、横枠材30と同様に、断面が矩形状の角形鋼管によって形成されている。この横枠材30には、縦枠材24、26、28の各々の下端がねじやボルト等のファスナー又は溶接等によって接合されている。 As shown in FIG. 2, the horizontal frame member 32 is formed of a rectangular steel pipe having a rectangular cross section, like the horizontal frame member 30. As shown in FIG. The lower ends of the vertical frame members 24, 26, and 28 are joined to the horizontal frame member 30 by fasteners such as screws and bolts, or by welding.

図2に示されるように、枠材22は、横枠材30と横枠材32の水平方向の相対変位に対する剛性を補強するための補剛部材44、46を備えている。補剛部材44は、縦枠材24と縦枠材26との間で且つ上下方向の略中央部に配置されている。また、補剛部材44は、一端が縦枠材24にドリルねじ48で接合され、他端が縦枠材26にドリルねじ48で接合されている。一方、補剛部材46は、縦枠材24と縦枠材26との間で且つ上下方向の略中央部に配置されている。また、補剛部材46は、一端が縦枠材26に補剛部材44の他端と共にドリルねじ48で接合され、他端が縦枠材28にドリルねじ48で接合されている。なお、枠材22の剛性が確保される場合には、補剛部材44、46を省略してもよい。 As shown in FIG. 2, the frame member 22 includes stiffening members 44 and 46 for reinforcing rigidity against relative horizontal displacement of the horizontal frame members 30 and 32 . The stiffening member 44 is arranged between the vertical frame member 24 and the vertical frame member 26 and substantially in the center in the vertical direction. The stiffening member 44 has one end joined to the vertical frame member 24 with a drill screw 48 and the other end joined to the vertical frame member 26 with a drill screw 48 . On the other hand, the stiffening member 46 is arranged between the vertical frame member 24 and the vertical frame member 26 and substantially in the center in the vertical direction. One end of the stiffening member 46 is joined to the vertical frame member 26 by a drill screw 48 together with the other end of the stiffening member 44 , and the other end is joined to the vertical frame member 28 by a drill screw 48 . Note that the stiffening members 44 and 46 may be omitted if the rigidity of the frame member 22 is ensured.

(壁面材50)
図1に示されるように、壁面材50は、矩形状に形成された鋼板であり、枠材22に接合されている。本実施形態の耐力壁20では、壁面材50を2枚用いており、一の壁面材50が縦枠材24と縦枠材26に接合され、他の壁面材50が縦枠材26と縦枠材28に接合されている。具体的には、一の壁面材50の幅方向の両端部が一対の縦材である縦枠材24及び縦枠材26にそれぞれ複数のドリルねじ52を用いて接合されている。また、他の壁面材50の幅方向の両端部が一対の縦材である縦枠材26及び縦枠材28にそれぞれ複数のドリルねじ52を用いて接合されている。なお、2枚の壁面材50は、同一寸法であるが、本発明はこの構成に限定されず、異なる寸法であってもよい。
(Wall surface material 50)
As shown in FIG. 1 , the wall member 50 is a rectangular steel plate and is joined to the frame member 22 . In the load-bearing wall 20 of this embodiment, two wall materials 50 are used. It is joined to the frame material 28 . Specifically, both ends in the width direction of one wall member 50 are joined to vertical frame members 24 and 26, which are a pair of vertical members, using a plurality of drill screws 52, respectively. Both ends of the other wall member 50 in the width direction are joined to vertical frame members 26 and 28, which are a pair of vertical members, using a plurality of drill screws 52, respectively. Although the two wall materials 50 have the same size, the present invention is not limited to this configuration, and they may have different sizes.

なお、一の壁面材50と縦枠材24及び縦枠材26との接合のためにドリルねじ52がねじ込まれた部分、及び、他の壁面材50と縦枠材26及び縦枠材28との接合のためにドリルねじ52がねじ込まれた部分を接合部60と称する。 In addition, the portion where the drill screw 52 is screwed for joining the one wall member 50 and the vertical frame member 24 and the vertical frame member 26, and the other wall member 50 and the vertical frame member 26 and the vertical frame member 28 A portion into which the drill screw 52 is screwed for joining is referred to as a joining portion 60 .

また、図1及び図3に示されるように、接合部60は、上下方向に間隔をあけて複数形成されている。なお、本実施形態の壁面材50では、接合部60が略一定の間隔で設けられているが、本発明はこの構成に限定されない。例えば、耐力壁に水平荷重が作用した場合にせん断力が大きく作用する領域に接合部を密に配置して、上下方向に隣接する接合部に作用するせん断力を均一に近づけてもよい。 Moreover, as shown in FIGS. 1 and 3, a plurality of joints 60 are formed at intervals in the vertical direction. In addition, in the wall surface material 50 of the present embodiment, the joint portions 60 are provided at substantially constant intervals, but the present invention is not limited to this configuration. For example, the joints may be densely arranged in a region where a large shear force acts when a horizontal load acts on the load-bearing wall, so that the shear forces acting on the vertically adjacent joints are nearly uniform.

また、図3に示されるように、壁面材50には、上下方向に間隔をあけて複数(本実施形態では7つ)の開口部54が形成されている。これら7つの開口部54は、上下方向に1列となるように形成されている。そして、1列に並んだ開口部54は、壁面材50の幅方向の中心に対してオフセットしている。換言すると、上下方向に隣接する開口部54の中心を通って上下方向に延びる直線SLが、幅方向の一方側又は他方側に寄っている(図3では直線SLが右側に寄っている。)。 Further, as shown in FIG. 3, a plurality of (seven in this embodiment) openings 54 are formed in the wall surface member 50 at intervals in the vertical direction. These seven openings 54 are formed in a row in the vertical direction. The openings 54 arranged in a line are offset with respect to the center of the wall surface material 50 in the width direction. In other words, the straight line SL extending vertically through the centers of the vertically adjacent openings 54 is closer to one side or the other side in the width direction (the straight line SL is closer to the right side in FIG. 3). .

図3に示されるように、開口部54は、偶数個の角部(隅部)54Aを有する多角形状とされている。なお、ここでいう「多角形状」には、角部が角張っている多角形及び角部が円弧状に湾曲している(丸まっている)多角形を含む。この開口部54は、上記直線SLに対して左右対称で且つ直線SL上に開口部54の対向する角部54Aの頂点54AE同士が位置するように壁面材50に形成されている。なお、本実施形態では、開口部54の形状が角部54Aの頂点54AEを直線SL上に配置した正方形状とされている。 As shown in FIG. 3, the opening 54 has a polygonal shape with an even number of corners (corners) 54A. The “polygonal shape” used herein includes polygons with sharp corners and polygons with arcuately curved (rounded) corners. The opening 54 is formed in the wall surface member 50 so that the corners 54A of the opening 54 facing each other are symmetrical with respect to the straight line SL and the apexes 54AE of the opposite corners 54A of the opening 54 are positioned on the straight line SL. In this embodiment, the shape of the opening 54 is a square shape in which the apexes 54AE of the corners 54A are arranged on the straight line SL.

また、本実施形態では、上下方向に隣接する開口部54の大きさが同じ大きさとされている。なお、多角形状の開口部54の大きさは、内接円Cの直径が200mm以上となる大きさに設定されることが好ましい。 Further, in the present embodiment, the sizes of the openings 54 adjacent in the vertical direction are the same. The size of the polygonal opening 54 is preferably set so that the diameter of the inscribed circle C is 200 mm or more.

また、図5及び図6に示されるように、開口部54の縁部には、壁面材50と一体に形成された環状リブ56が形成されている。本実施形態では、壁面材50となる鋼板にバーリング加工が実施されて開口部54及び環状リブ56が形成されている。なお、本発明は上記構成に限定されず、例えば、壁面材50となる鋼板にプレス加工で開口部を形成し、この開口部の縁部に多角形状の環状部材(筒状部材)を接合して開口部54及び環状リブ56を形成してもよい。 5 and 6, an annular rib 56 formed integrally with the wall surface member 50 is formed at the edge of the opening 54. As shown in FIGS. In the present embodiment, the steel plate forming the wall member 50 is burred to form the opening 54 and the annular rib 56 . Note that the present invention is not limited to the above configuration, and for example, an opening is formed in the steel plate that serves as the wall surface material 50 by press working, and a polygonal annular member (cylindrical member) is joined to the edge of the opening. Apertures 54 and annular ribs 56 may be formed.

また、上下方向に隣接する開口部54の中心間距離D1は、縦枠材24における接合部60と縦枠材26における接合部60との間の水平距離D2よりも短くなっている。 Also, the center-to-center distance D1 between the vertically adjacent openings 54 is shorter than the horizontal distance D2 between the joints 60 of the vertical frame member 24 and the joints 60 of the vertical frame member 26 .

図1に示されるように、一の壁面材50の上端部と他の壁面材50の上端部は、横枠材30にそれぞれ複数のドリルねじ52を用いて接合されている。そして、一の壁面材50の下端部と他の壁面材50の下端部は、横枠材32にそれぞれ複数のドリルねじ52を用いて接合されている。 As shown in FIG. 1, the upper end of one wall member 50 and the upper end of the other wall member 50 are joined to the horizontal frame member 30 using a plurality of drill screws 52, respectively. A lower end portion of one wall member 50 and a lower end portion of the other wall member 50 are joined to the horizontal frame member 32 using a plurality of drill screws 52, respectively.

(本実施形態の作用並びに効果)
従来から耐力壁の壁面材には、配管や配線のために複数の開口部が形成されていることがある。これらの開口部は、壁面材の耐力等を考慮して円形とされることが多い。しかし、市場では、開口部が円形とされた壁面材を有する耐力壁と比べて、地震の初期から終局までの耐力が略同等であり、さらに、軽量化も図れる耐力壁の開発が望まれている。これらを考慮して本発明者らは、本発明の開発に至った。
(Action and effect of this embodiment)
Conventionally, a plurality of openings may be formed in the wall material of a load-bearing wall for piping and wiring. These openings are often circular in consideration of the bearing strength of the wall material. However, in the market, there is a demand for the development of a load-bearing wall that has almost the same load-bearing capacity from the beginning to the end of an earthquake and is also lighter than load-bearing walls that have wall materials with circular openings. there is Taking these into consideration, the present inventors have developed the present invention.

以下では、本実施形態の耐力壁20と比較例の耐力壁を対比しながら、本実施形態の作用並びに効果について説明する。まず、各比較例の耐力壁について説明する。比較例の耐力壁100は、図9に示されるように、壁面材102に円形の開口部104が形成された耐力壁である。また、比較例の耐力壁110は、図10に示されるように、壁面材112に正方形状の開口部114が形成されているが、直線SL上に開口部114の対向する角部114Aが位置していない耐力壁である。また、比較例の耐力壁120は、図11に示されるように、壁面材132に正六角形の開口部124が形成されているが、直線SL上に開口部124の対向する角部124Aが位置していない耐力壁である。比較例の耐力壁130は、図12に示されるように、壁面材132に楕円形の開口部134が形成されており、この開口部134の短軸が直線SLと一致している耐力壁である。比較例の耐力壁134は、図13に示されるように、壁面材142に楕円形の開口部144が形成されており、この開口部144の長軸が直線SLと一致している耐力壁である。
なお、各比較例の耐力壁は、開口部の形状や対向する角部の向きを除いて本実施形態の耐力壁20と構成が同じである。
Below, the operation and effects of the present embodiment will be described while comparing the load-bearing wall 20 of the present embodiment and the load-bearing wall of the comparative example. First, load-bearing walls of respective comparative examples will be described. The load-bearing wall 100 of the comparative example is a load-bearing wall in which a circular opening 104 is formed in a wall surface member 102, as shown in FIG. 10, the load-bearing wall 110 of the comparative example has a square-shaped opening 114 formed in the wall surface material 112, and the opposite corners 114A of the opening 114 are positioned on the straight line SL. It is a load-bearing wall that is not 11, the load-bearing wall 120 of the comparative example has a regular hexagonal opening 124 formed in the wall surface material 132, and the opposite corners 124A of the opening 124 are positioned on the straight line SL. It is a load-bearing wall that is not As shown in FIG. 12, the load-bearing wall 130 of the comparative example is a load-bearing wall in which an elliptical opening 134 is formed in a wall surface member 132, and the minor axis of this opening 134 coincides with the straight line SL. be. As shown in FIG. 13, the load-bearing wall 134 of the comparative example is a load-bearing wall in which an elliptical opening 144 is formed in a wall surface material 142, and the long axis of the opening 144 coincides with the straight line SL. be.
The load-bearing wall of each comparative example has the same structure as the load-bearing wall 20 of the present embodiment except for the shape of the opening and the orientation of the facing corners.

本実施形態の耐力壁20では、壁面材50に形成された開口部54の形状を偶数個の角部54Aを有する多角形状としている。ここで、多角形状の開口部54の内接円(図3において二点鎖線で示す内接円C)の大きさを、比較例の耐力壁100の開口部104との大きさ以上の大きさとすることで、円形の開口部104よりも壁面材84に対する開口面積を大きくできる。このようにして耐力壁20は、比較例の耐力壁100と比べて、軽量化を図ることができる。また、開口部54の開口面積が大きくなるため、増加部分にさらに配管や配線を通すことが可能となる。 In the load-bearing wall 20 of this embodiment, the shape of the opening 54 formed in the wall surface material 50 is a polygonal shape having an even number of corners 54A. Here, the size of the inscribed circle of the polygonal opening 54 (the inscribed circle C indicated by the chain double-dashed line in FIG. 3) is equal to or larger than the size of the opening 104 of the load-bearing wall 100 of the comparative example. By doing so, the opening area for the wall surface material 84 can be made larger than the circular opening 104 . Thus, the load-bearing wall 20 can be made lighter than the load-bearing wall 100 of the comparative example. In addition, since the opening area of the opening 54 is increased, it becomes possible to pass more pipes and wiring through the increased portion.

また、耐力壁20では、開口部54の形状を直線SL上に角部54Aの頂点54AEを配置した正方形状としていることから、内接円Cの大きさが同一の正多角形状の中で最も開口面積を大きくすることができる。このため、耐力壁20では、比較例の耐力壁100と比べて、軽量化をさらに図ることができる。 In the load-bearing wall 20, the shape of the opening 54 is a square shape in which the apexes 54AE of the corners 54A are arranged on the straight line SL. The opening area can be increased. Therefore, the load-bearing wall 20 can be made lighter than the load-bearing wall 100 of the comparative example.

また、耐力壁20では、多角形状の開口部54を直線SLに対して左右対称で且つ直線SL上に対向する角部54Aの頂点54AE同士が位置するように壁面材50に形成している。これにより、耐力壁20では、地震の初期から終局までの耐力を、比較例の耐力壁100と略同程度に確保することができる。具体的には、耐力壁20では、地震の初期段階(一例として、層間変形角1/300時)において、壁面材50の上下方向に隣接する開口部54間にせん断応力が集中する。このせん断応力が集中するメカニズムについては各比較例ともに共通である。一方で、開口部の圧縮抵抗力については、本実施形態の耐力壁20と比較例の耐力壁100が他の比較例の耐力壁と比べて高くなる。比較例の耐力壁100では、開口部104が円形のため、せん断応力が集中し難く、圧縮抵抗力CRが高いものと推定される。これに対して本実施形態の耐力壁20が比較例の耐力壁110よりも圧縮抵抗力CRが高いのは、直線SL上に角部54Aの頂点54AEが位置しているためと推定される。以上より、耐力壁20は、地震の初期段階において、比較例の耐力壁100と略同程度の耐力を確保することができる。
また、耐力壁20では、地震の終局段階(一例として、層間変形角1/100時)において、図4に示されるように、壁面材50の上下方向に隣接する開口部54間を斜めに結ぶ方向に引張力TSが生じており、開口部54の圧縮抵抗力CRと、各接合部60に作用するせん断力SFとで力の釣合いが保たれている。比較例の耐力壁100も同様に力の釣合いが保たれている。一方で、比較例の耐力壁110、120、130、140では、開口部の圧縮抵抗力が本実施形態の耐力壁20よりも低いため、力の釣り合いが保たれにくい。すなわち、開口部の圧縮抵抗力の大きさが地震の初期から終局まで耐力壁の耐力に影響を与えていると推定される。このため、耐力壁20は、地震の初期から終局まで、比較例の耐力壁100と略同程度の耐力を確保することができる。なお、地震の初期から終局までの耐力が、本実施形態の耐力壁20と比較例の耐力壁100で略同程度となることについては後述する。
Further, in the load-bearing wall 20, the polygonal openings 54 are formed in the wall surface member 50 so that the vertexes 54AE of the corners 54A facing each other on the straight line SL are positioned symmetrically with respect to the straight line SL. As a result, the load-bearing wall 20 can secure the load-bearing force from the beginning to the end of an earthquake to substantially the same extent as the load-bearing wall 100 of the comparative example. Specifically, in the load-bearing wall 20 , shear stress concentrates between the vertically adjacent openings 54 of the wall surface material 50 in the initial stage of an earthquake (for example, when the story drift angle is 1/300). This shear stress concentration mechanism is common to each comparative example. On the other hand, regarding the compression resistance of the opening, the load-bearing wall 20 of the present embodiment and the load-bearing wall 100 of the comparative example are higher than the load-bearing walls of the other comparative examples. In the load-bearing wall 100 of the comparative example, since the opening 104 is circular, it is estimated that the shear stress is difficult to concentrate and the compressive resistance CR is high. On the other hand, the load-bearing wall 20 of the present embodiment has a higher compressive resistance CR than the load-bearing wall 110 of the comparative example. As described above, the load-bearing wall 20 can secure substantially the same level of load-bearing force as the load-bearing wall 100 of the comparative example in the initial stage of an earthquake.
Moreover, in the load-bearing wall 20, as shown in FIG. 4, at the final stage of an earthquake (for example, when the inter-story deformation angle is 1/100), the openings 54 that are adjacent to each other in the vertical direction of the wall surface material 50 are obliquely connected. A tensile force TS is generated in the direction, and the forces are balanced by the compressive resistance CR of the opening 54 and the shear force SF acting on each joint 60 . The load-bearing wall 100 of the comparative example is similarly balanced in force. On the other hand, in the load-bearing walls 110, 120, 130, and 140 of the comparative examples, the compressive resistance of the openings is lower than that of the load-bearing wall 20 of the present embodiment, so it is difficult to maintain the force balance. In other words, it is presumed that the compressive resistance of the opening affects the strength of the load-bearing wall from the beginning to the end of the earthquake. Therefore, the load-bearing wall 20 can ensure a load-bearing force substantially equal to that of the load-bearing wall 100 of the comparative example from the beginning to the end of an earthquake. It will be described later that the load-bearing wall 20 of the present embodiment and the load-bearing wall 100 of the comparative example have approximately the same bearing strength from the beginning to the end of an earthquake.

また、耐力壁20では、上下方向に隣接する開口部54の大きさを同じ大きさにしていることから、例えば、隣接する開口部54の大きさが異なる構成と比べて、各開口部54に作用する応力を一定にできる。このため、耐力壁20では、地震の初期から終局までの耐力を確保しやすくなる。さらに、壁面材50の製造も容易になる。 In addition, in the load-bearing wall 20, the sizes of the openings 54 adjacent in the vertical direction are the same. Acting stress can be made constant. For this reason, the load-bearing wall 20 can easily secure the load-bearing force from the initial stage of an earthquake to its final stage. Furthermore, the manufacture of the wall surface material 50 is also facilitated.

そして、耐力壁20では、中心間距離D1を水平距離D2よりも短くしていることから、地震による水平荷重が耐力壁20に伝達された際に、壁面材50において、接合部60と開口部54との水平方向の中間部のせん断応力(ミーゼス応力)値を上下方向に隣接する開口部54間の上下方向の中間部のせん断応力値よりも低くすることができる。これにより、一対の縦材(縦枠材24と縦枠材26、または縦枠材26と縦枠材28)に生じる水平方向へのせん断応力が低減される。その結果、壁面材50において上下方向に隣接する開口部54間の上下方向の中間部が変形する前に、壁面材50と一対の縦材との接合部60が変形することが抑制され、地震エネルギーを安定して吸収することが可能となる。 In the load-bearing wall 20, the center-to-center distance D1 is shorter than the horizontal distance D2. The shear stress (Mises stress) value at the intermediate portion in the horizontal direction with respect to 54 can be made lower than the shear stress value at the intermediate portion in the vertical direction between vertically adjacent openings 54 . As a result, the horizontal shear stress generated in the pair of vertical members (vertical frame member 24 and vertical frame member 26, or vertical frame member 26 and vertical frame member 28) is reduced. As a result, deformation of the joints 60 between the wall surface material 50 and the pair of vertical members is suppressed before the vertically intermediate portion between the vertically adjacent openings 54 in the wall surface material 50 deforms. It becomes possible to stably absorb energy.

前述の実施形態の耐力壁20では、枠材22と壁面材50との接合にドリルねじ52を用いているが、本発明はこの構成に限定されない。例えば、ドリルねじ52の代わり釘を用いてもよい。また、枠材22と壁面材50をスポット溶接で接合してもよい。スポット溶接を用いた場合は、枠材22と壁面材50の溶接された部分を接合部と称する。 Although the load-bearing wall 20 of the above-described embodiment uses the drill screws 52 to join the frame member 22 and the wall member 50, the present invention is not limited to this configuration. For example, nails may be used instead of drill screws 52 . Alternatively, the frame member 22 and the wall member 50 may be joined by spot welding. When spot welding is used, the welded portion between the frame member 22 and the wall member 50 is called a joint.

前述の実施形態の耐力壁20では、壁面材50に下孔を形成していないが、本発明はこの構成に限定されず、壁面材50に下孔又は孔開け用の目印を形成してもよい。 In the load-bearing wall 20 of the above-described embodiment, the wall surface material 50 is not formed with a pre-hole, but the present invention is not limited to this configuration, and the wall surface material 50 may be formed with a pre-hole or a mark for drilling. good.

前述の実施形態の耐力壁20では、開口部54の形状を角部54Aの頂点54AEを直線SL上に配置した正方形状としているが、本発明はこの構成に限定されない。例えば、図7に示される耐力壁70のように、壁面材72に形成される開口部74の形状を対向する角部74Aの頂点74AEを直線SL上に配置した正六角形状としてもよい。すなわち、本発明の実施形態に係る耐力壁の開口部の形状は、対向する角部の頂点が直線SL上に配置されれば、正八角形状等の正多角形状であってもよい。 In the load-bearing wall 20 of the above-described embodiment, the shape of the opening 54 is a square shape in which the apexes 54AE of the corners 54A are arranged on the straight line SL, but the present invention is not limited to this configuration. For example, like the load-bearing wall 70 shown in FIG. 7, the shape of the opening 74 formed in the wall surface material 72 may be a regular hexagonal shape in which the apexes 74AE of the facing corners 74A are arranged on the straight line SL. That is, the shape of the opening of the load-bearing wall according to the embodiment of the present invention may be a regular polygon such as a regular octagon as long as the vertexes of the opposing corners are arranged on the straight line SL.

前述の実施形態の耐力壁20は、壁面材50が枠材22に接合されて構成されているが、本発明はこの構成に限定されない。例えば、図8に示される耐力壁80のように、上下方向に延びて、それぞれの上端が建物の水平部材HM1に連結され、それぞれの下端が建物の水平部材HM2に連結される一対の縦材82にドリルねじ52を用いて壁面材84を接合してもよい。なお、壁面材84には、壁面材50と同様に、開口部54と環状リブ56が形成されている。このため、壁面材84は、耐力壁20と同様の作用並びに効果を得ることができる。 Although the load-bearing wall 20 of the above-described embodiment is configured by joining the wall surface member 50 to the frame member 22, the present invention is not limited to this configuration. For example, like the load-bearing wall 80 shown in FIG. 8, a pair of vertical members extending in the vertical direction, each having its upper end connected to the building horizontal member HM1 and each having its lower end connected to the building horizontal member HM2. A wall material 84 may be joined to 82 using a drill screw 52 . The wall surface member 84 is formed with an opening 54 and an annular rib 56 in the same manner as the wall surface member 50 . Therefore, the wall surface material 84 can obtain the same functions and effects as those of the load-bearing wall 20 .

次に本発明の耐力壁が地震の初期から終局までの耐力を確保できることを立証するため、有限要素解析によるシミュレーションを実施して耐力壁の層間変化角に対する水平荷重の変化の特性を得た。得られた特性については、図14において水平荷重を縦軸、層間変化角を横軸としてグラフで示した。なお、シミュレーションした実施例及び比較例は、以下の通りである。 Next, in order to prove that the load-bearing wall of the present invention can secure the load-bearing force from the beginning to the end of an earthquake, a simulation using finite element analysis was performed to obtain the characteristics of the horizontal load change with respect to the inter-story change angle of the load-bearing wall. The obtained characteristics are shown graphically in FIG. 14, with the vertical axis representing the horizontal load and the horizontal axis representing the inter-layer variation angle. Examples and comparative examples that were simulated are as follows.

実施例1:本発明に係る実施形態の耐力壁20と同じ構成であり、開口部の大きさを内接円の直径が200mmとなる大きさとした耐力壁である(図3参照)。
実施例2:本発明に係る実施形態の耐力壁70と同じ構成であり、開口部の大きさを内接円の直径が200mmとなる大きさとした耐力壁である(図7参照)。
比較例1:比較例の耐力壁100と同じ構成であり、開口部104の直径を200mmとした耐力壁(図9参照)である。
比較例2:比較例の耐力壁110と同じ構成であり、開口部114の大きさを内接円の直径が200mmとなる大きさとした耐力壁である(図10参照)。
比較例3:比較例の耐力壁120と同じ構成であり、開口部124の大きさを内接円の直径が200mmとなる大きさとした耐力壁である(図11参照)。
比較例4:比較例の耐力壁130と同じ構成であり、開口部134の大きさを短軸の長さが200mmとなる大きさとした耐力壁である(図12参照)。
比較例5:比較例の耐力壁140と同じ構成であり、開口部144の大きさを短軸の長さが200mmとなる大きさとした耐力壁である(図13参照)。
Example 1: A load-bearing wall having the same configuration as the load-bearing wall 20 of the embodiment according to the present invention, and the size of the opening is such that the diameter of the inscribed circle is 200 mm (see FIG. 3).
Example 2: A load-bearing wall having the same structure as the load-bearing wall 70 of the embodiment according to the present invention and having an opening with a diameter of 200 mm for an inscribed circle (see FIG. 7).
Comparative Example 1: A load-bearing wall having the same configuration as the load-bearing wall 100 of the comparative example and having an opening 104 with a diameter of 200 mm (see FIG. 9).
Comparative Example 2: A load-bearing wall having the same configuration as the load-bearing wall 110 of the comparative example, and having an opening 114 with a diameter of 200 mm for an inscribed circle (see FIG. 10).
Comparative Example 3: A load-bearing wall having the same configuration as the load-bearing wall 120 of the comparative example, and having an opening 124 with a diameter of 200 mm for an inscribed circle (see FIG. 11).
Comparative Example 4: A load-bearing wall having the same configuration as the load-bearing wall 130 of the comparative example, and having the size of the opening 134 so that the length of the minor axis is 200 mm (see FIG. 12).
Comparative Example 5: A load-bearing wall having the same configuration as the load-bearing wall 140 of the comparative example, but with the size of the opening 144 having a minor axis length of 200 mm (see FIG. 13).

図14に示される通り、実施例1、2の耐力壁は、比較例2-5の耐力壁よりも層間変形角に対する水平荷重が高くなっている。
また、実施例1、2の耐力壁は、比較例1の耐力壁と層間変形角に対する水平荷重の値が近くなっている。すなわち、実施例1、2の耐力壁は、比較例1の耐力壁と地震の初期から終局までの耐力が略同程度であることが分かる。
As shown in FIG. 14, the load-bearing walls of Examples 1 and 2 have a higher horizontal load with respect to the story drift angle than the load-bearing walls of Comparative Examples 2-5.
Further, the load-bearing walls of Examples 1 and 2 are close to the load-bearing wall of Comparative Example 1 in terms of horizontal load with respect to the story drift angle. That is, it can be seen that the load-bearing walls of Examples 1 and 2 have approximately the same level of load-bearing strength as the load-bearing wall of Comparative Example 1 from the beginning to the end of an earthquake.

以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において上記以外にも種々変形して実施することが可能であることは勿論である。例えば、前述の実施形態では、本発明の一実施形態に係る壁面材を耐力壁に用いているが、例えば、建物の床面や屋根面等のように面内剛性が必要となる部分に用いてもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above, and can be implemented in various modifications other than the above without departing from the spirit of the present invention. is of course. For example, in the above-described embodiment, the wall material according to one embodiment of the present invention is used for load-bearing walls. may

20 耐力壁
24 縦枠材(縦材)
26 縦枠材(縦材)
28 縦枠材(縦材)
50 壁面材
54 開口部
54A 角部
54AE 頂点
56 環状リブ
70 耐力壁
72 壁面材
74 開口部
74A 角部
74AE 頂点
80 耐力壁
82 縦材
84 壁面材
SL 直線
D1 中心間距離
D2 水平距離
20 load-bearing wall 24 vertical frame member (longitudinal member)
26 Vertical frame member (vertical member)
28 Vertical frame member (vertical member)
50 wall material 54 opening 54A corner 54AE vertex 56 annular rib 70 bearing wall 72 wall material 74 opening 74A corner 74AE vertex 80 bearing wall 82 vertical member 84 wall member SL straight line D1 center distance D2 horizontal distance

Claims (5)

上下方向に延びる一対の縦材と、
一対の前記縦材にそれぞれ接合され、縁部に環状リブが設けられた開口部が前記上下方向に間隔をあけて1列形成された壁面材と、
を備え、
前記開口部の形状は、偶数個の角部を有する多角形状であり、
前記壁面材には、前記上下方向に延びる直線に対して左右対称で且つ前記直線上に前記開口部の対向する前記角部の頂点同士が位置するように前記開口部が形成されていると共に、前記上下方向に隣接する2つの前記開口部の間には前記2つの前記開口部以外の他の開口部が形成されていない、耐力壁。
a pair of vertical members extending in the vertical direction;
a wall surface member joined to each of the pair of vertical members and having openings provided with annular ribs at the edges thereof formed in a row at intervals in the vertical direction;
with
The shape of the opening is a polygonal shape having an even number of corners,
The wall surface member is formed with the openings that are bilaterally symmetrical with respect to the straight line extending in the vertical direction and that the apexes of the corners of the openings facing each other are positioned on the straight line , and A load-bearing wall in which no openings other than the two openings are formed between the two openings adjacent to each other in the vertical direction .
隣接する前記開口部の大きさが同じである、請求項1に記載の耐力壁。 2. The load-bearing wall of claim 1, wherein adjacent openings are the same size. 前記開口部は、角部の頂点を前記直線上に配置した正方形状である、請求項1又は請求項2に記載の耐力壁。 The load-bearing wall according to claim 1 or 2, wherein the opening has a square shape with corner vertices arranged on the straight line. 前記上下方向に隣接する前記開口部の中心間距離が、一対の前記縦材と前記壁面材との接合点間の水平距離よりも短い、請求項1~3のいずれか1項に記載の耐力壁。 The proof stress according to any one of claims 1 to 3, wherein the center-to-center distance between the vertically adjacent openings is shorter than the horizontal distance between the joint points between the pair of vertical members and the wall member. wall. 上下方向に延びる一対の縦材にそれぞれ接合される壁面材であって、
前記上下方向に間隔をあけて形成され、偶数個の角部を有する多角形状の開口部と、
前記開口部の縁部に設けられた環状リブと、
を備え、
前記上下方向に延びる直線に対して左右対称で且つ前記直線上に前記開口部の対向する前記角部の頂点同士が位置していると共に、前記上下方向に隣接する2つの前記開口部の間には前記2つの前記開口部以外の他の開口部が形成されていない、壁面材。
A wall surface material joined to a pair of vertical members extending in the vertical direction,
a polygonal opening having an even number of corners formed at intervals in the vertical direction;
an annular rib provided at the edge of the opening;
with
symmetrical with respect to the straight line extending in the vertical direction, apexes of the corners of the openings facing each other are positioned on the straight line, and between the two openings adjacent to each other in the vertical direction; is a wall surface material in which openings other than the two openings are not formed .
JP2019033169A 2019-02-26 2019-02-26 Bearing walls and wall materials Active JP7196685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033169A JP7196685B2 (en) 2019-02-26 2019-02-26 Bearing walls and wall materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033169A JP7196685B2 (en) 2019-02-26 2019-02-26 Bearing walls and wall materials

Publications (2)

Publication Number Publication Date
JP2020139269A JP2020139269A (en) 2020-09-03
JP7196685B2 true JP7196685B2 (en) 2022-12-27

Family

ID=72264579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033169A Active JP7196685B2 (en) 2019-02-26 2019-02-26 Bearing walls and wall materials

Country Status (1)

Country Link
JP (1) JP7196685B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4203545A1 (en) 2020-08-20 2023-06-28 Ntt Docomo, Inc. Terminal, wirless communication method, and base station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536574A (en) 1999-02-08 2002-10-29 ロッシュウェイ ピーティワイ.リミッティド Structural members
JP2010031473A (en) 2008-07-25 2010-02-12 Nisshin Steel Co Ltd Steel plate integrated bearing wall and method of manufacturing the same
JP2018025057A (en) 2016-08-10 2018-02-15 新日鐵住金株式会社 Load bearing wall

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536574A (en) 1999-02-08 2002-10-29 ロッシュウェイ ピーティワイ.リミッティド Structural members
JP2010031473A (en) 2008-07-25 2010-02-12 Nisshin Steel Co Ltd Steel plate integrated bearing wall and method of manufacturing the same
JP2018025057A (en) 2016-08-10 2018-02-15 新日鐵住金株式会社 Load bearing wall

Also Published As

Publication number Publication date
JP2020139269A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US9758963B2 (en) Bearing wall and wall surface member for bearing wall
JP7196685B2 (en) Bearing walls and wall materials
JP4710067B2 (en) Beam-column joint structure
JP6536323B2 (en) Longitudinal structure of steel sheet pile and steel sheet pile wall
JP2005097914A (en) Square steel box column
JP2018178466A (en) Damper and method for manufacturing damper
JP5243816B2 (en) Damping damper
JP5486430B2 (en) Strength frame structure
JP6866021B2 (en) How to join shaped steel
JP6427917B2 (en) Beam-column joint structure
JP5953871B2 (en) Beam-column joint structure
JP2004169298A (en) Joint structure of column and beam and method for joining column and beam
JP6128058B2 (en) Beam end joint structure
JP3221088U (en) Bearing wall
JP6794688B2 (en) Wall panel connection structure
JP6486209B2 (en) Bearing wall and wall structure
JP6784307B2 (en) Bearing wall
JP2021139134A (en) Load bearing wall and wooden building
JP2020139270A (en) Bearing wall and wall material
JP2020094478A (en) Earthquake proof repair method of existing structure
JP2008038464A (en) Vibration control wall structure for steel house
JP6682903B2 (en) Buckling stiffening structure and steel structure of H-shaped cross-section member
JP6782093B2 (en) Mounting structure of lateral buckling stiffener
JP6807787B2 (en) Steel beam reinforcement structure
KR102670673B1 (en) Non-welded prefabricated truss

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R151 Written notification of patent or utility model registration

Ref document number: 7196685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151