JP7193794B2 - Method for removing contaminants from inner surface of pipeline - Google Patents

Method for removing contaminants from inner surface of pipeline Download PDF

Info

Publication number
JP7193794B2
JP7193794B2 JP2018047866A JP2018047866A JP7193794B2 JP 7193794 B2 JP7193794 B2 JP 7193794B2 JP 2018047866 A JP2018047866 A JP 2018047866A JP 2018047866 A JP2018047866 A JP 2018047866A JP 7193794 B2 JP7193794 B2 JP 7193794B2
Authority
JP
Japan
Prior art keywords
pig
pipeline
diameter
water
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018047866A
Other languages
Japanese (ja)
Other versions
JP2018155092A (en
Inventor
潤 霜村
吉貞 道浦
祥一 平田
昌也 硲
光伸 藤本
政和 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Publication of JP2018155092A publication Critical patent/JP2018155092A/en
Application granted granted Critical
Publication of JP7193794B2 publication Critical patent/JP7193794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning In General (AREA)

Description

この発明は、上水道、農業用水、工業用水等の流体管路内面(内部)の夾雑物の除去方法及びその方法に使用する装置に関するものである。 TECHNICAL FIELD The present invention relates to a method for removing contaminants from the inner surface (inside) of fluid pipes such as water supply, agricultural water, and industrial water, and an apparatus used in the method.

この種の管路、例えば、上水道、農業用水、工業用水等の水管路は、長時間の共用年数を経過すると、その内面(内部)に、水質由来の析出物が付着したり、取水の際に混入した砂等の固形物が堆積したりして、水(流体)の通過断面積が減少したり、管路の機能診断を行う際の観察の支障となる場合がある。以下、その析出物や固形物等を「夾雑物」という。 This type of pipeline, for example, water pipelines for water supply, agricultural water, industrial water, etc., after a long period of common use, deposits derived from water quality adhere to the inner surface (inside), and when water is taken Solid matter such as sand mixed in the pipe may accumulate, reducing the passage cross-sectional area of water (fluid) and hindering observation during functional diagnosis of the pipe. Hereinafter, the precipitates, solids and the like are referred to as "contaminants".

このような夾雑物が堆積・付着した管路は水などの流体の流れが悪くなることにより出水不足となり、所要の流量を流すことができなくなるとともに、堆積及び付着した夾雑物からの濁質異物流出により水質悪化の原因となる。このため、従来から、その管路内の夾雑物を除去する方法が発案されている。例えば、管路の一部(投入口)からピグを管路内に投入し、その管路の一部から管路内に流体(水)を圧送して管路の長さ方向に前記ピグを走行させ、その走行に伴う、ピグと管路内面との摩擦によって管路内の夾雑物を剥離して押し進め、管路の他部(排出口)からピグ及び剥離した夾雑物を流体と共に取り出す管路内面の夾雑物を除去する方法がある(特許文献1、2参照)。
従来の管路内面の夾雑物除去方法は、径の異なる複数のピグを用意し、その径の小さいピグから少しずつ径の大きいピグを管路に順々に投入し、夾雑物を徐々に除去するようにしている。
In pipelines where such contaminants have accumulated and adhered, the flow of fluid such as water deteriorates, resulting in insufficient water output, making it impossible to flow the required flow rate. Runoff causes deterioration of water quality. Therefore, conventionally, methods for removing contaminants in the pipeline have been devised. For example, a pig is injected into the pipeline from a part of the pipeline (inlet), and a fluid (water) is pressure-fed into the pipeline from a part of the pipeline to push the pig in the length direction of the pipeline. The pipe is driven, and the friction between the pig and the inner surface of the pipeline causes the foreign matter in the pipeline to be separated and pushed forward, and the pig and the separated foreign matter are removed from the other part of the pipeline (exhaust port) together with the fluid. There is a method for removing contaminants on the inner surface of the road (see Patent Documents 1 and 2).
In the conventional method of removing contaminants from the inner surface of a pipeline, a plurality of pigs with different diameters are prepared, and the smaller-diameter pigs and the larger-diameter pigs are gradually introduced into the pipeline to gradually remove contaminants. I am trying to

特開2002-200465号公報Japanese Patent Application Laid-Open No. 2002-200465 特開2009-189910号公報JP 2009-189910 A 特開2009-22918号公報JP 2009-22918 A 特開2016-107247号公報JP 2016-107247 A 特許第6232650号公報Japanese Patent No. 6232650

上記従来において、各ピグの管路への投入は、その投入されたピグが管路の他部から取り出された(回収した)後、つぎのピグを投入している。これは、ピグが夾雑物の除去を完了したか否かを確認するためである。このとき、所要量の圧送流体を送り込んでもピグが管路他部に至らない場合(ピグが管路内に詰まった場合)、後押しのピグを投入してそのピグによって先行きのピグを押し出すようにもしている(特許文献1段落0021等参照)。
この一のピグの管路一部から他部に至る毎に(一通過毎に)、流体の圧送を繰り返すのは、流体の無駄であるとともに、ピグの挿入毎に、そのための装置を設置し直すのに多くの時間がかかり、夾雑物を除去する管路の休止時間(断水時間)も長くなるため、その管路を敷設した地域の社会生活に大きな影響が出ている。
In the conventional method, each pig is introduced into a pipeline after the pig that has been introduced is taken out (collected) from the other part of the pipeline, and then the next pig is introduced. This is to confirm whether the pig has completed the removal of contaminants. At this time, if the pig does not reach the other part of the pipeline even if the required amount of fluid is pumped (when the pig is clogged in the pipeline), insert a boosting pig to push out the forward pig. (See Patent Document 1, paragraph 0021, etc.).
It is a waste of fluid to repeat the pumping of the fluid from one part of the pig's pipeline to the other (each time it passes). It takes a lot of time to repair, and the downtime (water outage time) of the pipeline that removes foreign matter is also long, so it has a big impact on the social life of the area where the pipeline was laid.

この発明は、以上の実状の下、夾雑物の除去時間を短くするとともに圧送流体の使用量を少なくすることを課題とする。 In view of the above circumstances, it is an object of the present invention to shorten the removal time of contaminants and reduce the amount of pressure-fed fluid used.

上記課題を達成するため、この発明は、先行きのピグが上記管路の他部に至る前に後行きのピグを投入して連続的に走行させることとしたのである。すなわち、この夾雑物除去方法を「連球法」と称し、この連球法は、通常の洗浄方法が1回の洗浄に1つのピグを投入して回収し、その投入・回収作用におけるピグの直径等を変えて複数回繰り返すのに対し、管路内に所定の間隔(距離)を空けて複数のボールを順々に投入してそれぞれ独立し自由に走行させて夾雑物を除去することとしたのである。
先行きのピグが管路内にある時に、後行きのピグが管路に投入されて流体によって押されれば、前後のピグ間の流体を介して先行きのピグが押されて夾雑物の除去を行いながら進行(走行)して取り出し部(他部)に至る。このとき、特許文献3図1に示されるように、清掃具(ピグ)を連結せず、各ピグを独立して自由に管路内を走行させるので、各ピグは他のピグの動向に関係なく夾雑物の除去作用を行い、効率の良い除去作用が行われる。また、何らかの事情によって、先行きのピグが管路内に留まっていても、後行きのピグに押されて一緒に取り出し部に至る。
このように、ピグを連続的に投入すれば(連球法によれば)、その各ピグで夾雑物の除去を行うことができ、各ピグの一通過毎に除去作用を行う場合に比べれば、作業時間も短くなるとともに、ピグ走行用流体量も少なくなる。また、ピグの挿入は同一作業の繰り返しのため、その同一作業を連続して繰り返せば、そのピグの挿入装置の設置時間も短くなり、さらに洗管中の断水時間の大幅な短縮もできる。
In order to achieve the above object, the present invention is designed to feed the backward pig before the forward pig reaches the other part of the pipeline and to run it continuously. That is, this contaminant removal method is called the "continuous ball method", and in this continuous ball method, one pig is charged and recovered in one cleaning operation in the normal cleaning method. In contrast to repeating a plurality of times by changing the diameter etc., a plurality of balls are sequentially thrown into the pipeline at a predetermined interval (distance) and allowed to run independently and freely to remove contaminants. I did.
When the leading pig is in the pipeline, if the trailing pig is put into the pipeline and pushed by the fluid, the leading pig will be pushed through the fluid between the front and rear pigs to remove contaminants. It advances (travels) while doing so, and reaches the take-out section (other section). At this time, as shown in FIG. 1 of Patent Document 3, the cleaning tools (pigs) are not connected and each pig is allowed to travel freely in the pipeline independently, so each pig is related to the movement of other pigs. The removal action of contaminants is carried out without contamination, and the removal action is performed with good efficiency. Also, even if the preceding pig stays in the pipeline for some reason, it is pushed by the succeeding pig and reaches the extraction section together.
In this way, if the pigs are fed continuously (according to the continuous ball method), each pig can remove contaminants, compared to the case where the removal action is performed for each pass of each pig. , the working time is shortened, and the amount of fluid for running the pig is also reduced. In addition, since the insertion of the pig is a repetition of the same work, if the same work is repeated continuously, the installation time of the pig insertion device can be shortened, and the water supply interruption time during pipe washing can be greatly shortened.

この発明の具体的な構成としては、管路の一部からピグを管路内に投入し、その管路の一部から管路内に流体を圧送して管路の長さ方向にピグを走行させ、そのピグの走行に伴い、ピグと管路内面との摩擦によって管路内の夾雑物を剥離して押し進め、管路の他部から前記ピグ及び剥離した夾雑物を取り出す管路内面の夾雑物除去方法であって、前記複数のピグを、先行きのピグが管路の他部に至る前に前記一部から後行きのピグを連続的に走行させるとともに、先行きのピグ及び後行きのピグを独立して自由に走行させる構成を採用することができる。
このとき、「連球法」には、管路内に、2つ以上のピグがあれば、その態様が含まれ、当然に、全てのピグが管路内に位置する態様も含まれる。但し、ピグが管路内に詰まって、後押し用のピグを投入する態様は含まれない。連球法によるピグの管路への投入方法は、一のピグを管路に投入してその管路途中で停止させ、つぎのピグを投入する動作を繰り返したり、複数の投入機で連続して投入したりすることができる(図12参照)。
上記ピグの管路内の走行は、管路の一部から管路内に流体を圧送する手段に代えて、洗浄区間を独立させずに、上流から下流に流体の流れがある箇所では、その流れにより、ピグを走行させることができる(管路内に元々存在する流体によってピグを走行させることができる)。
As a specific configuration of the present invention, a pig is introduced into the pipeline from a part of the pipeline, and a fluid is pressure-fed into the pipeline from a part of the pipeline to move the pig in the length direction of the pipeline. As the pig travels, foreign matter in the pipeline is separated and pushed forward by friction between the pig and the inner surface of the pipeline, and the pig and the separated foreign matter are taken out from the other part of the pipeline. A method for removing contaminants, wherein the plurality of pigs are continuously traveled from one part of the pipeline before the leading pigs reach the other part of the pipeline, and the leading pigs and the trailing pigs A configuration in which the pigs are free to travel independently can be employed.
At this time, the "running-ball method" includes the mode in which two or more pigs are present in the pipeline, and naturally includes the mode in which all the pigs are located in the pipeline. However, it does not include a mode in which the pig is clogged in the pipeline and a pig for boosting is thrown in. The method of inserting pigs into pipelines by the continuous ball method involves repeatedly inserting one pig into a pipeline, stopping it in the middle of the pipeline, and then repeatedly inserting the next pig, or by using a plurality of inserting machines in succession. It can be thrown in by pressing (see FIG. 12).
Instead of using means for pumping the fluid into the pipeline from a part of the pipeline, the pig runs in the pipeline without making the cleaning section independent. The flow allows the pig to be driven (the pig can be driven by the fluid originally present in the pipeline).

この構成において、上記ピグの硬度を、先行きのピグより後行きのピグが硬いものとしたり、先行きのピグの径より後行きのピグの径を大きくしたり、その両者を採用したりすることができる。一方、その逆に、上記ピグの硬度を、先行きのピグより後行きのピグが柔らかいものとしたり、先行きのピグの径より後行きのピグの径を小さくしたり、その両者を採用したりすることもできる。この硬度や径、及びそれらの異なるピグの投入順序は、管路の状態等に基づく洗浄効果の向上や時間短縮等を図れるように、実験や実操業に基づき適宜に設定する。 In this configuration, the hardness of the pig can be such that the trailing pig is harder than the leading pig, the diameter of the trailing pig is larger than the diameter of the leading pig, or both are employed. can. On the other hand, on the contrary, the hardness of the pig is set so that the trailing pig is softer than the leading pig, or the diameter of the trailing pig is smaller than the diameter of the leading pig, or both are adopted. can also The hardness, diameter, and order of feeding different pigs are appropriately set based on experiments and actual operations so that the cleaning effect can be improved and the cleaning time can be shortened based on the state of the pipeline.

通常、ピグの硬度が高くなれば、同一径の場合、剥離効果が高まる。透水性が高ければ、ピグを通り過ぎた流水によってピグ進行方向前方の夾雑物をほぐして移動し易くなる効果がある。このため、最初は、透水性の高いピグを投入し、徐々に、透水性が低くても弾性定数の高いピグを投入することが好ましい。
いずれにしても、先行きのピグと後行きのピグは、密度、透水率、弾性定数(弾性係数)を異ならせることが好ましい。また、管路内径とピグ径の比は、1:1.0~1.5が好ましい。さらに、管路の材質に応じてピグの硬さも変更することが好ましい。
このように、投入するピグの硬度を徐々に高く(硬く)したり、径を徐々に大きくしたり等することによって、夾雑物の円滑な除去を行うことができる。ここでいう硬度はアスカーゴム硬度計C型で計った場合の硬度を言う。その硬度は弾性定数に影響する。
以上のピグの密度、透水率、弾性定数を異ならせることは、各ピグが独立して自由に走行するため、その異ならせたことに基づく機能を有効に発揮する。
Generally, the harder the pig, the better the stripping effect for the same diameter. If the water permeability is high, there is an effect that foreign matters in front of the pig traveling direction are loosened by the running water passing through the pig and can be easily moved. For this reason, it is preferable to first introduce a pig with high water permeability, and then gradually introduce a pig with a high elastic constant even if the water permeability is low.
In any case, the leading pig and trailing pig preferably have different densities, permeability and elastic constants (modulus of elasticity). Also, the ratio of the pipe inner diameter to the pig diameter is preferably 1:1.0 to 1.5. Furthermore, it is preferable to change the hardness of the pig according to the material of the pipeline.
In this way, by gradually increasing the hardness (hardening) or gradually increasing the diameter of the pig to be introduced, foreign matter can be smoothly removed. The hardness referred to here is the hardness measured with an Asker rubber hardness tester C-type. Its hardness affects the elastic constant.
By varying the density, water permeability, and elastic constant of the pigs described above, each pig travels independently and freely, so that the functions based on these differences are effectively exhibited.

なお、管路内のピグの走行は、そのピグの投入部からの流体流入によって行えば、例え
ば、複数の投入機と、流体圧送用ポンプとを有し、各投入機は、切替弁を介して管路及び
ポンプにそれぞれ接続されており、切替弁によって管路及びポンプに各投入機を個別かつ
選択的に接続する構成を採用すれば、装置全体の小型化が図れるが、特許文献5のように、導管からの流体流入によってその管路内のピグの走行を行うようにすることもできる。
In addition, if the pig travels in the pipeline by inflow of fluid from the feeding portion of the pig, for example, it has a plurality of feeding machines and a pump for pumping fluid, and each feeding machine is connected via a switching valve. are connected to the pipeline and the pump, respectively, and by adopting a configuration in which each input machine is individually and selectively connected to the pipeline and the pump by a switching valve, the size of the entire device can be reduced. , the inflow of fluid from the conduit may also be used to drive the pig in the conduit.

この発明は、以上のように、先行きのピグが管路の他部(取り出し部)に至る前に後行きのピグを投入して連続的に走行させるとともに、先行きのピグ及び後行きのピグを独立して自由に走行させることとしたので、夾雑物の除去作業時間の短縮を図り得るとともに、圧送流体の量を少なくできるため、作業効率の向上を図るとともに作業コストの低減を図ることができる。 As described above, according to the present invention, before the forward pig reaches the other part (extraction part) of the pipeline, the backward pig is thrown in and continuously traveled, and the forward pig and the backward pig are operated. Since it is made to run independently and freely, it is possible to shorten the work time for removing contaminants, and it is possible to reduce the amount of pressure-fed fluid, so it is possible to improve work efficiency and reduce work costs. .

この発明に係る管路内の夾雑物除去方法を実施するための実験管路図であり、(a)は概略図、(b)は分岐部の拡大図FIG. 2 is an experimental pipeline diagram for carrying out the method for removing contaminants in a pipeline according to the present invention, where (a) is a schematic diagram and (b) is an enlarged view of a branch part. 同夾雑物除去方法の一実施形態に使用するピグ(PCボール)の各例図Examples of pigs (PC balls) used in one embodiment of the contaminant removal method ピグの透水率の測定説明図Explanatory drawing of measurement of permeability of pig ピグの弾性定数の測定説明図Explanatory diagram for measuring the elastic constant of a pig 連球洗浄模式図を示し、(a)は管路内に夾雑物が無い場合、(b)は同夾雑物を介在した場合Schematic diagram of continuous cell washing, (a) when there are no contaminants in the pipeline, (b) when the same contaminants are interposed 同夾雑物除去方法の一実施形態の管路の断面図Cross-sectional view of a pipeline in one embodiment of the contaminant removal method ピグの摩擦力の測定説明図Illustration of the measurement of the frictional force of the pig ピグの密度測定結果説明図Explanatory diagram of pig density measurement results ピグの弾性定数測定結果説明図Explanatory diagram of the measurement results of the elastic constant of the pig ピグの他の透水試験説明図Explanatory drawing of another water permeability test of the pig ピグの透水率測定結果説明図Explanatory drawing of water permeability measurement result of pig 他の実施形態の要部管路図Principal part pipeline diagram of another embodiment

図1に示す実験管路を製作し、この管路Aにおいて、管路内の夾雑物の除去作用を実験した。その管路はパイプ材料からなり、そのパイプ1は、内部が観察できるよう透明の塩化ビニル製(呼び径:φ100、外径:114mm、内径:104mm、厚さ:5mm)を用い、ランチャー(投入機)L及びキャッチャー(受け取り機)Cの他、約20m間隔で分岐部(分岐1~4)を設置した。
ランチャーLとキャッチャーCには圧力計(アナログ4a及びデジタル4b)を設置し、圧力の監視及びデータ採取を行うとともに、キャッチャーCに流量計5を設置して、これを基に管内流速の設定を行った。管路長等は図示及び下記表1のとおりである。図中、6はポンプ、7は水槽である。
An experimental pipeline shown in FIG. 1 was produced, and in this pipeline A, the effect of removing contaminants in the pipeline was tested. The pipeline is made of a pipe material, and the pipe 1 is made of transparent vinyl chloride (nominal diameter: φ100, outer diameter: 114 mm, inner diameter: 104 mm, thickness: 5 mm) so that the inside can be observed. In addition to machine) L and catcher (receiving machine) C, branching sections (branchings 1 to 4) were installed at intervals of about 20m.
Pressure gauges (analog 4a and digital 4b) are installed in launcher L and catcher C to monitor pressure and collect data, and a flow meter 5 is installed in catcher C to set the flow velocity in the pipe based on this. went. Pipe line lengths, etc. are shown in the figure and shown in Table 1 below. In the figure, 6 is a pump and 7 is a water tank.

Figure 0007193794000001
Figure 0007193794000001

ランチャーL及びキャッチャーCは、特許文献4などに開示されている従来周知のものであって、後述のピグ20を管路内に投入し得るとともに、管路から取り出し得るものである。
分岐部(分岐1~4)10は、図1(b)に示すように、T字管11をパイプ1の間に介設し、その一口に単管12を接続し、その単管12の上端をフランジや蓋によって閉塞したものであり、その蓋を外すことによってピグ20を投入したり、取り出したり、洗浄距離を変えたり、万一、管路が閉塞した場合のピグ20等の排出口としたりした。
The launcher L and the catcher C are conventionally known ones disclosed in Patent Document 4 and the like, and are capable of inserting a later-described pig 20 into the pipeline and taking it out from the pipeline.
As shown in FIG. 1(b), the branching portion (branches 1 to 4) 10 has a T-shaped pipe 11 interposed between the pipes 1, and a single pipe 12 is connected to the mouth thereof. The upper end is closed with a flange or a lid, and by removing the lid, the pig 20 can be put in or taken out, the cleaning distance can be changed, and the pig 20 etc. can be discharged in the event that the pipeline is blocked. and so on.

ピグ20は、図2に示す、軟質ウレタン樹脂の発泡体からなる球状をしたものであって、表2に示す、ソフトタイプ20Y(図2(a)、表1のNo1~5)、ハードタイプ20B(同図(b)、同表のNo6~10)、中空タイプ20C(同図(c)、同表のNo11~12)、成型品タイプ20W(同図(d)、同表のNo13)を製作した。以下、これらのピグ20Y、20B、20C、20Wの総称符号を「20」とする。 The pig 20 has a spherical shape made of a soft urethane resin foam as shown in FIG. 20B (Figure (b), No. 6 to 10 in the same table), Hollow type 20C (Figure (c), No. 11 to 12 in the table), Molded type 20W (Figure (d), No. 13 in the table) made. Hereinafter, the generic code for these pigs 20Y, 20B, 20C, and 20W will be "20".

ソフトタイプ20Y、ハードタイプ20Bは無垢(中実)の連続気泡、中空タイプ20Cは、ハードタイプ20Bを二つ割りにしてその中を切り取って(中空21を形成して)接合したものであり、成型品タイプ20Wは金型成形であり、他の20Y、20B(C)は、発泡後、切削整形して球状とした。表2中の「呼び径」の列のY、B、C、Wにつづく数字は「呼び径」、例えば、「Y-110」は「ソフトタイプ20Yで呼び径:110」を示す。
この実験では、ソフトタイプ20Yを黄色に着色し、成型品タイプ20Wを白色に着色し、ハードタイプ20B、中空タイプ20Cを黒色に着色した。また、ソフトタイプ20Yのアスカーゴム硬度計C型で計った硬度は2~5、ハードタイプ20Bの同硬度は10~20であった。
The soft type 20Y and the hard type 20B are solid (solid) open cells, and the hollow type 20C is a hard type 20B that is split into two, cut out (to form a hollow 21), and joined together. Type 20W was formed by mold molding, and other types 20Y and 20B (C) were formed into a spherical shape by cutting after foaming. The numbers following Y, B, C, and W in the column of "nominal diameter" in Table 2 indicate "nominal diameter", for example, "Y-110" indicates "soft type 20Y with nominal diameter: 110".
In this experiment, the soft type 20Y was colored yellow, the molded product type 20W was colored white, and the hard type 20B and hollow type 20C were colored black. The soft type 20Y had a hardness of 2 to 5, and the hard type 20B had a hardness of 10 to 20 as measured by an Asker rubber hardness tester C type.

Figure 0007193794000002
Figure 0007193794000002

また、ソフトタイプY-110、ハードタイプB-110について、常温体積及び乾燥質量から密度を求めた結果を表3に示す。その数値は、各々2回の測定の平均値を示し、常温とは実験場所の空気調和をしていない時の温度を言い、乾燥質量とは、同じく、その実験場所の空気調和をしていない大気中における実験前の質量を言う。この実験時の温度:15℃、湿度:60%であった。
この結果から、ソフトタイプY-110は、見かけ密度:0.05(g/cm)程度、ハードタイプB-110は、同0.08(g/cm)程度である。
In addition, Table 3 shows the density obtained from the room temperature volume and the dry mass for the soft type Y-110 and the hard type B-110. The numerical values represent the average of two measurements each, normal temperature refers to the temperature when the experimental site is not air-conditioned, and dry mass refers to the temperature when the experimental site is not air-conditioned. It refers to the mass before the experiment in the air. The temperature during this experiment was 15° C. and the humidity was 60%.
From these results, the soft type Y-110 has an apparent density of about 0.05 (g/cm 3 ), and the hard type B-110 has an apparent density of about 0.08 (g/cm 3 ).

Figure 0007193794000003
Figure 0007193794000003

さらに、ソフトタイプY-110、ハードタイプB-110について、透水率を求め、その結果を表4に示す。その透水率は、図3に示すように、φ104透明VP(塩化ビニル)管(パイプ1)にピグ20を両者の間から水wが通過しないように嵌め込み、矢印のようにピグ20を透過した水の透水率(cm/s)=透過水体積(cm)/(通過断面積(cm)×通過時間(s))で求めた。 Furthermore, the water permeability was determined for soft type Y-110 and hard type B-110, and the results are shown in Table 4. As shown in FIG. 3, the water permeability is measured by inserting a pig 20 into a φ104 transparent VP (vinyl chloride) pipe (pipe 1) so that water w does not pass through between the two, and passing through the pig 20 as indicated by an arrow. Permeability of water (cm/s) = volume of permeated water (cm 3 )/(transmission cross-sectional area (cm 2 ) x transit time (s)).

Figure 0007193794000004
Figure 0007193794000004

また、ソフトタイプY-110、ハードタイプB-110について、弾性定数を求め、その結果を表5に示す。その弾性定数は、図4に示すように、上皿秤Hにピグ20を載せ、板を介して荷重Nをかけて、自然状態からの直径が、70%(w70)及び50%(w50)に圧縮するために必要な荷重(N)を求めた。このとき、自然状態からの圧縮直径dが70%の場合の荷重を「w70」、同50%の場合の荷重を70%時点からの増加分「w50-w70」とし、その弾性定数(N/cm)は、=荷重(N)/区間変位(cm)で求めた。その区間変位は、各々、圧縮率30%の場合は自然直径~70%圧縮直径間、圧縮率50%の場合は自然直径~50%圧縮直径間の距離とした。表5中の「圧縮直径d」の左列は「自然直径に対する圧縮直径の割合%」、右列は「圧縮直径」をそれぞれ示す。 Also, the elastic constants of soft type Y-110 and hard type B-110 were determined, and Table 5 shows the results. As shown in FIG. 4, the elastic constant of the pig 20 is placed on an upper dish scale H and a load N is applied via a plate, and the diameter from the natural state is 70% (w 70 ) and 50% (w 50 ), the load (N) required for compression was obtained. At this time, the load when the compression diameter d is 70% from the natural state is "w 70 ", the load when it is 50% is "w 50 - w 70 ", the increase from 70%, and the elastic constant (N/cm) was obtained by =load (N)/section displacement (cm). The section displacement was the distance between the natural diameter and the 70% compression diameter when the compression rate was 30%, and the distance between the natural diameter and the 50% compression diameter when the compression rate was 50%. In Table 5, the left column of "compressed diameter d" indicates "percentage of compressed diameter to natural diameter", and the right column indicates "compressed diameter".

Figure 0007193794000005
Figure 0007193794000005

この各ピグ20を、上記管路Aに投入した際の「対管内径比」、ランチャーLへの「押込み圧力(水圧)」、管路A内にピグ20を移動させるための「始動圧力」、「定常圧力(始動から排出までの水圧)」及び「排出圧力」を表6に示す。 The "pig inner diameter ratio" when each pig 20 is thrown into the pipeline A, the "pushing pressure (water pressure)" to the launcher L, and the "starting pressure" for moving the pig 20 into the pipeline A , “steady pressure (water pressure from start to discharge)” and “discharge pressure” are shown in Table 6.

Figure 0007193794000006
Figure 0007193794000006

この実験結果によると、押込み圧力は、ピグ(PCボール)20が中実の場合、硬さの差による違いはほとんどないが、直径の影響が顕著であり(No1、2と3~5)、管内径との比が1.5を超えるφ150辺りから急激に上昇する(No3~5、No8~10)。一方の中空タイプ(No11、12)は、φ150であってもさほど押込み圧力が上昇することはない。
始動圧力及び定常圧力については、始動圧力がハードタイプのφ150以上(No8~10)で高くなる傾向がある以外はほぼ0.01~0.03MPaと一定である。
排出圧力は、一連の圧力変動の中で最も高くなる傾向があり、0.3MPa以上となると、水撃圧による管路の振動、軋みが感じられた。
According to this experimental result, when the pig (PC ball) 20 is solid, there is almost no difference in the pressing pressure due to the difference in hardness, but the influence of the diameter is remarkable (Nos. 1, 2 and 3 to 5). It rises sharply around φ150 where the ratio to the pipe inner diameter exceeds 1.5 (Nos. 3 to 5, Nos. 8 to 10). On the other hand, hollow types (Nos. 11 and 12) do not increase the indentation pressure so much even with φ150.
The starting pressure and the steady pressure are almost constant at 0.01 to 0.03 MPa, except that the starting pressure tends to be higher for hard type φ150 or more (No. 8 to 10).
The discharge pressure tends to be the highest in a series of pressure fluctuations, and when it becomes 0.3 MPa or more, the vibration and creaking of the pipeline due to the water hammer pressure can be felt.

つぎに、上記管路Aにおいて、無負荷(ピグ20の入っていない)状態で、同一ポンプ圧力:0.3MPa、吐出量:19.8m/h(流速:0.7m/s)の条件下の、各ピグ20の各区間(スタート位置S(ランチャーL)→分岐1等)の移動時間及び移動速度を表7に示す。なお、ポンプの吐出圧及び流量は、上水道における洗浄作業の実績値から決定した。 Next, in the above pipeline A, under no load (without the pig 20), the same pump pressure: 0.3 MPa, discharge rate: 19.8 m 3 /h (flow rate: 0.7 m / s). Table 7 below shows the movement time and movement speed of each pig 20 in each section (start position S (launcher L)→branch 1, etc.). The discharge pressure and flow rate of the pump were determined based on the actual values of cleaning work in the water supply.

Figure 0007193794000007
Figure 0007193794000007

この実験結果によると、同一圧力、同一流量の設定の下では、ソフトタイプ20Y(No1~5)とハードタイプ20B(No6~10)の速度差が顕著であり、同一径を比較した場合、ハードタイプ20Bの速度はソフトタイプ20Yの80~85%程度となる。
中空タイプ20C(No11、12)については、φ120(No11)ではソフトタイプ20Yとハードタイプ20Bの中間的値、φ150(No12)はハードタイプ20Bと同等となっている。
According to the results of this experiment, under the same pressure and flow rate settings, the speed difference between the soft type 20Y (Nos. 1 to 5) and the hard type 20B (Nos. 6 to 10) is remarkable. The speed of type 20B is about 80 to 85% of that of soft type 20Y.
Regarding the hollow type 20C (No. 11, 12), φ120 (No. 11) has an intermediate value between the soft type 20Y and the hard type 20B, and φ150 (No. 12) is equivalent to the hard type 20B.

さらに、ポンプ6の作動を上記表7の実験と同様に設定し、先行きのピグ20が管路Aの他部(キャッチャーC)に至る前に後行きのピグ20を連続的に走行させるとともに、先行きピグ20及び後行きのピグ20を独立して自由に同時に走行させる実験(「連球法」実験)の結果を表8及び図5(a)に示す。
この表の各実験No1~6において、ピグ20を投入した順番、種類とともに、発射(投入)時及び到達時のピグ20の位置(ランチャーLからの距離)、相互の間隔を示し、図5(a)にそれらの模式図を示す。その図5(a)中、灰色丸のピグがソフトタイプ20Y、黒色丸のピグがハードタイプ20Bである。下記図5(b)も同様である。
このとき、ピグ20は、ランチャーLから1投目を投入後、ポンプ6を作動させて所定距離を先送りして停止させ、以後、同様の手順で2投目以降を投入した。予定数のピグ20が投入し終わったら(管路A内に全てのピグ20が位置する状態、好ましくは、分岐1まで、又は分岐2までに位置する状態で)、ポンプ6を再作動させて各ピグ20を一斉に移動させ、1投目がキャッチャーC直下のエルボに到着した時点でピグ20を停止させた(水の圧入を停止させた状態)。測定項目は、投入直後のピグ20の位置、2投目以降との間隔、及び1投目のピグ20がキャッチャーC直下のエルボに到達した時点での移動距離、2投目以降との間隔、並びに移動時間である。
Furthermore, the operation of the pump 6 was set in the same manner as in the experiment in Table 7 above, and the trailing pig 20 was continuously run before the leading pig 20 reached the other part (catcher C) of the pipeline A, Table 8 and FIG. 5(a) show the results of an experiment in which the leading pig 20 and the trailing pig 20 were independently and freely driven simultaneously (“running ball method” experiment).
In each experiment No. 1 to 6 in this table, the order and types of pigs 20 thrown in, the positions of the pigs 20 (distance from the launcher L) when launched (thrown in) and when they arrived, and the distances between them are shown in FIG. a) shows a schematic diagram thereof. In FIG. 5A, the gray circled pig is the soft type 20Y, and the black circled pig is the hard type 20B. The same applies to FIG. 5(b) below.
At this time, after throwing the first pig 20 from the launcher L, the pump 6 was actuated to advance the pig by a predetermined distance and stop, and thereafter, the second and subsequent shots were thrown in the same procedure. When the planned number of pigs 20 has been introduced (with all pigs 20 in pipeline A, preferably up to branch 1 or up to branch 2), pump 6 is restarted. The pigs 20 were moved all at once, and the pigs 20 were stopped when the first shot reached the elbow just below the catcher C (a state in which the injection of water was stopped). The measurement items are the position of the pig 20 immediately after throwing, the distance from the second throw and after, the movement distance when the pig 20 of the first throw reaches the elbow directly below the catcher C, the distance from the second throw and after, and travel time.

Figure 0007193794000008
Figure 0007193794000008

この実験結果から、同一硬さであれば(実験No1~3)、80mの移動の間に複数のピグ20の相対位置が変化する割合は15%以内であり、かつ距離が縮まる方向である。一方、ソフトタイプ20Yとハードタイプ20Bを一緒に送った場合は(実験No4~6)、ハードタイプ20Bが遅れる傾向にあり、ソフトタイプ20Yとハードタイプ20Bの走行距離からハードタイプ20Bが85~90%の速度差で移動しているとみられ、これは上記表7の基礎実験の傾向と整合している。 From this experimental result, if the hardness is the same (Experiment Nos. 1 to 3), the rate of change in the relative positions of the plurality of pigs 20 during the 80 m movement is within 15%, and the distance is in the direction of shortening. On the other hand, when the soft type 20Y and hard type 20B were sent together (experiment Nos. 4 to 6), the hard type 20B tended to be delayed. %, which is consistent with the basic experiment trend in Table 7 above.

つぎに、管路A内に、夾雑物a、a’がある状態で連球法にてピグ20を通過させ、洗浄性の確認とピグ20の挙動を確認した。このとき、夾雑物の投入量は図6に示すように、夾雑物a、a’が管路A(パイプ1)内径の1/4かつ長さが100m堆積した状態を想定し、その体積から砂a及びシルト混じり粘土a’の比重又は密度を乗じて算出した質量とした。なお、砂(硅砂5号)aのかさ比重は1.56、現場採取土(シルト混じり粘土)a’については、過去に行った同種の土壌の分析結果から密度2.81(g/cm)、含水比120%の単位体積当たりの質量1.41(kg/cm)を用いた。
ピグ20の投入種類及び順番については、上水道での経験と応用実験の結果から1投目:Y-120→2投目:B-150の順とし、現場採取土a’については3投目としてY-180を追加した。すなわち、管路に投入するピグ20の径及び硬度を順々に大きくかつ硬くした。その結果を表9及び図5(b)に示し、前者が同実験No1、後者が同実験No2である。
Next, the pig 20 was passed through the pipeline A in the presence of contaminants a and a' by the continuous ball method, and the detergency and the behavior of the pig 20 were confirmed. At this time, as shown in FIG. 6, the input amount of contaminants is assuming that the contaminants a and a' are 1/4 of the inner diameter of the pipeline A (pipe 1) and the length is 100 m. The mass was calculated by multiplying the specific gravities or densities of the sand a and the silt-mixed clay a'. The bulk specific gravity of sand (silica sand No. 5) a is 1.56, and the soil sampled on site (silt-mixed clay) a' has a density of 2.81 (g/cm 3 ) and a mass of 1.41 (kg/cm 3 ) per unit volume with a water content of 120%.
Regarding the type and order of input of Pig 20, based on the experience in the water supply and the results of application experiments, the first throw: Y-120 → the second throw: B-150, and the soil collected on site a' is the third throw Added Y-180. That is, the diameter and hardness of the pig 20 to be introduced into the pipeline were increased and increased in order. The results are shown in Table 9 and FIG. 5(b), the former being Experiment No. 1 and the latter being Experiment No. 2.

Figure 0007193794000009
Figure 0007193794000009

砂aは、1投目のピグ20YがランチャーLから1mほど進んだところで停滞してしまった。このため、圧力を0.3MPaから0.4MPaに上げると前記停滞した1投目のピグ20Yは徐々に動き始め、そのピグ20Yを通り抜けた水流が堆積した砂aの上部を押し流す作用が強まると、速度を上げて砂aを押し始め、最終的にキャッチャーCまで運んだ。ただし、1投目だけでは、管底部に残留分が確認でき、それらが2投目(ピグ20B)で除去される様子も確認できた。
その連球法での洗浄途中の様子から、1投目で押し残した残留分を、2投目、3投目(現場採取土a’のみ)が搬送、除去していることが確認できた。この実験No2では3投目にソフトタイプ20Yを使用した。このことから、管路Aの状況に応じて、ソフトタイプ20Yとハードタイプ20Bの硬度や径の異なるピグ20を適宜に選択して投入したり、最終はソフトタイプ20Yによって仕上げ洗浄したりすれば、円滑な夾雑物a、a’の除去ができることが推測できる。
Sand a stopped when the first pig 20Y was about 1m from the launcher L. For this reason, when the pressure is increased from 0.3 MPa to 0.4 MPa, the stagnant first cast pig 20Y begins to move gradually, and the water flow passing through the pig 20Y strengthens the action of washing away the upper part of the deposited sand a. , began to push sand a with increasing speed, and finally carried it to catcher C. However, with only the first throw, it was possible to confirm the residue at the bottom of the tube, and it was also confirmed that they were removed by the second throw (pig 20B).
It was confirmed from the state during the cleaning by the continuous ball method that the residue left behind by the first throw was transported and removed by the second and third throws (only the soil a' collected on site). . In Experiment No. 2, the soft type 20Y was used for the third throw. For this reason, depending on the situation of the pipeline A, the soft type 20Y and hard type 20B pigs 20 having different hardness and diameter can be appropriately selected and thrown in, or the soft type 20Y can be used for final cleaning. , contaminants a and a' can be smoothly removed.

以上の実験結果から以下の考察を行った。
1.基礎実験(ピグ(PCボール)20)の基本的な挙動の確認
「ランチャーLの押込み圧力、始動圧力、定常圧力及びキャッチャーCの排出圧力の確認」
ランチャーLの押込み圧力がピグ20の直径に影響を受けるのは、ランチャーLのなかでは、非圧縮状態のピグ20を管路A(パイプ1)内径まで縮径する必要があるためで、中実タイプ20Y,20Bでは管路A(パイプ1)の直径に応じた押込み圧力が必要となるのは当然の結果であると考える。また、中空タイプ20Cは、口径の小さい投入口から大径の管路洗浄を可能とするために試行されたタイプで、押込み圧力、排出圧力は中実タイプ20Y,20Bより低く抑えられることが確認できたが、一方で反発力の低下に伴う洗浄性への影響については別途検証を要するものと考えるが、洗浄力は低下すると考える。
始動圧力、定常圧力は、ほぼ、どのタイプでも変わりなく、ハードタイプ20Bのφ150以上のもので始動圧力がやや高まるのみであった。これもピグ20Bの硬さが弾性定数に基づく反発力として現れたものであり、その傾向が数値的に把握できたことは有意である。
排出圧力については、移動していたピグ20が管路A(パイプ1)より小さい口径を通過しようとして一時的に管路Aが閉塞状態となるため、水撃圧が発生しているようである。
管路Aの口径や管路長が大きくなると、その作用も増大する可能性があり、排出圧力の管理が重要な要素であると考える。
Based on the above experimental results, the following considerations were made.
1. Confirmation of basic behavior of basic experiment (pig (PC ball) 20) "Confirmation of pushing pressure, starting pressure, steady pressure of launcher L and discharge pressure of catcher C"
The reason why the pushing pressure of the launcher L is affected by the diameter of the pig 20 is that the uncompressed pig 20 in the launcher L must be reduced in diameter to the inside diameter of the pipeline A (pipe 1). It is considered as a matter of course that types 20Y and 20B require a pushing pressure corresponding to the diameter of the conduit A (pipe 1). In addition, the hollow type 20C is a type that has been tried to enable cleaning of large-diameter pipelines from a small-diameter inlet, and it has been confirmed that the pushing pressure and discharge pressure can be kept lower than the solid types 20Y and 20B. Although it was possible, on the other hand, we think that the effect on detergency due to the decrease in repulsion force will need to be verified separately, but we think that the detergency will decrease.
The starting pressure and steady-state pressure were almost the same for all types, and the starting pressure was only slightly increased for hard type 20B with a diameter of 150 or more. This also shows that the hardness of the pig 20B appears as a repulsive force based on the elastic constant, and it is significant that the trend could be grasped numerically.
Regarding the discharge pressure, it seems that the water hammer pressure is generated because the moving pig 20 tries to pass through a smaller diameter than the pipe line A (pipe 1), and the pipe line A is temporarily blocked. .
As the diameter and length of the pipeline A increase, the effect may also increase, and it is considered that the control of the discharge pressure is an important factor.

2.同一圧力下での移動速度の確認
実用的な条件設定であるポンプ圧力:0.3MPa、管内流速:0.7m/sの下で種類の異なるピグ20を送ると、ピグ口径(直径)の影響よりも、硬さの影響が大きく出ることが分かる。ソフトタイプ20Yはほぼ無負荷時の流速と等しい速度で移動する一方で、ハードタイプ20Bはその85~90%程度の速度となる。
2. Confirmation of moving speed under the same pressure When sending different types of pigs 20 under practical conditions, pump pressure: 0.3 MPa, pipe flow velocity: 0.7 m/s, the effect of the pig diameter (diameter) It can be seen that the effect of hardness is greater than that of The soft type 20Y moves at a speed substantially equal to the flow speed under no load, while the hard type 20B moves at about 85 to 90% of that speed.

参考として、今回使用したピグ20について、φ104透明VP(塩化ビニル)管(パイプ1)における接触面積と静止摩擦力、動摩擦力を測定した結果を表10に示す。その測定方法は図7の方法による。このとき、静止摩擦力Nは、荷重Fをピグ20にのみに加えたとき、動き出す瞬間のはかりDの値、動摩擦力Nはおよそ30mm/sで移動中の値を読んだ。Lはピグ20の接触長さである。 For reference, Table 10 shows the results of measuring the contact area, static friction force, and dynamic friction force in a φ104 transparent VP (vinyl chloride) pipe (pipe 1) for the pig 20 used this time. The measuring method is according to the method of FIG. At this time, the static friction force N is the value of the scale D at the moment when the load F is applied only to the pig 20, and the dynamic friction force N is the value while moving at about 30 mm/s. L is the contact length of the pig 20;

Figure 0007193794000010
Figure 0007193794000010

この実験結果から、動摩擦力については、φ150のハードタイプ20Bはソフトタイプ20Yの約2倍となることが判った。また、ハードタイプ20Bの速度低下の原因は、おそらく動摩擦力の差によるものであると考えるが、一部に、製造方法の差による透水率の違いなども考えられる。 From this experimental result, it was found that the dynamic friction force of the hard type 20B of φ150 is about twice that of the soft type 20Y. In addition, the speed reduction of the hard type 20B is probably caused by the difference in the dynamic frictional force, but it is also possible that the difference in the water permeability is partly due to the difference in the manufacturing method.

連球法における挙動については、
第1投目のピグが約20mほど先行した状態から、キャッチャーCまで移動する間の、各ピグ20Y、20Bの位置関係に着目した。すなわち約80~85mを移動する間の相互間隔の変化については、同一硬さであれば、その間隔は縮まる傾向にあるが、短縮代はもとの間隔の10~15%程度である。
これにハードタイプ20Bが加わると、ソフトタイプ20Yに比べさらに15%程度遅れながら移動し、最終的にハードタイプ20Bの後ろにソフトタイプ20Yを入れる場合は当初距離の25~30%程度間隔が縮まると考えなければならない。
このことから、ソフトタイプ20Y→ハードタイプ20Bを順々に投入するのが好ましいことが分かる(図5(a)参照)。
Regarding the behavior in the continuous ball method,
Attention was paid to the positional relationship between the pigs 20Y and 20B during the movement from the state where the pig of the first throw preceded by about 20 m to the catcher C. In other words, with respect to the change in the mutual interval during the movement of about 80 to 85 m, if the hardness is the same, the interval tends to be shortened, but the shortened margin is about 10 to 15% of the original interval.
If the hard type 20B is added to this, it will move with a delay of about 15% compared to the soft type 20Y, and when the soft type 20Y is finally inserted behind the hard type 20B, the distance will be reduced by about 25 to 30% of the initial distance. I have to think.
From this, it can be seen that it is preferable to sequentially introduce the soft type 20Y and the hard type 20B (see FIG. 5(a)).

夾雑物除去実験(砂及び現場採取土)においては、
管路内への夾雑物の投入量は、図6に示すように、砂(硅砂5号)a、現場採取土(シルト混じり粘土)a’とも300kgを投入した。砂aについては、ポンプ圧力を0.4MPaまで上昇して排出することができたが、排出時間も16分と夾雑物のない状態とくらべて5倍を要した。管路Aへの圧力の影響や、模擬管路の内面状況が理想的であることを鑑みると、0.3MPa以下での運用が実用上の限界条件と考える。
一方、現場採取土a’については、ポンプ圧0.3MPaで全量排出でき、2投目、3投目が各々積み残した夾雑物を回収しながら搬送していく様子が確認できた。
洗浄性については、当初粘着性のあるシルト混じり粘土a’のほうが悪いと予測していたが、砂aに比べて良好であった。これは、模擬管路の内面状態が良好なことや細粒分が多く見かけの比重が軽いことに加え、充填してから間がなく圧密されずに浮遊状態の粒子が多く存在していることも影響しているのではないかと考える。
この実験結果から、洗浄性は、「粘土混じりシルトa’」→「砂a」→「石」の順に悪くなるといえる。
「連球法」の効果については、夾雑物a、a’を投入した状態(表8のNo3の時間:4分22秒)と夾雑物がない状態(表8のNo1の時間:3分24秒)とをくらべると、1分程度時間は遅くなるが、3回ボール(ピグ)を個々に通過させる場合に比べると、水量も時間も短縮できる。
今回の実験結果から、連球法と単純に3回洗浄との時間及び水量を比較すると表11のようになり、連球法が優れていることが理解できる。
In the contaminant removal experiment (sand and on-site soil),
As shown in FIG. 6, 300 kg of sand (silica sand No. 5) a and site-collected soil (clay mixed with silt) a' were put into the pipeline. Regarding sand a, it was possible to discharge the sand by increasing the pump pressure to 0.4 MPa, but the discharge time was 16 minutes, which was five times longer than when no contaminants were present. Considering the influence of the pressure on the pipeline A and the ideal inner surface condition of the simulated pipeline, operation at 0.3 MPa or less is considered to be a practical limit condition.
On the other hand, it was confirmed that the site-collected soil a′ was completely discharged at a pump pressure of 0.3 MPa, and that the second and third throws were conveyed while recovering the foreign matter left behind.
As for the washability, it was initially expected that sticky silt-mixed clay a' would be worse, but it was better than sand a. This is because the inner surface of the simulated pipeline is in good condition, there are many fine particles and the apparent specific gravity is light, and there are many particles in a floating state that are not compacted shortly after filling. I think that it is also affected.
From this experimental result, it can be said that the detergency deteriorates in the order of "silt a' containing clay"→"sand a"→"stone".
Regarding the effect of the "continuous ball method", the state with contaminants a and a' added (time of No. 3 in Table 8: 4 minutes 22 seconds) and the state without contaminants (time of No. 1 in Table 8: 3 minutes 24 seconds) Seconds), the time is delayed by about one minute, but compared to the case where the ball (pig) is passed three times individually, the amount of water and time can be shortened.
From the results of this experiment, a comparison of the time and amount of water between the Renn-ball method and the simple three-time washing is shown in Table 11, and it can be understood that the Renn-ball method is superior.

Figure 0007193794000011
Figure 0007193794000011

さらに、このPCボール(ピグ)20の密度、弾性定数(弾性率、弾性係数)及び透水率が使用に耐え得るかを検証するために、各径のPCボール20に、図2(a)、(b)に示す軟質ウレタン樹脂の発泡体からなる球状をした無垢のソフトタイプ及びハードタイプを用い、「密度」、「透水率」、「弾性定数」を各々以下の方法で測定した。 Furthermore, in order to verify whether the density, elastic constant (modulus of elasticity, modulus of elasticity) and water permeability of the PC ball (pig) 20 can withstand use, the PC balls 20 of each diameter were subjected to Using solid spherical solid soft type and hard type soft urethane resin foams shown in (b), "density", "permeability" and "elastic constant" were measured by the following methods.

「密度の測定」
各PCボール20について、上記と同様に、実外径(直径)d(mm)から求めた体積(cm)の計算結果と質量m(g)を用い、下記式(1)により、密度ρ(g/cm)を算出した。
ρ=m/V ・・・・・・(1)
その結果を表12、図8に示す。
この図8及び表12によると、ソフトタイプが0.059[g/cm]、0.058[g/cm]程度、ハードタイプが0.099[g/cm]、0.091[g/cm]程度となっており、後者が前者に対し、密度が約1.6倍と高い。
"Measuring Density"
For each PC ball 20, in the same manner as described above, using the calculation result of the volume (cm 3 ) obtained from the actual outer diameter (diameter) d (mm) and the mass m (g), the density ρ (g/cm 3 ) was calculated.
ρ=m/V (1)
The results are shown in Table 12 and FIG.
According to FIG. 8 and Table 12, the soft type is about 0.059 [g/cm 3 ] and 0.058 [g/cm 3 ], and the hard type is about 0.099 [g/cm 3 ] and 0.091 [g/cm 3 ]. g/cm 3 ], and the density of the latter is about 1.6 times higher than that of the former.

Figure 0007193794000012
Figure 0007193794000012

「弾性定数]
上記図4において、上皿秤Hに代えて偏平状体重計を採用し、上記弾性定数の測定と同様に、その体重計の上面(載置面)にピグ20を載せ、板を介して荷重Nをかけて、自然状態からの直径が、70%(w70)及び50%(w50)に圧縮するために必要な荷重(N)を求めた。
その測定結果を表13、図9に示す。その表13中の「圧縮直径d」の左列は「自然直径に対する圧縮直径の割合%」、右列は「圧縮直径」をそれぞれ示す。
この表13及び図9によると、ハードタイプの弾性定数(弾性係数)がソフトタイプより、1.2~1.5倍高くなって硬いことが分かる。
"Elastic constant]
In FIG. 4, a flat weighing scale is adopted instead of the upper dish scale H, and the pig 20 is placed on the upper surface (mounting surface) of the weighing scale in the same manner as the measurement of the elastic constant, and the load is applied via the plate. Multiplying N, the load (N) required to compress the diameter from the natural state to 70% (w 70 ) and 50% (w 50 ) was obtained.
The measurement results are shown in Table 13 and FIG. In Table 13, the left column of "compressed diameter d" indicates "percentage of compressed diameter to natural diameter", and the right column indicates "compressed diameter".
According to Table 13 and FIG. 9, the elastic constant (modulus of elasticity) of the hard type is 1.2 to 1.5 times higher than that of the soft type, indicating that the hard type is hard.

Figure 0007193794000013
Figure 0007193794000013

「透水率]
図10に示す装置によって測定した。その装置は、100mmφの塩化ビニル管31の両端面にゴム輪32を固定するとともに、ゴム板33を宛がい、ゴム輪32を間にして前記ゴム板33と押し輪34をボルト・ナット35で締め付けることによって管31内を止水する。その管31内に金網36で塞いだ75mmφの塩化ビニル管37を同軸に設け、前記管31内にPCボール20を装填する。管31の一方には、複数のバルブ38a、38b、38cを設けたホース38、38を介して水Wを流入可能とすると共に、管31の他方からは、バルブ38dを設けたホース38を介してポリタンク39に前記水Wを流入可能とする。図中、38eは水圧計である。
"Permeability]
It was measured by the apparatus shown in FIG. In this device, a rubber ring 32 is fixed to both end surfaces of a vinyl chloride pipe 31 of 100 mm in diameter, and a rubber plate 33 is attached thereto. By tightening, the inside of the pipe 31 is stopped. A vinyl chloride pipe 37 of 75 mm in diameter closed with a wire mesh 36 is coaxially provided in the pipe 31 , and PC balls 20 are loaded in the pipe 31 . Water W can flow into one of the pipes 31 through hoses 38, 38 provided with a plurality of valves 38a, 38b, 38c, and from the other pipe 31, through a hose 38 provided with a valve 38d. The water W can flow into the polyethylene tank 39 by In the figure, 38e is a water pressure gauge.

この透水性試験装置において、まず、図中、一番左のバルブ38aとその直線上にあるバルブ38bを開き、管31内を満水とする。つぎに、出口側(右側)のバルブ38dを開き、管31内及びPCボール20内のエアを抜き抜き取った後、一番左のバルブ38aを一旦閉じ、出口側のホース38をポリタンク39の中に入れる。
この状態において、一番左のバルブ38aを開けると共に、ストップウォッチでその開放時からの経過時間を計測しつつ、ポリタンク39に10Lの水が入ったら、バルブ38aとストップウォッチを止める。
この作用の後、蓋40を開け、ボール20のサイズ・種類を変更し、上記の作用を繰り返して、各PCボール20の透水率を測定した。その測定結果を表14、図11に示す。
In this water permeability testing apparatus, first, the leftmost valve 38a and the valve 38b on the straight line are opened to fill the pipe 31 with water. Next, open the valve 38 d on the outlet side (right side) to remove the air inside the tube 31 and the PC ball 20 . put in
In this state, while opening the leftmost valve 38a and measuring the elapsed time from opening with a stopwatch, when 10 L of water enters the polyethylene tank 39, the valve 38a and the stopwatch are stopped.
After this action, the lid 40 was opened, the size and type of the ball 20 were changed, and the above action was repeated to measure the water permeability of each PC ball 20 . The measurement results are shown in Table 14 and FIG.

Figure 0007193794000014
Figure 0007193794000014

この透水率実験の結果によると、図11に示すように、ハードタイプのボール20Bの方がソフトタイプのボール20Yに比べて透水率が高いことが分かる。このため、ソフトタイプのボール20Yがハードタイプのボール20Bに比べて水圧を受けやすいことが理解でき、最初の夾雑物除去には好ましいことが分かる。すなわち、ソフトタイプのボール20Yで最初の夾雑物除去を行い、続いて、ハードタイプのボール20Bで除去し残った夾雑物除去を行うことが好ましいことが分かる。
また、透水率が変化すると、ボール20を押す力が変わってくるため、管31内の進行速度が変化しやすいと言える。管31に対してPCボール20が大きくなると、ボールにできるシワが大きくなり、透水率に影響が出やすかった。
According to the results of this water permeability experiment, as shown in FIG. 11, it can be seen that the hard type ball 20B has a higher water permeability than the soft type ball 20Y. For this reason, it can be understood that the soft type ball 20Y is more susceptible to water pressure than the hard type ball 20B, and is preferable for the initial removal of contaminants. That is, it can be seen that it is preferable to first remove contaminants with the soft type ball 20Y and then remove contaminants remaining after removal with the hard type ball 20B.
Further, when the water permeability changes, the force pushing the ball 20 changes, so it can be said that the traveling speed in the tube 31 is likely to change. When the PC ball 20 is larger than the tube 31, the wrinkles formed on the ball are increased, which tends to affect the water permeability.

以上の実験から、連球法による洗浄が優れていることを確認でき、これによって、既設管路の洗浄を円滑に行い得ることが確認できる。この管路内の夾雑物の除去は、従来と同様に、その除去のみならず、管路の機能診断を行う前に行ったり、その除去の後に、前記機能診断を行ったりする場合がある。
その連球法による洗浄は、上水道のみならず、農業用パイプライン(農業用水管路)、化学工場の薬品ライン等の他の流体管路に採用し得ることは言うまでもない。
なお、連球法によって複数のピグ20を連続して管路に投入する場合は、ランチャーLを複数用意することが好ましい。例えば、図12に示す態様とし、回路切替弁8によって両ランチャーL、Lを管路A及びポンプ6に交互に(個別かつ選択的に)接続してピグ20を投入する。
ピグ20は球状に限らず、特許文献1図7、図12等に記載の銃弾状等と任意である。また、ピグ20の外周面には慣性を高める、シリコーンゴム等のコーティングをすることが好ましい。
From the above experiments, it can be confirmed that cleaning by the continuous ball method is excellent, and it can be confirmed that the existing pipeline can be cleaned smoothly. Contaminants in the duct are removed in the same manner as in the conventional art, and in some cases, they are not only removed, but also before the functional diagnosis of the duct is performed, or after the removal thereof.
Needless to say, cleaning by the continuous ball method can be applied not only to waterworks but also to other fluid pipelines such as agricultural pipelines (agricultural water pipelines) and chemical lines in chemical plants.
It should be noted that it is preferable to prepare a plurality of launchers L when continuously throwing a plurality of pigs 20 into a pipeline by the continuous ball method. For example, in the mode shown in FIG. 12, both launchers L, L are alternately (individually and selectively) connected to the pipeline A and the pump 6 by the circuit switching valve 8, and the pig 20 is thrown.
The pig 20 is not limited to a spherical shape, and may be any shape such as a bullet shape described in FIGS. Moreover, it is preferable to coat the outer peripheral surface of the pig 20 with silicone rubber or the like to increase inertia.

なお、上記実施形態は、管路が塩化ビニル製であったため、ソフトタイプ20Y(黄色)→ハードタイプ29B(黒色)→ソフトタイプ20Y(黄色)の順で投入したが、管路の材質によって適宜に変更することは勿論であり、例えば、内面モルタルライニングのダクタイル鋳鉄管にあっては、ソフトタイプ20Y(黄色)→ソフトタイプ20Y(黄色)→ハードタイプ29B(黒色)の順で投入する。
このように、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
In the above embodiment, since the pipeline was made of vinyl chloride, the soft type 20Y (yellow) → hard type 29B (black) → soft type 20Y (yellow) were introduced in that order, but the material of the pipeline was used as appropriate. For example, for a ductile cast iron pipe with an inner mortar lining, soft type 20Y (yellow) → soft type 20Y (yellow) → hard type 29B (black) are introduced in this order.
In this way, the embodiments disclosed this time should be considered as examples and not restrictive in all respects. The scope of the present invention is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope of equivalence to the scope of claims.

C キャッチャー
L ランチャー
1 パイプ
4 圧力計
5 流量計
20、20Y、20B、20W ピグ(PCボール)
C catcher L launcher 1 pipe 4 pressure gauge 5 flow meter 20, 20Y, 20B, 20W pig (PC ball)

Claims (2)

管路(A)の一部からその管路内径以上の径のピグ(20)を前記管路(A)内に投入し、その管路(A)の一部から前記管路(A)内に流体を圧送して、前記管路(A)の長さ方向に前記ピグ(20)を走行させ、そのピグ(20)の走行に伴い、前記ピグ(20)と前記管路(A)内面との摩擦によって前記管路(A)内の夾雑物(a、a’)を剥離して押し進め、前記管路(A)の他部から前記ピグ(20)及び剥離した前記夾雑物(a、a’)を取り出す管路内面の夾雑物除去方法であって、
上記複数のピグ(20Y、20B、20W)を、先行きのピグが上記管路の他部に至る前に上記一部から後行きのピグを前記管路(A)に投入して連続的に走行させるとともに、先行きのピグ及び後行きのピグを独立して自由に走行させ、かつ前記ピグ(20)の硬度を、先行きのピグ(20)より後行きのピグ(20)を硬くするとともに、ピグ(20)の透水率は、先行きのピグ(20)を後行きのピグ(20)より高くしたことを特徴とする管路内面の夾雑物除去方法。
A pig (20) having a diameter equal to or larger than the inner diameter of the pipeline is introduced into the pipeline (A) from a part of the pipeline (A), and a pig (20) is introduced into the pipeline (A) from a part of the pipeline (A). to run the pig (20) in the length direction of the pipeline (A), and as the pig (20) runs, the pig (20) and the inner surface of the pipeline (A) The foreign matter (a, a') in the pipeline (A) is peeled off and pushed forward by friction with the pig (20) and the foreign matter (a, A method for removing contaminants on the inner surface of a pipeline for taking out a'),
The plurality of pigs (20Y, 20B, 20W) are continuously driven by inserting the following pig from one part into the pipeline (A) before the preceding pig reaches the other part of the pipeline. while allowing the leading pig and the trailing pig to run independently and freely, and making the hardness of the pig (20) harder than the leading pig (20), and (20) A method for removing contaminants from the inner surface of a pipeline, characterized in that the forward pig (20) has a higher water permeability than the backward pig (20) .
上記ピグ(20)の径が、先行きのピグ(20)より後行きのピグ(20)が大きいことを特徴とする請求項1に記載の管路内面の夾雑物除去方法。 2. The method for removing contaminants from the inner surface of a pipeline according to claim 1, wherein the diameter of the pig (20) is larger in the trailing pig (20) than in the leading pig (20).
JP2018047866A 2017-03-15 2018-03-15 Method for removing contaminants from inner surface of pipeline Active JP7193794B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017050119 2017-03-15
JP2017050119 2017-03-15

Publications (2)

Publication Number Publication Date
JP2018155092A JP2018155092A (en) 2018-10-04
JP7193794B2 true JP7193794B2 (en) 2022-12-21

Family

ID=63717798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047866A Active JP7193794B2 (en) 2017-03-15 2018-03-15 Method for removing contaminants from inner surface of pipeline

Country Status (1)

Country Link
JP (1) JP7193794B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200465A (en) 2000-12-28 2002-07-16 Sadakuni Daiku Method of extruding pig stopped in pipe by pushing pig
JP2005040742A (en) 2003-07-24 2005-02-17 Sadakuni Daiku Automatic transportation pipe washing apparatus using pig
JP2009022918A (en) 2007-07-23 2009-02-05 Kajima Corp Cleaning tool, cooling tool charging device, and method for cleaning the inside of piping
JP2009189910A (en) 2008-02-12 2009-08-27 Masakazu Yamamoto Method for cleaning inside of pipe
JP2010051885A (en) 2008-08-27 2010-03-11 Lining Service Kk Pig cleaner and pig cleaning method of piping
JP2014064961A (en) 2012-09-24 2014-04-17 Daiku Sadakuni Cleaning pig for waterwork pipe
JP2016107247A (en) 2014-12-10 2016-06-20 中里建設株式会社 Duct cleaning device and duct cleaning method
JP6232650B1 (en) 2016-10-07 2017-11-22 中里建設株式会社 Pipe cleaning device and pipe cleaning method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710377B2 (en) * 1990-06-28 1995-02-08 日本鋼管工事株式会社 Residual water drainage pig and residual water drainage method
JPH0550050A (en) * 1991-08-22 1993-03-02 Honda Motor Co Ltd Device for removing deposit in pipe
JP2597823B2 (en) * 1994-08-29 1997-04-09 川崎重工業株式会社 Fired pig launcher
JPH09126399A (en) * 1995-10-31 1997-05-13 Asia Kako Kk Recovery device for fluid in pipe of fluid transfer piping
JPH11245300A (en) * 1998-02-27 1999-09-14 Tokyo Gas Co Ltd Method for repairing existing pipeline

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200465A (en) 2000-12-28 2002-07-16 Sadakuni Daiku Method of extruding pig stopped in pipe by pushing pig
JP2005040742A (en) 2003-07-24 2005-02-17 Sadakuni Daiku Automatic transportation pipe washing apparatus using pig
JP2009022918A (en) 2007-07-23 2009-02-05 Kajima Corp Cleaning tool, cooling tool charging device, and method for cleaning the inside of piping
JP2009189910A (en) 2008-02-12 2009-08-27 Masakazu Yamamoto Method for cleaning inside of pipe
JP2010051885A (en) 2008-08-27 2010-03-11 Lining Service Kk Pig cleaner and pig cleaning method of piping
JP2014064961A (en) 2012-09-24 2014-04-17 Daiku Sadakuni Cleaning pig for waterwork pipe
JP2016107247A (en) 2014-12-10 2016-06-20 中里建設株式会社 Duct cleaning device and duct cleaning method
JP6232650B1 (en) 2016-10-07 2017-11-22 中里建設株式会社 Pipe cleaning device and pipe cleaning method

Also Published As

Publication number Publication date
JP2018155092A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6232650B1 (en) Pipe cleaning device and pipe cleaning method
Arney et al. Cement-lined pipes for water lubricated transport of heavy oil
JP6097481B2 (en) Water and sewage main cleaning method and water and sewage main cleaning device
CN101553324A (en) Apparatus and method for cleaning pipes and pipe systems
CN107335663A (en) A kind of pipeline Sorbet flusher and purging method
RU2324103C1 (en) Method of pipeline rehabilitation, mobile repair complex for rehabilitation and pipeline covering equipment
EP0713048A1 (en) Method of lining the internal surface of a pipe
CN102580954A (en) Pipeline ice crystal flusher
JP6310184B2 (en) Cleaning pipeline survey method
JP7193794B2 (en) Method for removing contaminants from inner surface of pipeline
CN203725451U (en) Sweeping system for submarine delivery pipelines
JP5191243B2 (en) How to clean piping using ice blocks
JP2009066522A (en) Cleaning method of waterwork pipe
CN102172572B (en) Inner wall washing and coating corrosion resisting method for manifold pipelines in oil fields
US6726778B2 (en) Method for cleaning and renovating pipelines
JP2011101847A (en) Method and apparatus for washing inside of water pipe
KR101750045B1 (en) The Method for tracking pig using pressure and flow rate of sending fluid
KR102580398B1 (en) Pipe cleaning and checking apparatus using an expansion tube
CN101733262B (en) Method for purging gas pipeline by using gas supercharge blasting method
JP2015080745A (en) Pipeline cleaning method
JP5016813B2 (en) Drainage pipe lining method and lining aids used in the method
KR102531294B1 (en) Pipeline cleaning method
KR102565220B1 (en) A pipe pigging system for controlling pigging speed and cleaning pig
CN104895873A (en) Oil feeder for cleaning hydraulic oil and hydraulic pipeline
CN204003797U (en) A kind of for clearing up the throwing oil machine of hydraulic oil and hydraulic line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221201

R150 Certificate of patent or registration of utility model

Ref document number: 7193794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350