JP7192317B2 - encoder - Google Patents

encoder Download PDF

Info

Publication number
JP7192317B2
JP7192317B2 JP2018164365A JP2018164365A JP7192317B2 JP 7192317 B2 JP7192317 B2 JP 7192317B2 JP 2018164365 A JP2018164365 A JP 2018164365A JP 2018164365 A JP2018164365 A JP 2018164365A JP 7192317 B2 JP7192317 B2 JP 7192317B2
Authority
JP
Japan
Prior art keywords
magnet
rotating shaft
scale plate
hub
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018164365A
Other languages
Japanese (ja)
Other versions
JP2020038081A (en
Inventor
雄二 松添
智晴 中山
寛之 松本
裕丈 久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018164365A priority Critical patent/JP7192317B2/en
Priority to DE102019119834.8A priority patent/DE102019119834B4/en
Priority to CN201910680862.6A priority patent/CN110873579A/en
Publication of JP2020038081A publication Critical patent/JP2020038081A/en
Application granted granted Critical
Publication of JP7192317B2 publication Critical patent/JP7192317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/264Mechanical constructional elements therefor ; Mechanical adjustment thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2458Encoders incorporating incremental and absolute signals with incremental and absolute tracks on separate encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/3473Circular or rotary encoders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明はエンコーダに関する。 The present invention relates to encoders.

従来、回転符号板(スリット板)やリング状磁石の回転を回路基板に設けられた光学センサや磁気センサにより検出し、測定対象の多回転量(回転数等)や一回転中の回転位置(回転角度)を検出可能なエンコーダが知られている(例えば、特許文献1参照)。 Conventionally, the rotation of a rotation code plate (slit plate) or a ring-shaped magnet is detected by an optical sensor or a magnetic sensor provided on a circuit board, and the amount of multiple rotations (number of rotations, etc.) of the object to be measured and the rotation position during one rotation ( An encoder capable of detecting a rotation angle is known (see, for example, Patent Document 1).

特開2011-47765号公報JP 2011-47765 A

しかしながら、特許文献1では、回路基板上において、測定対象の回転軸に対してリング状磁石の半径に相当する距離だけ離れた位置に複数の磁気センサが分散して配置される。そのため、磁気センサの配置に起因して、配線の配索や他の電気・電子部品の配置に制約が生じ、回路基板への電気・電子部品や配線等の実装面積が相対的に増大する可能性がある。 However, in Patent Document 1, a plurality of magnetic sensors are dispersedly arranged on a circuit board at positions separated by a distance corresponding to the radius of the ring-shaped magnet with respect to the rotating shaft to be measured. Therefore, due to the placement of the magnetic sensor, there are restrictions on the placement of wiring and the placement of other electrical and electronic components, and the mounting area for electrical and electronic components and wiring on the circuit board may increase relatively. have a nature.

そこで、上記課題に鑑み、回路基板への電気・電子部品や配線等の実装面積を抑制することが可能なエンコーダを提供することを目的とする。 Therefore, in view of the above problems, it is an object of the present invention to provide an encoder capable of suppressing the mounting area of electrical/electronic components, wiring, etc. on a circuit board.

上記目的を達成するため、本発明の一実施形態では、
測定対象の回転軸の一端に取り付けられるハブ部と、
前記回転軸に沿う方向から見て、前記ハブ部の前記回転軸と反対側の端面における前記回転軸の軸心を含む領域に取り付けられ、前記回転軸に垂直な方向で異なる磁極が着磁された磁石と、
前記回転軸に沿う方向で前記磁石と対向して配置され、前記磁石による磁場を検出する磁気センサと、
前記ハブ部の前記回転軸と反対側の端面に載置され、回転位置に応じて所定の照射光を所定のパターンで反射又は透過するパターン情報を有するスケール板と、
前記スケール板から反射又は透過される前記照射光を受光し、前記パターン情報を検出する受光部と、を備え、
前記スケール板は、前記回転軸に沿う方向から見て、前記ハブ部の前記領域に対応する中央部が切り欠かれ、
前記回転軸に沿う方向から見て、前記スケール板における切り欠かれた前記中央部に対応する内縁、及び、前記磁石の外縁の何れか一方に凸部が設けられ、何れか他方に前記凸部に対応する凹部が設けられる、
エンコーダが提供される。

To achieve the above object, in one embodiment of the present invention,
a hub portion attached to one end of a rotating shaft to be measured;
When viewed from the direction along the rotating shaft, it is attached to a region including the center of the rotating shaft on the end surface of the hub portion opposite to the rotating shaft, and is magnetized with different magnetic poles in the direction perpendicular to the rotating shaft. a magnet and
a magnetic sensor disposed facing the magnet in a direction along the rotation axis and detecting a magnetic field generated by the magnet;
a scale plate mounted on the end surface of the hub portion opposite to the rotation shaft and having pattern information for reflecting or transmitting a predetermined pattern of irradiation light according to the rotational position;
a light receiving unit that receives the irradiation light reflected or transmitted from the scale plate and detects the pattern information ;
the scale plate has a notched central portion corresponding to the region of the hub portion when viewed from the direction along the rotation axis;
When viewed from the direction along the rotation axis, a convex portion is provided on one of an inner edge corresponding to the notched central portion of the scale plate and an outer edge of the magnet, and the convex portion is provided on the other. is provided with a recess corresponding to
An encoder is provided.

上述の実施形態によれば、回路基板への電気・電子部品や配線等の実装面積を抑制することが可能なエンコーダを提供することができる。 According to the above-described embodiments, it is possible to provide an encoder capable of reducing the mounting area for electrical/electronic components, wiring, and the like on a circuit board.

第1実施形態に係るアブソリュートエンコーダの一例を示す図である。It is a figure which shows an example of the absolute encoder which concerns on 1st Embodiment. 第1実施形態に係るアブソリュートエンコーダにおける磁石の配置部分の断面を拡大して示す拡大断面図である。3 is an enlarged cross-sectional view showing an enlarged cross-section of a portion where magnets are arranged in the absolute encoder according to the first embodiment; FIG. 第1実施形態に係るアブソリュートエンコーダの他の例を示す図である。FIG. 4 is a diagram showing another example of the absolute encoder according to the first embodiment; FIG. 第2実施形態に係るアブソリュートエンコーダの一例を示す図である。It is a figure which shows an example of the absolute encoder which concerns on 2nd Embodiment. 第2実施形態に係るアブソリュートエンコーダの磁石及びスケール板の構造を示す図である。FIG. 10 is a diagram showing the structure of a magnet and a scale plate of an absolute encoder according to a second embodiment;

以下、図面を参照して発明を実施するための形態について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings.

<第1実施形態>
最初に、本発明の第1実施形態について説明する。
<First embodiment>
First, a first embodiment of the invention will be described.

[アブソリュートエンコーダの構成及び構造]
まず、図1、図2を参照して、本実施形態に係るアブソリュートエンコーダ100の構成及び構造等について説明する。
[Configuration and structure of absolute encoder]
First, the configuration, structure, etc. of an absolute encoder 100 according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG.

図1は、本実施形態に係るアブソリュートエンコーダ100の一例を示す図である。具体的には、図1(A)は、本実施形態に係るアブソリュートエンコーダ100の一例を示す平面図であり、図1(B)は、本実施形態に係るアブソリュートエンコーダ100の一例を示す側面断面図(図1(A)のA-A断面図)である。図2は、本実施形態に係るアブソリュートエンコーダ100における磁石130の配置部分を拡大して示す拡大断面図である。具体的には、図2は、図1(B)の側面視断面図における磁石130の配置部分を拡大して示す拡大断面図である。以下、後述の第2実施形態も含め、図中の三次元直交座標系(XYZ座標系)を適宜用いて説明を行い、便宜的に、Z軸の正方向(以下、「Z軸正方向」)を"上"、Z軸の負方向(以下、「Z軸負方向」)を"下"と称する場合がある。また、X軸の正方向及び負方向、Y軸の正方向及び負方向、並びに、Z軸の正方向及び負方向のそれぞれを、総括的に、"X軸方向"、"Y軸方向"、及び、"Z軸方向"と称する場合がある。 FIG. 1 is a diagram showing an example of an absolute encoder 100 according to this embodiment. Specifically, FIG. 1A is a plan view showing an example of the absolute encoder 100 according to this embodiment, and FIG. 1B is a side sectional view showing an example of the absolute encoder 100 according to this embodiment. FIG. 1(A) is a sectional view taken along the line AA in FIG. FIG. 2 is an enlarged cross-sectional view showing an enlarged portion where the magnet 130 is arranged in the absolute encoder 100 according to this embodiment. Specifically, FIG. 2 is an enlarged cross-sectional view showing an enlarged portion where the magnet 130 is arranged in the cross-sectional side view of FIG. 1(B). Hereinafter, the three-dimensional orthogonal coordinate system (XYZ coordinate system) in the drawings will be used as appropriate for description, including the second embodiment described later. ) is sometimes called “up”, and the negative direction of the Z-axis (hereinafter, “Z-axis negative direction”) is sometimes called “down”. In addition, the positive and negative directions of the X-axis, the positive and negative directions of the Y-axis, and the positive and negative directions of the Z-axis are collectively referred to as "X-axis direction", "Y-axis direction", And it may be called "Z-axis direction".

尚、図1(A)において、基板140、並びに、基板140に搭載される光学モジュール150及びホールIC(Integrated Circuit)160等は、ハブ110、スケール板120、及び磁石130等がZ軸正方向、つまり、上から露出して見えるように一点鎖線で表されている。また、図1において、アブソリュートエンコーダ100の構成要素を収容する筐体(ケース)は、省略されている。以下、後述の図3、図4についても同様である。 In FIG. 1A, the substrate 140, and the optical module 150 and the Hall IC (Integrated Circuit) 160 mounted on the substrate 140 are configured such that the hub 110, the scale plate 120, the magnet 130, etc. , that is, represented by a dashed line so that it appears exposed from above. Also, in FIG. 1, a housing (case) that houses the components of the absolute encoder 100 is omitted. The same applies to FIGS. 3 and 4, which will be described later.

本実施形態に係るアブソリュートエンコーダ100(エンコーダの一例)は、ハブ110と、スケール板120(スリット板)と、磁石130と、基板140と、光学モジュール150と、ホールIC160を含む。 An absolute encoder 100 (an example of an encoder) according to this embodiment includes a hub 110, a scale plate 120 (slit plate), a magnet 130, a substrate 140, an optical module 150, and a Hall IC 160.

ハブ110(ハブ部の一例)は、アブソリュートエンコーダ100による多回転量(例えば、回転数)や一回転中の回転位置(回転角度)等の測定対象(例えば、回転式のサーボモータ等)の回転軸200の一端に取り付けられる。 A hub 110 (an example of a hub portion) measures the rotation of an object (for example, a rotary servomotor, etc.) to be measured by the absolute encoder 100, such as the amount of multiple rotations (for example, the number of rotations) and the rotational position (rotational angle) during one rotation. It is attached to one end of shaft 200 .

例えば、ハブ110は、回転軸200に沿う方向(Z軸方向)から見て、つまり、平面視で、回転軸200の外径よりも大きな外径を有する略円柱形状を有する。ハブ110のZ軸負方向側の端面(つまり、下側の端面)の軸心位置付近の領域には、ハブ110と同軸で、且つ、回転軸200の外径と略同じ(実際上は、回転軸200の外径よりも若干大きい)内径を有する窪み部が設けられる。当該窪み部には、ハブ110の軸心と回転軸200の軸心200AXとが一致する態様で、回転軸200が嵌挿される。また、ハブ110の軸心位置には、両端面の間を貫通するねじ孔が設けられ、ハブ110のZ軸正方向側の端面(つまり、上側の端面)から下側の端面の窪み部に嵌挿された回転軸200に対して、雄ねじ115が螺合されることにより、ハブ110は、回転軸200に取り付けられる。これにより、ハブ110は、測定対象の回転軸200の回転に伴い、一体として回転する。 For example, hub 110 has a substantially cylindrical shape with an outer diameter larger than the outer diameter of rotating shaft 200 when viewed from the direction along rotating shaft 200 (the Z-axis direction), that is, when viewed from above. In a region near the axial position of the end face of the hub 110 on the Z-axis negative direction side (that is, the lower end face), there is provided an area coaxial with the hub 110 and substantially the same outer diameter as the rotating shaft 200 (actually, A recess is provided having an inner diameter that is slightly larger than the outer diameter of the rotating shaft 200 . Rotating shaft 200 is fitted into the recess in such a manner that the axis of hub 110 and the axis 200AX of rotating shaft 200 are aligned. In addition, a threaded hole is provided at the axial position of hub 110 so as to penetrate between both end faces. The hub 110 is attached to the rotating shaft 200 by screwing the external thread 115 onto the inserted rotating shaft 200 . As a result, the hub 110 rotates together with the rotation of the rotating shaft 200 to be measured.

また、ハブ110の上側の端面の軸心位置付近の領域には、図2に示すように、ハブ110と同軸(即ち、回転軸200と同軸)で、且つ、後述する磁石130の円柱形状の外径と略同じ(実際上は、磁石130の外径よりも若干大きい)内径を有する窪み部111が設けられる。つまり、上述のねじ孔は、窪み部111の底面と、回転軸200が嵌挿される、上述したハブ110の下側の端面の窪み部の底面との間を貫通している。このとき、当該ねじ穴の内径は、磁石130の外径、つまり、窪み部111の内径よりも小さい。また、雄ねじ115は、頭部の外径が窪み部111の内径より小さく、且つ、平面状の頭頂部を有する。雄ねじ115は、例えば、平ねじであってよい。これにより、平面視で、雄ねじ115の頭部を窪み部111に収めることができると共に、雄ねじ115の頭頂部と、窪み部111の底面とを同一平面に揃える、つまり、面一の状態にし、後述の如く、雄ねじ115の頭頂部の上に磁石130を配置することができる。 In addition, as shown in FIG. 2, in a region near the axial position of the upper end face of the hub 110, there is provided a cylindrical magnet 130 coaxial with the hub 110 (that is, coaxial with the rotating shaft 200) and a magnet 130 to be described later. A recess 111 is provided having an inner diameter approximately the same as the outer diameter (in practice, slightly larger than the outer diameter of magnet 130). That is, the screw hole described above penetrates between the bottom surface of the recessed portion 111 and the bottom surface of the recessed portion of the lower end surface of the hub 110 into which the rotating shaft 200 is inserted. At this time, the inner diameter of the screw hole is smaller than the outer diameter of the magnet 130 , that is, the inner diameter of the recess 111 . In addition, the male screw 115 has a head having an outer diameter smaller than the inner diameter of the recess 111 and has a planar top. External threads 115 may be, for example, flat threads. As a result, the head of the male screw 115 can be accommodated in the recessed portion 111 in a plan view, and the top of the male screw 115 and the bottom surface of the recessed portion 111 are aligned on the same plane. A magnet 130 may be placed on top of the male thread 115 as described below.

スケール板120は、例えば、嫌気性の接着材等を用いて、ハブ110の回転軸200が取り付けられる側の端面とは反対側の端面、つまり、上側の端面に取り付けられる。スケール板120は、例えば、ガラス製である。また、スケール板120は、金属製であってもよい。具体的には、スケール板120は、円板形状を有し、その中央部が切り欠かれ、貫通孔121が設けられると共に、平面視で、その中心が回転軸200の軸心200AXに一致するように、配置される。また、スケール板120のZ軸正方向側の面(つまり、上面)には、その外周(外縁)付近における異なる半径位置の全周に亘って、インクリメンタルパターン122及びアブソリュートパターン123が設けられる。 The scale plate 120 is attached to the end surface of the hub 110 opposite to the side to which the rotating shaft 200 is attached, that is, to the upper end surface using, for example, an anaerobic adhesive. The scale plate 120 is made of glass, for example. Also, the scale plate 120 may be made of metal. Specifically, the scale plate 120 has a disk shape, is notched at the center, and is provided with a through hole 121, and its center coincides with the axis 200AX of the rotation shaft 200 in a plan view. are placed so that Also, on the surface of the scale plate 120 in the positive direction of the Z-axis (that is, the upper surface), an incremental pattern 122 and an absolute pattern 123 are provided over the entire circumference at different radial positions near the outer periphery (outer edge).

インクリメンタルパターン122(パターン情報の一例)は、スケール板120の回転位置に応じて、光学モジュール150からの照射光を、任意の角度位置からの回転角度(つまり、相対角度)を表す所定のパターンで反射する。インクリメンタルパターン122は、例えば、照射光を反射する複数の反射部が周方向に等間隔に、且つ、それぞれの反射部の間に非反射部(或いは、反射部よりも反射率が低い低反射率部)が挟まれるように配置される。インクリメンタルパターン122の反射部、及び、非反射部或いは低反射率部は、例えば、既知のフォトエッチング加工により形成される。以下、アブソリュートパターン123の反射部、及び、非反射部或いは低反射率部についても同様である。 Incremental pattern 122 (an example of pattern information) is a predetermined pattern representing a rotation angle (i.e., relative angle) from an arbitrary angular position of irradiation light from optical module 150 according to the rotational position of scale plate 120 . reflect. The incremental pattern 122 includes, for example, a plurality of reflecting portions that reflect irradiation light at equal intervals in the circumferential direction, and a non-reflecting portion (or a low-reflecting portion having a lower reflectance than the reflecting portion) between the reflecting portions. part) are placed in between. The reflective portions and non-reflective or low-reflectance portions of the incremental pattern 122 are formed, for example, by a known photoetching process. Hereinafter, the same applies to the reflective portion and the non-reflective portion or low reflectance portion of the absolute pattern 123 .

アブソリュートパターン123(パターン情報の一例)は、スケール板120の回転位置に応じて、光学モジュール150からの照射光を、回転角度の絶対位置を表す所定のパターンで反射する。アブソリュートパターン123は、例えば、スケール板120の角度位置に応じて、所定のビット数(例えば、9ビット)のM系列コードを表す複数の反射部が周方向に配置される。このとき、アブソリュートパターン123の周方向における反射部同士の間には、非反射部或いは低反射率部が配置される。 The absolute pattern 123 (an example of pattern information) reflects the irradiation light from the optical module 150 in a predetermined pattern representing the absolute position of the rotation angle according to the rotation position of the scale plate 120 . The absolute pattern 123 has, for example, a plurality of reflection portions representing an M-sequence code of a predetermined number of bits (for example, 9 bits) arranged in the circumferential direction according to the angular position of the scale plate 120 . At this time, a non-reflecting portion or a low reflectance portion is arranged between the reflecting portions in the circumferential direction of the absolute pattern 123 .

磁石130は、回転軸200の軸心200AX、つまり、Z軸に垂直な方向(図1では、Y軸方向)で異なる磁極、つまり、S極及びN極が着磁されている。具体的には、磁石130は、Z軸方向、つまり、上下方向に延設される略円柱形状を有し、Y軸正方向側及びY軸負方向側に区分される半円柱形状のS極部130A及びN極部130Bを含む。 The magnet 130 is magnetized with different magnetic poles, that is, the S pole and the N pole, in the direction perpendicular to the axis 200AX of the rotating shaft 200, that is, the Z axis (the Y axis direction in FIG. 1). Specifically, the magnet 130 has a substantially cylindrical shape extending in the Z-axis direction, that is, in the vertical direction, and has a semi-cylindrical S pole divided into the Y-axis positive direction side and the Y-axis negative direction side. It includes a portion 130A and a north pole portion 130B.

例えば、磁石130は、図2に示すように、ハブ110の上側の端面の窪み部111に嵌挿される態様で配置される。具体的には、窪み部111の底面に液状の接着剤135が適量塗布された状態で、その上に、磁石130が載置される。このとき、接着剤135は、例えば、嫌気性(つまり、空気との接触を抑制することで固まる性質)、及び、紫外線硬化性(つまり、紫外線が照射されることで固まる性質)を有する。これにより、磁石130の下端面と窪み部111の底面との間の領域から磁石130の側面と窪み部111の側面との間まで液状の接着剤135が広がり、その一部が窪み部111の上端よりも上まで露出する(露出部135A)。そのため、磁石130が、液状の接着剤135が底面に塗布された窪み部111に載置された後に、磁石130の上方から紫外線が照射されることで、接着剤135のうちの露出部135Aが固められ、磁石130が仮固定される。そして、接着剤135のうちの露出部135A以外の部分は、その嫌気性の作用により、所定の時間をかけて固まる。よって、磁石130の接着剤135が完全に固定されていない状態であっても、露出部135Aの硬化により、検査工程等において、ハブ110を回転させて、各種検査を行うことができる。また、紫外線が照射されない限り、接着剤135の嫌気性の作用によって、露出部135Aが直ぐに固まることはないため、磁石130が窪み部111の中に載置(嵌挿)された後であっても、磁石130の周方向での位置合わせ等を行うことができる。 For example, as shown in FIG. 2, the magnet 130 is arranged in such a manner as to be inserted into the recessed portion 111 of the upper end face of the hub 110 . Specifically, an appropriate amount of liquid adhesive 135 is applied to the bottom surface of the recessed portion 111, and the magnet 130 is placed thereon. At this time, the adhesive 135 has, for example, anaerobic properties (that is, properties that harden by suppressing contact with air) and ultraviolet curing properties (that is, properties that harden when irradiated with ultraviolet rays), for example. As a result, the liquid adhesive 135 spreads from the region between the lower end surface of the magnet 130 and the bottom surface of the recess 111 to between the side surface of the magnet 130 and the side surface of the recess 111 , and a part of the adhesive 135 spreads over the recess 111 . It is exposed above the upper end (exposed portion 135A). Therefore, after the magnet 130 is placed in the recessed portion 111 having the liquid adhesive 135 applied to the bottom surface, the exposed portion 135A of the adhesive 135 is exposed by irradiating ultraviolet rays from above the magnet 130. It hardens and the magnet 130 is temporarily fixed. Then, the portion of the adhesive 135 other than the exposed portion 135A hardens over a predetermined period of time due to its anaerobic action. Therefore, even if the adhesive 135 of the magnet 130 is not completely fixed, various inspections can be performed by rotating the hub 110 in an inspection process or the like due to hardening of the exposed portion 135A. Further, unless the ultraviolet rays are irradiated, the exposed portion 135A does not immediately harden due to the anaerobic action of the adhesive 135. Also, alignment of the magnet 130 in the circumferential direction can be performed.

尚、磁石130は、Z軸に垂直な方向で異なる磁極を有する限り、円柱形状以外の形状であってもよい。 Note that the magnet 130 may have a shape other than a cylindrical shape as long as it has different magnetic poles in the direction perpendicular to the Z-axis.

基板140は、例えば、円板形状を有し、ハブ110(スケール板120及び磁石130等)からZ軸正方向、つまり、上方向に所定の距離だけ離れた位置において、回転軸200の軸心200AXと垂直に、即ち、スケール板120と平行に配置される。また、基板140は、円板形状の軸心が回転軸200の軸心200AXと一致するように配置される。具体的には、基板140は、アブソリュートエンコーダ100の構成要素を収容する図示しないケースに固定される。つまり、基板140は、回転軸200と共に回転しないため、基板140に実装される各種センサ(例えば、光学モジュール150やホールIC160等)は、回転軸200と共に回転するスケール板120や磁石130の回転状態を観測できる。基板140は、例えば、FR-4(Flame Retardant type 4)規格の配線基板である。基板140には、光学モジュール150及びホールIC160が実装される。また、基板140には、その他、光学モジュール150やホールIC160に接続され、一回転中の回転位置や多回転量(回転数)等を検出する各種処理を行う電子部品(電子回路)や、基板140に実装される電子部品を駆動する電源IC等の電気部品が実装される。 The substrate 140 has, for example, a disc shape, and is located at a position apart from the hub 110 (the scale plate 120, the magnet 130, etc.) in the Z-axis positive direction, that is, upward by a predetermined distance. It is arranged perpendicular to 200AX, that is, parallel to the scale plate 120 . Further, the substrate 140 is arranged so that the axis of the disk shape coincides with the axis 200AX of the rotating shaft 200 . Specifically, the substrate 140 is fixed to a case (not shown) that houses the components of the absolute encoder 100 . In other words, since the substrate 140 does not rotate together with the rotating shaft 200, the various sensors mounted on the substrate 140 (for example, the optical module 150, the Hall IC 160, etc.) cannot detect the rotating state of the scale plate 120 and the magnet 130 that rotate together with the rotating shaft 200. can be observed. The substrate 140 is, for example, an FR-4 (Flame Retardant type 4) standard wiring substrate. An optical module 150 and a Hall IC 160 are mounted on the substrate 140 . The substrate 140 also includes electronic components (electronic circuits) connected to the optical module 150 and the Hall IC 160 and performing various processes such as detecting the rotational position during one rotation and the amount of multiple rotations (number of rotations). An electric component such as a power supply IC for driving the electronic component mounted on 140 is mounted.

光学モジュール150(受光部の一例)は、基板140のZ軸負方向側の面、つまり、下面において、スケール板120のインクリメンタルパターン122及びアブソリュートパターン123に対応するように、回転軸200の軸心200AXを中心とする半径位置に設けられる。具体的には、光学モジュール150は、スケール板120に向けて光を照射する発光素子と、インクリメンタルパターン122やアブソリュートパターン123の反射部で反射された反射光を受光する受光素子を含む。このとき、発光素子は、例えば、LED(Light Emitting Diode)であり、受光素子は、例えば、フォトダイオード(Photo Diode)である。また、光学モジュール150の受光素子は、インクリメンタルパターン122に対応する反射光を受光する受光素子と、アブソリュートパターン123に対応する反射光を受光する受光素子とを含む。 The optical module 150 (an example of a light-receiving unit) is arranged on the surface of the substrate 140 in the negative Z-axis direction, that is, the lower surface, so as to correspond to the incremental pattern 122 and the absolute pattern 123 of the scale plate 120. They are provided at radial positions around 200AX. Specifically, the optical module 150 includes a light-emitting element that emits light toward the scale plate 120 and a light-receiving element that receives reflected light reflected by the reflecting portions of the incremental pattern 122 and the absolute pattern 123 . At this time, the light emitting element is, for example, an LED (Light Emitting Diode), and the light receiving element is, for example, a photo diode. The light receiving elements of the optical module 150 include light receiving elements that receive reflected light corresponding to the incremental pattern 122 and light receiving elements that receive reflected light corresponding to the absolute pattern 123 .

ホールIC160(磁気センサの一例)は、基板140の下面において、Z軸方向で磁石130と対向する位置、つまり、平面視で、回転軸200の軸心200AXを含む領域に実装され、磁石130のS極及びN極の間で生成される磁場を検出する磁気センサである。例えば、ホールIC160は、複数(例えば、4個)のホール素子を含み、それぞれのホール素子が、回転軸200の一回転中に磁石130のS極及びN極の間で生成される、異なる方向の磁場を検出可能に構成される。これにより、ホールIC160は、回転軸200の回転に伴う磁石130のS極及びN極の間の磁場の変化に応じた検出信号を複数のホール素子から出力することができるため、後段の検出回路において、回転軸200の回転数等が検出されうる。 Hall IC 160 (an example of a magnetic sensor) is mounted on the lower surface of substrate 140 at a position facing magnet 130 in the Z-axis direction, that is, in a region including axis 200AX of rotating shaft 200 in plan view. A magnetic sensor that detects the magnetic field generated between south and north poles. For example, the Hall IC 160 includes a plurality (eg, four) of Hall elements, each of which is generated between the south and north poles of the magnet 130 during one rotation of the rotating shaft 200. is configured to be able to detect the magnetic field of As a result, the Hall IC 160 can output, from a plurality of Hall elements, detection signals corresponding to changes in the magnetic field between the S and N poles of the magnet 130 as the rotating shaft 200 rotates. , the number of revolutions of the rotating shaft 200 and the like can be detected.

尚、回転軸200の回転に伴う磁石130のS極及びN極の間の磁場(磁界の向き)の変化を検出可能であれば、ホールIC160に代えて、他の種類の磁気センサが採用されてもよい。 Note that other types of magnetic sensors may be employed instead of the Hall IC 160 as long as they can detect changes in the magnetic field (direction of the magnetic field) between the S and N poles of the magnet 130 as the rotary shaft 200 rotates. may

[作用]
次に、引き続き、図1、図2を参照して、本実施形態に係るアブソリュートエンコーダ100の作用について説明する。
[Action]
Next, the operation of the absolute encoder 100 according to this embodiment will be described with reference to FIGS. 1 and 2. FIG.

本実施形態では、アブソリュートエンコーダ100は、回転軸200に沿う方向から見て(つまり、平面視で)、ハブ110の回転軸200と反対側の端面(つまり、上側の端面)における回転軸200の軸心200AXを含む領域(つまり、円柱形状のハブ110の軸心位置付近の領域)に取り付けられ、回転軸200に垂直な方向で異なる磁極が着磁される磁石130を備える。そして、アブソリュートエンコーダ100は、複数のホール素子を含むホールIC160であって、磁石130と対向して配置され、磁石130による磁場を検出するホールIC160を備える。 In the present embodiment, the absolute encoder 100 is positioned on the end surface of the hub 110 opposite to the rotation shaft 200 (that is, the upper end surface) when viewed from the direction along the rotation shaft 200 (that is, in a plan view). A magnet 130 attached to an area including the axis 200AX (that is, an area near the axis position of the cylindrical hub 110) and magnetized with different magnetic poles in the direction perpendicular to the rotating shaft 200 is provided. The absolute encoder 100 includes a Hall IC 160 that includes a plurality of Hall elements, is arranged to face the magnet 130 , and detects the magnetic field generated by the magnet 130 .

例えば、上述の特許文献1では、回路基板上において、測定対象の回転軸に対してリング状磁石の半径に相当する距離だけ離れた位置に複数の磁気センサが分散して配置される。そのため、磁気センサの配置に起因して、配線の配索や他の電気・電子部品の配置に制約が生じ、回路基板への電気・電子部品や配線等の実装面積が相対的に増大する可能性がある。 For example, in Patent Document 1 mentioned above, a plurality of magnetic sensors are dispersedly arranged on a circuit board at positions separated by a distance corresponding to the radius of the ring-shaped magnet with respect to the rotating shaft to be measured. Therefore, due to the placement of the magnetic sensor, there are restrictions on the placement of wiring and the placement of other electrical and electronic components, and the mounting area for electrical and electronic components and wiring on the circuit board may increase relatively. have a nature.

これに対して、本実施形態では、測定対象の回転数等を検出するための磁気センサとしてのホールIC160を基板140における回転軸200の軸心200AXに対応する中央領域に集約して配置させることができる。そのため、磁気センサの配置に起因する、配線の配索や他の電気・電子部品の配置に対する制約を緩和し、基板140への電気・電子部品や配線等の実装面積の増大を抑制することができる。そのため、例えば、基板140の層数を減少させたり、IVH(Interstitial Via Hole)の代わりに、スルーホールを採用したり等し、アブソリュートエンコーダ100の実装コストを抑制することができる。 On the other hand, in the present embodiment, Hall ICs 160 as magnetic sensors for detecting the number of revolutions of the object to be measured are collectively arranged in the central region corresponding to the axis 200AX of the rotating shaft 200 on the substrate 140. can be done. Therefore, it is possible to alleviate the restrictions on the arrangement of wiring and the arrangement of other electric/electronic components due to the arrangement of the magnetic sensor, and suppress the increase in the mounting area of the electric/electronic components, wiring, etc. on the substrate 140. can. Therefore, for example, the number of layers of the substrate 140 can be reduced, or through holes can be used instead of IVHs (Interstitial Via Holes), thereby reducing the mounting cost of the absolute encoder 100 .

また、本実施形態では、ハブ110の上側の端面における軸心位置付近の領域には、窪み部111が設けられ、磁石130は、窪み部111に配置(嵌挿)される。 Further, in the present embodiment, a depression 111 is provided in a region near the axial position on the upper end surface of the hub 110 , and the magnet 130 is arranged (inserted) in the depression 111 .

これにより、製造ライン等において、窪み部111に磁石130を配置するだけで、ハブ110の上端面における(つまり、XY平面上における)磁石130の位置決めを行うことができるため、生産性を向上させることができる。また、接着剤135が窪み部111に塗布されるため、接着剤135がハブ110の上側の端面に広くはみ出してしまうような事態を抑制することができる。 As a result, the magnet 130 can be positioned on the upper end surface of the hub 110 (that is, on the XY plane) simply by arranging the magnet 130 in the recess 111 in a manufacturing line or the like, thereby improving productivity. be able to. Moreover, since the adhesive 135 is applied to the recessed portion 111 , it is possible to prevent the adhesive 135 from protruding widely over the upper end face of the hub 110 .

尚、本実施形態のアブソリュートエンコーダ100は、構造が簡略化され、ハブ110の窪み部111は、省略されてもよい。 It should be noted that the absolute encoder 100 of this embodiment may have a simplified structure and the recessed portion 111 of the hub 110 may be omitted.

例えば、図3は、本実施形態に係るアブソリュートエンコーダ100の他の例、つまり、ハブ110の窪み部111が省略される具体例である。具体的には、図3(A)は、本実施形態に係るアブソリュートエンコーダ100の他の例を示す平面図であり、図3(B)は、本実施形態に係るアブソリュートエンコーダ100の他の例を示す側面断面図(図3(A)のA-A断面図)である。 For example, FIG. 3 shows another example of the absolute encoder 100 according to this embodiment, that is, a specific example in which the recessed portion 111 of the hub 110 is omitted. Specifically, FIG. 3A is a plan view showing another example of the absolute encoder 100 according to this embodiment, and FIG. 3B is another example of the absolute encoder 100 according to this embodiment. 4 is a side cross-sectional view (cross-sectional view taken along the line AA in FIG. 3(A)).

本例の場合、図3(B)に示すように、ハブ110の上側の端面は、平面で構成され、磁石130は、当該平面における回転軸200の軸心200AXに対応する領域に載置される。 In this example, as shown in FIG. 3B, the upper end surface of the hub 110 is a plane, and the magnet 130 is placed in a region corresponding to the axis 200AX of the rotating shaft 200 on the plane. be.

また、本実施形態では、磁石130は、紫外線硬化性及び嫌気性を有する接着剤135を用いて、ハブ110の上側の端面に固定される。 Also, in this embodiment, the magnet 130 is fixed to the upper end surface of the hub 110 using an adhesive 135 having ultraviolet curing and anaerobic properties.

これにより、磁石130を固定する接着剤が完全に固まっていない状態であっても、紫外線の照射による磁石130とハブ110との間から露出する接着剤の部分(例えば、露出部135A)の硬化により、検査工程等において、回転軸200を回転させて、各種検査を行うことができる。また、紫外線が照射されない限り、接着剤の嫌気性の作用によって、磁石130とハブ110との間から露出する接着剤の部分が直ぐに固まることはないため、磁石130が窪み部111の中に載置(嵌挿)された後であっても、磁石130の位置合わせ等を行うことができる。 As a result, even if the adhesive that fixes the magnet 130 is not completely hardened, the portion of the adhesive that is exposed between the magnet 130 and the hub 110 (for example, the exposed portion 135A) is cured by the ultraviolet irradiation. Accordingly, various inspections can be performed by rotating the rotating shaft 200 in an inspection process or the like. In addition, since the portion of the adhesive exposed between the magnet 130 and the hub 110 does not immediately harden due to the anaerobic action of the adhesive unless it is irradiated with ultraviolet rays, the magnet 130 is placed in the recess 111 . Alignment of the magnet 130 and the like can be performed even after the placement (insertion).

また、本実施形態では、ハブ110は、回転軸200と反対側の端面(つまり、上側の端面)から回転軸200に対して、平面状の頭頂部を有する雄ねじ115が螺合されることにより、回転軸200に取り付けられる。そして、磁石130は、雄ねじ115の頭頂部の上に配置される。 Further, in this embodiment, the hub 110 is formed by screwing a male screw 115 having a planar top portion onto the rotating shaft 200 from the end surface opposite to the rotating shaft 200 (that is, the upper end surface). , is attached to the rotating shaft 200 . The magnet 130 is then placed on top of the male thread 115 .

これにより、ハブ110及び回転軸200を軸方向で固定しつつ、磁石130をハブ110の上側の端面における回転軸200の軸心200AXに対応する位置に配置することができる。 As a result, while the hub 110 and the rotating shaft 200 are fixed in the axial direction, the magnet 130 can be arranged on the upper end surface of the hub 110 at a position corresponding to the axis 200AX of the rotating shaft 200 .

<第2実施形態>
次いで、第2実施形態について説明する。
<Second embodiment>
Next, a second embodiment will be described.

本実施形態のアブソリュートエンコーダ100は、スケール板120及び磁石130の構成及び構造等が第1実施形態と異なる。以下、第1実施形態と同一或いは対応する構成には、同一の符号を付し、第1実施形態と異なる部分を中心に説明する。 The absolute encoder 100 of this embodiment differs from that of the first embodiment in the configurations and structures of the scale plate 120 and the magnets 130 . In the following, the same reference numerals are assigned to the same or corresponding configurations as in the first embodiment, and the description will focus on the portions that differ from the first embodiment.

[アブソリュートエンコーダの構成及び構造]
まず、図4、図5を参照して、本実施形態に係るアブソリュートエンコーダ100の構成及び構造等について説明する。
[Configuration and structure of absolute encoder]
First, the configuration, structure, etc. of the absolute encoder 100 according to the present embodiment will be described with reference to FIGS. 4 and 5. FIG.

図4は、本実施形態に係るアブソリュートエンコーダ100の一例を示す図である。具体的には、図4(A)は、本実施形態に係るアブソリュートエンコーダ100の一例を示す平面図であり、図4(B)は、本実施形態に係るアブソリュートエンコーダ100の一例を示す側面断面図(図4(A)のA-A断面図)である。図5は、本実施形態に係るアブソリュートエンコーダ100の磁石130及びスケール板120の構造を示す図である。具体的には、図5(A)は、磁石130の構造を示す平面図であり、図5(B)は、スケール板120の構造を示す平面図である。 FIG. 4 is a diagram showing an example of the absolute encoder 100 according to this embodiment. Specifically, FIG. 4A is a plan view showing an example of the absolute encoder 100 according to this embodiment, and FIG. 4B is a side sectional view showing an example of the absolute encoder 100 according to this embodiment. FIG. 4B is a cross-sectional view taken along the line AA in FIG. 4A. FIG. 5 is a diagram showing the structures of the magnet 130 and the scale plate 120 of the absolute encoder 100 according to this embodiment. Specifically, FIG. 5A is a plan view showing the structure of the magnet 130, and FIG. 5B is a plan view showing the structure of the scale plate 120. FIG.

尚、図5(B)では、便宜的に、インクリメンタルパターン122及びアブソリュートパターン123の図示が省略されている。 Incidentally, in FIG. 5B, illustration of the incremental pattern 122 and the absolute pattern 123 is omitted for the sake of convenience.

本実施形態に係るアブソリュートエンコーダ100は、第1実施形態と同様、ハブ110と、スケール板120と、磁石130と、基板140と、光学モジュール150と、ホールIC160を含む。 An absolute encoder 100 according to this embodiment includes a hub 110, a scale plate 120, a magnet 130, a substrate 140, an optical module 150, and a Hall IC 160, as in the first embodiment.

スケール板120は、図5(B)に示すように、平面視で、貫通孔121の内縁(内側面)における所定の周方向の位置から径方向の内側、つまり、回転軸200の軸心200AX(スケール板120の軸心)に向けて張り出した凸部124を含む。 As shown in FIG. 5B, the scale plate 120 extends radially inward from a predetermined circumferential position on the inner edge (inner side surface) of the through hole 121 in plan view, that is, the axis 200AX of the rotating shaft 200. It includes a protrusion 124 projecting toward (the axis of the scale plate 120).

磁石130は、図5(A)に示すように、平面視で、円柱形状の側面(外縁)から径方向の内側、つまり、回転軸200の軸心200AX(磁石130の円柱形状の軸心)に向けてへこんでいる凹部131を含む。具体的には、凹部131は、平面視で、磁石130の側面(外縁)における極性が変化する周方向の位置に設けられている。 As shown in FIG. 5A, the magnet 130 is positioned radially inward from the side surface (outer edge) of the cylindrical shape in plan view, that is, the axis 200AX of the rotating shaft 200 (the axis of the cylindrical shape of the magnet 130). It includes a recess 131 that is recessed toward the . Specifically, the concave portion 131 is provided at a position in the circumferential direction where the polarity of the side surface (outer edge) of the magnet 130 changes in plan view.

スケール板120の凸部124、及び磁石130の凹部131は、対応している。つまり、ハブ110に搭載された状態において、スケール板120の凸部124は、磁石130の凹部131に係合するように、スケール板120の凸部124及び磁石130の凹部131のそれぞれが形成されている。これにより、例えば、ハブ110に先に搭載されるスケール板120に対して、回転軸200の軸心200AXを基準とする磁石130の回転方向の適切な相対位置を実現しつつ、容易に、磁石130の搭載作業を行うことが可能になる。 The convex portion 124 of the scale plate 120 and the concave portion 131 of the magnet 130 correspond to each other. In other words, the projections 124 of the scale plate 120 and the recesses 131 of the magnets 130 are formed so that the projections 124 of the scale plate 120 are engaged with the recesses 131 of the magnets 130 when mounted on the hub 110 . ing. As a result, for example, the magnet 130 can be easily rotated while realizing an appropriate relative position in the rotation direction of the magnet 130 with respect to the axis 200AX of the rotation shaft 200 with respect to the scale plate 120 mounted on the hub 110 first. 130 can be installed.

尚、スケール板120に凹部が設けられ、磁石130に、スケール板120の凹部に係合する凸部が設けられる態様であってもよい。また、スケール板120の貫通孔121の内縁(内側面)に設けられる凸部124は、回転軸200の軸心200AXを基準として、特定の周方向位置で径方向の内側に突出するように設けられる代わりに、例えば、周方向の所定範囲が弦状に張り出すように設けられてもよい。この場合、磁石130には、弦状の凹部131が設けられる。 Alternatively, the scale plate 120 may be provided with a concave portion, and the magnet 130 may be provided with a convex portion that engages with the concave portion of the scale plate 120 . The convex portion 124 provided on the inner edge (inner side surface) of the through hole 121 of the scale plate 120 is provided so as to protrude radially inward at a specific circumferential position with the axis 200AX of the rotating shaft 200 as a reference. Instead, for example, a predetermined range in the circumferential direction may be provided so as to protrude like a chord. In this case, the magnet 130 is provided with a chordal recess 131 .

[作用]
次に、引き続き、図4、図5を参照して、本実施形態に係るアブソリュートエンコーダ100の作用について説明する。
[Action]
Next, the operation of the absolute encoder 100 according to this embodiment will be described with reference to FIGS. 4 and 5. FIG.

本実施形態では、スケール板120は、回転軸200に沿う方向から見て、つまり、平面視で、ハブ110における軸心位置付近の領域に対応する中央部が切り欠かれて、貫通孔121が設けられる。そして、平面視で、スケール板120における切り欠かれた中央部に対応する内縁、つまり、貫通孔121の内縁(内側面)、及び、磁石130の外縁(側面)の何れか一方に凸部が設けられ、何れか他方に当該凸部に対応する凹部が設けられる。このとき、磁石130の外縁(側面)における凹部或いは凸部は、磁石130の磁極が切り替わる周方向の位置に設けられてよい。 In the present embodiment, the scale plate 120 has a notched central portion corresponding to an area in the vicinity of the axial center position of the hub 110 when viewed from the direction along the rotating shaft 200, that is, when viewed from above, so that the through hole 121 is formed. be provided. In a plan view, the inner edge corresponding to the notched central portion of the scale plate 120, that is, the inner edge (inner side surface) of the through hole 121 or the outer edge (side surface) of the magnet 130 has a convex portion. One of them is provided with a concave portion corresponding to the convex portion. At this time, the concave portion or convex portion on the outer edge (side surface) of the magnet 130 may be provided at a position in the circumferential direction where the magnetic pole of the magnet 130 is switched.

例えば、ホールIC160を含む磁気系は、比較的低い消費電力で稼働可能であるため、何等かの理由で電力供給に問題が発生しても、測定対象の多回転量を検出し続けることが可能である。一方、光学モジュール150を含む光学系は、ある程度の消費電力を要するため、電力供給に問題が生じると、稼働できない。そのため、電力供給の問題が解消された場合に、それまでに磁気系で測定された多回転量に対して、以後、光学系で検出される一回転中の回転位置を繋げる態様で、測定が継続される必要がある。つまり、ホールIC160により検出される測定対象の回転位置と、光学モジュール150(受光素子)により検出される測定対象の回転位置との間には、予め規定された関係が成立している必要がある。そのため、アブソリュートパターン123を有するスケール板120と、回転に伴う磁界変化を生じさせる磁石130との間には、回転軸200の軸心200AXを基準として、回転方向での所定の相対的な位置関係が成立している必要がある。よって、当該位置関係が成立するように、当該凹部及び凸部が設けられることにより、当該位置関係を実現しつつ、容易に、磁石130の搭載作業を行うことができる。 For example, the magnetic system including the Hall IC 160 can operate with relatively low power consumption, so even if there is a problem with the power supply for some reason, it is possible to continue detecting the multi-rotation amount of the object to be measured. is. On the other hand, since the optical system including the optical module 150 requires a certain amount of power consumption, it cannot operate if there is a problem with the power supply. Therefore, when the power supply problem is solved, the measurement will be performed in such a manner that the rotational position detected by the optical system during one rotation is connected to the multiple rotation amount measured by the magnetic system up to that point. need to be continued. That is, a predetermined relationship must be established between the rotational position of the measurement object detected by the Hall IC 160 and the rotational position of the measurement object detected by the optical module 150 (light receiving element). . Therefore, there is a predetermined relative positional relationship in the direction of rotation between the scale plate 120 having the absolute pattern 123 and the magnet 130 that produces a magnetic field change with rotation, with the axis 200AX of the rotation shaft 200 as a reference. must be established. Therefore, by providing the concave portion and the convex portion so as to establish the positional relationship, the work of mounting the magnet 130 can be easily performed while realizing the positional relationship.

尚、磁石130の外縁(側面)における凹部或いは凸部は、スケール板120及び磁石130の間で当該位置関係が成立するのであれば、磁石130の磁極が切り替わる周方向の位置以外に設けられてもよい。 If the positional relationship between the scale plate 120 and the magnet 130 is established, the concave portion or convex portion on the outer edge (side surface) of the magnet 130 may be provided at a position other than the position in the circumferential direction where the magnetic pole of the magnet 130 is switched. good too.

<変形・変更>
以上、本発明を実施するための形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
<deformation/change>
Although the embodiments for carrying out the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various can be transformed or changed.

例えば、上述した実施形態では、アブソリュートエンコーダ100は、反射型であったが、透過型であってもよい。この場合、スケール板120のインクリメンタルパターン122及びアブソリュートパターン123は、反射部、及び、非反射部或いは低反射率部の代わりに、照射光を透過する透過部、及び、照射光を透過しない非透過部により構成される。また、スケール板120に光を照射する発光素子は、光学モジュール150とは別に、スケール板120から見て、光学モジュール150(受光素子)とは反対側、つまり、スケール板120からZ軸負方向(つまり、下方)に所定距離だけ離れた位置に設けられる。 For example, although the absolute encoder 100 is of a reflective type in the above-described embodiment, it may be of a transmissive type. In this case, the incremental pattern 122 and the absolute pattern 123 of the scale plate 120 have a transmissive portion that transmits the irradiated light and a non-transmissive portion that does not transmit the irradiated light, instead of the reflective portion and the non-reflecting portion or the low reflectance portion. It consists of the department. In addition, the light-emitting element that irradiates the scale plate 120 with light is located on the opposite side of the optical module 150 (light-receiving element) when viewed from the scale plate 120, that is, in the negative Z-axis direction from the scale plate 120, separately from the optical module 150. (that is, below) at a predetermined distance.

100 アブソリュートエンコーダ(エンコーダ)
110 ハブ(ハブ部)
111 窪み部
120 スケール板
124 凸部
130 磁石
130A S極部
130B N極部
131 凹部
140 基板
150 光学モジュール(受光部)
160 ホールIC(磁気センサ)
200 回転軸
200AX 軸心
100 absolute encoder (encoder)
110 hub (hub part)
111 recessed part 120 scale plate 124 convex part 130 magnet 130A S pole part 130B N pole part 131 concave part 140 substrate 150 optical module (light receiving part)
160 Hall IC (magnetic sensor)
200 Axis of rotation 200AX Center of axis

Claims (6)

測定対象の回転軸の一端に取り付けられるハブ部と、
前記回転軸に沿う方向から見て、前記ハブ部の前記回転軸と反対側の端面における前記回転軸の軸心を含む領域に取り付けられ、前記回転軸に垂直な方向で異なる磁極が着磁された磁石と、
前記回転軸に沿う方向で前記磁石と対向して配置され、前記磁石による磁場を検出する磁気センサと、
前記ハブ部の前記回転軸と反対側の端面に載置され、回転位置に応じて所定の照射光を所定のパターンで反射又は透過するパターン情報を有するスケール板と、
前記スケール板から反射又は透過される前記照射光を受光し、前記パターン情報を検出する受光部と、を備え、
前記スケール板は、前記回転軸に沿う方向から見て、前記ハブ部の前記領域に対応する中央部が切り欠かれ、
前記回転軸に沿う方向から見て、前記スケール板における切り欠かれた前記中央部に対応する内縁、及び、前記磁石の外縁の何れか一方に凸部が設けられ、何れか他方に前記凸部に対応する凹部が設けられる、
エンコーダ。
a hub portion attached to one end of a rotating shaft to be measured;
When viewed from the direction along the rotating shaft, it is attached to a region including the center of the rotating shaft on the end surface of the hub portion opposite to the rotating shaft, and is magnetized with different magnetic poles in the direction perpendicular to the rotating shaft. a magnet and
a magnetic sensor disposed facing the magnet in a direction along the rotation axis and detecting a magnetic field generated by the magnet;
a scale plate mounted on the end surface of the hub portion opposite to the rotation shaft and having pattern information for reflecting or transmitting a predetermined pattern of irradiation light according to the rotational position;
a light receiving unit that receives the irradiation light reflected or transmitted from the scale plate and detects the pattern information ;
the scale plate has a notched central portion corresponding to the region of the hub portion when viewed from the direction along the rotation axis;
When viewed from the direction along the rotation axis, a convex portion is provided on one of an inner edge corresponding to the notched central portion of the scale plate and an outer edge of the magnet, and the convex portion is provided on the other. is provided with a recess corresponding to
encoder.
前記磁気センサは、複数のホール素子を含むホールICである、
請求項1に記載のエンコーダ。
The magnetic sensor is a Hall IC including a plurality of Hall elements,
An encoder according to claim 1.
前記ハブ部の前記領域には、窪み部が設けられ、
前記磁石は、前記窪み部に嵌挿される、
請求項1又は2に記載のエンコーダ。
The region of the hub portion is provided with a recessed portion,
The magnet is inserted into the recess,
3. Encoder according to claim 1 or 2.
前記磁石は、紫外線硬化性及び嫌気性を有する接着材を用いて、前記ハブ部に固定される、
請求項1乃至3の何れか一項に記載のエンコーダ。
The magnet is fixed to the hub portion using an adhesive having UV curable and anaerobic properties.
4. An encoder according to any one of claims 1-3.
前記ハブ部は、前記回転軸と反対側の端面から前記回転軸に対して、平面状の頭頂部を有する雄ねじが螺合されることにより、前記回転軸に取り付けられ、
前記磁石は、前記雄ねじの頭頂部の上に配置される、
請求項1乃至4の何れか一項に記載のエンコーダ。
The hub portion is attached to the rotating shaft by screwing a male screw having a planar top portion to the rotating shaft from the end face opposite to the rotating shaft,
the magnet is positioned on top of the crown of the male screw;
5. An encoder according to any one of claims 1-4.
前記磁石の前記外縁における前記凹部又は前記凸部は、前記磁石の磁極が切り替わる位置に設けられる、
請求項1乃至5の何れか一項に記載のエンコーダ。
The concave portion or the convex portion on the outer edge of the magnet is provided at a position where the magnetic pole of the magnet is switched,
6. An encoder according to any one of claims 1-5 .
JP2018164365A 2018-09-03 2018-09-03 encoder Active JP7192317B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018164365A JP7192317B2 (en) 2018-09-03 2018-09-03 encoder
DE102019119834.8A DE102019119834B4 (en) 2018-09-03 2019-07-23 ENCODERS
CN201910680862.6A CN110873579A (en) 2018-09-03 2019-07-26 Encoder for encoding a video signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164365A JP7192317B2 (en) 2018-09-03 2018-09-03 encoder

Publications (2)

Publication Number Publication Date
JP2020038081A JP2020038081A (en) 2020-03-12
JP7192317B2 true JP7192317B2 (en) 2022-12-20

Family

ID=69527440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164365A Active JP7192317B2 (en) 2018-09-03 2018-09-03 encoder

Country Status (3)

Country Link
JP (1) JP7192317B2 (en)
CN (1) CN110873579A (en)
DE (1) DE102019119834B4 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7284120B2 (en) * 2020-03-13 2023-05-30 ヒロセ電機株式会社 Rotation detection system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185561A (en) 2007-01-31 2008-08-14 Sendai Nikon:Kk Rotary encoder
JP2009204567A (en) 2008-02-29 2009-09-10 Nippon Seiki Co Ltd Rotation angle detecting device
JP6146151B2 (en) 2013-06-14 2017-06-14 三菱化学株式会社 Method for producing polycarbonate resin
WO2018074549A1 (en) 2016-10-19 2018-04-26 日本精工株式会社 Sensor mounting structure, electric motor, and electric power steering device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146151A (en) * 1984-08-09 1986-03-06 Toshiba Corp Manufacture of rotor with permanent magnet
JPH0295209A (en) * 1988-09-30 1990-04-06 Yokogawa Electric Corp Multiple rotation absolute encoder
JP4618913B2 (en) * 2001-03-13 2011-01-26 本田技研工業株式会社 Structure of outer rotor type brushless motor
US7208943B2 (en) * 2005-06-03 2007-04-24 Delphi Technologies, Inc. Electrical device enclosure
CN101201257B (en) * 2007-12-24 2011-03-16 孙成 Magnetic rotary encoder
JP5401902B2 (en) 2008-10-03 2014-01-29 日本電産株式会社 motor
CN101504292B (en) * 2009-02-23 2010-11-03 孙成 Multi-slewing absolute magnetic encoder capable of reducing standby power consumption
JP2011033601A (en) 2009-08-06 2011-02-17 Koyo Electronics Ind Co Ltd Method for fixing magnet in magnetic encoder and magnetic encoder using the same
JP5617205B2 (en) 2009-08-26 2014-11-05 株式会社ニコン Encoder
JP5489224B2 (en) * 2010-06-17 2014-05-14 株式会社デンソー Motor and electric power steering apparatus using the same
JP2014025751A (en) * 2012-07-25 2014-02-06 Nikon Corp Encoder, method of producing scale for encoder, drive device and robot device
JP6190157B2 (en) * 2013-05-16 2017-08-30 アズビル株式会社 Rotation angle detector
JP6613895B2 (en) * 2013-10-02 2019-12-04 株式会社ニコン Encoder scale, encoder, drive device and stage device
JP2016006393A (en) * 2014-06-20 2016-01-14 日本電産サンキョー株式会社 Motor
JP2018072086A (en) * 2016-10-26 2018-05-10 日立オートモティブシステムズ株式会社 Rotation angle detection device
CN107131893B (en) * 2017-05-04 2019-06-18 湖南科技大学 High-voltage breaker operation mechanism on-line monitoring uses angular displacement sensor
JP6373532B1 (en) 2017-07-14 2018-08-15 三菱電機株式会社 Rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185561A (en) 2007-01-31 2008-08-14 Sendai Nikon:Kk Rotary encoder
JP2009204567A (en) 2008-02-29 2009-09-10 Nippon Seiki Co Ltd Rotation angle detecting device
JP6146151B2 (en) 2013-06-14 2017-06-14 三菱化学株式会社 Method for producing polycarbonate resin
WO2018074549A1 (en) 2016-10-19 2018-04-26 日本精工株式会社 Sensor mounting structure, electric motor, and electric power steering device

Also Published As

Publication number Publication date
JP2020038081A (en) 2020-03-12
DE102019119834B4 (en) 2022-11-10
DE102019119834A1 (en) 2020-03-05
CN110873579A (en) 2020-03-10

Similar Documents

Publication Publication Date Title
JP5812246B2 (en) Manufacturing method of rotary encoder
JP6008163B2 (en) Servomotor
JPWO2012176911A1 (en) Encoder, encoder mounting method, and motor device
JP7192317B2 (en) encoder
US9035232B2 (en) Method for working out the eccentricity and the angular position of a rotating element and device for carrying out such a method
WO2015068662A1 (en) Optical encoder unit and optical encoder
JP5943239B2 (en) Encoder and motor with encoder
JP2011112441A (en) Encoder, method for mounting encoder, and motor device
JP2010271175A (en) Encoder and method for manufacturing the same
US10247582B2 (en) Optical encoding device including an encoding disc having diffracting patterns
JP2020034393A (en) Encoder and scale plate for encoder
JP5999147B2 (en) Sensor and sensor manufacturing method
JP2016114590A (en) Sensor and manufacturing method of the same
JP5954372B2 (en) Optical sensor
JP6446792B2 (en) Optical encoder unit and optical encoder
WO2017145345A1 (en) Sensor
JPWO2023026732A5 (en)
JP5200587B2 (en) Motor with rotary encoder and motor
JP6354202B2 (en) Optical encoder unit and optical encoder
JP2019158851A (en) Reflection type encoder
JP6736887B2 (en) Rotary encoder and optical sensor manufacturing method
JPWO2023008081A5 (en)
JP2020148741A (en) Encoder
JP6539964B2 (en) Sensor and method of manufacturing sensor
WO2017022260A1 (en) Method for manufacturing sensor, and sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R150 Certificate of patent or registration of utility model

Ref document number: 7192317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150