JP7191708B2 - Control device, control method and computer program - Google Patents

Control device, control method and computer program Download PDF

Info

Publication number
JP7191708B2
JP7191708B2 JP2019006574A JP2019006574A JP7191708B2 JP 7191708 B2 JP7191708 B2 JP 7191708B2 JP 2019006574 A JP2019006574 A JP 2019006574A JP 2019006574 A JP2019006574 A JP 2019006574A JP 7191708 B2 JP7191708 B2 JP 7191708B2
Authority
JP
Japan
Prior art keywords
water
treated
concentration
activated sludge
decomposition means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019006574A
Other languages
Japanese (ja)
Other versions
JP2020114580A (en
Inventor
英明 小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019006574A priority Critical patent/JP7191708B2/en
Publication of JP2020114580A publication Critical patent/JP2020114580A/en
Application granted granted Critical
Publication of JP7191708B2 publication Critical patent/JP7191708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

本発明の実施形態は、制御装置、制御方法及びコンピュータプログラムに関する。 TECHNICAL FIELD Embodiments of the present invention relate to control devices, control methods, and computer programs.

従来、下水処理場における汚水処理方式の一つとして活性汚泥法が広く知られている。活性汚泥法は、処理対象の汚水(以下「被処理水」という。)に含まれる汚濁物質を、活性汚泥中の微生物の働きを利用して分解及び除去する汚水処理方式である。活性汚泥法では、微生物によって汚濁物質が分解された被処理水から活性汚泥をはじめとする固形物を分離することにより清浄な処理済み水(以下「処理水」という。)が得られる。ここで、被処理水から固形物を分離する方法には、重力によって沈降した固形物を分離する方法と、濾過膜によって固形物を分離する方法とがある。後者の方法で固形物を分離する活性汚泥法は濾過膜分離活性汚泥法(MBR:Membrane Bio Reactor)と呼ばれる。濾過膜は、その使用に伴って目詰まりを起こす。そして、濾過膜の目詰まりは、濾過原液に含まれる固形物の濃度が高い又は濾過量が多いほど進行することが知られている。 BACKGROUND ART Conventionally, an activated sludge method is widely known as one of sewage treatment methods in sewage treatment plants. The activated sludge method is a sewage treatment method in which pollutants contained in sewage to be treated (hereinafter referred to as "treated water") are decomposed and removed using the action of microorganisms in the activated sludge. In the activated sludge method, clean treated water (hereinafter referred to as "treated water") is obtained by separating solid matter including activated sludge from water to be treated in which pollutants have been decomposed by microorganisms. Here, methods for separating solids from water to be treated include a method for separating solids sedimented by gravity and a method for separating solids by a filtration membrane. The activated sludge method for separating solids by the latter method is called membrane bioreactor (MBR). Filtration membranes clog as they are used. It is known that clogging of the filtration membrane progresses as the concentration of solids contained in the undiluted solution increases or as the amount of filtration increases.

一方で、下水処理場には生活排水等の汚水と雨水とが同じ流路で流入する合流式下水処理場と、汚水と雨水とが異なる流路で流入する分流式下水処理場とがある。分流式下水処理場では、汚水は浄化処理が施された上で公共用水域に放流される一方、雨水はそのまま放流される。また、合流式下水処理場では、所定の流量以下で流入する被処理水は高度処理が施された上で放流される一方、それを超えて流入する被処理水は簡易処理のみが施されて放流される。これは、合流式下水処理場に流入する被処理水(汚水及び雨水)の量が晴天時と雨天時とで変動するためであり、下水処理場に流入する被処理水の量を許容範囲内に維持するためである。 On the other hand, sewage treatment plants include a combined sewage treatment plant in which sewage such as domestic wastewater and rainwater flow in the same flow path, and a separate sewage treatment plant in which sewage and rainwater flow in different flow paths. In a separate sewage treatment plant, sewage is purified before being discharged into a public water area, while rainwater is discharged as is. In a combined sewage treatment plant, water to be treated that flows below a predetermined flow rate is discharged after undergoing advanced treatment, while water to be treated that exceeds the specified flow rate undergoes only simple treatment. Discharged. This is because the amount of treated water (wastewater and rainwater) flowing into the combined sewage treatment plant fluctuates depending on whether it is sunny or rainy. in order to maintain

このような合流式下水処理場にMBRを適用した場合、被処理水の流入量が増加する雨天時等には、最大限の処理能力の発揮が求められる一方で、濾過膜の目詰まりによる処理の停止も避けなければならない。濾過膜の目詰まりは下水処理場の処理能力の低下を招き、その回復のためには濾過膜の洗浄を行う必要がある。しかしながら、濾過膜の洗浄には被処理水の浄化処理を一時的に停止する必要があり、停止中に処理可能であったはずの被処理水は簡易処理のみで公共用水域に放流されることになる。簡易処理のみで放流される水の量が増加することは公共用水域の水質低下を招く可能性がある。また、濾過膜の目詰まりが急激に進行した場合には想定外の時期に濾過不能となることも考えられ、その場合には被処理水が下水処理場内に滞留してしまい、被処理水の流路や下水処理場内での溢水リスクが高まる。このような背景により、MBRを適用した従来の合流式下水処理場では、雨天時における濾過膜の目詰まりの進行を抑制することが課題となっている。 When MBR is applied to such a combined sewage treatment plant, it is required to demonstrate the maximum treatment capacity during rainy weather when the inflow of water to be treated increases. should also be avoided. The clogging of the filtration membrane causes a decrease in the treatment capacity of the sewage treatment plant, and the filtration membrane needs to be cleaned in order to recover from the clogging. However, it is necessary to temporarily stop the purification process of the water to be treated in order to wash the filtration membrane, and the water to be treated, which should have been able to be treated during the suspension, is discharged into the public water area with only a simple treatment. become. An increase in the amount of water discharged only by simple treatment may lead to deterioration of water quality in public water areas. In addition, if the clogging of the filtration membrane progresses rapidly, it may become impossible to filter at an unexpected time. Increased risk of flooding in waterways and sewage treatment plants. Against this background, in conventional combined sewage treatment plants to which MBR is applied, it has become a problem to suppress the progress of clogging of filtration membranes during rainy weather.

特開2017-225918号公報JP 2017-225918 A 特開2011-147868号公報JP 2011-147868 A 特開2001-310186号公報Japanese Patent Application Laid-Open No. 2001-310186

本発明が解決しようとする課題は、膜による固液分離手段と活性汚泥による汚濁物質の分解手段とを備える合流式下水処理システムにおいて、膜の目詰まりを抑制することができる制御装置、制御方法及びコンピュータプログラムを提供することである。 The problem to be solved by the present invention is a control device and a control method capable of suppressing membrane clogging in a combined sewage treatment system comprising a solid-liquid separation means using a membrane and a means for decomposing pollutants using activated sludge. and to provide a computer program.

実施形態の制御装置は、膜による固液分離手段と活性汚泥による汚濁物質の分解手段とを備え、合流式下水処理場に流入する被処理水を浄化する水処理システムに用いられる制御装置である。制御装置は、測定データ取得部と、制御部と、を持つ。測定データ取得部は、前記水処理システムに流入する被処理水の水質又は流量に関する測定データを取得する。制御部は、前記分解手段において活性汚泥と混合された被処理水の一部を前記分解手段の外部に移送する移送部の動作を、前記測定データが示す前記被処理水の水質又は流量に基づいて制御する。 The control device of the embodiment is a control device that is used in a water treatment system that includes solid-liquid separation means using a membrane and pollutant decomposition means using activated sludge, and purifies water to be treated that flows into a combined sewage treatment plant. . The control device has a measurement data acquisition section and a control section. The measurement data acquisition unit acquires measurement data relating to the quality or flow rate of the water to be treated flowing into the water treatment system. The control unit controls the operation of the transfer unit for transferring a part of the water mixed with the activated sludge in the decomposition means to the outside of the decomposition means based on the quality or flow rate of the water to be treated indicated by the measurement data. to control.

第1の実施形態における水処理システム100の構成の具体例を示す図。The figure which shows the specific example of a structure of the water treatment system 100 in 1st Embodiment. 第1の実施形態における制御装置3の機能構成の具体例を示すブロック図。3 is a block diagram showing a specific example of the functional configuration of the control device 3 according to the first embodiment; FIG. 第1の実施形態の最初沈澱池1及び生物反応槽2におけるMLSS濃度の濃度勾配の変化を模式的に示す図。The figure which shows typically the change of the concentration gradient of MLSS density|concentration in the primary sedimentation tank 1 and the biological reaction tank 2 of 1st Embodiment. 、第1の実施形態において制御装置3が濃度調整水の返送量を調整する処理の流れを示すフローチャート。3 is a flow chart showing the flow of processing for adjusting the amount of concentration-adjusted water to be returned by the control device 3 in the first embodiment; 第2の実施形態における水処理システム100aの構成の具体例を示す図。The figure which shows the specific example of a structure of the water treatment system 100a in 2nd Embodiment. 第2の実施形態における制御装置3aの機能構成の具体例を示すブロック図。The block diagram which shows the specific example of the functional structure of the control apparatus 3a in 2nd Embodiment.

以下、実施形態の制御装置、制御方法及びコンピュータプログラムを、図面を参照して説明する。 Hereinafter, a control device, a control method, and a computer program according to embodiments will be described with reference to the drawings.

(第1の実施形態)
図1は、第1の実施形態における水処理システム100の構成の具体例を示す図である。水処理システム100は、濾過膜による固液分離手段と活性汚泥による汚濁物質の分解手段とを備え、合流式下水処理場に流入する下水(汚水及び雨水が混合した水)を濾過膜分離活性汚泥法(MBR:Membrane Bioreactor)によって処理するシステムである。より具体的には、水処理システム100は、生物反応槽内で被処理水の一部を循環させる循環式硝化脱窒法MBRを想定したシステムである。循環式硝化脱窒法MBRは、被処理水中の窒素やリンの除去を可能にする、いわゆる高度処理を実現する水処理システムの形態の一つである。例えば、水処理システム100は、最初沈澱池1、生物反応槽2及び制御装置3を備える。
(First embodiment)
FIG. 1 is a diagram showing a specific example of the configuration of a water treatment system 100 according to the first embodiment. The water treatment system 100 includes a solid-liquid separation means using a filtration membrane and a means for decomposing pollutants using activated sludge. It is a system that processes by the method (MBR: Membrane Bioreactor). More specifically, the water treatment system 100 is a system assuming a circulating nitrification/denitrification method MBR in which part of the water to be treated is circulated in the biological reaction tank. The circulating nitrification-denitrification method MBR is one of the forms of a water treatment system that realizes so-called advanced treatment, which makes it possible to remove nitrogen and phosphorus from the water to be treated. For example, the water treatment system 100 comprises a primary sedimentation tank 1 , a biological reactor 2 and a controller 3 .

最初沈澱池1は、水処理システム100の処理対象となる水(以下「被処理水」という。)を貯える貯水池である。最初沈澱池1には、合流式下水処理場に流入する下水のうち高度処理の対象となる下水が被処理水として流入する。合流式下水処理場では、所定の流量以下で流入する下水が高度処理設備(すなわち水処理システム100)に送られ、所定の流量を超えて流入する下水は図示しない簡易処理設備に送られる。高度処理設備に送られた下水は高度な浄化処理(一般に「高度処理」と呼ばれる。)が施された上で公共用水域に放流される一方で、簡易処理設備に送られた下水は簡易な浄化処理(一般に「簡易処理」と呼ばれる。)が施された後に公共用水域に放流される。 The primary sedimentation tank 1 is a reservoir for storing water to be treated by the water treatment system 100 (hereinafter referred to as "treated water"). Into the primary sedimentation basin 1, sewage to be treated in an advanced manner among the sewage flowing into the combined sewage treatment plant flows as water to be treated. In a combined sewage treatment plant, sewage that flows below a predetermined flow rate is sent to advanced treatment equipment (i.e., water treatment system 100), and sewage that exceeds a predetermined flow rate is sent to simple treatment equipment (not shown). Sewage sent to advanced treatment facilities undergoes advanced purification treatment (generally called "advanced treatment") before being discharged into public water areas. After purification treatment (generally called "simple treatment") is applied, it is discharged into public water areas.

一般に、最初沈澱池1は、約2時間分の流入水量を貯留可能な容量を持つ。最初沈澱池1では、比較的大きな固形物が沈澱して被処理水から分離され、その上澄み水が生物反応槽2に送られる。 Generally, the primary sedimentation tank 1 has a capacity capable of storing about two hours' worth of influent water. In the first sedimentation tank 1 , relatively large solids are sedimented and separated from the water to be treated, and the supernatant water is sent to the biological reaction tank 2 .

生物反応槽2では、被処理水と活性汚泥とが混和される。生物反応槽2では、活性汚泥中の微生物の働きによって被処理水に含まれる汚濁物質が分解される。汚濁物質が分解された被処理水は濾過膜によって活性汚泥から分離され処理水として公共用水域に放流される。 In the biological reaction tank 2, water to be treated and activated sludge are mixed. In the biological reaction tank 2, pollutants contained in the water to be treated are decomposed by the action of microorganisms in the activated sludge. The water to be treated in which pollutants have been decomposed is separated from the activated sludge by a filtration membrane and discharged as treated water to public water areas.

具体的には、生物反応槽2は、無酸素槽21、好気槽22、及び好気槽22内の被処理水に浸漬して設置される濾過膜ユニット23を備える。 Specifically, the biological reaction tank 2 includes an anoxic tank 21 , an aerobic tank 22 , and a filtration membrane unit 23 that is immersed in the water to be treated in the aerobic tank 22 .

無酸素槽21は、最初沈澱池1から送られてくる被処理水を空気が供給されない状態で貯留する貯水槽である。無酸素槽21に送られた被処理水は、所定時間の滞留の後に好気槽22に送られる。一般に、無酸素槽21における被処理水の滞留時間は3時間程度に設計される。このため、無酸素槽21は、一般に約3時間分の流入量を貯留可能な容量に設計される。 The anoxic tank 21 is a water tank for storing the water to be treated sent from the initial sedimentation tank 1 without supplying air. The water to be treated sent to the anoxic tank 21 is sent to the aerobic tank 22 after staying for a predetermined time. Generally, the residence time of the water to be treated in the anoxic tank 21 is designed to be about 3 hours. For this reason, the anoxic tank 21 is generally designed to have a capacity capable of storing the inflow amount for about 3 hours.

好気槽22は、無酸素槽21から送られてくる被処理水を空気が供給される状態で貯留する貯水槽である。好気槽22に送られた被処理水は、所定時間の滞留の後に濾過膜ユニット23に送られる。好気槽22の容量も、無酸素槽21と同様に、一般に約3時間分の流入量を貯留可能な容量に設計される。 The aerobic tank 22 is a water tank that stores the water to be treated sent from the anoxic tank 21 while being supplied with air. The water to be treated sent to the aerobic tank 22 is sent to the filtration membrane unit 23 after staying for a predetermined time. The capacity of the aerobic tank 22, like the anoxic tank 21, is generally designed to have a capacity capable of storing the inflow for about 3 hours.

その一方で、循環式硝化脱窒法MBRでは、好気槽22内の被処理水の一部が無酸素槽21に戻される。これは、被処理水中の窒素分を除去する目的で行われ、無酸素槽21に戻される被処理水は一般に「硝化液」と呼ばれる。 On the other hand, in the circulating nitrification-denitrification method MBR, part of the water to be treated in the aerobic tank 22 is returned to the anoxic tank 21 . This is done for the purpose of removing the nitrogen content in the water to be treated, and the water to be treated returned to the anoxic tank 21 is generally called "nitrified liquid".

具体的には、好気槽22では、被処理水に空気が供給されることで活性汚泥中の硝化菌が活性化し、硝化菌の活性化により被処理水中の硝化反応が促進される。この硝化反応により、被処理水中のアンモニアが硝酸に酸化される。一方、無酸素槽21では、被処理水に空気が供給されないことで活性汚泥中の脱窒菌が活性化し、脱窒菌の活性化により被処理水中の脱窒反応が促進される。この脱窒反応により、硝酸が窒素ガスに還元され、大気中に放出される。このような硝化-脱窒反応において、硝化液は無酸素槽21に硝酸を供給する媒体として機能し、生物反応槽2における硝化-脱窒反応を促進する。これにより、被処理水中の窒素分が除去される。 Specifically, in the aerobic tank 22, nitrifying bacteria in the activated sludge are activated by supplying air to the water to be treated, and the activation of the nitrifying bacteria accelerates the nitrification reaction in the water to be treated. This nitrification reaction oxidizes ammonia in the water to be treated into nitric acid. On the other hand, in the anoxic tank 21, since air is not supplied to the water to be treated, the denitrifying bacteria in the activated sludge are activated, and the denitrifying reaction in the water to be treated is promoted by the activation of the denitrifying bacteria. This denitrification reaction reduces nitric acid to nitrogen gas and releases it into the atmosphere. In such a nitrification-denitrification reaction, the nitrification liquid functions as a medium for supplying nitric acid to the anoxic tank 21 and promotes the nitrification-denitrification reaction in the biological reaction tank 2 . Thereby, the nitrogen content in the water to be treated is removed.

さらに、実施形態の水処理システム100では、好気槽22内の被処理水の一部が所定の条件下で生物反応槽2の外部に移送される。以下、生物反応槽2の外部に移送される被処理水を「濃度調整水」という。硝化液の循環は生物反応槽2の内部で行われるため、生物反応槽2内の活性汚泥の総量を変化させない。これに対して、濃度調整水は生物反応槽2の外部に送られるため、生物反応槽2内の活性汚泥の総量を減少させる。また、被処理水は無酸素槽21に所定時間滞留した後に好気槽22に送られるため、濃度調整水の移送を行うと好気槽22の活性汚泥量が低下する。ここに、最初沈澱池1から新たな被処理水が送られることで好気槽22の活性汚泥濃度が低下する。このように、濃度調整水は好気槽22の活性汚泥濃度を低下させる作用を持つ。 Furthermore, in the water treatment system 100 of the embodiment, part of the water to be treated in the aerobic tank 22 is transferred to the outside of the biological reaction tank 2 under predetermined conditions. Hereinafter, the water to be treated that is transferred to the outside of the biological reaction tank 2 is referred to as "concentration-adjusted water". Since the circulation of the nitrifying liquid takes place inside the biological reactor 2, the total amount of activated sludge in the biological reactor 2 does not change. On the other hand, since the concentration-adjusted water is sent to the outside of the biological reaction tank 2, the total amount of activated sludge in the biological reaction tank 2 is reduced. In addition, since the water to be treated stays in the anoxic tank 21 for a predetermined time and then is sent to the aerobic tank 22, the amount of activated sludge in the aerobic tank 22 decreases when the concentration-adjusted water is transferred. Here, new water to be treated is sent from the primary sedimentation tank 1, and the concentration of activated sludge in the aerobic tank 22 is lowered. Thus, the concentration-adjusted water has the effect of lowering the concentration of activated sludge in the aerobic tank 22 .

第1の実施形態の水処理システム100では、濃度調整水の移送先として最初沈澱池1を用いる。一般に、最初沈澱池は生物反応槽の容量の数分の1程度の容量を持つため、濃度調整水を最初沈澱池1に返送することにより、生物反応槽2の活性汚泥濃度を希釈することができる。好気槽22の被処理水の一部を硝化液として無酸素槽21に返送するか、又は濃度調整水として最初沈澱池1に返送するかは、返送流路に設けられた流量調整弁V1及びV2の開閉を制御することによって切り替え可能である。なお、流量調整弁V1及びV2の両方を同時に開状態とすることで、硝化液の循環と、濃度調整水の返送とを同時に行うことも可能である。また、硝化液及び濃度調整水の流量は、ポンプ221の出力又は流量調整弁V1及びV2の開度を制御することによって調整可能である。 In the water treatment system 100 of the first embodiment, the primary sedimentation tank 1 is used as the transfer destination of the concentration-adjusted water. Generally, since the primary sedimentation tank has a capacity about a fraction of the capacity of the biological reaction tank, the concentration of the activated sludge in the biological reaction tank 2 can be diluted by returning the concentration-adjusted water to the primary sedimentation tank 1 . can. Whether part of the water to be treated in the aerobic tank 22 is returned to the anoxic tank 21 as nitrified liquid or returned to the primary sedimentation tank 1 as concentration-adjusted water is controlled by a flow control valve V1 provided in the return flow path. and by controlling the opening and closing of V2. By opening both the flow control valves V1 and V2 at the same time, it is possible to simultaneously circulate the nitrifying liquid and return the concentration-adjusted water. Also, the flow rates of the nitrifying liquid and the concentration-adjusted water can be adjusted by controlling the output of the pump 221 or the opening degrees of the flow control valves V1 and V2.

なお、図1に示す水処理システム100では、硝化液の循環と、濃度調整水の返送とを1つのポンプ221で兼ねているが、各用途のポンプはそれぞれ異なるポンプとして設けられてもよい。また、好気槽22には、上記のポンプ221のほかにも、生物反応槽2内で増殖及び蓄積される余剰分の活性汚泥(以下「余剰汚泥」という。)を引き抜く汚泥引き抜きポンプ(図示せず)が設置される。この余剰汚泥の引き抜きは循環式硝化脱窒法MBRにおいて一般的に行われる操作であり、濾過膜ユニット23における濾過膜の目詰まりに大きく影響する好気槽22活性汚泥濃度を適切な濃度に維持するための操作である。汚泥引き抜きポンプによって引き抜かれた余剰汚泥は図示しない外部工程(例えば汚泥廃棄工程など)に送られる。汚泥引き抜きポンプは、その用途専用のポンプとして設けれられてもよいし、外部工程への流路に流量調整弁を設けることでポンプ221と兼用されてもよい。 In the water treatment system 100 shown in FIG. 1, one pump 221 serves both the circulation of the nitrifying liquid and the return of the concentration-adjusted water, but the pumps for each purpose may be provided as different pumps. In addition to the pump 221 described above, the aerobic tank 22 also has a sludge extraction pump (Fig. not shown) are installed. This removal of excess sludge is an operation generally performed in the circulation-type nitrification-denitrification method MBR, and maintains the aerobic tank 22 activated sludge concentration at an appropriate concentration, which greatly affects the clogging of the filtration membrane in the filtration membrane unit 23. This operation is for Excess sludge withdrawn by the sludge withdrawal pump is sent to an external process not shown (for example, a sludge disposal process). The sludge extraction pump may be provided as a dedicated pump for that purpose, or may be used also as the pump 221 by providing a flow control valve in the flow path to the external process.

濾過膜ユニット23は、好気槽22内の被処理水を濾過することにより被処理水から活性汚泥を分離する装置である。濾過膜ユニット23は、活性汚泥が分離された被処理水を処理水として放流する。濾過膜ユニット23は、1つ以上の濾過膜モジュール231を備え、各濾過膜モジュール231に被処理水(濾過原液)を供給する。濾過膜ユニット23は、各濾過膜モジュール231によって被処理水から分離された処理水を集水して放流する。 The filtration membrane unit 23 is a device that separates activated sludge from the water to be treated by filtering the water to be treated in the aerobic tank 22 . The filtration membrane unit 23 discharges the water to be treated from which the activated sludge has been separated as treated water. The filtration membrane unit 23 includes one or more filtration membrane modules 231 and supplies water to be treated (filtration undiluted solution) to each filtration membrane module 231 . The filtration membrane unit 23 collects and discharges the treated water separated from the water to be treated by each filtration membrane module 231 .

なお、濾過膜モジュール231に用いられる濾過膜は、被処理水から処理水を分離することができるものであればどのような種類の濾過膜であってもよい。例えば、濾過膜モジュール231は、精密濾過膜(MF濾過膜)を用いたものであってもよいし、限外濾過膜(UF濾過膜)を用いたものであってもよいし、ナノ濾過膜(NF濾過膜)を用いたものであってもよいし、逆浸透濾過膜(RO濾過膜)を用いたものであってもよい。 The filtration membrane used in the filtration membrane module 231 may be any type of filtration membrane as long as it can separate treated water from water to be treated. For example, the filtration membrane module 231 may use a microfiltration membrane (MF filtration membrane), may use an ultrafiltration membrane (UF filtration membrane), or may use a nanofiltration membrane. (NF filtration membrane) or reverse osmosis filtration membrane (RO filtration membrane).

また、濾過膜ユニット23が複数の濾過膜モジュール231を備える場合、各濾過膜モジュール231の位置関係や接続関係などは特定の態様に限定されない。例えば、濾過膜ユニット23は、1つ以上の濾過膜モジュール231を、被処理水の流れに対して直列的に配置したものであってもよいし、並列的に配置したものであってもよい。また、濾過膜ユニット23は、必ずしも好気槽22内に設置される必要はない。例えば、濾過膜ユニットは、好気槽内の後段に設けられた濾過膜処理専用の水槽(膜槽ともいう。)内に設置される場合もある。 Moreover, when the filtration membrane unit 23 is provided with a plurality of filtration membrane modules 231, the positional relationship, the connection relationship, etc. of each filtration membrane module 231 are not limited to a specific aspect. For example, the filtration membrane unit 23 may have one or more filtration membrane modules 231 arranged in series with respect to the flow of water to be treated, or may be arranged in parallel. . Moreover, the filtration membrane unit 23 does not necessarily have to be installed in the aerobic tank 22 . For example, the filtration membrane unit may be installed in a water tank dedicated to filtration membrane treatment (also referred to as a membrane tank) that is provided downstream of the aerobic tank.

制御装置3は、ポンプ221の動作を制御することにより、生物反応槽2を循環させる硝化液の流量(以下「循環量」という。)を調節する機能を有する。具体的には、制御装置3は、好気槽22におけるMLSS(Mixed Liquor Suspended Solids)濃度に基づいて、ポンプ221による硝化液の循環量を制御する。ここで、MLSS濃度とは、試料(ここでは被処理水)中の浮遊物質(MLSS)の濃度であり、一般に生物反応槽2内の活性汚泥量の管理指標として用いられる値である。この制御のため、好気槽22にはMLSS濃度計222が設置される。 The control device 3 has a function of controlling the operation of the pump 221 to adjust the flow rate of the nitrifying liquid circulating through the biological reaction tank 2 (hereinafter referred to as “circulation rate”). Specifically, the control device 3 controls the circulation amount of the nitrifying liquid by the pump 221 based on the MLSS (Mixed Liquor Suspended Solids) concentration in the aerobic tank 22 . Here, the MLSS concentration is the concentration of suspended solids (MLSS) in the sample (here, water to be treated), and is a value generally used as a control index for the amount of activated sludge in the biological reaction tank 2 . For this control, an MLSS densitometer 222 is installed in the aerobic tank 22 .

一方、硝化液の循環は、好気槽22内の活性汚泥濃度を低下させ、無酸素槽21内の活性汚泥濃度を上昇させるため、生物反応槽2の活性汚泥濃度の濃度勾配はより均一化される方向に変化する。これに応じて、生物反応槽2におけるDO(Dissolved Oxygen:溶存酸素)濃度の濃度勾配もより均一化される方向に変化する。そのため、硝化液の循環量を過度に多くしてしまうことは、無酸素槽21における脱窒反応に悪影響を及ぼす可能性がある。そこで、制御装置3は、MLSS濃度に加え、無酸素槽21のDO値(又はDO値に相関するpH)を考慮して硝化液の循環量を決定してもよい。ただし、この場合、無酸素槽21のDO値(又はpH)を測定するDO計(又はpH計)が必要になる。一方で、活性汚泥量の指標値であるORP(Oxidation-Reduction Potential:酸化還元電位)値もDO値に相関することが知られており、活性汚泥法をベースとする水処理システムには活性汚泥量の管理のためにORP計が備えられていることが多い。そのため、無酸素槽21にORP計211を備えた水処理システム100において、制御装置3はMLSS濃度計222及びORP計211の測定値に基づいて硝化液の循環量を決定してもよい。 On the other hand, circulation of the nitrifying liquid reduces the concentration of activated sludge in the aerobic tank 22 and increases the concentration of activated sludge in the anoxic tank 21, so that the concentration gradient of the concentration of activated sludge in the biological reaction tank 2 becomes more uniform. change direction. Accordingly, the concentration gradient of the DO (Dissolved Oxygen) concentration in the biological reactor 2 also changes in the direction of becoming more uniform. Therefore, excessively increasing the circulation amount of the nitrifying liquid may adversely affect the denitrification reaction in the anoxic tank 21 . Therefore, in addition to the MLSS concentration, the control device 3 may also consider the DO value (or pH correlated with the DO value) of the anoxic tank 21 to determine the amount of nitrifying liquid to be circulated. However, in this case, a DO meter (or pH meter) for measuring the DO value (or pH) of the anoxic tank 21 is required. On the other hand, it is known that the ORP (Oxidation-Reduction Potential) value, which is an index value of the amount of activated sludge, also correlates with the DO value. An ORP meter is often provided for volume control. Therefore, in the water treatment system 100 having the ORP meter 211 in the anoxic tank 21 , the control device 3 may determine the circulation amount of the nitrifying liquid based on the measured values of the MLSS concentration meter 222 and the ORP meter 211 .

また一方で、制御装置3は、生物反応槽2から最初沈澱池1に返送される濃度調整水の流量を調節する機能を有する。この濃度調整水の返送は、好気槽22内の活性汚泥濃度を低下させるため、濾過膜の目詰まりを抑制できる一方で汚濁物質の分解能力(以下「処理能力」という。)を低下させてしまう。そのため、濃度調整水の返送は、処理能力の低下を許容できる範囲内で行われる必要がある。 On the other hand, the control device 3 has a function of adjusting the flow rate of the concentration-adjusted water returned from the biological reaction tank 2 to the initial sedimentation tank 1 . The return of this concentration-adjusted water reduces the concentration of activated sludge in the aerobic tank 22, so clogging of the filtration membrane can be suppressed, while the ability to decompose pollutants (hereinafter referred to as "treatment ability") is reduced. put away. Therefore, it is necessary to return the concentration-adjusted water within a range in which the reduction in treatment capacity can be tolerated.

例えば、好気槽22内の活性汚泥濃度が低下する状況として、降雨によって発生する雨水により汚水が希釈される場合が考えられる。分流式下水処理場では汚水が雨水によって希釈されることがないため流入する被処理水の汚濁物質濃度が天候によって変化することはないが、合流式下水処理場では汚水と雨水とが同じ流路で送られるため、雨天時において被処理水の汚濁物質濃度が低下する。このため、合流式下水処理場では、雨天時において汚濁物質濃度が低下する分だけ処理能力の低下を許容することができる。 For example, as a situation in which the concentration of activated sludge in the aerobic tank 22 decreases, it is conceivable that sewage is diluted by rainwater generated by rainfall. In a separate sewage treatment plant, sewage is not diluted by rainwater, so the concentration of contaminants in the inflowing water to be treated does not change depending on the weather. Therefore, the concentration of contaminants in the water to be treated decreases in rainy weather. For this reason, in the combined sewage treatment plant, it is possible to allow a reduction in treatment capacity by the amount of the reduction in the concentration of contaminants during rainy weather.

そこで、第1の実施形態の制御装置3は、最初沈澱池1に流入する被処理水の水質を監視し、汚濁物質濃度が所定の条件(以下「濃度調整条件」という。)を満たした場合に濃度調整水の返送を開始する。この制御のため、最初沈澱池1の流入部には流入する被処理水の水質を測定する水質計11が設置される。 Therefore, the control device 3 of the first embodiment monitors the quality of the water to be treated that first flows into the sedimentation tank 1, and when the concentration of contaminants satisfies a predetermined condition (hereinafter referred to as "concentration adjustment condition"), to start returning concentration-adjusted water. For this control, a water quality meter 11 for measuring the quality of the incoming water to be treated is installed at the inlet of the primary sedimentation tank 1 .

また、生物反応槽2において分解すべき汚濁物質の量は、最初沈澱池1に流入する被処理水の水質及び流入量に応じて変化する。すなわち、許容することができる処理能力の低下は、最初沈澱池1に流入する被処理水の流入量及び水質によっても変化する。そのため、制御装置3は、最初沈澱池1に流入する被処理水の流入量及び水質に基づいて、濃度調整水の返送によって希釈される生物反応槽2のMLSS濃度の目標値(以下「制御目標濃度」という。)を決定する。この制御のため、最初沈澱池1の流入部には流入する被処理水の流量を測定する流量計12が設置される。なお、最初沈澱池1に流入する被処理水の流量は、被処理水が流れる管渠の水位に基づいて算出されてもよい。 Also, the amount of contaminants to be decomposed in the biological reaction tank 2 varies according to the quality and amount of inflow of the water to be treated that initially flows into the sedimentation tank 1 . In other words, the permissible decrease in treatment capacity also varies depending on the inflow amount and water quality of the water to be treated that first flows into the sedimentation tank 1 . Therefore, based on the inflow amount and water quality of the water to be treated that first flows into the sedimentation tank 1, the control device 3 sets the target value of the MLSS concentration in the biological reaction tank 2 diluted by returning the concentration-adjusted water (hereinafter referred to as "control target concentration”). For this control, a flow meter 12 for measuring the flow rate of the inflowing water to be treated is installed at the inlet of the primary sedimentation tank 1 . The flow rate of the water to be treated flowing into the primary sedimentation tank 1 may be calculated based on the water level of the culvert through which the water to be treated flows.

なお、濾過膜ユニット23は、好気槽22の下流側に配置されるため、濾過膜の目詰まりには好気槽22の下流側のMLSS濃度が大きく影響する。そのため、濃度調整水は、好気槽22の下流側から引き抜かれて最初沈澱池1に戻される。 Since the filter membrane unit 23 is arranged downstream of the aerobic tank 22, the MLSS concentration on the downstream side of the aerobic tank 22 greatly affects clogging of the filter membrane. Therefore, the concentration-adjusted water is withdrawn from the downstream side of the aerobic tank 22 and returned to the primary sedimentation tank 1 .

図2は、第1の実施形態における制御装置3の機能構成の具体例を示すブロック図である。制御装置3は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、プログラムを実行する。制御装置3は、プログラムの実行によって通信部31、記憶部32、測定データ取得部33及び制御部34を備える装置として機能する。なお、制御装置3の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。プログラムは、電気通信回線を介して送信されてもよい。 FIG. 2 is a block diagram showing a specific example of the functional configuration of the control device 3 in the first embodiment. The control device 3 includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, etc., which are connected via a bus, and executes programs. The control device 3 functions as a device including a communication section 31, a storage section 32, a measurement data acquisition section 33, and a control section 34 by executing a program. All or part of each function of the control device 3 may be implemented using hardware such as an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array). The program may be recorded on a computer-readable recording medium. Computer-readable recording media include portable media such as flexible disks, magneto-optical disks, ROMs and CD-ROMs, and storage devices such as hard disks incorporated in computer systems. The program may be transmitted over telecommunications lines.

通信部31は、ORP計211、MLSS濃度計222、水質計11、流量計12、流量調整弁V1、流量調整弁V2及びポンプ221と通信する通信インタフェースである。通信部31は、有線通信インタフェースであってもよいし、無線通信インタフェースであってもよい。 The communication unit 31 is a communication interface that communicates with the ORP meter 211 , the MLSS concentration meter 222 , the water quality meter 11 , the flow meter 12 , the flow control valves V 1 and V 2 and the pump 221 . The communication unit 31 may be a wired communication interface or a wireless communication interface.

記憶部32は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。記憶部32は、制御装置3の動作に必要な各種情報を記憶する。 The storage unit 32 is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device. The storage unit 32 stores various information necessary for the operation of the control device 3 .

測定データ取得部33は、通信部31を介してORP計211、MLSS濃度計222、水質計11及び流量計12の測定データを取得する。測定データ取得部33は、取得した各測定データを記憶部32に保存する。測定データ取得部33は、測定データの取得及び保存を繰り返し実行することにより、測定データを記憶部32に蓄積する。 The measurement data acquisition unit 33 acquires measurement data of the ORP meter 211 , the MLSS concentration meter 222 , the water quality meter 11 and the flow meter 12 via the communication unit 31 . The measurement data acquisition unit 33 stores each acquired measurement data in the storage unit 32 . The measurement data acquisition unit 33 accumulates the measurement data in the storage unit 32 by repeatedly acquiring and storing the measurement data.

制御部34は、ORP計211又はMLSS濃度計222の測定データに基づいて硝化液の循環量を調節する。具体的には、制御部34は、測定データに基づいて、好気槽22における被処理水のMLSS濃度、又は無酸素槽21における被処理水のORP値を観測し、観測されたMLSS濃度又はORP値に基づいて硝化液の循環量を決定する。例えば、硝化液の循環量は、循環量とMLSS濃度又はORP値との対応関係を示す既定の情報に基づいて決定されてもよいし、MLSS濃度又はORP値を入力として循環量を出力する数式モデルを用いて決定されてもよい。 The control unit 34 adjusts the circulation amount of the nitrifying liquid based on the measurement data of the ORP meter 211 or the MLSS densitometer 222 . Specifically, the control unit 34 observes the MLSS concentration of the water to be treated in the aerobic tank 22 or the ORP value of the water to be treated in the anoxic tank 21 based on the measurement data, and the observed MLSS concentration or Based on the ORP value, the circulation amount of the nitrifying liquid is determined. For example, the circulation amount of the nitrifying liquid may be determined based on predetermined information indicating the correspondence relationship between the circulation amount and the MLSS concentration or ORP value. It may be determined using a model.

また、制御部34は、水質計11及び流量計12の測定データに基づいて濃度調整水の返送量を調節する。具体的には、制御部34は、測定データに基づいて濃度調整条件が満たされたか否かを判定する。また、制御部34は、濃度調整条件が満たされた場合には、濃度調整水の返送によって実現されるべき生物反応槽2の制御目標濃度を決定し、その制御目標濃度に応じた濃度調整水の流量(以下「返送量」という。)を決定する。例えば、制御目標濃度は、制御目標濃度と、最初沈澱池1に流入する被処理水の水質(以下「流入水質」という。)又は流量(以下「流入流量」という。)との対応関係を示す既定の情報に基づいて決定されてもよいし、流入水質又は流入流量を入力として循環量を出力する数式モデルを用いて決定されてもよい。また、返送量は、決定された制御目標濃度や、生物反応槽2のMLSS濃度を制御目標濃度に到達させる時間等に応じて決定されるとよい。 Also, the control unit 34 adjusts the amount of concentration-adjusted water to be returned based on the measurement data of the water quality meter 11 and the flow meter 12 . Specifically, the control unit 34 determines whether or not the density adjustment condition is satisfied based on the measurement data. Further, when the concentration adjustment condition is satisfied, the control unit 34 determines the control target concentration of the biological reaction tank 2 to be realized by returning the concentration-adjusted water, and controls the concentration-adjusted water according to the control target concentration. Determine the flow rate (hereinafter referred to as "return amount"). For example, the control target concentration indicates the correspondence relationship between the control target concentration and the water quality (hereinafter referred to as "influent water quality") or flow rate (hereinafter referred to as "inflow flow rate") of the water to be treated flowing into the first sedimentation tank 1. It may be determined based on predetermined information, or may be determined using a mathematical model that inputs the inflow water quality or the inflow flow rate and outputs the circulation amount. Moreover, the return amount may be determined according to the determined control target concentration, the time required for the MLSS concentration in the biological reaction tank 2 to reach the control target concentration, and the like.

制御部34は、このように決定した硝化液の循環量又は濃度調整水の返送量を実現する制御指示値をポンプ221、流量調整弁V1又は流量調整弁V2の各機器について決定する。例えば、ポンプ221について決定される制御指示値は吐出流量であり、流量調整弁V1及びV2について決定される制御指示値は弁の開度である。制御部34は、決定した制御指示値を通知する制御信号を通信部31を介してポンプ221、流量調整弁V1又は流量調整弁V2に出力する。なお、硝化液の循環量を調節するためのポンプ221の制御周期と、濃度調整水の返送量を調節するためのポンプ221の制御周期とは、同じ周期であってもよいし、異なる周期であってもよい。また、硝化液の循環量の調節と、濃度調整水の返送量の調節とは、異なるタイミングで行われてもよいし、同じタイミングで行われてもよい。 The control unit 34 determines a control instruction value for each of the pump 221, the flow rate control valve V1, or the flow rate control valve V2, which realizes the thus determined circulation amount of nitrifying liquid or return amount of concentration-adjusted water. For example, the control instruction value determined for the pump 221 is the discharge flow rate, and the control instruction value determined for the flow control valves V1 and V2 is the valve opening. The control unit 34 outputs a control signal that notifies the determined control instruction value to the pump 221 and the flow control valve V1 or the flow control valve V2 via the communication unit 31 . The control cycle of the pump 221 for adjusting the circulation amount of the nitrifying liquid and the control cycle of the pump 221 for adjusting the return amount of the concentration-adjusted water may be the same cycle or different cycles. There may be. Further, the adjustment of the circulation amount of the nitrifying liquid and the adjustment of the return amount of the concentration-adjusted water may be performed at different timings, or may be performed at the same timing.

図3は、第1の実施形態の最初沈澱池1及び生物反応槽2におけるMLSS濃度の濃度勾配の変化を模式的に示す図である。図3に示すグラフの縦軸は最初沈澱池1及び生物反応槽2における被処理水のMLSS濃度を表し、横軸は最初沈澱池1及び生物反応槽2における被処理水の位置を表す。横軸は、被処理水の流れ方向(図1における横方向)の位置を表す。ここで、直線L1は通常時(例えば晴天時)における濃度勾配を示し、直線L2は通常時の状態において濃度調整水が最初沈澱池1に返送された場合における濃度勾配を示す。直線L1と直線L2との交点Pは、最初沈澱池1と生物反応槽2との境界に対応する。 FIG. 3 is a diagram schematically showing changes in the concentration gradient of the MLSS concentration in the primary sedimentation tank 1 and the biological reaction tank 2 of the first embodiment. The vertical axis of the graph shown in FIG. 3 represents the MLSS concentration of the water to be treated in the first sedimentation tank 1 and the biological reaction tank 2, and the horizontal axis represents the position of the water to be treated in the first sedimentation tank 1 and the biological reaction tank 2. The horizontal axis represents the position in the flow direction of the water to be treated (horizontal direction in FIG. 1). Here, the straight line L1 indicates the concentration gradient under normal conditions (for example, fine weather), and the straight line L2 indicates the concentration gradient when the concentration-adjusted water is first returned to the sedimentation basin 1 under normal conditions. An intersection point P between the straight lines L1 and L2 corresponds to the boundary between the primary sedimentation tank 1 and the biological reactor 2 .

一般に、循環式硝化脱窒法MBRでは、無酸素槽における分解反応(脱窒反応)に必要な有機物の多くは、硝化液として好気槽から返送される被処理水中の活性汚泥によって供給される。また、無酸素槽及び好気槽では、硝化液の循環による活性汚泥の移動に加え、分解反応(硝化反応及び脱窒反応)によって活性汚泥が生成される。これらのことから、循環式硝化脱窒法MBRでは、MLSS濃度の分布は原理的に生物反応槽内で一様にならず、例えば直線L1に示すような濃度勾配が存在することになる。直線L1が示すように、循環式硝化脱窒法MBRでは、一般に生物反応槽の上流部(具体的には無酸素槽の上流部)から下流部(具体的には好気槽の下流部)にかけてMLSS濃度が高くなる。一方、最初沈澱池1では分解反応が進まないためMLSSが増殖することもない。そのため、最初沈澱池1におけるMLSS濃度は変化せずその分布は一様となる。 Generally, in the circulating nitrification-denitrification method MBR, most of the organic matter required for the decomposition reaction (denitrification reaction) in the anoxic tank is supplied by activated sludge in the water to be treated returned from the aerobic tank as nitrification liquid. In the anoxic tank and the aerobic tank, activated sludge is generated by decomposition reactions (nitrification reaction and denitrification reaction) in addition to movement of activated sludge by circulation of nitrifying liquid. For these reasons, in the circulating nitrification-denitrification method MBR, the distribution of the MLSS concentration is theoretically not uniform in the bioreactor, and, for example, there is a concentration gradient as shown by the straight line L1. As shown by the straight line L1, in the circulating nitrification-denitrification method MBR, generally from the upstream part of the biological reactor (specifically, the upstream part of the anoxic tank) to the downstream part (specifically, the downstream part of the aerobic tank) MLSS concentration increases. On the other hand, in the primary sedimentation tank 1, the decomposition reaction does not progress, and MLSS does not proliferate. Therefore, the MLSS concentration in the first sedimentation tank 1 does not change and its distribution becomes uniform.

このような濃度勾配を持つ最初沈澱池及び生物反応槽において、生物反応槽から最初沈澱池に濃度調整水を返送すると、図3の直線L2に示すように、生物反応槽のMLSS濃度は低下し、最初沈澱池のMLSS濃度が上昇する。これは、MLSS濃度の高い生物反応槽の被処理水がMLSS濃度の低い最初沈澱池の被処理水によって希釈されることを意味する。例えば、最初沈澱池1における被処理水の滞留時間が2時間であり、生物反応槽2における被処理水の滞留時間が6時間(=無酸素槽21の3時間+好気槽22の3時間)であるとすれば、生物反応槽2のMLSS濃度は最大で元の3/4(=2/(2+6))程度にまで低下する。そのため、生物反応槽の被処理水を最初沈澱池に戻すことによって濾過膜の目詰まりの進行を遅らせることができる。 In the primary sedimentation tank and the biological reaction tank having such a concentration gradient, when the concentration-adjusted water is returned from the biological reaction tank to the primary sedimentation tank, the MLSS concentration in the biological reaction tank decreases as shown by the straight line L2 in FIG. , the MLSS concentration in the first sedimentation pond increases. This means that the water to be treated in the bioreactor, which has a high MLSS concentration, is diluted with the water to be treated in the primary sedimentation tank, which has a low MLSS concentration. For example, the retention time of the water to be treated in the first sedimentation tank 1 is 2 hours, and the retention time of the water to be treated in the biological reaction tank 2 is 6 hours (=3 hours in the anoxic tank 21 + 3 hours in the aerobic tank 22). ), the MLSS concentration in the biological reactor 2 is reduced to about 3/4 (=2/(2+6)) of the original at maximum. Therefore, the clogging of the filtration membrane can be delayed by returning the water to be treated in the biological reaction tank to the sedimentation tank.

図4は、第1の実施形態において制御装置3が濃度調整水の返送量を調整する処理の流れを示すフローチャートである。まず、制御部34が、判定タイミングが到来したか否かを判定する(ステップS101)。判定タイミングは、濃度調整水の返送が必要か否かを判定するタイミングである。判定タイミングの間隔は、濃度調整水の返送を開始してから生物反応槽2の被処理水が目標のMLSS濃度に希釈されるまでの時間遅れや、最初沈澱池1における被処理水の滞留時間、生物反応槽2における被処理水の滞留時間等に応じて適切に設定されるとよい。 FIG. 4 is a flow chart showing the flow of processing in which the controller 3 adjusts the amount of concentration-adjusted water to be returned in the first embodiment. First, the control unit 34 determines whether or not the determination timing has arrived (step S101). The determination timing is the timing for determining whether or not concentration-adjusted water needs to be returned. The judgment timing interval is the time delay from the start of returning the concentration-adjusted water until the water to be treated in the biological reaction tank 2 is diluted to the target MLSS concentration, or the residence time of the water to be treated in the first sedimentation tank 1. , the retention time of the water to be treated in the biological reaction tank 2, and the like.

判定タイミングが到来していない場合(ステップS101-NO)、制御部34は、判定タイミングが到来するまでステップS101の判定処理を繰り返し実行する。一方、判定タイミングが到来した場合(ステップS101-YES)、制御部34は、記憶部32に蓄積されている水質計11の測定データに基づいて、濃度調整条件が満たされたか否かを判定する(ステップS102)。 If the determination timing has not arrived (step S101-NO), the control unit 34 repeatedly executes the determination process of step S101 until the determination timing arrives. On the other hand, when the determination timing has arrived (step S101-YES), the control unit 34 determines whether or not the concentration adjustment condition is satisfied based on the measurement data of the water quality meter 11 accumulated in the storage unit 32. (Step S102).

具体的には、制御部34は、最初沈澱池1に流入する被処理水に含まれる汚濁物質の濃度が所定の閾値以下であるか否かを判定する。濃度調整条件が満たされていない場合(ステップS102-NO)、制御部34は、処理をステップS101に戻し、次の判定タイミングの到来を待機する。一方、濃度調整条件が満たされた場合(ステップS102-YES)、制御部34は、水質計11の測定データ及び流量計12の測定データに基づいて好気槽22の制御目標濃度を決定する(ステップS103)。制御部34は、決定した制御目標濃度に応じた制御指示値でポンプ221、流量調整弁V1及び流量調整弁V2を動作させることにより、濃度調整水の返送を開始させる(ステップS104)。 Specifically, the control unit 34 determines whether or not the concentration of contaminants contained in the water to be treated flowing into the primary sedimentation tank 1 is equal to or less than a predetermined threshold value. If the density adjustment condition is not satisfied (step S102-NO), the control unit 34 returns the process to step S101 and waits for the arrival of the next determination timing. On the other hand, if the concentration adjustment condition is satisfied (step S102-YES), the control unit 34 determines the control target concentration of the aerobic tank 22 based on the measurement data of the water quality meter 11 and the measurement data of the flow meter 12 ( step S103). The control unit 34 starts returning the concentration-adjusted water by operating the pump 221, the flow rate adjustment valve V1, and the flow rate adjustment valve V2 with a control instruction value corresponding to the determined control target concentration (step S104).

続いて、制御部34は、好気槽22のMLSS濃度が制御目標濃度に達したか否かを判定する(ステップS104)。MLSS濃度が制御目標濃度に達していない場合(ステップS104-NO)、制御部34は、MLSS濃度が制御目標濃度に到達するまでステップS104の判定処理を繰り返し実行する。一方、MLSS濃度が制御目標濃度に達した場合(ステップS104-YES)、制御部34は、濃度調整水の返送を終了する(ステップS105)とともに、ステップS101に処理を戻して次の判定タイミングの到来を待機する。 Subsequently, the control unit 34 determines whether or not the MLSS concentration in the aerobic tank 22 has reached the control target concentration (step S104). If the MLSS concentration has not reached the control target concentration (step S104-NO), the control unit 34 repeatedly executes the determination process of step S104 until the MLSS concentration reaches the control target concentration. On the other hand, when the MLSS concentration reaches the control target concentration (step S104-YES), the control unit 34 terminates the return of the concentration-adjusted water (step S105), returns the process to step S101, and determines the next determination timing. await its arrival.

このように構成された実施形態の水処理システム100では、制御装置3が最初沈澱池1の流入水質の変化を観測し、被処理水に含まれる汚濁物質の濃度が所定の閾値以下にまで希釈された場合に、生物反応槽2の被処理水の一部を濃度調整水として最初沈澱池1に返送する。このような構成を備えることにより、制御装置3は、必要な処理能力を維持しつつ、濾過膜の目詰まりを抑制することができる。 In the water treatment system 100 of the embodiment configured as described above, the control device 3 observes changes in the quality of the influent water of the primary sedimentation tank 1, and dilutes the concentration of contaminants contained in the water to be treated to a predetermined threshold value or less. If so, part of the water to be treated in the biological reaction tank 2 is returned to the primary sedimentation tank 1 as concentration-adjusted water. With such a configuration, the control device 3 can suppress clogging of the filtration membrane while maintaining the required processing capacity.

具体的には、合流式下水処理場に流入する被処理水は主に降雨によって増加する。雨天時には、雨水によって希釈された汚水が最初沈澱池1に流入するため、水処理システム100が単位時間当たりに処理すべき汚濁物質の量が少なくなる。すなわち、雨天時には、汚水が希釈された分だけ処理能力の低下を許容することができる。そこで、雨天時には、許容可能な処理能力の低下分に相当する活性汚泥を濃度調整水として最初沈澱池1に返送することにより、必要な処理能力を維持しつつ、濾過膜の目詰まりを抑制することができる。 Specifically, the amount of water to be treated that flows into a combined sewage treatment plant increases mainly due to rainfall. In rainy weather, sewage diluted with rainwater first flows into the sedimentation basin 1, so the amount of pollutants to be treated by the water treatment system 100 per unit time is reduced. That is, when it rains, it is possible to allow a decrease in treatment capacity by the amount of dilution of the sewage. Therefore, in rainy weather, activated sludge corresponding to the allowable decrease in treatment capacity is returned to the primary sedimentation tank 1 as concentration-adjusted water, thereby maintaining the necessary treatment capacity and suppressing clogging of the filtration membrane. be able to.

また、活性汚泥中の微生物の生存に必要な酸素量は生物反応槽2内のMLSS濃度に依存するため、濃度調整水の返送によって生物反応槽2内のMLSS濃度を低下させれば、微生物の生存に必要な酸素量も低下する。これは、すなわち、被処理水に酸素を供給するブロワ等の曝気機構(図示せず)の動作に必要なエネルギー量を少なくすることができることを意味する。そのため、雨天時に、活性汚泥を濃度調整水として最初沈澱池1に返送することにより、濾過膜の目詰まりを抑制するとともに、消費エネルギー量を削減することも可能になる。 In addition, since the amount of oxygen required for the survival of microorganisms in the activated sludge depends on the MLSS concentration in the biological reaction tank 2, if the MLSS concentration in the biological reaction tank 2 is reduced by returning the concentration-adjusted water, the microorganisms The amount of oxygen required for survival is also reduced. This means that the amount of energy required to operate an aeration mechanism (not shown) such as a blower that supplies oxygen to the water to be treated can be reduced. Therefore, by returning the activated sludge to the primary sedimentation tank 1 as concentration-adjusted water in rainy weather, clogging of the filtration membrane can be suppressed and energy consumption can be reduced.

なお、処理能力の低下がある程度許容される状況としては、雨天時に増加する雨水によって汚水が希釈される場合が主に想定されるが、濃度調整水の返送は、他の要因で処理能力の低下が許容される場合において実施されてもよい。 In addition, it is assumed that sewage is diluted by rainwater, which increases during rainy weather, as a situation in which a decrease in processing capacity is permitted to some extent. may be implemented where permitted.

(変形例)
制御部34は、最初沈澱池1の流入流量に基づいて濃度調整条件が満たされたか否かを判定してもよい。例えば、制御部34は、流入流量が所定の閾値を超えた場合に濃度調整条件が満たされたと判定してもよい。また、制御部34は、流入流量と流入水質との組み合わせで濃度調整条件が満たされたか否かを判定してもよい。例えば、制御部34は、流入流量と流入水質とのそれぞれについて設定された判定式のいずれか一方又は両方が満たされた場合に濃度調整条件が満たされたと判定してもよいし、流入流量及び流入水質を入力とする一つの判定式が満たされた場合に濃度調整条件が満たされたと判定してもよい。
(Modification)
The control unit 34 may determine whether or not the concentration adjustment condition is satisfied based on the inflow flow rate of the primary sedimentation tank 1 . For example, the control unit 34 may determine that the concentration adjustment condition is satisfied when the inflow flow rate exceeds a predetermined threshold. Further, the control unit 34 may determine whether or not the concentration adjustment condition is satisfied by a combination of the inflow flow rate and the inflow water quality. For example, the control unit 34 may determine that the concentration adjustment condition is satisfied when either one or both of the determination formulas set for each of the inflow flow rate and the inflow water quality are satisfied. It may be determined that the concentration adjustment condition is satisfied when one determination formula with the inflow water quality as an input is satisfied.

また、制御部34は、流入流量に基づいて生物反応槽2の制御目標濃度を決定してもよい。例えば、制御部34は、最初沈澱池1の流入流量と制御目標濃度との対応関係を示す既定の情報に基づいて制御目標濃度を決定してもよいし、流入流量を入力として制御目標濃度を出力するモデル式を用いて制御目標濃度を決定してもよい。また、制御部34は、流入流量と流入水質とを用いて制御目標濃度を決定してもよい。 Moreover, the control unit 34 may determine the control target concentration of the biological reactor 2 based on the inflow flow rate. For example, the control unit 34 may determine the control target concentration based on predetermined information indicating the correspondence relationship between the inflow flow rate of the primary sedimentation tank 1 and the control target concentration, or may determine the control target concentration using the inflow flow rate as an input. The control target concentration may be determined using the output model formula. Also, the control unit 34 may determine the control target concentration using the inflow flow rate and the inflow water quality.

また、降雨時には最初沈澱池1に流入する雨水が増大することにより、生物反応槽2に流入する被処理水の温度変化が大きくなることが予想される。一方で、被処理水の温度変化は活性汚泥中の微生物の働き(すなわち汚濁物質の処理能力)に影響を与え、被処理水の動粘度を高めて濾過抵抗を増大させる可能性がある。そのため、制御部34は、最初沈澱池1に流入する被処理水の温度に基づいて生物反応槽2の制御目標濃度を決定してもよい。 Moreover, it is expected that the temperature change of the water to be treated flowing into the bioreactor 2 will increase due to the increase in the amount of rainwater flowing into the sedimentation tank 1 during rainfall. On the other hand, the temperature change of the water to be treated affects the function of microorganisms in the activated sludge (that is, the ability to treat contaminants), and may increase the kinematic viscosity of the water to be treated and increase the filtration resistance. Therefore, the control unit 34 may determine the control target concentration of the biological reaction tank 2 based on the temperature of the water to be treated flowing into the sedimentation tank 1 first.

一般に、降雨初期では、流出する雨水の汚濁物質濃度が高くなることが知られている。この現象は一般にファーストフラッシュと呼ばれ、最初沈澱池1に流入する被処理水の水質を一時的に大きく変動させるため、適切な制御目標濃度の決定を阻害する可能性がある。そのため、制御部34は、降雨初期のファーストフラッシュによる水質変動を除外して生物反応槽2の制御目標濃度を決定してもよい。例えば、制御部34は、ファーストフラッシュの時定数が考慮された水質変動モデルを用いて生物反応槽2の制御目標濃度を決定してもよい。 Generally, it is known that the contaminant concentration of outflowing rainwater increases in the early stage of rainfall. This phenomenon is generally called a first flush, which temporarily greatly fluctuates the quality of the water to be treated that first flows into the sedimentation tank 1, and may hinder determination of an appropriate control target concentration. Therefore, the control unit 34 may determine the control target concentration of the biological reaction tank 2 by excluding water quality fluctuations due to the first flush at the beginning of rainfall. For example, the control unit 34 may determine the control target concentration of the biological reaction tank 2 using a water quality variation model that takes into consideration the time constant of the first flush.

制御装置3は、濃度調整水の返送を行っているときに、濃度調整条件が満たされなくなった時点で濃度調整水の返送を終了してもよい。 The control device 3 may terminate the return of the concentration-adjusted water when the concentration adjustment condition is no longer satisfied while the concentration-adjusted water is being returned.

(第2の実施形態)
図5は、第2の実施形態における水処理システム100aの構成の具体例を示す図である。水処理システム100aは、制御装置3に代えて制御装置3aを備える点で第1の実施形態の水処理システム100と異なる。また、制御装置3aは、濃度調整条件の判定に降雨データを用いる点で第1の実施形態における制御装置3と異なる。降雨データは関連区域における降雨の状況を示すデータであり、関連区域は区域内の降雨状況が最初沈澱池1に流入する雨水の流量に影響し得る区域である。例えば、降雨データは、雨量計によって測定された関連区域の雨量を示すデータであってもよいし、気象レーダや降雨強度計等によって取得された関連区域の降雨強度を示すデータであってもよい。この降雨データの取得のため、制御装置3aは、降雨データを提供する外部システム4と通信可能に接続される。その他の構成は第1の実施形態と同様であるため、同様の構成には図1と同じ符号を付すことにより説明を省略する。
(Second embodiment)
FIG. 5 is a diagram showing a specific example of the configuration of the water treatment system 100a in the second embodiment. The water treatment system 100a differs from the water treatment system 100 of the first embodiment in that it includes a control device 3a instead of the control device 3 . Further, the control device 3a differs from the control device 3 in the first embodiment in that rainfall data is used to determine the concentration adjustment condition. The rainfall data is data indicating rainfall conditions in the relevant area, and the relevant area is an area where the rainfall condition in the area can affect the amount of rainwater flowing into the sedimentation basin 1 first. For example, the rainfall data may be data indicating rainfall in the relevant area measured by a rain gauge, or data indicating rainfall intensity in the relevant area obtained by a weather radar, rainfall intensity meter, or the like. . For obtaining this rainfall data, the controller 3a is communicatively connected to an external system 4 that provides rainfall data. Since other configurations are the same as those of the first embodiment, the same configurations are denoted by the same reference numerals as in FIG. 1, and descriptions thereof are omitted.

図6は、第2の実施形態における制御装置3aの機能構成の具体例を示すブロック図である。制御装置3aは、降雨データ取得部35をさらに備える点、制御部34に代えて制御部34aを備える点で第1の実施形態の制御装置3と異なる。その他の構成は第1の実施形態と同様であるため、同様の構成には図2と同じ符号を付すことにより説明を省略する。 FIG. 6 is a block diagram showing a specific example of the functional configuration of the control device 3a in the second embodiment. The control device 3a differs from the control device 3 of the first embodiment in that it further includes a rainfall data acquisition unit 35 and in that it includes a control unit 34a instead of the control unit 34 . Since other configurations are the same as those of the first embodiment, the same configurations are denoted by the same reference numerals as those in FIG. 2, and descriptions thereof are omitted.

降雨データ取得部35は、通信部31を介して外部システム4から降雨データを取得する。降雨データ取得部35は、取得した降雨データを記憶部32に保存する。降雨データ取得部35は、降雨データの取得及び保存を繰り返し実行することにより、降雨データを記憶部32に蓄積する。 The rainfall data acquisition unit 35 acquires rainfall data from the external system 4 via the communication unit 31 . The rainfall data acquisition unit 35 stores the acquired rainfall data in the storage unit 32 . The rain data acquisition unit 35 accumulates the rain data in the storage unit 32 by repeatedly acquiring and storing the rain data.

制御部34aは、降雨データを用いて濃度調整条件を判定する点で第1の実施形態における制御部34と異なる。例えば、制御部34aは、降雨データの示す関連区域の雨量又は降雨強度が所定の閾値を超過した場合に濃度調整条件が満たされたと判定する。なお、濃度調整条件は、雨量又は降雨強度の直近の観測値に基づいて判定されてもよいし、過去の所定期間における観測値の統計値に基づいて判定されてもよい。 The control unit 34a differs from the control unit 34 in the first embodiment in that the rainfall data is used to determine the concentration adjustment condition. For example, the control unit 34a determines that the concentration adjustment condition is satisfied when the rainfall amount or rainfall intensity in the relevant area indicated by the rainfall data exceeds a predetermined threshold. Note that the concentration adjustment condition may be determined based on the most recent observed value of rainfall or rainfall intensity, or may be determined based on the statistical value of the observed value during a predetermined period in the past.

このように構成された第2の実施形態の制御装置3aは、関連区域の降雨状況を示す降雨データに基づいて濃度調整条件を判定することにより、溢水リスクが高まる雨天時において、濾過膜の目詰まりによる浄化処理の停止又は処理能力の低下を抑制することが可能となる。 The control device 3a of the second embodiment configured in this manner determines the concentration adjustment condition based on the rainfall data indicating the rainfall situation in the relevant area, so that the eyes of the filtration membrane can be It is possible to suppress the stoppage of the purification process or the deterioration of the treatment capacity due to the clogging.

(変形例)
制御部34aは、最初沈澱池1の流入流量又は流入水質と、関連区域の降雨状況との組み合わせで濃度調整条件が満たされたか否かを判定してもよい。例えば、制御部34aは、流入流量又は流入水質と、関連区域の降雨状況とのそれぞれについて設定された判定式のいずれか一方又は両方が満たされた場合に濃度調整条件が満たされたと判定してもよいし、流入流量又は流入水質と、関連区域の降雨状況とを入力とする一つの判定式が満たされた場合に濃度調整条件が満たされたと判定してもよい。
(Modification)
The control unit 34a may determine whether or not the concentration adjustment condition is satisfied by a combination of the inflow flow rate or inflow water quality of the primary sedimentation basin 1 and the rainfall situation in the relevant area. For example, the control unit 34a determines that the concentration adjustment condition is satisfied when either one or both of the determination formulas set for the inflow flow rate or inflow water quality and the rainfall situation in the related area are satisfied. Alternatively, it may be determined that the concentration adjustment condition is satisfied when one determination formula with input of the inflow flow rate or inflow water quality and the rainfall situation in the related area is satisfied.

以下、第1の実施形態及び第2の実施形態に共通の変形例について説明する。 Modifications common to the first embodiment and the second embodiment will be described below.

生物反応槽2のMLSS濃度を低下させることができれば、濃度調整水の移送先は必ずしも最初沈澱池1でなくてもよい。例えば、水処理システム100は、濃度調整水の移送先となる専用の貯水槽又は貯水池を備えてもよい。最初沈澱池1を移送先とした場合、濃度調整水が最初沈澱池1の被処理水によって希釈されてしまうため、例えば降雨終了後に生物反応槽2のMLSS濃度を通常時のMLSS濃度に回復させるのに時間がかかる。これに対して、専用の貯水槽又は貯水池を濃度調整水の移送先とする場合、濃度調整水が希釈されることがないため、移送した濃度調整水を生物反応槽2に戻すことによって、生物反応槽2のMLSS濃度を通常時のMLSS濃度に回復させるのにかかる時間を短縮することができる。 If the MLSS concentration in the biological reaction tank 2 can be lowered, the transfer destination of the concentration-adjusted water does not necessarily have to be the primary sedimentation tank 1 . For example, the water treatment system 100 may include a dedicated water tank or reservoir to which the conditioned water is transferred. When the first sedimentation tank 1 is used as the transfer destination, the concentration-adjusted water is diluted by the water to be treated in the first sedimentation tank 1. Therefore, for example, the MLSS concentration in the biological reaction tank 2 is restored to the normal MLSS concentration after rainfall ends. takes time. On the other hand, when the concentration-adjusted water is transferred to a dedicated water tank or reservoir, the concentration-adjusted water is not diluted. The time required for restoring the MLSS concentration in the reaction tank 2 to the normal MLSS concentration can be shortened.

以上説明した少なくともひとつの実施形態によれば、最初沈澱池に流入する被処理水の水質又は流量に関する測定データを取得する測定データ取得部と、生物反応槽において活性汚泥と混合された被処理水の一部を生物反応槽の外部に移送する移送部の動作を、最初沈澱池に流入する被処理水の水質又は流量に基づいて制御する制御部と、を持つことにより、濾過膜による固液分離手段と活性汚泥による汚濁物質の分解手段とを備える合流式下水処理システムにおいて、濾過膜の目詰まりを抑制することができる。 According to at least one embodiment described above, a measurement data acquisition unit that acquires measurement data relating to the quality or flow rate of the water to be treated flowing into the first sedimentation tank, and the water to be treated mixed with activated sludge in the biological reaction tank and a control unit for controlling the operation of the transfer unit for transferring a part of the liquid to the outside of the biological reaction tank based on the quality or flow rate of the water to be treated that first flows into the sedimentation tank, solid-liquid by the filtration membrane In a combined sewage treatment system provided with separation means and means for decomposing pollutants using activated sludge, clogging of the filtration membrane can be suppressed.

なお、上記実施形態における生物反応槽2は分解手段の一例である。また、上記実施形態における膜ユニット23は、濾過膜による固液分離手段の一例である。また、上記実施形態における最初沈澱池1は分解手段の前段に設けられた貯水槽の一例である。また、上記実施形態におけるポンプ221、流量調整弁V1及びV2は移送部の一例である。 The biological reactor 2 in the above embodiment is an example of decomposition means. Further, the membrane unit 23 in the above-described embodiment is an example of a solid-liquid separation means using a filtration membrane. Further, the primary sedimentation tank 1 in the above embodiment is an example of a water tank provided in the front stage of the decomposition means. Also, the pump 221 and the flow control valves V1 and V2 in the above embodiments are examples of the transfer section.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.

100,100a…水処理システム、1…最初沈澱池、11…水質計、12…流量計、2…生物反応槽、21…無酸素槽、211…ORP(Oxidation-Reduction Potential)計、22…好気槽、221…ポンプ、222…MLSS(Mixed Liquor Suspended Solids)濃度計、23…濾過膜ユニット、231…濾過膜モジュール、3,3a…制御装置、31…通信部、32…記憶部、33…測定データ取得部、34,34a…制御部、35…降雨データ取得部、4…外部システム、V1,V2…流量調整弁 100, 100a... Water treatment system, 1... First sedimentation tank, 11... Water quality meter, 12... Flow meter, 2... Biological reaction tank, 21... Anoxic tank, 211... ORP (Oxidation-Reduction Potential) meter, 22... Good Air tank 221 pump 222 MLSS (Mixed Liquor Suspended Solids) densitometer 23 filtration membrane unit 231 filtration membrane module 3, 3a control device 31 communication section 32 storage section 33 Measurement data acquisition unit 34, 34a Control unit 35 Rainfall data acquisition unit 4 External system V1, V2 Flow control valve

Claims (9)

膜による固液分離手段と活性汚泥による汚濁物質の分解手段とを備え、合流式下水処理場に流入する被処理水を浄化する水処理システムに用いられる制御装置であって、
前記水処理システムに流入する被処理水の水質および流量に関する測定データを取得する測定データ取得部と、
前記分解手段において活性汚泥と混合された被処理水の一部を、前記分解手段における活性汚泥の濃度を調整するための濃度調整水として前記分解手段の外部に移送する移送部の動作を、前記測定データが示す前記被処理水の水質および流量に基づいて制御する制御部と、
を備え
前記制御部は、
前記移送部に前記濃度調整水の移送を行わせるか否かを前記水質に基づいて判定し、
前記分解手段における被処理水の活性汚泥濃度の目標値を前記水質および流量に基づいて決定し、前記分解手段における被処理水の活性汚泥濃度が前記目標値となるように前記移送部を制御する、
制御装置。
A control device for use in a water treatment system that purifies water to be treated flowing into a combined sewage treatment plant, comprising solid-liquid separation means using a membrane and pollutant decomposition means using activated sludge,
a measurement data acquisition unit that acquires measurement data relating to the quality and flow rate of the water to be treated flowing into the water treatment system;
The operation of the transfer unit for transferring a part of the water to be treated, which has been mixed with the activated sludge in the decomposition means, to the outside of the decomposition means as concentration-adjusted water for adjusting the concentration of the activated sludge in the decomposition means. a control unit that controls based on the water quality and flow rate of the water to be treated indicated by measurement data;
with
The control unit
determining whether or not to cause the transfer unit to transfer the concentration-adjusted water based on the water quality;
determining a target value of the activated sludge concentration of the water to be treated in the decomposition means based on the water quality and the flow rate, and controlling the transfer section so that the activated sludge concentration of the water to be treated in the decomposition means becomes the target value; ,
Control device.
膜による固液分離手段と活性汚泥による汚濁物質の分解手段とを備え、合流式下水処理場に流入する被処理水を浄化する水処理システムに用いられる制御装置であって、 A control device for use in a water treatment system that purifies water to be treated flowing into a combined sewage treatment plant, comprising solid-liquid separation means using a membrane and pollutant decomposition means using activated sludge,
前記水処理システムに流入する被処理水の水質および温度に関する測定データを取得する測定データ取得部と、 a measurement data acquisition unit that acquires measurement data relating to the quality and temperature of the water to be treated flowing into the water treatment system;
前記分解手段において活性汚泥と混合された被処理水の一部を、前記分解手段における活性汚泥の濃度を調整するための濃度調整水として前記分解手段の外部に移送する移送部の動作を、前記測定データが示す前記被処理水の水質および温度に基づいて制御する制御部と、 The operation of the transfer unit for transferring a part of the water to be treated, which has been mixed with the activated sludge in the decomposition means, to the outside of the decomposition means as concentration-adjusted water for adjusting the concentration of the activated sludge in the decomposition means. a control unit that controls based on the water quality and temperature of the water to be treated indicated by measurement data;
を備え、 with
前記制御部は、 The control unit
前記移送部に前記濃度調整水の移送を行わせるか否かを前記水質に基づいて判定し、 determining whether or not to cause the transfer unit to transfer the concentration-adjusted water based on the water quality;
前記分解手段における被処理水の活性汚泥濃度の目標値を前記温度に基づいて決定し、前記分解手段における被処理水の活性汚泥濃度が前記目標値となるように前記移送部を制御する、 determining a target value of the activated sludge concentration of the water to be treated in the decomposition means based on the temperature, and controlling the transfer section so that the activated sludge concentration of the water to be treated in the decomposition means becomes the target value;
制御装置。 Control device.
前記水処理システムに流入する被処理水の流量に影響しうる関連区域の降雨状況に関する降雨データを取得する降雨データ取得部をさらに備え、
前記制御部は、前記移送部に被処理水の移送を行わせるか否かを前記関連区域の降雨状況に基づいて判定する、
請求項1または2に記載の制御装置。
further comprising a rainfall data acquisition unit that acquires rainfall data relating to rainfall conditions in related areas that may affect the flow rate of the water to be treated flowing into the water treatment system;
The control unit determines whether or not to cause the transfer unit to transfer the water to be treated based on rainfall conditions in the relevant area.
3. A control device according to claim 1 or 2 .
前記制御部は、前記水質、前記流量又は前記降雨状況に基づいて前記分解手段における被処理水の活性汚泥濃度の目標値を決定し、前記分解手段における被処理水の活性汚泥濃度が前記目標値となるように前記移送部を制御する、
請求項に記載の制御装置。
The control unit determines a target value of the activated sludge concentration of the water to be treated in the decomposition means based on the water quality, the flow rate, or the rainfall condition, and the activated sludge concentration of the water to be treated in the decomposition means is the target value. controlling the transfer unit so that
4. A control device according to claim 3 .
前記移送部は、前記分解手段に流入した被処理水の一部を、前記分解手段の前段に設けられた貯水槽に返送する、
請求項1からのいずれか一項に記載の制御装置。
The transfer unit returns part of the water to be treated that has flowed into the decomposition means to a water tank provided upstream of the decomposition means.
Control device according to any one of claims 1 to 4 .
前記移送部は、前記分解手段に流入した被処理水の一部を、専用に設けられた貯水槽に移送する、
請求項1からのいずれか一項に記載の制御装置。
The transfer unit transfers part of the water to be treated that has flowed into the decomposition means to a dedicated water tank.
Control device according to any one of claims 1 to 5 .
膜による固液分離手段と活性汚泥による汚濁物質の分解手段とを備え、合流式下水処理場に流入する被処理水を浄化する水処理システムに用いられる制御装置の制御方法であって、
前記水処理システムに流入する被処理水の水質および流量に関する測定データを取得するステップと、
前記分解手段において活性汚泥と混合された被処理水の一部を、前記分解手段における活性汚泥の濃度を調整するための濃度調整水として前記分解手段の外部に移送する移送部の動作を、前記測定データが示す前記被処理水の水質および流量に基づいて制御する制御ステップと、
を有し、
前記制御ステップにおいて、
前記移送部に前記濃度調整水の移送を行わせるか否かを前記水質に基づいて判定し、
前記分解手段における被処理水の活性汚泥濃度の目標値を前記水質および流量に基づいて決定し、前記分解手段における被処理水の活性汚泥濃度が前記目標値となるように前記移送部を制御する、
制御方法。
A control method for a controller used in a water treatment system for purifying water to be treated flowing into a combined sewage treatment plant, comprising solid-liquid separation means using a membrane and pollutant decomposition means using activated sludge, comprising:
obtaining measurement data regarding the quality and flow rate of the water to be treated entering the water treatment system;
The operation of the transfer unit for transferring a part of the water to be treated, which has been mixed with the activated sludge in the decomposition means, to the outside of the decomposition means as concentration-adjusted water for adjusting the concentration of the activated sludge in the decomposition means. a control step of controlling based on the water quality and flow rate of the water to be treated indicated by measurement data;
has
In the control step,
determining whether or not to cause the transfer unit to transfer the concentration-adjusted water based on the water quality;
determining a target value of the activated sludge concentration of the water to be treated in the decomposition means based on the water quality and the flow rate, and controlling the transfer section so that the activated sludge concentration of the water to be treated in the decomposition means becomes the target value; ,
control method.
膜による固液分離手段と活性汚泥による汚濁物質の分解手段とを備え、合流式下水処理場に流入する被処理水を浄化する水処理システムに用いられる制御装置の制御方法であって、 A control method for a controller used in a water treatment system for purifying water to be treated flowing into a combined sewage treatment plant, comprising solid-liquid separation means using a membrane and pollutant decomposition means using activated sludge, comprising:
前記水処理システムに流入する被処理水の水質および温度に関する測定データを取得するステップと、 obtaining measurement data on water quality and temperature of the water to be treated entering the water treatment system;
前記分解手段において活性汚泥と混合された被処理水の一部を、前記分解手段における活性汚泥の濃度を調整するための濃度調整水として前記分解手段の外部に移送する移送部の動作を、前記測定データが示す前記被処理水の水質および温度に基づいて制御する制御ステップと、 The operation of the transfer unit for transferring a part of the water to be treated, which has been mixed with the activated sludge in the decomposition means, to the outside of the decomposition means as concentration-adjusted water for adjusting the concentration of the activated sludge in the decomposition means. a control step of controlling based on the water quality and temperature of the water to be treated indicated by measurement data;
を有し、 has
前記制御ステップにおいて、 In the control step,
前記移送部に前記濃度調整水の移送を行わせるか否かを前記水質に基づいて判定し、 determining whether or not to cause the transfer unit to transfer the concentration-adjusted water based on the water quality;
前記分解手段における被処理水の活性汚泥濃度の目標値を前記温度に基づいて決定し、前記分解手段における被処理水の活性汚泥濃度が前記目標値となるように前記移送部を制御する、 determining a target value of the activated sludge concentration of the water to be treated in the decomposition means based on the temperature, and controlling the transfer section so that the activated sludge concentration of the water to be treated in the decomposition means becomes the target value;
制御方法。 control method.
コンピュータを、請求項1または2に記載の制御装置として機能させるためのコンピュータプログラム。 A computer program for causing a computer to function as the control device according to claim 1 or 2 .
JP2019006574A 2019-01-18 2019-01-18 Control device, control method and computer program Active JP7191708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019006574A JP7191708B2 (en) 2019-01-18 2019-01-18 Control device, control method and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019006574A JP7191708B2 (en) 2019-01-18 2019-01-18 Control device, control method and computer program

Publications (2)

Publication Number Publication Date
JP2020114580A JP2020114580A (en) 2020-07-30
JP7191708B2 true JP7191708B2 (en) 2022-12-19

Family

ID=71778244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019006574A Active JP7191708B2 (en) 2019-01-18 2019-01-18 Control device, control method and computer program

Country Status (1)

Country Link
JP (1) JP7191708B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112047467B (en) * 2020-08-07 2022-06-07 山东思源水业工程有限公司 Intelligent efficient aeration biochemical system
CN116495946B (en) * 2023-06-27 2023-10-13 珠江水利委员会珠江水利科学研究院 Comprehensive treatment method and system for urban rainwater sewage interception, regulation and dredging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310186A (en) 2000-05-01 2001-11-06 Kenji Fujita Method for concentrating membrane physical washing wastewater
JP2006015180A (en) 2004-06-30 2006-01-19 Hitachi Ltd Water treatment operation support apparatus and water treatment operation support software, and water treatment plant
JP2012166142A (en) 2011-02-14 2012-09-06 Hitachi Plant Technologies Ltd System for membrane separation activated sludge and method for membrane separation activated sludge
JP2017113722A (en) 2015-12-25 2017-06-29 株式会社クボタ Operation method of organic wastewater treatment apparatus and organic wastewater treatment system
JP2018079402A (en) 2016-11-14 2018-05-24 株式会社日水コン Sewage treatment system and sewage treatment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147777B1 (en) * 2005-05-09 2006-12-12 Eimco Water Technologies Llc Wastewater treatment system with membrane separators and provision for storm flow conditions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310186A (en) 2000-05-01 2001-11-06 Kenji Fujita Method for concentrating membrane physical washing wastewater
JP2006015180A (en) 2004-06-30 2006-01-19 Hitachi Ltd Water treatment operation support apparatus and water treatment operation support software, and water treatment plant
JP2012166142A (en) 2011-02-14 2012-09-06 Hitachi Plant Technologies Ltd System for membrane separation activated sludge and method for membrane separation activated sludge
JP2017113722A (en) 2015-12-25 2017-06-29 株式会社クボタ Operation method of organic wastewater treatment apparatus and organic wastewater treatment system
JP2018079402A (en) 2016-11-14 2018-05-24 株式会社日水コン Sewage treatment system and sewage treatment method

Also Published As

Publication number Publication date
JP2020114580A (en) 2020-07-30

Similar Documents

Publication Publication Date Title
JP5217159B2 (en) Sewage treatment apparatus and method
CN100360438C (en) Method and installation for the biological treatment of water using activated sludge and comprising aeration regulation
US11434157B2 (en) Operating method for organic wastewater treatment apparatus and organic wastewater treatment apparatus
KR101050375B1 (en) A submerged membrane bio reactor easilly respond to load regulation and method of wastewater treatment using the same
JP2007209964A (en) Method for cleaning separation membrane
JP7191708B2 (en) Control device, control method and computer program
US20150210579A1 (en) Fresh water generation method
JP2003053363A (en) Treatment method and treatment equipment for organic matter-containing water
US9969635B2 (en) Downflow denitrification system
KR101044826B1 (en) An operation method to increase advanced treatment efficiency in membrane bio reacter and an advanced treatment appartus there of
JP2007050312A (en) Method and apparatus for biologically treating waste water
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
US8012353B2 (en) Method and apparatus for simultaneous clarification and endogenous post denitifrication
US5989427A (en) Method of degassing biological filters
JP6533462B2 (en) Method of operating organic wastewater treatment facility and organic wastewater treatment system
KR100547463B1 (en) Nitrogen removal system in aeration tank using sulfur packed MBR reactor
JP6529886B2 (en) Organic wastewater treatment system, control method and computer program
TW202140387A (en) Water treatment device and water treatment method
JP4925403B2 (en) Waste water treatment apparatus and waste water treatment method
JP7221808B2 (en) Control device, control method and computer program
JP3106066B2 (en) Septic tank
JP6243804B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP4390959B2 (en) Wastewater treatment equipment
JP2007260515A (en) Sludge separator and sludge separation method
JP7195968B2 (en) Method for operating organic wastewater treatment equipment and organic wastewater treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221207

R150 Certificate of patent or registration of utility model

Ref document number: 7191708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150