JP7173050B2 - laminate - Google Patents

laminate Download PDF

Info

Publication number
JP7173050B2
JP7173050B2 JP2019564764A JP2019564764A JP7173050B2 JP 7173050 B2 JP7173050 B2 JP 7173050B2 JP 2019564764 A JP2019564764 A JP 2019564764A JP 2019564764 A JP2019564764 A JP 2019564764A JP 7173050 B2 JP7173050 B2 JP 7173050B2
Authority
JP
Japan
Prior art keywords
layer
protrusions
laminate
laminate according
uneven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019564764A
Other languages
Japanese (ja)
Other versions
JPWO2019139136A1 (en
Inventor
裕 速水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2019139136A1 publication Critical patent/JPWO2019139136A1/en
Application granted granted Critical
Publication of JP7173050B2 publication Critical patent/JP7173050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、積層体に関する。 The present invention relates to laminates.

ガラス板は、耐久性が高く、表面が平滑で、質感、反射等により意匠性が高く、建築物、インテリア等に広く用いられている。さらに、近年、窓材、床材、壁材、天井材等の建築部材;テーブル天板等のインテリア部材;洗濯機、冷蔵庫等の白物家電の外装材;携帯電話、携帯情報端末(PDA)等の電子機器等の用途において、より意匠性の高いガラス材が求められるようになってきている。今後さらに、意匠性の高いガラス材の用途は拡大していくことが予想される。 Glass plates are widely used in buildings, interiors, and the like, because they are highly durable, have smooth surfaces, and have high designability due to texture, reflection, and the like. Furthermore, in recent years, building materials such as window materials, floor materials, wall materials, and ceiling materials; interior materials such as table tops; exterior materials for white goods such as washing machines and refrigerators; In applications such as electronic devices such as electronic devices, there is a growing demand for glass materials with higher designability. In the future, it is expected that the use of highly designed glass materials will continue to expand.

かかる背景下、内部に、印刷PET(ポリエチレンテレフタレート)フィルム、和紙等の紙、布、金属、大理石、木材、押し花、葉脈等のガラス以外の異種素材を封入した合わせガラスが提案されている。かかる合わせガラスは、ガラス板/透光性樹脂膜(中間膜)/異種素材/透光性樹脂膜(中間膜)/ガラス板の5層構造を基本とし、表側のガラス板を通して異種素材を視認することで、美観に優れた意匠を実現することができる。
異種素材は、色、模様、パターン等を有し、意匠層として機能することができる。例えば、特許文献1には、ガラス板/接着性フィルム/突板裏打シート/接着性フィルム/ガラス板を積層成形してなる5層構造の積層体が開示されている(特許文献1参照)。
Against this background, laminated glass has been proposed in which different materials other than glass, such as printed PET (polyethylene terephthalate) film, paper such as Japanese paper, cloth, metal, marble, wood, pressed flowers, and leaf veins, are encapsulated. Such laminated glass is based on a five-layer structure of glass plate / translucent resin film (intermediate film) / different material / translucent resin film (intermediate film) / glass plate, and different materials are visible through the glass plate on the front side. By doing so, it is possible to realize an aesthetically pleasing design.
The heterogeneous material has colors, patterns, patterns, etc., and can function as a design layer. For example, Patent Document 1 discloses a laminate having a five-layer structure obtained by laminating and molding a glass plate/adhesive film/backing sheet for sliced veneer/adhesive film/glass plate (see Patent Document 1).

日本特公平08-015770号公報Japanese Patent Publication No. 08-015770

上記積層体において、裏側のガラス板は必須ではない。また、ガラス板の代わりに、透光性樹脂板等の任意の透光性基材を用いてもよい。透光性基材と意匠層とを含む積層体においては、各種製品の高付加価値化に伴い、より高度な意匠性が求められるようになってきている。 In the laminate, the glass plate on the back side is not essential. Any translucent substrate such as a translucent resin plate may be used instead of the glass plate. Laminates containing a translucent substrate and a design layer are required to have a higher degree of designability as various products become more value-added.

本発明は上記事情に鑑みてなされたものであり、従来よりも意匠性に優れた積層体の提供を目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a laminate that is more excellent in design than conventional laminates.

本発明の積層体は、
透光性基材と表面に複数の平面視ライン状の凸部を有する凹凸層とを含む積層体であって、
前記凹凸層は平面視にて、曲げ角度が30~150°である曲部を有するライン状の前記凸部が間隔を空けて複数形成されたパターンを有し、
前記凸部の線幅(L)に対する前記複数の凸部の間隔(S)の比(S/L)が10以下を特徴とするものである。
The laminate of the present invention is
A laminate including a translucent base material and an uneven layer having a plurality of linear projections on the surface thereof,
The uneven layer has a pattern in which a plurality of line-shaped convex portions having curved portions with a bending angle of 30 to 150 ° are formed at intervals in plan view,
The ratio (S/L) of the spacing (S) between the plurality of protrusions to the line width (L) of the protrusions is 10 or less.

本発明の積層体は、凹凸層に含まれる複数の凸部の曲部が連なった部分が手前または奥に膨らんでいるように立体的に視認され、透光性基材の厚み以上の奥行が感じられ、従来よりも意匠性に優れる。 The laminate of the present invention can be viewed three-dimensionally as if the curved portions of the plurality of protrusions included in the uneven layer swell toward the front or back, and the depth is greater than the thickness of the translucent base material. You can feel it, and the design is superior to the conventional one.

本発明に係る第1実施形態の積層体の模式断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic cross section of the laminated body of 1st Embodiment which concerns on this invention. 凹凸層の表層部の部分拡大模式断面図である。FIG. 4 is a partially enlarged schematic cross-sectional view of a surface layer portion of an uneven layer; 凹凸層に含まれる1つの凸部の平面パターンの一例である。It is an example of a planar pattern of one protrusion included in the uneven layer. 本発明に係る第2実施形態の積層体の模式断面図である。It is a schematic cross section of the laminated body of 2nd Embodiment which concerns on this invention. 本発明に係る第3実施形態の積層体の模式断面図である。FIG. 5 is a schematic cross-sectional view of a laminate of a third embodiment according to the present invention; 本発明に係る第4実施形態の積層体の模式断面図である。It is a schematic cross section of the laminated body of 4th Embodiment which concerns on this invention. 本発明に係る第5実施形態の積層体の模式断面図である。It is a schematic cross section of the laminated body of 5th Embodiment which concerns on this invention. 本発明に係る第6実施形態の積層体の模式断面図である。FIG. 11 is a schematic cross-sectional view of a laminate of a sixth embodiment according to the present invention; 本発明に係る第7実施形態の積層体の模式断面図である。FIG. 11 is a schematic cross-sectional view of a laminate of a seventh embodiment according to the present invention; 本発明に係る第8実施形態の積層体の模式断面図である。FIG. 11 is a schematic cross-sectional view of a laminate of an eighth embodiment according to the present invention; [実施例]の例2で得られた積層体の低倍率写真(全体写真)である。2 is a low-magnification photograph (overall photograph) of a laminate obtained in Example 2 of [Example]. [実施例]の例2で得られた積層体の中倍率写真である。2 is a medium-magnification photograph of a laminate obtained in Example 2 of [Example]. [実施例]の例2で得られた積層体の高倍率写真である。4 is a high-magnification photograph of a laminate obtained in Example 2 of [Example].

凹凸層における、第1の方向に向かう複数の第1の直線部または複数の第1の曲線部が形成される複数の領域A1と、第2の方向に向かう複数の第2の直線部LP2または複数の第2の曲線部が形成される複数の領域A2との第1の配置例を示す模式平面図である。In the uneven layer, a plurality of regions A1 in which a plurality of first straight portions or a plurality of first curved portions directed in the first direction are formed, and a plurality of second straight portions LP2 directed in the second direction, or FIG. 10 is a schematic plan view showing a first arrangement example of a plurality of regions A2 in which a plurality of second curved portions are formed; 凹凸層における、第1の方向に向かう複数の第1の直線部または複数の第1の曲線部が形成される複数の領域A1と、第2の方向に向かう複数の第2の直線部LP2または複数の第2の曲線部が形成される複数の領域A2との第2の配置例を示す模式平面図である。In the uneven layer, a plurality of regions A1 in which a plurality of first straight portions or a plurality of first curved portions directed in the first direction are formed, and a plurality of second straight portions LP2 directed in the second direction, or FIG. 11 is a schematic plan view showing a second arrangement example of a plurality of regions A2 in which a plurality of second curved portions are formed; 凹凸層における、第1の方向に向かう複数の第1の直線部または複数の第1の曲線部が形成される複数の領域A1と、第2の方向に向かう複数の第2の直線部LP2または複数の第2の曲線部が形成される複数の領域A2との第3の配置例を示す模式平面図である。In the uneven layer, a plurality of regions A1 in which a plurality of first straight portions or a plurality of first curved portions directed in the first direction are formed, and a plurality of second straight portions LP2 directed in the second direction, or FIG. 11 is a schematic plan view showing a third arrangement example of a plurality of regions A2 in which a plurality of second curved portions are formed;

切子ガラスに見える凹凸層の複数の凸部のパターンの例を示す模式平面図である。FIG. 4 is a schematic plan view showing an example of a pattern of a plurality of protrusions of an uneven layer that looks like facet glass. 切子ガラスに見える凹凸層の複数の凸部のパターンの例を示す模式平面図である。FIG. 4 is a schematic plan view showing an example of a pattern of a plurality of protrusions of an uneven layer that looks like facet glass. 切子ガラスに見える凹凸層の複数の凸部のパターンの例を示す模式平面図である。FIG. 4 is a schematic plan view showing an example of a pattern of a plurality of protrusions of an uneven layer that looks like facet glass. 切子ガラスに見える凹凸層の複数の凸部のパターンの例を示す模式平面図である。FIG. 4 is a schematic plan view showing an example of a pattern of a plurality of protrusions of an uneven layer that looks like facet glass. 本発明に係る別の実施形態の積層体の模式断面図である。FIG. 4 is a schematic cross-sectional view of a laminate of another embodiment according to the present invention; 本発明に係る別の実施形態の積層体の模式断面図である。FIG. 4 is a schematic cross-sectional view of a laminate of another embodiment according to the present invention; 本発明に係る別の実施形態の積層体の模式断面図である。FIG. 4 is a schematic cross-sectional view of a laminate of another embodiment according to the present invention; 本発明に係る別の実施形態の積層体の模式断面図である。FIG. 4 is a schematic cross-sectional view of a laminate of another embodiment according to the present invention; 本発明に係る別の実施形態の積層体の模式断面図である。FIG. 4 is a schematic cross-sectional view of a laminate of another embodiment according to the present invention; 本発明に係る別の実施形態の積層体の模式断面図である。FIG. 4 is a schematic cross-sectional view of a laminate of another embodiment according to the present invention;

薄膜構造体は、一般的に、厚み等に応じて、「フィルム」、「シート」等と称される。本明細書では、これらを特に区別せず、これらを包括する概念を表す用語として「フィルム」の用語を使用するものとする。 A thin film structure is generally referred to as a “film”, “sheet” or the like depending on the thickness and the like. In this specification, the term "film" is used as a term that expresses a concept that includes them without distinguishing between them.

以下、本発明の実施の形態を説明する。
図1A、図2~図8は、本発明に係る第1~第8実施形態の積層体を示す模式断面図である。これらの図において、同じ構成要素には同じ参照符号を付してある。
図1Aに示す第1実施形態の積層体1Aは、透光性基材11の一方の面(図示上面)上に、表面に凹凸を有する凹凸層20が形成された積層構造を有する。凹凸層20は透光性基材11と反対側の表面(図示上面)に凹凸を有している。
図2に示す第2実施形態の積層体1Bは、透光性基材11上に、表面に凹凸を有する凹凸層20と、凹凸層20の表面凹凸に沿って形成された反射層30とが順次形成された積層構造を有する。
第1、第2実施形態の積層体1A、1B、および後記第3~第5実施形態の積層体1C~1Eでは、透光性基材11側(図示下側)が観察者側である。
Embodiments of the present invention will be described below.
1A and 2 to 8 are schematic cross-sectional views showing laminates of first to eighth embodiments according to the present invention. In these figures, the same components are given the same reference numerals.
A laminate 1A of the first embodiment shown in FIG. 1A has a laminate structure in which an uneven layer 20 having an uneven surface is formed on one surface (upper surface in the figure) of a translucent substrate 11 . The uneven layer 20 has unevenness on the surface opposite to the translucent base material 11 (upper surface in the drawing).
A laminate 1B of the second embodiment shown in FIG. It has a layered structure formed sequentially.
In laminates 1A and 1B of the first and second embodiments, and laminates 1C to 1E of third to fifth embodiments described later, the side of the translucent substrate 11 (lower side in the figure) is the observer side.

透光性基材11としては、ガラス板、透光性樹脂板、透光性樹脂フィルム、これらの組合せ等が挙げられる。透光性基材11は、単層構造でも積層構造でもよく、表面処理等の処理が施されたものでもよい。
ガラス板は公知のものを使用でき、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス等が挙げられる。ガラス板は、表面に反射防止(AR)処理、眩光防止層(AG)、防指紋(AFP)処理、防汚処理、抗菌処理等の公知の表面処理が施されたものでもよい。ガラス板は、強化加工等の公知の二次加工処理が施されたものでもよい。
透光性樹脂板および透光性樹脂フィルムの構成樹脂としては、アクリル系樹脂;塩化ビニル系樹脂;カーボネート系樹脂;エポキシ系樹脂;ポリエチレン、ポリプロピレン等のオレフィン系樹脂;スチロール系樹脂;ABS系樹脂等のスチレン系樹脂;ナイロン等のアミド系樹脂;フッ素系樹脂;フェノール系樹脂;メラミン系樹脂;エステル系樹脂、これらの組合せ等が挙げられる。
Examples of the translucent substrate 11 include a glass plate, a translucent resin plate, a translucent resin film, a combination thereof, and the like. The translucent base material 11 may have a single layer structure or a laminated structure, and may be subjected to surface treatment or the like.
A known glass plate can be used, and examples thereof include soda-lime glass, borosilicate glass, alkali-free glass, and the like. The glass plate may be subjected to known surface treatments such as antireflection (AR) treatment, antiglare layer (AG), antifingerprint (AFP) treatment, antifouling treatment, and antibacterial treatment. The glass plate may be subjected to known secondary processing such as tempering.
Resins constituting the light-transmitting resin plate and the light-transmitting resin film include acrylic resins; vinyl chloride resins; carbonate resins; epoxy resins; olefin resins such as polyethylene and polypropylene; amide resins such as nylon; fluorine resins; phenol resins; melamine resins;

透光性基材11のJIS R3106(1998)に準拠して測定される可視光透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは90%以上である。
透光性基材11の表面粗さ(JIS B 0601(2001)に準拠して測定される算術平均粗さRa)は、好ましくは10nm以下、より好ましくは5nm以下、さらに好ましくは2nm以下である。
透光性基材11の透明性および表面粗さは上記規定に制限されず、眩光防止、艶消し等の凹凸形成処理が施されたものでもよい。
透光性基材11の厚みは、好ましくは0.01~20mm、より好ましくは0.05~10mm、特に好ましくは0.15~5mmである。
透光性基材11は、平板状の他、円筒状、時計皿状等の3次元曲面を有するものでもよい。
具体的な方法については後記するが、透光性基材11は、凹凸層20を形成した金属等からなる凹凸基板上に透光性材料を成形したものであってもよい。
The visible light transmittance of the translucent substrate 11 measured according to JIS R3106 (1998) is preferably 80% or higher, more preferably 85% or higher, and particularly preferably 90% or higher.
The surface roughness (arithmetic mean roughness Ra measured according to JIS B 0601 (2001)) of the translucent substrate 11 is preferably 10 nm or less, more preferably 5 nm or less, and still more preferably 2 nm or less. .
The transparency and surface roughness of the translucent base material 11 are not limited to those specified above, and the base material 11 may be subjected to unevenness forming treatment such as glare prevention and matting.
The thickness of the translucent base material 11 is preferably 0.01 to 20 mm, more preferably 0.05 to 10 mm, particularly preferably 0.15 to 5 mm.
The translucent base material 11 may have a three-dimensional curved surface such as a cylindrical shape, a watch glass shape, or the like, in addition to the flat plate shape.
Although a specific method will be described later, the translucent base material 11 may be formed by molding a translucent material on an uneven substrate made of metal or the like on which the uneven layer 20 is formed.

図1Bに凹凸層20の表層部の部分拡大模式断面図を示すように、凹凸層20は透光性基材11と反対側の表面(図示上面)に、複数の平面視ライン状の凸部21とそれらの間隙に形成された凹部とからなる凹凸パターンを有している。図中、符号Lは凸部の線幅、符号Hは凸部の高さ、符号Sは複数の凸部の間隔である。 As shown in FIG. 1B, which is a partially enlarged schematic cross-sectional view of the surface layer portion of the uneven layer 20, the uneven layer 20 has a plurality of line-shaped protrusions on the surface opposite to the translucent base material 11 (upper surface in the drawing). 21 and recesses formed in the gaps between them. In the figure, the symbol L is the line width of the projection, the symbol H is the height of the projection, and the symbol S is the interval between the plurality of projections.

凹凸層20は平面視にて、曲げ角度が30~150°である、少なくとも1つ、好ましくは複数の曲部を有するライン状の凸部21が間隔を空けて複数形成されたパターンを有する。曲部の曲げ角度は、好ましくは50~130°、より好ましくは70~110°、特に好ましくは90°である。
凸部21の線幅(L)に対する複数の凸部21の間隔(S)の比(S/L)は10以下、好ましくは3以下、より好ましくは1以下、特に好ましくは0.5以下である。
凸部21の線幅(L)と複数の凸部21の間隔(S)との和(L+S)は、好ましくは200μm以下であり、より好ましくは80μm以下である。L+Sが80μm以下であれば、ライン状の凸部が視認できなくなり、意匠性が向上する。L+Sの下限は特に限定されないが、L+Sは製造上5μm以上となる。 凸部21が複数の曲部を含む場合、曲部の曲率半径(R)に対する互いに隣り合う曲部の極点間の距離(D)の比(D/R)は好ましくは150以下、より好ましくは0.1~50、特に好ましくは0.5~10、最も好ましくは1~8である。
The uneven layer 20 has a pattern in which a plurality of line-shaped protrusions 21 each having a bending angle of 30 to 150° and having at least one, preferably a plurality of curved portions are formed at intervals in a plan view. The bending angle of the curved portion is preferably 50-130°, more preferably 70-110°, particularly preferably 90°.
The ratio (S/L) of the spacing (S) of the plurality of protrusions 21 to the line width (L) of the protrusions 21 is 10 or less, preferably 3 or less, more preferably 1 or less, and particularly preferably 0.5 or less. be.
The sum (L+S) of the line width (L) of the projections 21 and the spacing (S) between the plurality of projections 21 is preferably 200 μm or less, more preferably 80 μm or less. If L+S is 80 μm or less, line-shaped protrusions cannot be visually recognized, and designability is improved. Although the lower limit of L+S is not particularly limited, L+S is 5 μm or more in terms of manufacturing. When the convex portion 21 includes a plurality of curved portions, the ratio (D/R) of the distance (D) between the pole points of mutually adjacent curved portions to the radius of curvature (R) of the curved portions is preferably 150 or less, more preferably 0.1-50, particularly preferably 0.5-10, most preferably 1-8.

凸部21の断面形状は特に制限されず、例えば図1Bに示すように、逆半(楕)円状等が好ましい。凸部21の断面形状は、矩形状、台形状、またはこれらの面取り形状であってもよい。
凸部21の高さは特に制限されず、凸部21の線幅(L)に対する凸部の高さ(H)の比(H/L)は、好ましくは0.01~100、より好ましくは0.1~10、特に好ましくは0.2~5である。
The cross-sectional shape of the protrusion 21 is not particularly limited, and is preferably an inverted semi-elliptical shape, as shown in FIG. 1B, for example. The cross-sectional shape of the convex portion 21 may be rectangular, trapezoidal, or chamfered.
The height of the protrusions 21 is not particularly limited, and the ratio (H/L) of the height (H) of the protrusions to the line width (L) of the protrusions 21 is preferably 0.01 to 100, more preferably 0.1 to 10, particularly preferably 0.2 to 5.

図1Cに、1つの凸部21の平面パターンの一例を示す。図1Cにおいて、符号BPは曲げ角度が30~150°である曲部、符号21A、21B、21Cは曲部の極点、符号CPは曲部に接続される接続部である。図1Cに示す凸部21では、互いに隣り合う曲部の極点間の距離(D)は、極点21A、21B間の距離、または、極点21B、21Cの距離である。 FIG. 1C shows an example of a plane pattern of one convex portion 21. As shown in FIG. In FIG. 1C, BP is a curved portion having a bending angle of 30 to 150°, 21A, 21B, and 21C are poles of the curved portion, and CP is a connecting portion connected to the curved portion. In the convex portion 21 shown in FIG. 1C, the distance (D) between the pole points of the curved portions adjacent to each other is the distance between the pole points 21A and 21B or the distance between the pole points 21B and 21C.

曲部BPに接続される接続部CPは、曲線部でも直線部でもよい。
図1Cに示すように、一態様において、凹凸層20は平面視にて、曲部BPを介して接続された第1の方向に向かう第1の曲線部と第2の方向に向かう第2の曲線部とを含むライン状の凸部21が間隔を空けて複数形成されたパターンを有することができる。
他の態様において、凹凸層20は平面視にて、曲部BPを介してなめらかに接続された第1の方向に向かう第1の直線部と第2の方向に向かう第2の直線部とを含むライン状の凸部21が間隔を空けて複数形成されたパターンを有することができる。
The connecting portion CP connected to the curved portion BP may be a curved portion or a straight portion.
As shown in FIG. 1C, in one aspect, the concavo-convex layer 20 has, in a plan view, a first curved portion extending in the first direction and a second curved portion extending in the second direction, which are connected via the curved portion BP. It can have a pattern in which a plurality of line-shaped protrusions 21 including curved portions are formed at intervals.
In another aspect, the concave-convex layer 20 has a first linear portion extending in the first direction and a second linear portion extending in the second direction smoothly connected via the curved portion BP in plan view. It can have a pattern in which a plurality of line-shaped protrusions 21 are formed at intervals.

上記のように、ライン状の凸部21は、1つの曲部BPに接続された、曲線部または直線部からなり異なる方向に向かう第1、第2の接続部CPを含むことができる。ライン状の凸部21は、接続部CPを含まなくてもよい。
本明細書において、曲げ角度は、次のように定義される。
第1または第2の接続部CPが曲線部である場合、第1または第2の曲部BPと接続部CPとの変曲点における接線を求める。第1または第2の接続部CPが直線部である場合、第1または第2の直線部の延長線を求める。曲部BPに接続部CPが接続されない場合、曲部BPの端点における接線を求める。曲部を挟んで一方の側にある接線または延長線と他方の側にある接線または延長線とのなす角度を曲げ角度と定義する。
As described above, the line-shaped convex portion 21 can include the first and second connecting portions CP, which are connected to one curved portion BP and which are composed of curved portions or straight portions and directed in different directions. The line-shaped convex portion 21 may not include the connection portion CP.
In this specification, the bend angle is defined as follows.
If the first or second connection portion CP is a curved portion, a tangent line at the inflection point between the first or second curved portion BP and the connection portion CP is determined. If the first or second connecting portion CP is a straight portion, an extension line of the first or second straight portion is obtained. If the connecting portion CP is not connected to the curved portion BP, the tangent line at the end point of the curved portion BP is determined. A bending angle is defined as an angle between a tangent line or an extension line on one side of the curved portion and a tangent line or an extension line on the other side.

凹凸層20の材質は特に制限されない。ただし、透光性基材11と凹凸層20との界面での反射を防ぐため、透光性基材11と凹凸層20との間の屈折率差は小さい方が好ましい。具体的には、該屈折率差は好ましくは0.3以内、より好ましくは0.2以内、特に好ましくは0.1以内、最も好ましくは0.05以内である。
凹凸層20は、好ましくは透光性樹脂を含むことができる。凹凸層20の透過率は好ましくは70%以上、より好ましくは80%以上、特に好ましくは90%以上である。
凹凸層20の形成方法は特に制限されず、フレキソ印刷、オフセット印刷、グラビア印刷、スクリーン印刷等の一般的な印刷方法により形成することができる。印刷には例えば、光硬化性樹脂を含む光硬化型インク(紫外線(UV)硬化型インク等)を用いることができる。例えば、ミマキエンジニアリング社製のUVプリンター「UJF-6042MkII」を用いて、ガラス板、透光性樹脂板、透光性樹脂フィルム等の透光性基材上に凹凸層を印刷することができる。この方法では、低コストな材料である印刷インクを用いて、簡易なプロセスで凹凸層を形成することができる。この方法では、パターン設計およびパターン変更も容易である。
The material of the uneven layer 20 is not particularly limited. However, in order to prevent reflection at the interface between the translucent substrate 11 and the uneven layer 20, it is preferable that the refractive index difference between the translucent substrate 11 and the uneven layer 20 is small. Specifically, the refractive index difference is preferably within 0.3, more preferably within 0.2, particularly preferably within 0.1, and most preferably within 0.05.
The uneven layer 20 can preferably contain a translucent resin. The transmittance of the uneven layer 20 is preferably 70% or higher, more preferably 80% or higher, and particularly preferably 90% or higher.
A method for forming the uneven layer 20 is not particularly limited, and it can be formed by a general printing method such as flexographic printing, offset printing, gravure printing, screen printing, or the like. For printing, for example, a photocurable ink (ultraviolet (UV) curable ink, etc.) containing a photocurable resin can be used. For example, a UV printer "UJF-6042MkII" manufactured by Mimaki Engineering Co., Ltd. can be used to print a concavo-convex layer on a translucent substrate such as a glass plate, a translucent resin plate, or a translucent resin film. In this method, the uneven layer can be formed by a simple process using printing ink, which is a low-cost material. This method also facilitates pattern design and pattern modification.

凹凸層20用の透光性樹脂としては特に制限されず、フェノール樹脂、ユリア樹脂、メラミン樹脂、アルキッド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、ポリウレタン樹脂、シリコーン樹脂等の一般的な熱硬化性樹脂を使用することができる。熱硬化性樹脂を使用する場合は例えば、複数の凸部をパターン印刷した後、熱硬化させることにより凹凸層20が得られる。
また、透光性樹脂には、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニリデン樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶ポリマー樹脂、ポリイミド樹脂、アクリロニトリルブタジエンスチレン樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂、ポリ塩化ビニル樹脂、ポリカーボネート樹脂、変性ポリフェニリンエーテル樹脂、ポリサルフォン樹脂、ポリアリレート樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂等の一般的な熱可塑性樹脂を使用することができる。熱可塑性樹脂を使用する場合は例えば、平坦な透光性樹脂層を形成した後、表面に凹凸のある型を押し当てて透光性樹脂層を加熱することにより、凹凸層20が得られる。透光性樹脂層の加熱のタイミングは、型を押し当てる前でもよい。
The light-transmitting resin for the uneven layer 20 is not particularly limited, and general resins such as phenol resins, urea resins, melamine resins, alkyd resins, unsaturated polyester resins, epoxy resins, diallyl phthalate resins, polyurethane resins, and silicone resins can be used. Thermosetting resins can be used. When a thermosetting resin is used, for example, the uneven layer 20 can be obtained by pattern-printing a plurality of protrusions and then thermally curing the resin.
Translucent resins include polyethylene resin, polypropylene resin, polyvinylidene chloride resin, polyethylene terephthalate resin, polyamide resin, polyacetal resin, polybutylene terephthalate resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal polymer resin, polyimide. resins, acrylonitrile butadiene styrene resins, polystyrene resins, polymethyl methacrylate resins, polyvinyl chloride resins, polycarbonate resins, modified polyphenylene ether resins, polysulfone resins, polyarylate resins, polyamideimide resins, polyetherimide resins, etc. Any thermoplastic resin can be used. When a thermoplastic resin is used, for example, after forming a flat light-transmitting resin layer, the uneven layer 20 is obtained by pressing a mold having unevenness on the surface and heating the light-transmitting resin layer. The timing of heating the translucent resin layer may be before pressing the mold.

図1Aおよび図2に示す例では、凹凸層20は透光性基材11とは別部材であるが、公知方法にて透光性基材11の表層部を凹凸加工して、凹凸加工した表層部を凹凸層20としてもよい。
図1Aおよび図2に示す例は、予め用意した透光性基材11上に凹凸層20を形成した例であるが、表面に公知の表面凹凸加工を施して凹凸層20を形成した金属等からなる凹凸基板を用意し、この表面凹凸上に透光性基材11を成形してもよい。凹凸基板上への透光性基材11の成形法としては、凹凸基板上に、熱溶融させたガラスフリットまたは透光性樹脂を付与し、冷却固化して、透光性基材11を成形する方法;凹凸基板上に、透光性樹脂を溶媒に溶解させた樹脂溶液を塗工し、加熱乾燥、減圧乾燥、減圧加熱乾燥等により乾燥させて、透光性基材11を成形する方法;凹凸基板上に、モノマー、オリゴマー、プレポリマー等の透光性樹脂の前駆体を含む液状の硬化性組成物を塗工し、加熱、または、紫外線、電子線等の活性エネルギー線照射により硬化させて、透光性基材11を成形する方法等が挙げられる。
In the example shown in FIGS. 1A and 2, the uneven layer 20 is a member separate from the light-transmitting substrate 11, but the surface layer of the light-transmitting substrate 11 is unevenly processed by a known method. The surface layer portion may be the uneven layer 20 .
The example shown in FIGS. 1A and 2 is an example in which the uneven layer 20 is formed on the translucent base material 11 prepared in advance. may be prepared, and the translucent base material 11 may be formed on the uneven surface. As a method of molding the translucent base material 11 on the uneven substrate, a heat-melted glass frit or translucent resin is applied to the uneven substrate, cooled and solidified, and the translucent substrate 11 is formed. A method of applying a resin solution obtained by dissolving a light-transmitting resin in a solvent onto an uneven substrate, drying by heating, drying under reduced pressure, drying by heating under reduced pressure, or the like to form the light-transmitting substrate 11. ; A liquid curable composition containing a translucent resin precursor such as a monomer, oligomer, or prepolymer is applied onto an uneven substrate, and cured by heating or irradiation with active energy rays such as ultraviolet rays and electron beams. and forming the translucent base material 11.

凹凸層20の表面凹凸に沿って形成される反射層30の材質は、凹凸層20と反射層30との界面で光を効果的に反射できるものであればよく、凹凸層20との屈折率差が0.4以上の高屈折率材料および/または金属が好ましい。凹凸層20と高屈折率材料の屈折率差は大きいほど反射率が大きくなり、得られる積層体は立体的に視認されやすくなる。凹凸層20と高屈折率材料の屈折率差は、より好ましくは0.6以上、特に好ましくは0.8以上である。該屈折率差の上限は特に限定されないが、通常、1.5以下である。 The material of the reflective layer 30 formed along the surface unevenness of the uneven layer 20 may be any material that can effectively reflect light at the interface between the uneven layer 20 and the reflective layer 30. High refractive index materials and/or metals with a difference of 0.4 or more are preferred. The larger the refractive index difference between the uneven layer 20 and the high refractive index material, the higher the reflectance, and the resulting laminate is more likely to be visually recognized three-dimensionally. The refractive index difference between the uneven layer 20 and the high refractive index material is more preferably 0.6 or more, particularly preferably 0.8 or more. Although the upper limit of the refractive index difference is not particularly limited, it is usually 1.5 or less.

反射層30に用いて好適な金属としては、Mg、Zn、Al、Ga、In、Y、La、Ce、Pr、Nd、Ti、Zr、Sn、Fe、Co、Ni、V、Nb、Ta、Cr、Mo、W、Mn、Cu、Ag、Au、Pd、およびPtからなる群より選ばれる少なくとも1種の元素からなる金属単体または合金が好ましい。中でも反射率が大きいため、Alおよび/またはAgが好ましい。
反射層30に用いて好適な高屈折率材料としては、TiO、ZrO、ZnO、Nb、Ta、Al、In、SnO、ZnS、およびDLC(ダイヤモンドライクカーボン)からなる群より選ばれる少なくとも1種の材料が好ましい。中でも材料が安価であるため、TiO、Nb、およびZnOからなる群より選ばれる少なくとも1種の材料が好ましい。
Suitable metals for the reflective layer 30 include Mg, Zn, Al, Ga, In, Y, La, Ce, Pr, Nd, Ti, Zr, Sn, Fe, Co, Ni, V, Nb, Ta, A simple metal or an alloy comprising at least one element selected from the group consisting of Cr, Mo, W, Mn, Cu, Ag, Au, Pd, and Pt is preferred. Among them, Al and/or Ag are preferable because of their high reflectance.
Suitable high refractive index materials for the reflective layer 30 include TiO2 , ZrO2 , ZnO, Nb2O5 , Ta2O5 , Al2O3 , In2O3 , SnO2 , ZnS , and DLC. At least one material selected from the group consisting of (diamond-like carbon) is preferred. Among them, at least one material selected from the group consisting of TiO 2 , Nb 2 O 5 and ZnO is preferable because the material is inexpensive.

反射層30の形成方法は特に制限されず、スパッタ法、蒸着法等の気相法;塗布法;印刷法等の公知の方法を適用することができる。
反射層30は屈折率が異なる複数の膜の積層構造としてもよい。この場合、反射層30は光干渉膜となり、反射率が高められる場合がある。例えば、TiOとSiOとを交互に成膜することにより、光干渉膜が容易に得られる。
反射層30は、凹凸層20の表面の全体または一部の上に形成することができる。積層体1Bを携帯電話等の電子機器に用いる場合、積層体1Bは電波を透過することが求められる。一般的に、金属からなる反射層30を含む積層体1Bは電波の透過性が悪化する傾向があるが、反射層30を凹凸層20の表面上に部分的に形成することにより、電波の透過性を改善することができる。
The method of forming the reflective layer 30 is not particularly limited, and known methods such as a vapor phase method such as a sputtering method and a vapor deposition method; a coating method; and a printing method can be applied.
The reflective layer 30 may have a laminated structure of a plurality of films with different refractive indices. In this case, the reflective layer 30 serves as an optical interference film, and the reflectance may be enhanced. For example, an optical interference film can be easily obtained by alternately depositing TiO 2 and SiO 2 .
The reflective layer 30 can be formed on all or part of the surface of the uneven layer 20 . When the laminate 1B is used in an electronic device such as a mobile phone, the laminate 1B is required to transmit radio waves. In general, the laminate 1B including the reflective layer 30 made of metal tends to have poor radio wave transmittance. can improve sexuality.

反射層30を有しない第1実施形態の積層体1Aでは、透光性基材11側から入射した光が凹凸層20の表面凹凸と空気との界面で反射され、反射像が視認される。反射層30を有する第2実施形態の積層体1Bでは、透光性基材11側から入射した光が凹凸層20の表面凹凸と反射層30との界面で反射され、反射像が視認される。 In the laminate 1A of the first embodiment that does not have the reflective layer 30, light incident from the translucent substrate 11 side is reflected at the interface between the uneven surface of the uneven layer 20 and the air, and a reflected image is visually recognized. In the laminate 1B of the second embodiment having the reflective layer 30, light incident from the translucent substrate 11 side is reflected at the interface between the uneven surface of the uneven layer 20 and the reflective layer 30, and a reflected image is visually recognized. .

透光性基材11側から入射した光は、平面視にて、ライン状の凸部21の線幅方向に主として反射され、線幅方向に対して垂直方向にはほとんど反射されない。また、平面視にて、ライン状の凸部21が間隔を空けて複数形成される場合、ライン状の凸部21の線幅方向と線幅方向に対して垂直方向とのコントラストがより大きくなる。また、凸部21の曲げ角度が平面視にて30~150°である場合、曲部を境にして凸部の延びる方向が有意に変わり、曲部を境にしてコントラストが有意に生じる。このコントラストは、曲げ角度が90°に近くなる程、大きくなる傾向がある。このコントラストにより複数の曲部BPが連なった部分は手前側または奥側に膨らんでいるように立体的に視認される。手前側と奥側のどちらに視認されるかは、光源と積層体と観察者の位置関係によって決まる。 The light incident from the translucent base material 11 side is mainly reflected in the line width direction of the linear protrusions 21 in plan view, and is hardly reflected in the direction perpendicular to the line width direction. In addition, when a plurality of line-shaped protrusions 21 are formed at intervals in plan view, the contrast between the line width direction of the line-shaped protrusions 21 and the direction perpendicular to the line width direction becomes greater. . Further, when the bending angle of the convex portion 21 is 30 to 150° in plan view, the direction in which the convex portion extends significantly changes across the curved portion, and a significant contrast occurs across the curved portion. This contrast tends to increase as the bend angle approaches 90°. Due to this contrast, the portion where a plurality of curved portions BP are connected is viewed three-dimensionally as if it bulges toward the front side or the back side. Which of the front side and the back side is viewed depends on the positional relationship between the light source, the laminate, and the observer.

図9A~図9Cに示す3つの写真は、第2実施形態の積層体の一例の表面写真の例であり、同じサンプルに対して倍率を変えて撮像した写真である。
図9A~図9Cに示す積層体は、平面視にて、曲部BPを介してなめらかに接続された第1の方向(図示斜め右上方向)に向かう第1の直線部LP1と第2の方向(図示斜め右下方向)に向かう第2の直線部LP2とからなるパターンを図示左右方向に連続的に繰り返し有するライン状の複数の凸部(図9B、図9Cにおいてライン状に白く見える部分)が、ほぼ等間隔で図示上下方向に周期的に形成された凹凸層を含む。
なお、図9A~図9Cに示す写真は凹凸層上に形成された反射層の表面写真であるが、この反射層の表面凹凸は凹凸層の表面凹凸に対応している。
図9A~図9Cに示す積層体では、凹凸層20に含まれる複数の凸部の曲部BPが連なった部分は手前側または奥側に膨らんでいるように立体的に視認され、透光性基材11の厚み以上の奥行が感じられ、従来よりも意匠性に優れる。
The three photographs shown in FIGS. 9A to 9C are examples of surface photographs of one example of the laminate of the second embodiment, and are photographs of the same sample taken at different magnifications.
The laminate shown in FIGS. 9A to 9C has, in a plan view, a first linear portion LP1 directed in a first direction (diagonally upper right direction in the drawing) smoothly connected via a curved portion BP and a second linear portion LP1. A plurality of line-shaped protrusions (parts that appear white in a line shape in FIGS. 9B and 9C) that continuously repeat in the left-right direction of the figure a pattern consisting of a second linear portion LP2 directed toward (diagonally lower right direction in the figure). includes uneven layers periodically formed in the vertical direction of the figure at substantially equal intervals.
The photographs shown in FIGS. 9A to 9C are photographs of the surface of the reflective layer formed on the uneven layer, and the uneven surface of the reflective layer corresponds to the uneven surface of the uneven layer.
In the laminate shown in FIGS. 9A to 9C, the portion in which the curved portions BP of the plurality of convex portions included in the uneven layer 20 are connected is stereoscopically visible as if it is bulging toward the front side or the back side, and the translucency A depth greater than the thickness of the base material 11 can be felt, and the design is superior to the conventional one.

凹凸層20は、上記したように、曲げ角度が30~150°である少なくとも1つ、好ましくは複数の曲部を有する。曲部の曲げ角度は、好ましくは50~130°、より好ましくは70~110°、特に好ましくは90°である。凸部21の線幅(L)に対する複数の凸部21の間隔(S)の比(S/L)は10以下、好ましくは3以下である。凸部21が複数の曲部を含む場合、曲部の曲率半径(R)に対する互いに隣り合う曲部の極点間の距離(D)の比(D/R)は好ましくは150以下、より好ましくは0.1~50、特に好ましくは0.5~10、最も好ましくは1~8である。
凹凸層20が上記条件を充足する場合、コントラストの発生と立体視が効果的に発現し、凹凸層20に含まれる複数の凸部21の曲部BPが連なった部分は手前側または奥側に膨らんでいるように立体的に視認され、透光性基材11の厚み以上の奥行が感じられ、従来よりも意匠性に優れた積層体1A、1Bを提供することができる。
The uneven layer 20 has at least one, preferably a plurality of curved portions with a bending angle of 30 to 150°, as described above. The bending angle of the curved portion is preferably 50-130°, more preferably 70-110°, particularly preferably 90°. The ratio (S/L) of the spacing (S) between the plurality of protrusions 21 to the line width (L) of the protrusions 21 is 10 or less, preferably 3 or less. When the convex portion 21 includes a plurality of curved portions, the ratio (D/R) of the distance (D) between the pole points of mutually adjacent curved portions to the radius of curvature (R) of the curved portions is preferably 150 or less, more preferably 0.1-50, particularly preferably 0.5-10, most preferably 1-8.
When the concavo-convex layer 20 satisfies the above conditions, the generation of contrast and stereoscopic vision are effectively exhibited, and the portion where the curved portions BP of the plurality of convex portions 21 included in the concavo-convex layer 20 are connected is on the front side or the back side. It is possible to provide laminates 1A and 1B that are three-dimensionally visible as if they are bulging, have a sense of depth greater than the thickness of the translucent base material 11, and are more excellent in design than conventional laminates 1A and 1B.

互いに隣り合う曲部BPを接続する接続部CPは、直線部を含むことが好ましい。上述のとおり、透光性基材11側から入射した光は、平面視にて、ライン状の凸部21の線幅方向に主として反射され、線幅方向に対して垂直方向にはほとんど反射されない。接続部CPが直線部を含む場合、曲部BPと直線部は線幅方向が異なるため、異なる反射特性を示し、曲部BPと直線部との間を境にしてコントラストが有意に生じる。このコントラストにより複数の曲部BPが連なった部分は手前側または奥側に膨らんでいるように立体的に視認されやすい。また、曲部の曲率半径(R)に対する第1の直線部または第2の直線部の長さの比が150以下であれば、複数の曲部BPが連なった部分が手前側または奥側に膨らんでいるように立体的に視認されやすい。 The connecting portion CP connecting the curved portions BP adjacent to each other preferably includes a straight portion. As described above, the light incident from the translucent substrate 11 side is mainly reflected in the line width direction of the linear protrusions 21 in a plan view, and is hardly reflected in the direction perpendicular to the line width direction. . When the connection portion CP includes a straight portion, the curved portion BP and the straight portion have different line width directions, so that different reflection characteristics are exhibited, and a significant contrast occurs at the boundary between the curved portion BP and the straight portion. Due to this contrast, the portion where a plurality of curved portions BP are connected is likely to be visually recognized stereoscopically as if it bulges toward the near side or the far side. Further, if the ratio of the length of the first linear portion or the second linear portion to the radius of curvature (R) of the curved portion is 150 or less, the portion where the plurality of curved portions BP are connected may be on the front side or the back side. It is easy to visually recognize three-dimensionally as if it is inflated.

図9A~図9Cに示した凹凸パターンでは、図10に概略を示すように、第1の方向(図示斜め右上方向)に向かう複数の第1の直線部LP1または複数の第1の曲線部が形成される複数の領域A1と、第2の方向(図示斜め右下方向)に向かう複数の第2の直線部LP2または複数の第2の曲線部が形成される複数の領域A2とが図示左右方向に交互にストライプパターンで配置されている。
凹凸層20は、複数の第1の直線部LP1または複数の第1の曲線部が形成される1つ以上の領域A1と、複数の第2の直線部LP2または複数の第2の曲線部が形成される1つ以上の領域A2とを有することができ、1つ以上の領域A1と1つ以上の領域A2の配置は適宜設計変更することができる。
凹凸層20における、複数の第1の直線部LP1または複数の第1の曲線部が形成される1つ以上の領域A1と、複数の第2の直線部LP2または複数の第2の曲線部が形成される1つ以上の領域A2との他の配置例を、図11、図12に示す。
なお、図10~図12において、領域A1と領域A2との境界部分には、曲部BPの形成領域がある(図示略)。
In the uneven pattern shown in FIGS. 9A to 9C, as schematically shown in FIG. 10, a plurality of first linear portions LP1 or a plurality of first curved portions directed in a first direction (diagonally upper right direction in the drawing) are formed. A plurality of regions A1 formed and a plurality of regions A2 formed with a plurality of second linear portions LP2 or a plurality of second curved portions directed in a second direction (diagonally rightward direction in the drawing) They are arranged in a stripe pattern alternately in the direction.
The uneven layer 20 includes one or more regions A1 in which a plurality of first linear portions LP1 or a plurality of first curved portions are formed, and a plurality of second linear portions LP2 or a plurality of second curved portions. One or more regions A2 can be formed, and the arrangement of the one or more regions A1 and the one or more regions A2 can be modified as appropriate.
In the uneven layer 20, one or more regions A1 in which the plurality of first straight portions LP1 or the plurality of first curved portions are formed, and the plurality of second straight portions LP2 or the plurality of second curved portions are Other arrangement examples with one or more regions A2 to be formed are shown in FIGS. 11 and 12. FIG.
Note that in FIGS. 10 to 12, there is a forming area of the curved portion BP (not shown) at the boundary portion between the area A1 and the area A2.

本発明によれば、透光性基材に彫刻を入れずに切子ガラスのような外観を呈する積層体を提供することができる。
図13~図16に、切子ガラスのように見える凹凸層の複数の凸部21のパターンの例を示す。積層体には、図13~図16に示すようなパターンを1つまたは2つ以上形成することができる。
図13~図16に示す態様の凹凸層のパターンは、平面視にて、曲部BPを介してなめらかに接続された第1の方向に向かう第1の直線部LP1と第2の方向に向かう第2の直線部LP2とからなるライン状の複数の凸部21が、等しいピッチで周期的に形成された凸部群を有する。
凹凸層は平面視にて、間隔を空けて複数形成された凸部21の曲部BPが直線状に連なった凸部群を含むことができ、好ましくは1つの中心部から互いに重なり合わずに複数の径方向に延びる複数の凸部群を含むことができる。
間隔を空けて複数形成された凸部21の曲部BPが直線状に連なる方向の異なる複数の凸部群がある場合、間隔を空けて複数形成された凸部21の曲部BPが直線状に連なった部分が手前側または奥側に膨らんでいるように立体的に視認されやすく、好ましい。
ADVANTAGE OF THE INVENTION According to this invention, the laminated body which exhibits an external appearance like faceted glass can be provided, without engraving a translucent base material.
FIGS. 13 to 16 show examples of patterns of a plurality of protrusions 21 of a concave-convex layer that looks like faceted glass. One or two or more patterns as shown in FIGS. 13 to 16 can be formed in the laminate.
13 to 16, in plan view, the pattern of the concave-convex layer has a first linear portion LP1 oriented in the first direction and a linear portion LP1 oriented in the second direction smoothly connected via the curved portion BP. A plurality of line-shaped convex portions 21 each including the second linear portion LP2 has a group of convex portions formed periodically at equal pitches.
In plan view, the uneven layer can include a group of protrusions in which a plurality of curved portions BP of the protrusions 21 formed at intervals are linearly connected, preferably from one central portion without overlapping each other. A plurality of radially extending protrusion groups may be included.
When there is a plurality of groups of convex portions in which the curved portions BP of the convex portions 21 formed at intervals are connected in a straight line, the curved portions BP of the convex portions 21 formed at intervals are linear. It is easy to visually recognize three-dimensionally as if the part connected to the two bulges toward the front side or the back side, which is preferable.

図13に示す態様のパターン2Xは、間隔を空けて複数形成された凸部21の曲部BPが中心点から異なる方向に延びる第1~第4の直線LA1~LA4に沿って連なった第1~第4の凸部群22A~22Dを含む。これら4つの凸部群22A~22Dは、1つの中心部から互いに重なり合わずに異なる径方向(計4方向)に延びている。これら4つの凸部群22A~22Dは、最大幅が同一である。第1~第4の直線LA1~LA4の交点が中心点であり、中心点およびその近傍部分が中心部である。第1~第4の直線LA1~LA4は、90°等間隔で放射状に延びている。
図13中、符号Wmaxは、凸部群の最大幅(複数の凸部からなる1つの凸部群を1つの塊とみなしたときの最大幅)である。符号Rは、凸部群の径方向長さ(複数の凸部からなる1つの凸部群を1つの塊とみなしたときの凸部群の径方向長さ)である。
In the pattern 2X of the embodiment shown in FIG. 13, a plurality of curved portions BP of the convex portions 21 formed at intervals are connected along the first to fourth straight lines LA1 to LA4 extending in different directions from the center point. to the fourth group of protrusions 22A to 22D. These four convex portion groups 22A to 22D extend in different radial directions (four directions in total) from one central portion without overlapping each other. These four groups of protrusions 22A to 22D have the same maximum width. The intersection point of the first to fourth straight lines LA1 to LA4 is the center point, and the center point and its vicinity are the center portion. The first to fourth straight lines LA1 to LA4 extend radially at regular intervals of 90°.
In FIG. 13, the symbol W max is the maximum width of the convex portion group (maximum width when one convex portion group consisting of a plurality of convex portions is regarded as one lump). The symbol R is the radial length of the convex portion group (the radial length of the convex portion group when one convex portion group made up of a plurality of convex portions is regarded as one mass).

図14に示す態様のパターン3は、間隔を空けて複数形成された凸部21の曲部BPが中心点から異なる方向に延びる第1~第8の直線LB1~LB8に沿って連なった第1~第8の凸部群23A~23Hを含む。これら8つの凸部群23A~23Hは、1つの中心部から互いに重なり合わずに異なる径方向(計8方向)に延びている。これら8つの凸部群23A~23Hは、最大幅が同一である。第1~第8の直線LB1~LB8の交点が中心点であり、中心点およびその近傍部分が中心部である。第1~第8の直線LB1~LB8は、45°等間隔で放射状に延びている。 In the pattern 3 of the embodiment shown in FIG. 14, a plurality of curved portions BP of the convex portions 21 formed at intervals are connected along the first to eighth straight lines LB1 to LB8 extending in different directions from the central point. to the eighth group of protrusions 23A to 23H. These eight projection groups 23A to 23H extend in different radial directions (eight directions in total) from one central portion without overlapping each other. These eight convex portion groups 23A to 23H have the same maximum width. The intersection point of the first to eighth straight lines LB1 to LB8 is the center point, and the center point and its vicinity are the center portion. The first to eighth straight lines LB1 to LB8 extend radially at equal intervals of 45°.

1つの中心部から延びる凸部群の数は適宜変更することができ、例えば図15に示すパターン4のように、複数の凸部群は、1つの中心部から互いに重なり合わずに径方向に延びた36個の凸部群とすることもできる。この場合、各凸部群の中心線は、10°等間隔で放射状に延びている。図15の右下の図は、中心点およびその近傍の部分拡大図である。 The number of protrusion groups extending from one central portion can be changed as appropriate. For example, as in pattern 4 shown in FIG. It can also be an extended group of 36 protrusions. In this case, the center line of each convex portion group extends radially at regular intervals of 10°. The lower right figure in FIG. 15 is a partially enlarged view of the center point and its vicinity.

互いに隣り合う第1の凸部群と第2の凸部群に着目し、第1の凸部群において、間隔を空けて複数形成された凸部の曲部が連なる方向を第1の直線方向とし、第2の凸部群において、間隔を空けて複数形成された凸部の前記曲部が連なる方向を第2の直線方向とし、第1の直線方向と第2の直線方向とのなす角をθとする。
立体的視認効果の観点から、θは、好ましくは10~170°、より好ましくは45~135°、さらに好ましくは80~100°、特に好ましくは90°である。
また、第1の凸部群と第2の凸部群との境界線が、第1の直線方向と第2の直線方向との交点から延びる第1の直線方向と第2の直線方向との二等分線または二等分線から±θ/4の範囲内の角度の直線に対して平行であることが好ましい。
このようにすることで、異なる方向に沿って形成された互いに隣り合う第1の凸部群と第2の凸部群とを違和感なく自然に繋ぐことができ、立体的視認が効果的となる。
Focusing on the first group of protrusions and the second group of protrusions adjacent to each other, in the first group of protrusions, the direction in which the curved portions of the plurality of protrusions formed at intervals are connected is defined as the first linear direction. and in the second group of protrusions, the direction in which the curved portions of the plurality of protrusions formed at intervals are connected is defined as the second linear direction, and the angle formed by the first linear direction and the second linear direction is be θ.
From the viewpoint of stereoscopic visibility, θ is preferably 10 to 170°, more preferably 45 to 135°, still more preferably 80 to 100°, and particularly preferably 90°.
Further, the boundary line between the first group of protrusions and the second group of protrusions extends from the intersection of the first straight line direction and the second straight line direction. It is preferably parallel to the bisector or a straight line at an angle within ±θ/4 from the bisector.
By doing so, the first convex portion group and the second convex portion group adjacent to each other formed along different directions can be naturally connected without discomfort, and stereoscopic viewing becomes effective. .

図13に示す態様では、例えば、第1の凸部群は凸部群22Aであり、第2の凸部群は凸部群22Bであり、第1の直線方向は直線LA1の方向、第2の直線方向は直線LA2の方向であり、第1の凸部群と第2の凸部群との境界線は直線MA1の方向であることができる。この態様において、θは90°である。この態様では、複数の凸部群22A~22Dの最大幅が同一であるので、第1の凸部群と第2の凸部群との境界線MA1は、第1の直線方向と第2の直線方向との交点から延びる第1の直線方向と第2の直線方向との二等分線NA1と一致することができる。 In the embodiment shown in FIG. 13, for example, the first group of protrusions is the group of protrusions 22A, the second group of protrusions is the group of protrusions 22B, the first linear direction is the direction of the straight line LA1, the second can be the direction of the straight line LA2, and the boundary line between the first group of protrusions and the second group of protrusions can be the direction of the straight line MA1. In this embodiment θ is 90°. In this aspect, since the maximum widths of the plurality of groups of protrusions 22A to 22D are the same, the boundary line MA1 between the first group of protrusions and the second group of protrusions is the first straight line direction and the second straight line direction. It can coincide with a bisector NA1 between the first straight direction and the second straight direction extending from the intersection with the straight directions.

図14に示す態様では例えば、第1の凸部群は凸部群23Aであり、第2の凸部群は凸部群23Bであり、第1の直線方向は直線LB1の方向、第2の直線方向は直線LB2の方向であり、第1の凸部群と第2の凸部群との境界線は直線MB1の方向であることができる。この態様において、θは45°である。この態様においても、複数の凸部群23A~23Hの最大幅が同一であるので、第1の凸部群と第2の凸部群との境界線MB1は、第1の直線方向と第2の直線方向との交点から延びる第1の直線方向と第2の直線方向との二等分線NB1と一致することができる。 In the embodiment shown in FIG. 14, for example, the first convex group is the convex group 23A, the second convex group is the convex group 23B, the first linear direction is the direction of the straight line LB1, and the second linear direction is the direction of the straight line LB1. The straight line direction can be the direction of the straight line LB2, and the boundary line between the first group of protrusions and the second group of protrusions can be the direction of the straight line MB1. In this embodiment θ is 45°. Also in this aspect, since the maximum widths of the plurality of groups of protrusions 23A to 23H are the same, the boundary line MB1 between the first group of protrusions and the second group of protrusions is the first straight line direction and the second straight line direction. can coincide with the bisector NB1 of the first straight direction and the second straight direction extending from the intersection with the straight direction of .

図16に示す態様のパターン2Yは、図13に示す態様のパターン2Xにおいて、凸部群22B、22Dの最大幅を凸部群22A、22Cの最大幅よりも小さくした例である。この場合、第1の凸部群と第2の凸部群との境界線MA1は、第1の直線方向と第2の直線方向との交点から延びる第1の直線方向と第2の直線方向との二等分線NA1を平行移動させた直線となる。 A pattern 2Y of the mode shown in FIG. 16 is an example in which the maximum width of the groups of protrusions 22B and 22D is smaller than the maximum width of the groups of protrusions 22A and 22C in the pattern 2X of the mode shown in FIG. In this case, the boundary line MA1 between the first group of protrusions and the second group of protrusions is the first straight line direction and the second straight line direction extending from the intersection of the first straight line direction and the second straight line direction. is a straight line obtained by translating the bisector NA1 of .

図13~図16に示す態様のように、個々の凸部21の末端部21E(図13参照)は平面視にて、曲げ角度が105~165°の曲部であることが好ましい。個々の凸部21の末端部21Eを曲部とすることで、凸部の形成部分と非形成部分が自然に繋がったように視認され、好ましい。 As in the embodiments shown in FIGS. 13 to 16, the terminal end 21E (see FIG. 13) of each projection 21 is preferably a curved portion with a bending angle of 105 to 165° in plan view. By forming the end portion 21E of each convex portion 21 into a curved portion, it is visually recognized as if the formed portion and the non-formed portion of the convex portion are naturally connected, which is preferable.

図3に示す第3実施形態の積層体1Cのように、透光性基材11と凹凸層20との間に加飾層40を設けてもよい。
加飾層40は意匠性を高めるための層であり、色、模様、パターン等を有する透光性の層である。加飾層40の形成方法は特に制限されず、例えば、光硬化性樹脂を含む光硬化型インクを用いて、スクリーン印刷、インクジェット印刷等の公知方法により印刷する方法が好ましい。加飾層40は例えば、白黒またはカラーの印刷層であることができる。例えば、加飾層40として木目模様を印刷することで、高コストな天然素材である木材を用いることなく、低コストで木材を用いたような積層体を提供することができる。
第3実施形態の積層体1Cは、第2実施形態の積層体1Bと同様の基本構成を有し、第2実施形態の積層体1Bと同様の作用効果を奏することができる。第3実施形態の積層体1Cは、加飾層40を有することで、意匠性をより高めることが可能である。
反射層30を有する第3実施形態の積層体1Cでは、第2実施形態の積層体1Bと同様、透光性基材11側から入射した光が凹凸層20の表面凹凸と反射層30との界面で反射され、反射像が視認される。第3実施形態の積層体1Cにおいて、第1実施形態の積層体1Aと同様、反射層30を設けずに、透光性基材11側から入射した光を凹凸層20の表面凹凸と空気との界面で反射させるようにしてもよい。
A decorative layer 40 may be provided between the translucent substrate 11 and the uneven layer 20 as in the laminate 1C of the third embodiment shown in FIG.
The decorative layer 40 is a layer for improving designability, and is a translucent layer having colors, designs, patterns, and the like. A method for forming the decorative layer 40 is not particularly limited, and for example, a method of printing by a known method such as screen printing or inkjet printing using a photocurable ink containing a photocurable resin is preferable. The decorative layer 40 can be, for example, a black-and-white or color printed layer. For example, by printing a wood grain pattern as the decorative layer 40, it is possible to provide a low-cost laminate using wood without using wood, which is an expensive natural material.
The laminate 1C of the third embodiment has the same basic configuration as the laminate 1B of the second embodiment, and can exhibit the same effects as the laminate 1B of the second embodiment. The laminate 1C of the third embodiment has the decorative layer 40, so that the design can be further enhanced.
In the laminate 1C of the third embodiment having the reflective layer 30, light incident from the translucent substrate 11 side passes through the surface unevenness of the uneven layer 20 and the reflective layer 30, as in the laminate 1B of the second embodiment. It is reflected at the interface and the reflected image is visually recognized. In the layered product 1C of the third embodiment, similarly to the layered product 1A of the first embodiment, the reflection layer 30 is not provided, and light incident from the translucent substrate 11 side may be reflected at the interface of

加飾層40の形成位置は、適宜変更することができる。例えば、図4に示す第4実施形態の積層体1Dのように、反射層30の上に加飾層40を形成してもよい。この場合、加飾層40を透光性基材11側より視認できるように、反射層30は透光性を有することが好ましい。
第4実施形態の積層体1Dは、第2実施形態の積層体1Bと同様の基本構成を有し、第2実施形態の積層体1Bと同様の作用効果を奏することができる。
The formation position of the decorative layer 40 can be changed as appropriate. For example, a decorative layer 40 may be formed on the reflective layer 30 as in a laminate 1D of the fourth embodiment shown in FIG. In this case, the reflective layer 30 preferably has translucency so that the decorative layer 40 can be visually recognized from the translucent substrate 11 side.
The laminate 1D of the fourth embodiment has the same basic configuration as the laminate 1B of the second embodiment, and can exhibit the same effects as the laminate 1B of the second embodiment.

また、図5に示す第5実施形態の積層体1Eのように、透光性基材11と凹凸層20との間に第1の加飾層40を設け、さらに反射層30の上に第2の加飾層41を形成してもよい。
第5実施形態の積層体1Eは、第3実施形態の積層体1Cと同様の基本構成を有し、第3実施形態の積層体1Cと同様の作用効果を奏することができる。第5実施形態の積層体1Eは、2つの加飾層40、41を有することで、意匠性をより高めることができる。
Moreover, like the laminate 1E of the fifth embodiment shown in FIG. Two decorative layers 41 may be formed.
The layered body 1E of the fifth embodiment has the same basic configuration as the layered body 1C of the third embodiment, and can exhibit the same effects as the layered body 1C of the third embodiment. The laminated body 1E of the fifth embodiment has two decorative layers 40 and 41, so that the design can be further enhanced.

図6に示す第6実施形態の積層体1F、図7に示す第7実施形態の積層体1G、および図8に示す第8実施形態の積層体1Hは、透光性基材11の一方の面(図示上面)上に凹凸層20、反射層30、および必要に応じて加飾層40、41を形成した予備積層体PL1~PL3と、透光性部材12とが、透光性樹脂膜50を介して貼着されたものである。透光性樹脂膜50は、接着膜または粘着膜である。
透光性基材11としては、上記したように、ガラス板、透光性樹脂板、透光性樹脂フィルム、これらの組合せ等が挙げられる。透光性部材12としては透光性基材11と同様の材料を使用することができる。透光性基材11として透光性樹脂フィルムを用いる場合、いわゆるロールトゥロール(Roll to Roll)プロセスにより予備積層体PLを低コストに製造することが可能である。
The laminate 1F of the sixth embodiment shown in FIG. 6, the laminate 1G of the seventh embodiment shown in FIG. 7, and the laminate 1H of the eighth embodiment shown in FIG. Preliminary laminates PL1 to PL3 having an uneven layer 20, a reflective layer 30, and, if necessary, decorative layers 40 and 41 formed on the surface (upper surface in the drawing), and the translucent member 12 are formed of a translucent resin film. 50 is affixed. The translucent resin film 50 is an adhesive film or an adhesive film.
As the translucent substrate 11, as described above, a glass plate, a translucent resin plate, a translucent resin film, a combination thereof, and the like can be used. As the translucent member 12, the same material as that of the translucent base material 11 can be used. When a translucent resin film is used as the translucent base material 11, it is possible to manufacture the preliminary laminate PL at low cost by a so-called roll to roll process.

透光性樹脂膜50用の材料としては、エチレン・酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)等のポリビニルアセタール、アイオノマー等の1種以上の熱可塑性樹脂を含む合わせガラスの中間膜用の接着材料;アクリル系、ゴム系、ウレタン系、シリコーン系等の粘着性材料が好ましく用いられる。
透光性樹脂膜50用の材料の形態は好ましくは、EVAフィルム、PVBフィルム、アイオノマーフィルム等の熱可塑性樹脂フィルム;アクリル系、ゴム系、ウレタン系、シリコーン系等の透明粘着性フィルムである。フィルムを用いることで、予備積層体PL1~PL3と透光性部材12とを簡易に接着することができる。
なお、粘着剤を用いる場合、通常の使用環境下(常温常圧環境下)で透光性部材12の着脱を行うことができる。
透光性樹脂膜50は単層構造でも2層以上の複層構造であってもよい。透光性樹脂膜50は接着膜と粘着膜の積層構造であってもよい。例えば、熱可塑性のEVAフィルムの表面に、アクリル系、ゴム系、シリコーン系等の粘着膜が形成された積層構造の膜では、EVA膜が有する高い密着性と粘着膜が有する再剥離性(繰り返し貼着/剥離できる性質)とを有することができる。
As a material for the translucent resin film 50, an intermediate film of laminated glass containing one or more thermoplastic resins such as ethylene-vinyl acetate copolymer (EVA), polyvinyl acetal such as polyvinyl butyral (PVB), and ionomer. Adhesive materials for adhesives: Adhesive materials such as acrylic, rubber, urethane, and silicone are preferably used.
The form of the material for the translucent resin film 50 is preferably a thermoplastic resin film such as EVA film, PVB film, or ionomer film; or a transparent adhesive film such as acrylic, rubber, urethane, or silicone. By using the film, the preliminary laminates PL1 to PL3 and the translucent member 12 can be easily adhered.
In addition, when an adhesive is used, the translucent member 12 can be attached and detached under a normal use environment (under a normal temperature and normal pressure environment).
The translucent resin film 50 may have a single-layer structure or a multi-layer structure of two or more layers. The translucent resin film 50 may have a laminate structure of an adhesive film and an adhesive film. For example, in a film with a laminated structure in which an acrylic, rubber, or silicone adhesive film is formed on the surface of a thermoplastic EVA film, the EVA film has high adhesion and the adhesive film has removability (repeated sticking/peelable properties).

透光性樹脂膜50は必要に応じて、着色剤を含むことができる。この場合、積層体は加飾層の色と透光性樹脂膜の色とが合わさった色を呈することができる。加飾層と透光性樹脂膜の色を自由に組み合わせることで、積層体の色の設計自由度が高まり、カラーバリエーションの展開も可能となる。着色剤としては公知のものを使用でき、顔料、染料、これらの組合せが挙げられる。
透光性樹脂膜50は必要に応じて、紫外線(UV)吸収剤を含むことができる。UV吸収剤により凹凸層20、反射層30、および加飾層40、41の紫外線による劣化を防ぐことできる。
The translucent resin film 50 can contain a coloring agent, if necessary. In this case, the laminate can exhibit a color in which the color of the decorative layer and the color of the translucent resin film are combined. By freely combining the colors of the decorative layer and the light-transmitting resin film, the degree of freedom in designing the color of the laminate is increased, and it is possible to develop color variations. Known colorants can be used, including pigments, dyes, and combinations thereof.
The translucent resin film 50 may contain an ultraviolet (UV) absorber, if necessary. The UV absorber can prevent deterioration of the uneven layer 20, the reflective layer 30, and the decorative layers 40 and 41 due to ultraviolet rays.

図6に示す第6実施形態の積層体1Fでは、透光性部材12側(図示上側)が観察者側である。積層体1Fでは、透光性部材12側から入射した光が凹凸層20の表面凹凸と反射層30との界面で反射され、反射像が視認される。第6実施形態の積層体1Fは、第4実施形態の積層体1Dと同様の基本構成を有し、第4実施形態の積層体1Dと同様の作用効果を奏することができる。
図7に示す第7実施形態の積層体1Gのように、透光性基材11の一方の面(図示上面)上に加飾層40、凹凸層20、反射層30を順次形成して予備積層体としてもよい。
図8に示す第8実施形態の積層体1Hのように、透光性基材11の一方の面(図示上面)上に第1の加飾層40、凹凸層20、反射層30、第2の加飾層41を順次形成して予備積層体としてもよい。
In the laminate 1F of the sixth embodiment shown in FIG. 6, the side of the translucent member 12 (upper side in the figure) is the observer side. In the laminate 1F, light incident from the translucent member 12 side is reflected at the interface between the uneven surface of the uneven layer 20 and the reflective layer 30, and a reflected image is visually recognized. The laminate 1F of the sixth embodiment has a basic configuration similar to that of the laminate 1D of the fourth embodiment, and can exhibit the same effects as the laminate 1D of the fourth embodiment.
Like the laminated body 1G of the seventh embodiment shown in FIG. 7, a decorative layer 40, an uneven layer 20, and a reflective layer 30 are sequentially formed on one surface (upper surface in the drawing) of a translucent base material 11, and a preliminary layer is formed. A laminate may also be used.
Like the laminate 1H of the eighth embodiment shown in FIG. The decorative layer 41 may be sequentially formed to form a preliminary laminate.

第1~第8実施形態の積層体1A~1Hは、本発明の趣旨を逸脱しない限りにおいて、適宜設計変更が可能である。
凹凸層20、反射層30、加飾層40、41、透光性樹脂膜50は、必要に応じて、任意の添加剤を含むことができる。
積層体1A~1Hは、必要に応じて、上記以外の任意の要素を含むことができ、また、適宜構成を変更することが可能である。
例えば、図17に示す積層体1Iのように、観察者側から順に、透光性部材12、透光性樹脂膜50、透光性基材11、凹凸層20を備える積層体であってもよい。
また、図18に示す積層体1Jのように、観察者側から順に、透光性部材12、透光性樹脂膜50、透光性基材11、凹凸層20、反射層30を備える積層体であってもよい。
The laminates 1A to 1H of the first to eighth embodiments can be appropriately modified in design without departing from the gist of the present invention.
The uneven layer 20, the reflective layer 30, the decorative layers 40 and 41, and the translucent resin film 50 can contain arbitrary additives as needed.
The laminates 1A to 1H can include optional elements other than those described above as necessary, and can change the configuration as appropriate.
For example, as in the laminate 1I shown in FIG. 17, even if the laminate includes the translucent member 12, the translucent resin film 50, the translucent base material 11, and the uneven layer 20 in order from the viewer side, good.
Further, like the laminate 1J shown in FIG. 18, a laminate including the translucent member 12, the translucent resin film 50, the translucent substrate 11, the concavo-convex layer 20, and the reflective layer 30 in order from the observer side. may be

また、図19に示す積層体1Kのように、観察者側から順に、透光性部材12、透光性樹脂膜50、加飾層40、透光性基材11、凹凸層20、反射層30を備える積層体であってもよい。
また、図20に示す積層体1Lのように、観察者側から順に、透光性部材12、透光性樹脂膜50、反射層30、凹凸層20、透光性基材11、加飾層40を備える積層体であってもよい。
また、図21に示す積層体1Mのように、観察者側から順に、透光性部材12、透光性樹脂膜50、透光性基材11、凹凸層20、加飾層40を備える積層体であってもよい。
19, the light-transmitting member 12, the light-transmitting resin film 50, the decorative layer 40, the light-transmitting substrate 11, the concavo-convex layer 20, and the reflective layer are arranged in this order from the observer side. 30 may be a laminate.
20, the light-transmitting member 12, the light-transmitting resin film 50, the reflective layer 30, the uneven layer 20, the light-transmitting substrate 11, and the decorative layer are arranged in this order from the observer side, as in the laminate 1L shown in FIG. 40 may be a laminate.
21, a laminate including a translucent member 12, a translucent resin film 50, a translucent substrate 11, a concavo-convex layer 20, and a decorative layer 40 in this order from the observer side. It can be a body.

また、図22に示す積層体1Nのように、観察者側から順に、透光性部材12、透光性樹脂膜50、透光性基材11、凹凸層20、加飾層40、反射層30を備える積層体であってもよい。
積層体は、平面視において、加飾層40が凹凸層20の形成されていない領域に形成されてもよい。そのように加飾層40が形成されることにより、表面が着色されたガラスに彫刻を入れた、着色層のある切子ガラスのような外観が得られ、意匠性が高くなる。
また、着色層のある切子ガラスは表面全体が着色されたガラスに彫刻を入れることにより製造される場合が多いため、積層体は、平面視において、加飾層40が凹凸層20の形成されていない全ての領域に形成されてもよい。そのように加飾層40が形成されることにより、着色層のある切子ガラスに似た外観の積層体が得られる。
22, the light-transmitting member 12, the light-transmitting resin film 50, the light-transmitting base material 11, the uneven layer 20, the decorative layer 40, and the reflective layer are arranged in this order from the observer side, as in the laminate 1N shown in FIG. 30 may be a laminate.
In the laminate, the decorative layer 40 may be formed in a region where the uneven layer 20 is not formed in plan view. By forming the decorative layer 40 in such a manner, the appearance of faceted glass with a colored layer obtained by engraving glass having a colored surface is obtained, and designability is enhanced.
In addition, since faceted glass with a colored layer is often manufactured by engraving glass the entire surface of which is colored, the laminated body does not have the decorative layer 40 and the uneven layer 20 in plan view. It may be formed in all regions. By forming the decorative layer 40 in such a manner, a laminated body having an appearance similar to facet glass having a colored layer is obtained.

以下に、実施例に基づいて本発明について説明するが、本発明は、これらに限定されるものではない。なお、各例で用いた材料の略号および機器などは、以下の通りである。
<ガラス板>
(G1)フロートガラス板(縦10cm×横10cm×厚み1.8mm、屈折率1.52、AGC社製「FL2」)。
EXAMPLES The present invention will be described below based on Examples, but the present invention is not limited to these. The abbreviations of materials and equipment used in each example are as follows.
<Glass plate>
(G1) Float glass plate (length 10 cm x width 10 cm x thickness 1.8 mm, refractive index 1.52, "FL2" manufactured by AGC).

<熱可塑性樹脂フィルム>
(F1)EVAフィルム(縦10cm×横10cm×厚み0.4mm、ブリジストン社製「AB膜」)、
(F2)ポリエチレンテレフタレート(PET)フィルム(縦10cm×横10cm×厚み125μm、プリンタペーパープロ社製)。
(F3)ポリカーボネートフィルム(縦10cm×横10cm×厚み50μm、エスカーボシート社製「C000」)。
<透明両面テープ>
(T1)透明両面テープ(縦10cm×横10cm×厚み50μm、日栄化工社製「G25」)。
<UVプリンター>
ミマキエンジニアリング社製、UJF-6042MkII。
<Thermoplastic resin film>
(F1) EVA film (length 10 cm x width 10 cm x thickness 0.4 mm, manufactured by Bridgestone "AB membrane"),
(F2) Polyethylene terephthalate (PET) film (length 10 cm×width 10 cm×thickness 125 μm, manufactured by Printer Paper Pro).
(F3) Polycarbonate film (length 10 cm×width 10 cm×thickness 50 μm, “C000” manufactured by Escarbosheet Co., Ltd.).
<Transparent double-sided tape>
(T1) Transparent double-sided tape (length 10 cm×width 10 cm×thickness 50 μm, “G25” manufactured by Nichiei Kako Co., Ltd.).
<UV printer>
UJF-6042MkII manufactured by Mimaki Engineering.

[例1-1~1-24]
例1-1~1-24の各例においては、UVプリンターを使用し、印刷条件を変えて、ガラス板(G1)のほぼ全面に屈折率が1.51のクリアーインク(ミマキエンジニアリング社製、LH-100-CL-BA)を用いて印刷を行い、図1Aに示したような積層構造を有する、透明凹凸印刷層(P1)((P1-1)~(P1-24)のうちいずれか)/ガラス板(G1)の積層体を得た。
[Examples 1-1 to 1-24]
In each of Examples 1-1 to 1-24, a UV printer was used, printing conditions were changed, and a clear ink having a refractive index of 1.51 (manufactured by Mimaki Engineering Co., Ltd., LH-100-CL-BA), and any of the transparent uneven print layer (P1) ((P1-1) to (P1-24) having a laminated structure as shown in FIG. )/glass plate (G1) laminate was obtained.

これらの例において、印刷パターンは、平面視にて、複数の曲部を有するライン状の凸部が間隔を空けて複数形成されたパターンとした。具体的には、図9A~図9Cに示したような、平面視にて、曲部を介してなめらかに接続された第1の方向(図示斜め右上方向)に向かう第1の直線部と第2の方向(図示斜め右下方向)に向かう第2の直線部とからなるパターンを図示左右方向に連続的に繰り返し有するライン状の複数の凸部が、等ピッチで図示上下方向に周期的に形成されたパターンとした。 In these examples, the printed pattern was a pattern in which a plurality of line-shaped convex portions having a plurality of curved portions were formed at intervals in plan view. Specifically, as shown in FIGS. 9A to 9C, in plan view, a first straight portion and a first straight portion extending in a first direction (diagonally upper right direction in the drawing) are smoothly connected via a curved portion. 2 (diagonally rightward direction in the drawing) and a second straight line portion that is continuously repeated in the left-right direction in the drawing. The pattern was formed.

各例においては、表1に示すように、1本のライン状の凸部の曲げの回数、直線長さ(第1の直線部および第2の直線部の長さ(これらの長さは同一))(mm)、互いに隣り合う曲部の極点間の距離(D)(mm)、曲部の曲率半径(R)(mm)、曲部の曲率半径(R)に対する直線長さの比(直線長さ/R)、曲部の曲率半径(R)に対する互いに隣り合う曲部の極点間の距離(D)の比(D/R)、凸部の曲げ角度(曲部を介して接続された第1の直線部と第2の直線部とのなす角度)(°)、凸部の線幅(L)(μm)、複数の凸部(S)の間隔(μm)、凸部の線幅(L)に対する複数の凸部の間隔(S)の比(S/L)、および凸部の高さ(H)(μm)の印刷条件を設定した。 In each example, as shown in Table 1, the number of times of bending of one line-shaped convex portion, the straight length (the length of the first straight portion and the second straight portion (these lengths are the same )) (mm), the distance (D) (mm) between the pole points of the curved portions adjacent to each other, the radius of curvature (R) (mm) of the curved portion, the ratio of the length of the straight line to the radius of curvature (R) of the curved portion ( straight line length/R), the ratio of the distance (D) between the pole points of adjacent curved portions to the radius of curvature (R) of the curved portion (D/R), the bending angle of the convex portion (connected via the curved portion The angle formed by the first straight portion and the second straight portion) (°), the line width (L) (μm) of the convex portion, the interval (μm) between the plurality of convex portions (S), the line of the convex portion Printing conditions such as the ratio (S/L) of the spacing (S) between the plurality of protrusions to the width (L) and the height (H) (μm) of the protrusions were set.

各例において得られた積層体を透明凹凸印刷層(P1)((P1-1)~(P1-24)のうちいずれか)側とガラス板(G1)側から目視して、下記基準にて立体視のレベルを評価した。
○(良):光源および/または観察者の位置に関係なく、透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ、意匠性が高かった。
△(可):光源および/または観察者の位置により、透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられる場合があった。
×(不良):透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が立体的に視認されなかった。
評価結果を表1に示す。
The laminate obtained in each example was visually observed from the transparent concavo-convex printed layer (P1) (any of (P1-1) to (P1-24)) side and the glass plate (G1) side, and according to the following criteria: The level of stereoscopic vision was evaluated.
◯ (Good): Regardless of the position of the light source and/or the observer, the portion where the curved portions of the plurality of convex portions in the transparent concave-convex printed layer (P1) are connected swells toward the front side or the back side. The design was highly visible, and the depth was felt to be greater than the thickness of the glass.
△ (Possible): Depending on the position of the light source and/or the observer, the part where the curved parts of the multiple convex parts contained in the transparent uneven print layer (P1) are connected is three-dimensionally swollen toward the front side or the back side. In some cases, it was visible and the depth was felt to be greater than the thickness of the glass.
x (defective): A portion where curved portions of a plurality of protrusions in the transparent concave-convex print layer (P1) are connected was not visually recognized stereoscopically.
Table 1 shows the evaluation results.

Figure 0007173050000001
Figure 0007173050000001

凹凸層は平面視にて、曲げ角度が30~150°である複数の曲部を有するライン状の凸部が間隔を空けて複数形成されたパターンを有し、凸部の線幅(L)に対する複数の凸部の間隔(S)の比(S/L)が10以下であるときに、透明凹凸印刷層(P1)側、ガラス板(G1)側のどちらから目視しても、透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ、意匠性が高かった。
また、曲部の曲率半径(R)に対する互いに隣り合う曲部の極点間の距離(D)の比(D/R)が150以下であるときに、立体視感が増し、ガラス厚以上の奥行が感じられ、より意匠性が高かった。
特に、凸部の線幅(L)に対する複数の凸部の間隔(S)の比(S/L)が3以下であり、曲部の曲率半径(R)に対する互いに隣り合う曲部の極点間の距離(D)の比(D/R)が0.1~50であり、曲部の曲げ角度が50~130°であるときに、立体視感が増し、ガラス厚以上の奥行が感じられ、より意匠性が高かった。
In plan view, the uneven layer has a pattern in which a plurality of line-shaped convex portions having a plurality of curved portions with a bending angle of 30 to 150 ° are formed at intervals, and the line width (L) of the convex portion When the ratio (S/L) of the spacing (S) of the plurality of convex portions to the distance (S) is 10 or less, the transparent unevenness is visible from either the transparent unevenness printed layer (P1) side or the glass plate (G1) side. The portion where the curved portions of the plurality of protrusions included in the printed layer (P1) are connected was visually recognized three-dimensionally as if it were bulging toward the front side or the back side. .
Further, when the ratio (D/R) of the distance (D) between the pole points of the mutually adjacent curved portions to the radius of curvature (R) of the curved portion is 150 or less, the stereoscopic effect is enhanced and the depth is greater than the thickness of the glass. was felt, and the design was higher.
In particular, the ratio (S/L) of the spacing (S) of the plurality of protrusions to the line width (L) of the protrusions is 3 or less, and When the ratio (D/R) of the distance (D) between the two is 0.1 to 50 and the bending angle of the curved portion is 50 to 130°, the stereoscopic effect is enhanced, and depth greater than the thickness of the glass can be felt. , was more creative.

[例2]
例1-8で得られた積層体の透明凹凸印刷層(P1-8)上に、スパッタ法により反射層としてAlを100nm厚成膜して、図2に示したような積層構造を有する、Al反射層(R1)/透明凹凸印刷層(P1-8)/ガラス板(G1)の積層体を得た。得られた積層体について、立体視のレベルを目視評価した。
得られた積層体は、Al反射層(R1)側、ガラス板(G1)側のどちらから目視しても、透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ、意匠性が高かった。得られた積層体は、例1-8で得られた積層体に対して、透明凹凸印刷に沿った反射が強くなり、透明凹凸印刷層(P1)上にその表面凹凸に沿って反射層として反射率の高い金属層を形成することで、立体視感を強調できることが分かった。
[Example 2]
On the transparent uneven print layer (P1-8) of the laminate obtained in Example 1-8, a 100 nm thick film of Al was formed as a reflective layer by a sputtering method, and a laminated structure as shown in FIG. 2 was obtained. A laminate of Al reflective layer (R1)/transparent uneven print layer (P1-8)/glass plate (G1) was obtained. The obtained laminate was visually evaluated for the level of stereoscopic vision.
In the obtained laminate, even when viewed from either the Al reflective layer (R1) side or the glass plate (G1) side, there are portions where the curved portions of the plurality of convex portions included in the transparent uneven print layer (P1) are connected. It was visually recognized three-dimensionally as if it were bulging toward the front or back, and the depth was felt to be greater than the thickness of the glass. The obtained laminate has stronger reflection along the transparent uneven print than the laminate obtained in Example 1-8, and a reflective layer along the surface unevenness on the transparent uneven print layer (P1) It was found that stereoscopic vision can be emphasized by forming a metal layer with high reflectance.

図9Aはカメラ「TOUGH TG-5」(オリンパス社製)を用い、また、図9Bおよび図9Cは光学顕微鏡「VHX-S15」(キーエンス社製)を用いて、倍率を変えて例2で得られた積層体を撮像して得られた表面写真である。図9Aでは図示上下方向に複数の第1の直線部が連なった部分は相対的に明るく、複数の第2の直線部が連なった部分は相対的に暗く、明暗のストライプが見られた。図示上下方向に複数の曲部が連なった部分は明暗のストライブの間にあり、手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられた。 FIG. 9A is obtained in Example 2 using a camera "TOUGH TG-5" (manufactured by Olympus), and FIGS. 9B and 9C are obtained by changing the magnification using an optical microscope "VHX-S15" (manufactured by Keyence). It is a surface photograph obtained by imaging the obtained laminated body. In FIG. 9A, the portion where the plurality of first linear portions are connected in the vertical direction of the drawing is relatively bright, and the portion where the plurality of second linear portions are connected is relatively dark, and bright and dark stripes were observed. The part where a plurality of curved parts are connected in the vertical direction of the figure is between the bright and dark stripes, and it was visually recognized three-dimensionally as if it were bulging toward the front or the back, and the depth was felt to be greater than the thickness of the glass.

[例3]
例1-8で得られた積層体の透明凹凸印刷層(P1-8)上に、スパッタ法により反射層としてZnO(屈折率:2.0)を60nm厚成膜して、図2に示したような積層構造を有する、ZnO反射層(R2)/透明凹凸印刷層(P1)/ガラス板(G1)の積層体を得た。得られた積層体について、立体視のレベルを目視評価した。
得られた積層体は、ZnO反射層(R2)側、ガラス板(G1)側のどちらから目視しても、透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ、意匠性が高かった。得られた積層体は、例1-1で得られた積層体に対して、透明凹凸印刷に沿った反射が強くなり、透明凹凸印刷層(P1)上にその表面凹凸に沿って反射層として透明凹凸印刷層との屈折率差の大きい金属酸化物層を形成することで、立体視感を強調できることが分かった。
[Example 3]
On the transparent uneven print layer (P1-8) of the laminate obtained in Example 1-8, ZnO (refractive index: 2.0) was formed as a reflective layer with a thickness of 60 nm by sputtering. A laminate of ZnO reflective layer (R2)/transparent concave-convex printed layer (P1)/glass plate (G1) having such a laminated structure was obtained. The obtained laminate was visually evaluated for the level of stereoscopic vision.
In the obtained laminate, even when viewed from either the ZnO reflective layer (R2) side or the glass plate (G1) side, there are portions where the curved portions of the plurality of convex portions included in the transparent uneven print layer (P1) are connected. It was visually recognized three-dimensionally as if it were bulging toward the front or back, and the depth was felt to be greater than the thickness of the glass. The obtained laminate has stronger reflection along the transparent uneven print than the laminate obtained in Example 1-1, and a reflective layer along the surface unevenness on the transparent uneven print layer (P1) It was found that stereoscopic vision can be emphasized by forming a metal oxide layer having a large difference in refractive index from the transparent concave-convex printed layer.

[例4]
ガラス板(G1)上にUVプリンターを使用し、木目柄の着色印刷加飾層(P2)を形成した。その上に例1-1と同様にして透明凹凸印刷層(P1-8)を形成し、透明凹凸印刷層(P1-8)/木目柄の着色印刷加飾層(P2)/ガラス板(G1)の積層体を得た。得られた積層体について、立体視のレベルを目視評価した。
得られた積層体をガラス板(G1)側から目視したとき、木目柄の着色印刷は、透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ、意匠性が高かった。
[Example 4]
A UV printer was used to form a colored printed decorative layer (P2) with a wood grain pattern on the glass plate (G1). A transparent uneven print layer (P1-8) is formed thereon in the same manner as in Example 1-1, and a transparent uneven print layer (P1-8)/wood grain colored printed decorative layer (P2)/glass plate (G1 ) was obtained. The obtained laminate was visually evaluated for the level of stereoscopic vision.
When the obtained laminate is viewed from the glass plate (G1) side, the colored print of the wood grain pattern is the front side or the back side of the portion where the curved portions of the plurality of convex portions contained in the transparent uneven print layer (P1) are connected. It was three-dimensionally visible as if it were bulging out, and it felt like it had more depth than the thickness of the glass.

[例5]
例4で得られた積層体の透明凹凸印刷層(P1-8)上に、スパッタ法により反射層としてAlを100nm厚成膜して、図3に示したような積層構造を有する、Al反射層(R1)/透明凹凸印刷層(P1)/木目柄の着色印刷加飾層(P2)/ガラス板(G1)の積層体を得た。得られた積層体について、立体視のレベルを目視評価した。
得られた積層体をガラス板(G1)側から目視したとき、木目柄の着色印刷は、透明凹凸印刷層(P1-8)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ、意匠性が高かった。得られた積層体は、例4で得られた積層体に対して、透明凹凸印刷に沿った反射が強くなり、木目柄のコントラストの向上が見られ、透明凹凸印刷層(P1-8)上にその表面凹凸に沿って反射層として反射率の高い金属層を形成することで、立体視感を強調できることが分かった。
[Example 5]
On the transparent concavo-convex print layer (P1-8) of the laminate obtained in Example 4, a 100 nm-thick Al film is formed as a reflective layer by a sputtering method, and an Al reflection having a laminated structure as shown in FIG. A laminate of layer (R1)/transparent concave-convex print layer (P1)/colored printed decorative layer with wood grain pattern (P2)/glass plate (G1) was obtained. The obtained laminate was visually evaluated for the level of stereoscopic vision.
When the resulting laminate is viewed from the glass plate (G1) side, the colored print of the wood grain pattern is such that the portion where the curved portions of the plurality of convex portions contained in the transparent uneven print layer (P1-8) are connected is on the front side or It was visually recognized three-dimensionally as if it were bulging out to the back, and the depth was felt to be greater than the thickness of the glass. The obtained laminate has stronger reflection along the transparent uneven print than the laminate obtained in Example 4, and an improvement in the contrast of the wood grain pattern is observed. It was found that stereoscopic vision can be emphasized by forming a metal layer with a high reflectance as a reflective layer along the surface unevenness.

[例6]
例1-8で得られた積層体の透明凹凸印刷層(P1-8)上に、UVプリンターを使用し、木目柄の着色印刷加飾層(P2)を形成して、木目柄の着色印刷加飾層(P2)/透明凹凸印刷層(P1)/ガラス板(G1)の積層体を得た。得られた積層体について、立体視のレベルを目視評価した。
得られた積層体は、ガラス板(G1)側から目視したとき、例1-1で得られた積層体と比較して相対的に立体視感の低下が見られた。これは、本来視認させたい透明凹凸印刷層の表面での反射によって得られる立体的な反射像が、木目柄の着色印刷加飾層(P2)の不規則な凹凸表面の反射によって乱されるためと考えられる。着色印刷加飾層を設ける場合には、図4に示したように、透明凹凸印刷層に沿って反射層を形成し、その上に、着色印刷加飾層を形成することが好ましいことが分かった。
[Example 6]
On the transparent uneven print layer (P1-8) of the laminate obtained in Example 1-8, a UV printer is used to form a colored printed decorative layer (P2) with a wood grain pattern, and a colored print with a wood grain pattern. A laminate of decorative layer (P2)/transparent uneven print layer (P1)/glass plate (G1) was obtained. The obtained laminate was visually evaluated for the level of stereoscopic vision.
When viewed from the side of the glass plate (G1), the resulting laminate exhibited relatively lower stereoscopic vision than the laminate obtained in Example 1-1. This is because the three-dimensional reflected image obtained by reflection on the surface of the transparent uneven print layer, which is originally intended to be visually recognized, is disturbed by the reflection on the irregular uneven surface of the colored printed decorative layer (P2) with a wood grain pattern. it is conceivable that. When a colored printed decorative layer is provided, as shown in FIG. 4, it is found that it is preferable to form a reflective layer along the transparent concave-convex printed layer and then form a colored printed decorative layer thereon. rice field.

[例7]
例2で得られた積層体の反射層(R1)上に、UVプリンターを使用して木目柄の着色印刷加飾層(P2)を形成して予備積層体を得た。この予備積層体の木目柄の着色印刷加飾層(P2)上に、EVAフィルム(F1)とガラス板(G1)とを順次重ねて仮積層体を得た。この仮積層体をフィルムの袋の中に入れ、真空中で袋の口を加熱により封止して真空パックを作り、それを100℃で2時間加熱圧着した。加熱圧着後の積層体を袋から取り出し、図6に示したような積層構造を有する、ガラス板(G1)/EVAフィルム(F1)/木目柄の着色印刷加飾層(P2)/Al反射層(R1)/透明凹凸印刷層(P1-8)/ガラス板(G1)の積層体を得た。得られた積層体について、立体視のレベルを目視評価した。
得られた積層体をEVAフィルム(F1)上に重ねたガラス板(G1)側から目視したとき、木目柄の着色印刷は、透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ、意匠性が高かった。
[Example 7]
On the reflective layer (R1) of the laminate obtained in Example 2, a colored printed decorative layer (P2) with a wood grain pattern was formed using a UV printer to obtain a preliminary laminate. An EVA film (F1) and a glass plate (G1) were successively laminated on the colored printed decorative layer (P2) of the wood grain pattern of the preliminary laminate to obtain a temporary laminate. This temporary laminate was placed in a film bag, and the mouth of the bag was sealed by heating in a vacuum to form a vacuum pack, which was heat-pressed at 100° C. for 2 hours. The laminated body after thermocompression bonding is taken out from the bag, and has a laminated structure as shown in FIG. A laminate of (R1)/transparent concavo-convex print layer (P1-8)/glass plate (G1) was obtained. The obtained laminate was visually evaluated for the level of stereoscopic vision.
When the obtained laminate is viewed from the side of the glass plate (G1) overlaid on the EVA film (F1), the colored print of the wood grain pattern is the curved portion of the plurality of convex portions included in the transparent uneven print layer (P1). It was visually recognized three-dimensionally as if the part where the two were connected swelled toward the front or the back, and the depth was felt to be greater than the thickness of the glass, and the design was high.

[例8]
Al反射層(R1)を例3で形成したZnO反射層(R2)に変更した以外は例7と同様にして、図5に示したような積層構造を有する、ガラス板(G1)/EVAフィルム(F1)/木目柄の着色印刷加飾層(P2)/ZnO反射層(R2)/透明凹凸印刷層(P1-8)/ガラス板(G1)の積層体を得た。得られた積層体について、立体視のレベルを目視評価した。
得られた積層体をEVAフィルム(F1)上に重ねたガラス板(G1)側から目視したとき、木目柄の着色印刷は、透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ、意匠性が高かった。
[Example 8]
Glass plate (G1)/EVA film having a laminated structure as shown in FIG. A laminate of (F1)/color printed decorative layer with wood grain pattern (P2)/ZnO reflective layer (R2)/transparent concave/convex printed layer (P1-8)/glass plate (G1) was obtained. The obtained laminate was visually evaluated for the level of stereoscopic vision.
When the obtained laminate is viewed from the side of the glass plate (G1) overlaid on the EVA film (F1), the colored print of the wood grain pattern is the curved portion of the plurality of convex portions included in the transparent uneven print layer (P1). It was visually recognized three-dimensionally as if the part where the two were connected swelled toward the front or the back, and the depth was felt to be greater than the thickness of the glass, and the design was high.

[例9]
表面に透明凹凸印刷層(P1)を形成する透光性基材としてガラス板(G1)の代わりにPETフィルム(F2)を用いた以外は例8と同様にして、図5に示したような積層構造を有する、ガラス板(G1)/EVAフィルム(F1)/木目柄の着色印刷加飾層(P2)/ZnO反射層(R2)/透明凹凸印刷層(P1-8)/PETフィルム(F2)の積層体を得た。
得られた積層体をガラス板(G1)側から目視したとき、木目柄の着色印刷は、透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ、意匠性が高かった。
[Example 9]
As shown in FIG. 5 in the same manner as in Example 8, except that a PET film (F2) was used instead of the glass plate (G1) as the translucent substrate for forming the transparent uneven print layer (P1) on the surface. Glass plate (G1)/EVA film (F1)/Wood grain pattern colored printed decorative layer (P2)/ZnO reflective layer (R2)/Transparent concave/convex printed layer (P1-8)/PET film (F2) having a laminated structure ) was obtained.
When the obtained laminate is viewed from the glass plate (G1) side, the colored print of the wood grain pattern is the front side or the back side of the portion where the curved portions of the plurality of convex portions contained in the transparent uneven print layer (P1) are connected. It was three-dimensionally visible as if it were bulging out, and it felt like it had more depth than the thickness of the glass.

[例10]
例1-8で得られた積層体の透明凹凸印刷層(P1-8)上に、スパッタ法により反射層としてZnO(屈折率:2.0)を60nm厚成膜し、UVプリンターを使用して木目柄の着色印刷加飾層(P2)を形成して、木目柄の着色印刷加飾層(P2)/ZnO反射層(R2)/透明凹凸印刷層(P1)/ガラス板(G1)の積層体を得た。得られた積層体について、立体視のレベルを目視評価した。
得られた積層体をガラス板(G1)側から目視したとき、木目柄の着色印刷の手前で透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ意匠性が高かった。
[Example 10]
On the transparent uneven print layer (P1-8) of the laminate obtained in Example 1-8, ZnO (refractive index: 2.0) as a reflective layer was formed by sputtering to a thickness of 60 nm, and a UV printer was used. to form a colored printed decorative layer (P2) with a wood grain pattern, and a colored printed decorative layer (P2) with a wood grain pattern / ZnO reflective layer (R2) / transparent uneven printed layer (P1) / glass plate (G1) A laminate was obtained. The obtained laminate was visually evaluated for the level of stereoscopic vision.
When the obtained laminate is viewed from the glass plate (G1) side, the portion where the curved portions of the plurality of convex portions included in the transparent uneven print layer (P1) are connected before the colored print of the wood grain pattern is on the front side or the back side. It was visible three-dimensionally as if it were bulging out to the side, and it felt like it had more depth than the thickness of the glass.

[例11]
例3で得られた積層体の反射層(R2)上に、UVプリンターを使用して木目柄の着色印刷加飾層(P2)を形成して、木目柄の着色印刷加飾層(P2)/ZnO反射層(R2)/透明凹凸印刷層(P1-8))/木目柄の着色印刷加飾層(P2)/ガラス板(G1)の積層体を得た。得られた積層体について、立体視のレベルを目視評価した。
得られた積層体をガラス板(G1)側から目視したとき、木目柄の着色印刷は、透明凹凸印刷層(P1-8)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ、意匠性が高かった。
[Example 11]
On the reflective layer (R2) of the laminate obtained in Example 3, a wood-grain pattern colored printed decorative layer (P2) is formed using a UV printer, and a wood-grain pattern colored printed decorative layer (P2) is formed. /ZnO reflective layer (R2)/transparent concave-convex print layer (P1-8))/colored printed decorative layer with wood grain pattern (P2)/glass plate (G1) was obtained. The obtained laminate was visually evaluated for the level of stereoscopic vision.
When the resulting laminate is viewed from the glass plate (G1) side, the colored print of the wood grain pattern is such that the portion where the curved portions of the plurality of convex portions contained in the transparent uneven print layer (P1-8) are connected is on the front side or It was visually recognized three-dimensionally as if it were bulging out to the back, and the depth was felt to be greater than the thickness of the glass.

[例12]
例4で得られた積層体の透明凹凸印刷層(P1-8)上に、スパッタ法により反射層としてZnO(屈折率:2.0)を60nm厚成膜して、予備積層体を得た。この予備積層体の木目柄の着色印刷加飾層(P2)上に、EVAフィルム(F1)とガラス板(G1)とを順次重ねて仮積層体を得た。この仮積層体をフィルムの袋の中に入れ、真空中で袋の口を加熱により封止して真空パックを作り、それを100℃で2時間加熱圧着した。加熱圧着後の積層体を袋から取り出し、図7に示したような積層構造を有する、ガラス板(G1)/EVAフィルム(F1)/ZnO反射層(R2)/透明凹凸印刷層(P1-8)/木目柄の着色印刷加飾層(P2)/ガラス板(G1)の積層体を得た。得られた積層体について、立体視のレベルを目視評価した。
得られた積層体をEVAフィルム(F1)上に重ねたガラス板(G1)側から目視したとき、木目柄の着色印刷の手前で透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ、意匠性が高かった。
[Example 12]
On the transparent uneven print layer (P1-8) of the laminate obtained in Example 4, ZnO (refractive index: 2.0) was formed as a reflective layer by sputtering to a thickness of 60 nm to obtain a preliminary laminate. . An EVA film (F1) and a glass plate (G1) were successively laminated on the colored printed decorative layer (P2) of the wood grain pattern of the preliminary laminate to obtain a temporary laminate. This temporary laminate was placed in a film bag, and the mouth of the bag was sealed by heating in a vacuum to form a vacuum pack, which was heat-pressed at 100° C. for 2 hours. The laminated body after thermocompression bonding is taken out from the bag, and has a laminated structure as shown in FIG. )/color printed decorative layer with wood grain pattern (P2)/glass plate (G1). The obtained laminate was visually evaluated for the level of stereoscopic vision.
When the obtained laminate is viewed from the side of the glass plate (G1) overlaid on the EVA film (F1), the curvature of the plurality of convex portions included in the transparent uneven print layer (P1) before the colored print of the wood grain pattern The part where the parts are connected was visually recognized three-dimensionally as if it were bulging toward the front or the back, and the depth was felt to be greater than the thickness of the glass, and the design was high.

[例13]
例4で得られた積層体の透明凹凸印刷層(P1-8)上に、スパッタ法により反射層としてZnO(屈折率:2.0)を60nm厚成膜して、UVプリンターを使用して木目柄の着色印刷加飾層(P2)を形成して、予備積層体を得た。この予備積層体の木目柄の着色印刷加飾層(P2)上に、EVAフィルム(F1)とガラス板(G2)とを順次重ねて仮積層体を得た。この仮積層体をフィルムの袋の中に入れ、真空中で袋の口を加熱により封止して真空パックを作り、それを100℃で2時間加熱圧着した。加熱圧着後の積層体を袋から取り出し、図8に示したような積層構造を有する、ガラス板(G1)/EVAフィルム(F1)/木目柄の着色印刷加飾層(P2)/ZnO反射層(R2)/透明凹凸印刷層(P1)/木目柄の着色印刷加飾層(P2)/ガラス板(G1)の積層体を得た。得られた積層体について、立体視のレベルを目視評価した。
得られた積層体をEVAフィルム(F1)上に重ねたガラス板(G1)側から目視したとき、木目柄の着色印刷は、透明凹凸印刷層(P1)に含まれる複数の凸部の曲部が連なる部分が手前側または奥側に膨らんでいるように立体的に視認され、ガラス厚以上の奥行が感じられ、意匠性が高かった。
[Example 13]
On the transparent uneven print layer (P1-8) of the laminate obtained in Example 4, ZnO (refractive index: 2.0) as a reflective layer was formed by sputtering to a thickness of 60 nm, and a UV printer was used. A colored printed decorative layer (P2) with a wood grain pattern was formed to obtain a preliminary laminate. An EVA film (F1) and a glass plate (G2) were successively laminated on the colored printed decorative layer (P2) of the wood grain pattern of the preliminary laminate to obtain a temporary laminate. This temporary laminate was placed in a film bag, and the mouth of the bag was sealed by heating in a vacuum to form a vacuum pack, which was heat-pressed at 100° C. for 2 hours. The laminated body after thermocompression bonding is taken out from the bag, and has a laminated structure as shown in FIG. A laminate of (R2)/transparent concave-convex print layer (P1)/colored printed decorative layer with wood grain pattern (P2)/glass plate (G1) was obtained. The obtained laminate was visually evaluated for the level of stereoscopic vision.
When the obtained laminate is viewed from the side of the glass plate (G1) overlaid on the EVA film (F1), the colored print of the wood grain pattern is the curved portion of the plurality of convex portions included in the transparent uneven print layer (P1). It was visually recognized three-dimensionally as if the part where the two were connected swelled toward the front or the back, and the depth was felt to be greater than the thickness of the glass, and the design was high.

[例14~16]
UVプリンターを使用し、ガラス板(G1)上に、屈折率が1.51のクリアーインク(LH-100-CL-BA)を用いて、図13(例14)、図14(例15)、または図15(例16)に示したパターンの透明凹凸印刷層((P14)~(P16)のうちいずれか)を形成し、透明凹凸印刷層((P14)~(P16)のうちいずれか)/ガラス板(G1)の積層体を得た。
[Examples 14-16]
Using a UV printer, on a glass plate (G1), using a clear ink (LH-100-CL-BA) with a refractive index of 1.51, FIG. 13 (Example 14), FIG. 14 (Example 15), Alternatively, a transparent uneven print layer (any of (P14) to (P16)) having a pattern shown in FIG. 15 (Example 16) is formed, and a transparent uneven print layer (any of (P14) to (P16)) is formed. / A laminate of glass plates (G1) was obtained.

透明凹凸印刷層(P14)~(P16)は、平面視にて、曲部を介してなめらかに接続された第1の方向に向かう第1の直線部と第2の方向に向かう第2の直線部とからなるライン状の複数の凸部が、等ピッチで周期的に形成された複数の凸部群を有する。
透明凹凸印刷層(P14)~(P16)はそれぞれ、1つの中心部から互いに重なり合わずに異なる複数の径方向に放射状に延びる4個(例14)、8個(例15)、36個(例16)の凸部群を含む。
これらの例において、互いに隣り合う第1の凸部群と第2の凸部群に着目し、第1の凸部群において、間隔を空けて複数形成された凸部の曲部が連なる方向を第1の直線方向とし、第2の凸部群において、間隔を空けて複数形成された凸部の曲部が連なる方向を第2の直線方向とし、第1の直線方向と第2の直線方向とのなす角をθとしたとき、θはそれぞれ、90°(例14)、45°(例15)、10°(例16)である。
これらの例において、各凸部群の最大幅Wmaxは2.5mmとした。また、各凸部群の径方向長さRはそれぞれ、5mm(例14)、10mm(例15)、30mm(例16)とした。
これらの例では、第1の凸部群と第2の凸部群との境界線が、第1の直線方向と第2の直線方向との交点から延びる第1の直線方向と第2の直線方向との二等分線に一致する。
The transparent concavo-convex printed layers (P14) to (P16) have, in plan view, a first straight line portion directed in a first direction and a second straight line directed in a second direction smoothly connected via a curved portion. A plurality of line-shaped convex portions each having a portion has a plurality of convex portion groups formed periodically at an equal pitch.
The transparent concavo-convex printed layers (P14) to (P16) each radially extend in a plurality of different radial directions without overlapping each other from one central portion 4 (Example 14), 8 (Example 15), 36 ( Including the group of protrusions in Example 16).
In these examples, focusing on the first group of protrusions and the second group of protrusions that are adjacent to each other, in the first group of protrusions, the direction in which the curved portions of the plurality of protrusions formed at intervals are connected A first linear direction is defined as a first linear direction, and a second linear direction is defined as a direction in which curved portions of a plurality of projections formed at intervals in a second group of convex portions are connected, and the first linear direction and the second linear direction is 90° (Example 14), 45° (Example 15), and 10° (Example 16).
In these examples, the maximum width Wmax of each convex portion group was set to 2.5 mm. Further, the radial length R of each convex portion group was 5 mm (Example 14), 10 mm (Example 15), and 30 mm (Example 16).
In these examples, the boundary line between the first group of protrusions and the second group of protrusions is the first straight line direction and the second straight line extending from the intersection of the first straight line direction and the second straight line direction. coincide with the bisector of the direction.

各例についてそれぞれ、1本のライン状の凸部の各種データを表2に示す。
なお、これらの例では、1つの凸部群内でも、凸部の長さが変化する部分があるため、1つの凸部群内で、同じ長さで複数並んだ部分の凸部のデータを記載してある。
また、これらの例では、末端部を曲部としたので、「互いに隣り合う曲部」として、第1の直線部と第2の直線部の間の曲部と一方の末端部の曲部を採用した。末端部の曲部の曲げ角度は、135°とした。
これらの例で得られた積層体はいずれも、ガラス板(G1)側から目視したとき、彫刻を入れた切子ガラスのような外観が得られ、意匠性が高かった。
Table 2 shows various data of one line-shaped protrusion for each example.
In these examples, even within one convex portion group, there are portions where the length of the convex portion changes. It is described.
Further, in these examples, since the end portion is a curved portion, the curved portion between the first straight portion and the second straight portion and the curved portion at one end portion are defined as "mutually adjacent curved portions". adopted. The bending angle of the curved portion of the end portion was 135°.
All of the laminates obtained in these examples had an appearance like an engraved faceted glass when viewed from the glass plate (G1) side, and had a high design property.

Figure 0007173050000002
Figure 0007173050000002

[例17]
透明凹凸印刷層のパターンを図13から図16に示すものに変更した以外は例14と同様にして、透明凹凸印刷層(P17)/ガラス板(G1)の積層体を得た。
この例では、凸部群22A、22Cの各凸部の設計は例14と同様に設定したまま、凸部群22B、22Dの各凸部の直線部の長さを0.68mm短くすることで、凸部群22B、22Dの最大幅を凸部群22A、22Cの最大幅よりも小さくした。なお、ここで言う各凸部の直線部の長さは、1つの凸部群内で、同じ長さで複数並んだ部分の凸部のデータである。この例では、図示するように、第1の凸部群と第2の凸部群との境界線MA1は、第1の直線方向と第2の直線方向との交点から延びる第1の直線方向と第2の直線方向との二等分線NA1を平行移動させた直線である。
このように設計して得られた積層体は、例14~16と同様、ガラス板(G1)側から目視したとき、彫刻を入れた切子ガラスのような外観が得られ、意匠性が高かった。
[Example 17]
A laminate of transparent uneven printed layer (P17)/glass plate (G1) was obtained in the same manner as in Example 14, except that the pattern of the transparent uneven printed layer was changed from FIG. 13 to that shown in FIG.
In this example, while the design of each convex portion of the convex portion groups 22A and 22C is set in the same manner as in Example 14, the length of the straight portion of each convex portion of the convex portion groups 22B and 22D is shortened by 0.68 mm. , the maximum widths of the groups of protrusions 22B and 22D are smaller than the maximum widths of the groups of protrusions 22A and 22C. The length of the linear portion of each convex portion referred to here is data of a plurality of convex portions of the same length arranged side by side within one convex portion group. In this example, as illustrated, the boundary line MA1 between the first group of protrusions and the second group of protrusions is the first linear direction extending from the intersection of the first linear direction and the second linear direction. is a straight line obtained by translating the bisector NA1 between and the second straight line direction.
Like Examples 14 to 16, the laminate obtained by designing in this way had an appearance like an engraved cut glass when viewed from the glass plate (G1) side, and had a high design.

[例17~20]
グラビア印刷により、ポリカーボネートフィルム(F3)上に、屈折率が1.51のクリアーインク(LH-100-CL-BA)を用いて、図13に示したパターンの透明凹凸印刷層((P17)~(P20)のいずれか)を形成し、透明凹凸印刷層((P17)~(P20)のうちいずれか)/ポリカーボネートフィルム(F3)の積層体を得た。次に、これらの積層体のポリカーボネートフィルムの透明凹凸印刷層を形成した面とは反対側の面に透明両面テープ(T1)によりガラス板(G1)を空気が入らないように貼り合わせ、図17に示したような積層構造を有する、透明凹凸印刷層((P17)~(P20)のうちいずれか)/ポリカーボネートフィルム(F3)/透明両面テープ(T1)/ガラス板(G1)の積層体を得た。
[Examples 17-20]
By gravure printing, a transparent uneven print layer ((P17) to (Any one of (P20)) was formed to obtain a laminate of transparent uneven print layer (any of (P17) to (P20))/polycarbonate film (F3). Next, a glass plate (G1) was attached to the surface of the polycarbonate film of these laminates opposite to the surface on which the transparent concave-convex printed layer was formed, using a transparent double-sided tape (T1) so as to prevent air from entering. A laminate of transparent uneven print layer (any of (P17) to (P20)) / polycarbonate film (F3) / transparent double-sided tape (T1) / glass plate (G1) having a laminated structure as shown in Obtained.

透明凹凸印刷層(P17)~(P20)は、平面視にて、曲部を介してなめらかに接続された第1の方向に向かう第1の直線部と第2の方向に向かう第2の直線部とからなるライン状の複数の凸部が、等ピッチで周期的に形成された複数の凸部群を有する。
透明凹凸印刷層(P17)~(P20)は、1つの中心部から互いに重なり合わずに異なる複数の径方向に放射状に延びる4個の凸部群を含む。
これらの例において、互いに隣り合う第1の凸部群と第2の凸部群に着目し、第1の凸部群において、間隔を空けて複数形成された凸部の曲部が連なる方向を第1の直線方向とし、第2の凸部群において、間隔を空けて複数形成された凸部の曲部が連なる方向を第2の直線方向とし、第1の直線方向と第2の直線方向とのなす角をθとしたとき、θは90°である。
これらの例において、各凸部群の最大幅Wmaxは2.5mmとした。また、各凸部群の径方向長さRはそれぞれ、5mm(例14)、10mm(例15)、30mm(例16)とした。
The transparent concavo-convex printed layers (P17) to (P20) have, in plan view, a first straight line portion in a first direction and a second straight line in a second direction smoothly connected via a curved portion. A plurality of line-shaped convex portions each having a portion has a plurality of convex portion groups formed periodically at an equal pitch.
The transparent concavo-convex print layers (P17) to (P20) include a group of four convex portions radially extending from a central portion in a plurality of different radial directions without overlapping each other.
In these examples, focusing on the first group of protrusions and the second group of protrusions that are adjacent to each other, in the first group of protrusions, the direction in which the curved portions of the plurality of protrusions formed at intervals are connected A first linear direction is defined as a first linear direction, and a second linear direction is defined as a direction in which curved portions of a plurality of projections formed at intervals in a second group of convex portions are connected, and the first linear direction and the second linear direction is 90°.
In these examples, the maximum width Wmax of each convex portion group was set to 2.5 mm. Further, the radial length R of each convex portion group was 5 mm (Example 14), 10 mm (Example 15), and 30 mm (Example 16).

これらの例では、第1の凸部群と第2の凸部群との境界線が、第1の直線方向と第2の直線方向との交点から延びる第1の直線方向と第2の直線方向との二等分線に一致する。
各例についてそれぞれ、1本のライン状の凸部の各種データを表3に示す。
なお、これらの例では、1つの凸部群内でも、凸部の長さが変化する部分があるため、1つの凸部群内で、同じ長さで複数並んだ部分の凸部のデータを記載してある。
また、これらの例では、末端部を曲部としたので、「互いに隣り合う曲部」として、第1の直線部と第2の直線部の間の曲部と一方の末端部の曲部を採用した。末端部の曲部の曲げ角度は、135°とした。
例17~20で得られた積層体をガラス板(G1)側から目視したとき、いずれも彫刻を入れた切子ガラスのような外観が得られ、意匠性が高かった。また、ガラス板(G1)が虹色を呈して見え、意匠性が高かった。この虹色は例17、18の積層体よりも例19、20の積層体においてコントラストが強く見えた。透明凹凸印刷層の凸部の線幅(L)および凸部の間隔(S)が小さくなるほど、虹色のコントラストが強くなることが確認できた。
In these examples, the boundary line between the first group of protrusions and the second group of protrusions is the first straight line direction and the second straight line extending from the intersection of the first straight line direction and the second straight line direction. coincide with the bisector of the direction.
Table 3 shows various data of one line-shaped protrusion for each example.
In these examples, even within one convex portion group, there are portions where the length of the convex portion changes. It is described.
Further, in these examples, since the end portion is a curved portion, the curved portion between the first straight portion and the second straight portion and the curved portion at one end portion are defined as "mutually adjacent curved portions". adopted. The bending angle of the curved portion of the end portion was 135°.
When the laminates obtained in Examples 17 to 20 were visually observed from the side of the glass plate (G1), all of them had an appearance like cut glass with engraving, and the design was high. In addition, the glass plate (G1) appeared to have a rainbow color, and the design was high. The iridescence appeared to have a stronger contrast in the laminates of Examples 19 and 20 than in the laminates of Examples 17 and 18. It was confirmed that the smaller the line width (L) of the protrusions of the transparent uneven print layer and the spacing (S) between the protrusions, the stronger the rainbow contrast.

Figure 0007173050000003
Figure 0007173050000003

[例21]
例19で得られた積層体の透明凹凸印刷層(P19)上に、スパッタ法により反射層としてZnS(屈折率:2.3)を50nm厚成膜し、図18に示したような積層構造を有する、ZnS反射層(R3)/透明凹凸印刷層((P19)/ポリカーボネートフィルム(F3)/透明両面テープ(T1)/ガラス板(G1)の積層体を得た。得られた積層体をガラス板(G1)側から目視したとき、彫刻を入れた切子ガラスのような外観が得られ、意匠性が高かった。また、得られた積層体は、例19で得られた積層体に対して、透明凹凸印刷層に沿った反射が強くなり、立体視感が強調され、意匠性が高かった。
[例22]
例19と同様の方法により透明凹凸印刷層(P19)/ポリカーボネートフィルム(F3)の積層体を得た。次に、透明凹凸印刷層(P19)上に、スパッタ法により反射層としてZnS(屈折率:2.3)を50nm厚成膜し、ZnS反射層(R3)/透明凹凸印刷層((P19)/ポリカーボネートフィルム(F3)を得た。次に、この積層体のポリカーボネートフィルム(F3)の透明凹凸印刷層(P19)を形成した面とは反対側の面に、平面視において透明凹凸印刷層(P19)が形成されていない領域にUVプリンターを用いて青色のカラー印刷加飾層(P3)を印刷し、ZnS反射層(R3)/透明凹凸印刷層((P19)/ポリカーボネートフィルム(F3)/カラー印刷加飾層(P3)の積層体を得た。次に、この積層体のカラー印刷加飾層(P3)上に透明両面テープ(T1)によりガラス板(G1)を空気が入らないように貼り合わせ、図19に示したような積層構造を有する、ZnS反射層(R3)/透明凹凸印刷層(P19)/ポリカーボネートフィルム(F3)/カラー印刷加飾層(P3)/透明両面テープ(T1)/ガラス板(G1)の積層体を得た。得られた積層体をガラス板(G1)側から目視したとき、表面が着色されたガラスに彫刻を入れた切子ガラスのように見え、意匠性が高かった。
[例23]
例22と同様の方法によりZnS反射層(R3)/透明凹凸印刷層((P19)/ポリカーボネートフィルム(F3)/カラー印刷加飾層(P3)を得た。次に、このZnS反射層(R3)上に透明両面テープ(T1)によりガラス板(G1)を空気が入らないように貼り合わせ、図20に示したような積層構造を有する、ガラス板(G1)/透明両面テープ(T1)/ZnS反射層(R3)/透明凹凸印刷層(P19)/ポリカーボネートフィルム(F3)/カラー印刷加飾層(P3)の積層体を得た。得られた積層体をガラス板(G1)側から目視したとき、着色されたガラスに彫刻を入れた着色層のある切子ガラスのような外観が得られ、意匠性が高かった。
[例24]
例19で得られた積層体の透明凹凸印刷層(P19)のポリカーボネートフィルム(F3)がある面とは反対側の面に、平面視において透明凹凸印刷層(P19)が形成されていない領域にUVプリンターを用いて青色のカラー印刷加飾層(P3)を印刷し、図21に示したような積層構造を有する、カラー印刷加飾層(P3)/透明凹凸印刷層(P19)/ポリカーボネートフィルム(F3)/透明両面テープ(T1)/ガラス板(G1)の積層体を得た。得られた積層体をガラス板(G1)側から目視したとき、表面が着色されたガラスに彫刻を入れた着色層のある切子ガラスのような外観が得られ、意匠性が高かった。
[例25]
例24で得られた積層体のカラー印刷加飾層(P3)上に、スパッタ法により反射層としてZnS(屈折率:2.3)を50nm厚成膜し、図22に示したような積層構造を有する、ZnS反射層(R3)/カラー印刷加飾層(P3)/透明凹凸印刷層(P19)/ポリカーボネートフィルム(F3)/透明両面テープ(T1)/ガラス板(G1)の積層体を得た。得られた積層体をガラス板(G1)側から目視したとき、表面が着色されたガラスに彫刻を入れた着色層のある切子ガラスのような外観が得られ、意匠性が高かった。また、得られた積層体は、例24で得られた積層体に対して、透明凹凸印刷層に沿った反射が強くなり、立体視感が強調され、意匠性が高かった。
[Example 21]
On the transparent uneven print layer (P19) of the laminate obtained in Example 19, ZnS (refractive index: 2.3) was formed as a reflective layer by sputtering to a thickness of 50 nm, and the laminate structure as shown in FIG. A laminate of ZnS reflective layer (R3) / transparent uneven print layer ((P19) / polycarbonate film (F3) / transparent double-sided tape (T1) / glass plate (G1) was obtained. When viewed from the side of the glass plate (G1), the appearance of the cut glass with engraving was obtained, and the design was high. , the reflection along the transparent concave-convex printed layer became stronger, the stereoscopic vision was emphasized, and the design was high.
[Example 22]
A laminate of transparent uneven print layer (P19)/polycarbonate film (F3) was obtained in the same manner as in Example 19. Next, on the transparent uneven print layer (P19), ZnS (refractive index: 2.3) was formed as a reflective layer with a thickness of 50 nm by sputtering, and the ZnS reflective layer (R3)/transparent uneven print layer ((P19) / A polycarbonate film (F3) was obtained.Next, on the surface of the polycarbonate film (F3) of this laminate opposite to the surface on which the transparent uneven print layer (P19) was formed, a transparent uneven print layer ( P19) is printed using a UV printer to print a blue color printed decorative layer (P3), ZnS reflective layer (R3) / transparent concave-convex printed layer ((P19) / polycarbonate film (F3) / A laminate of the color printed decorative layer (P3) was obtained, and then a glass plate (G1) was attached to the color printed decorative layer (P3) of the laminate with a transparent double-sided tape (T1) so as to prevent air from entering. ZnS reflective layer (R3) / transparent uneven print layer (P19) / polycarbonate film (F3) / color printed decorative layer (P3) / transparent double-sided tape ( A laminated body of T1)/glass plate (G1) was obtained.When the obtained laminated body was viewed from the side of the glass plate (G1), it looked like faceted glass in which the surface was colored glass with engraving. was highly sexual.
[Example 23]
A ZnS reflective layer (R3)/transparent uneven print layer ((P19)/polycarbonate film (F3)/color printed decorative layer (P3) was obtained in the same manner as in Example 22. Next, this ZnS reflective layer (R3 ) with a transparent double-sided tape (T1) on the glass plate (G1) so that air does not enter, and has a laminated structure as shown in FIG. 20, glass plate (G1) / transparent double-sided tape (T1) A laminate of ZnS reflective layer (R3)/transparent concave-convex printed layer (P19)/polycarbonate film (F3)/color printed decorative layer (P3) was obtained.The obtained laminate was visually observed from the glass plate (G1) side. When this was done, an appearance like cut glass having a colored layer in which colored glass was engraved was obtained, and the design was high.
[Example 24]
In the area where the transparent uneven print layer (P19) is not formed in plan view on the surface opposite to the surface where the polycarbonate film (F3) of the transparent uneven print layer (P19) of the laminate obtained in Example 19 is formed A blue color printed decorative layer (P3) is printed using a UV printer, and has a laminated structure as shown in FIG. A laminate of (F3)/transparent double-sided tape (T1)/glass plate (G1) was obtained. When the obtained laminate was viewed from the side of the glass plate (G1), it had an appearance like faceted glass with a colored layer in which the surface of the colored glass was engraved, and the design was high.
[Example 25]
On the color printing decorative layer (P3) of the laminate obtained in Example 24, ZnS (refractive index: 2.3) was formed as a reflective layer by sputtering to a thickness of 50 nm, and the laminate as shown in FIG. A laminate of ZnS reflective layer (R3) / color printed decorative layer (P3) / transparent uneven printed layer (P19) / polycarbonate film (F3) / transparent double-sided tape (T1) / glass plate (G1) having a structure Obtained. When the resulting laminate was viewed from the glass plate (G1) side, it had an appearance like faceted glass with a colored layer in which the surface of the colored glass was engraved, and the design was high. In addition, the obtained laminate had stronger reflection along the transparent concave-convex print layer than the laminate obtained in Example 24, the stereoscopic effect was emphasized, and the design property was high.

本発明の積層体は、窓材、床材、壁材、天井材等の建築部材;テーブル天板等のインテリア部材;洗濯機、冷蔵庫等の白物家電の外装材;携帯電話、携帯情報端末(PDA)等の電子機器等の用途に好ましく利用できる。
なお、2018年1月12日に出願された日本特許出願2018-3177号および2018年7月27日に出願された日本特許出願2018-141344号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The laminate of the present invention can be used for building materials such as window materials, floor materials, wall materials, and ceiling materials; interior materials such as table tops; exterior materials for white goods such as washing machines and refrigerators; It can be preferably used for applications such as electronic equipment such as (PDA).
In addition, the specifications, claims, drawings, and abstracts of Japanese Patent Application No. 2018-3177 filed on January 12, 2018 and Japanese Patent Application No. 2018-141344 filed on July 27, 2018 The entire contents of this publication are incorporated herein by reference and incorporated as disclosure in the specification of the present invention.

1A~1H:積層体、11:透光性基材、12:透光性部材、20:凹凸層、21:凸部、21A~21C:曲部の極点、30:反射層、40、41:加飾層、50:透光性樹脂膜、BP:曲部、CP:接続部、LP1:第1の直線部、LP2:第2の直線部 1A to 1H: laminate, 11: translucent substrate, 12: translucent member, 20: uneven layer, 21: convex portion, 21A to 21C: pole of curved portion, 30: reflective layer, 40, 41: Decorative layer 50: Translucent resin film BP: Curved portion CP: Connection portion LP1: First straight portion LP2: Second straight portion

Claims (23)

透光性基材と表面に複数の平面視ライン状の凸部を有する凹凸層とを含む積層体であって、
前記凹凸層は平面視にて、曲げ角度が70~110°である曲部を有するライン状の前記凸部が間隔を空けて複数形成されたパターンを有し、かつ
前記凸部の線幅(L)に対する前記複数の凸部の間隔(S)の比(S/L)が10以下であり、
前記曲部の曲率半径(R)に対する互いに隣り合う前記曲部の極点間の距離(D)の比(D/R)が1.6以上であることを特徴とする積層体。
A laminate including a translucent base material and an uneven layer having a plurality of linear projections on the surface thereof,
In plan view, the uneven layer has a pattern in which a plurality of line-shaped protrusions having curved portions with a bending angle of 70 to 110° are formed at intervals, and the line width of the protrusions ( The ratio (S/L) of the spacing (S) of the plurality of convex portions to L) is 10 or less ,
A laminate, wherein a ratio (D/R) of a distance (D) between the pole points of the adjacent curved portions to a radius of curvature (R) of the curved portions is 1.6 or more .
前記凸部は、平面視にて、前記曲部を介してなめらかに接続された第1の方向に向かう第1の直線部と第2の方向に向かう第2の直線部とを含む、請求項1に記載の積層体。 3. The convex portion includes, in plan view, a first straight portion extending in a first direction and a second straight portion extending in a second direction smoothly connected via the curved portion. 2. The laminate according to 1. 前記曲部の曲率半径に対する前記第1の直線部または前記第2の直線部の長さの比が150以下である、請求項2に記載の積層体。 3. The laminate according to claim 2, wherein the ratio of the length of said first straight portion or said second straight portion to the radius of curvature of said curved portion is 150 or less. 前記凸部の線幅(L)に対する前記複数の凸部の間隔(S)の比(S/L)が3以下であり、かつ
前記曲部の曲率半径に対する前記第1の直線部または前記第2の直線部の長さの比が0.1~50である、請求項2または3に記載の積層体。
The ratio (S/L) of the spacing (S) of the plurality of protrusions to the line width (L) of the protrusions is 3 or less, and the first linear portion or the first linear portion with respect to the radius of curvature of the curved portion 4. The laminate according to claim 2 or 3, wherein the length ratio of the two straight portions is 0.1-50.
前記凸部の線幅(L)に対する前記複数の凸部の間隔(S)の比(S/L)が0.3~0.5である、請求項1~4のいずれか1項に記載の積層体。 5. The ratio (S/L) of the spacing (S) of the plurality of protrusions to the line width (L) of the protrusions is 0.3 to 0.5, according to any one of claims 1 to 4. laminate. 前記凸部は、平面視にて、複数の前記曲部を有し、かつ
前記曲部の曲率半径(R)に対する互いに隣り合う前記曲部の極点間の距離(D)の比(D/R)が150以下である、請求項1~5のいずれか1項に記載の積層体。
The convex portion has a plurality of curved portions in a plan view, and the ratio (D/R ) is 150 or less, the laminate according to any one of claims 1 to 5 .
前記凹凸層の表面凹凸に沿って形成された反射層をさらに有する、請求項1~6のいずれか1項に記載の積層体。 7. The laminate according to any one of claims 1 to 6 , further comprising a reflective layer formed along the uneven surface of said uneven layer. 前記反射層は、前記凹凸層との屈折率差が0.4以上の高屈折率材料および/または金属を含む、請求項7に記載の積層体。 8. The laminate according to claim 7 , wherein said reflective layer contains a high refractive index material and/or metal having a refractive index difference of 0.4 or more from said uneven layer. 前記反射層は、AlおよびAgからなる群より選ばれる少なくとも1種の金属、および/または、TiO、Nb およびZnOからなる群より選ばれる少なくとも1種の高屈折率材料を含む、請求項8に記載の積層体。 The reflective layer contains at least one metal selected from the group consisting of Al and Ag and/or at least one high refractive index material selected from the group consisting of TiO 2 , Nb 2 O 5 and ZnO. The laminate according to claim 8 . 前記透光性基材と前記凹凸層との間の屈折率差が0.3以内である、請求項1~9のいずれか1項に記載の積層体。 10. The laminate according to any one of claims 1 to 9 , wherein the difference in refractive index between the translucent substrate and the uneven layer is within 0.3. 前記透光性基材はガラス板または透光性樹脂フィルムである、請求項1~10のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 10 , wherein the translucent substrate is a glass plate or a translucent resin film. 前記凹凸層は樹脂を含む、請求項1~11のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 11 , wherein the concavo-convex layer contains a resin. 前記凹凸層は平面視にて、間隔を空けて複数形成された前記凸部の前記曲部が直線状に連なった凸部群を含む、請求項2に記載の積層体。 3 . The laminate according to claim 2 , wherein the uneven layer includes a convex portion group in which the curved portions of the convex portions formed at intervals are linearly connected in a plan view. 前記凹凸層は平面視にて、1つの中心部から互いに重なり合わずに複数の径方向に延びる複数の前記凸部群を含み、
互いに隣り合う第1の凸部群と第2の凸部群に着目し、
前記第1の凸部群において、間隔を空けて複数形成された前記凸部の前記曲部が連なる方向を第1の直線方向とし、
前記第2の凸部群において、間隔を空けて複数形成された前記凸部の前記曲部が連なる方向を第2の直線方向とし、
前記第1の直線方向と前記第2の直線方向とのなす角をθとしたとき、
θが10~170°であり、かつ
前記第1の凸部群と前記第2の凸部群との境界線が、前記第1の直線方向と前記第2の直線方向との交点から延びる前記第1の直線方向と前記第2の直線方向との二等分線または当該二等分線から±θ/4の範囲内の角度の直線に対して平行である、請求項13に記載の積層体。
In plan view, the uneven layer includes a plurality of protrusion groups extending in a plurality of radial directions from one central portion without overlapping each other,
Focusing on the first group of protrusions and the second group of protrusions adjacent to each other,
In the first group of protrusions, a direction in which the curved portions of the plurality of protrusions formed at intervals are connected is defined as a first linear direction,
In the second group of protrusions, a direction in which the curved portions of the protrusions formed with a plurality of spaces are aligned is defined as a second linear direction,
When the angle between the first linear direction and the second linear direction is θ,
θ is 10 to 170°, and a boundary line between the first group of protrusions and the second group of protrusions extends from an intersection point of the first straight line direction and the second straight line direction. 14. Laminate according to claim 13 , parallel to the bisector of the first linear direction and the second linear direction or to a straight line at an angle within ±[theta]/4 from the bisector. body.
θが45~135°である、請求項14に記載の積層体。 15. The laminate according to claim 14 , wherein θ is 45-135°. 前記凹凸層は、切子ガラスの模様を呈する、請求項13~15のいずれか1項に記載の積層体。The laminate according to any one of claims 13 to 15, wherein the concavo-convex layer exhibits a pattern of facet glass. 前記凸部の末端部は平面視にて、曲げ角度が105~165°の曲部である、請求項1~16のいずれか1項に記載の積層体。 17. The laminate according to any one of claims 1 to 16 , wherein the end portion of the convex portion is a curved portion having a bending angle of 105 to 165° in plan view. 前記凸部の線幅(L)と前記複数の凸部の間隔(S)との和(L+S)が5~200μmである、請求項1~17のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 17 , wherein the sum (L+S) of the line width (L) of the protrusions and the spacing (S) of the plurality of protrusions is 5 to 200 µm. 前記凸部の線幅(L)と前記複数の凸部の間隔(S)との和(L+S)が5~80μmである、請求項1~18のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 18 , wherein the sum (L+S) of the line width (L) of the protrusions and the spacing (S) of the plurality of protrusions is 5 to 80 µm. 加飾層をさらに含む、請求項1~19のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 19 , further comprising a decorative layer. 前記透光性基材と前記凹凸層との間に前記加飾層を有する、請求項20に記載の積層体。 21. The layered product according to claim 20 , wherein the decorative layer is provided between the translucent base material and the concavo-convex layer. 平面視において、前記加飾層は前記凹凸層が形成されていない領域に形成される、請求項20または21に記載の積層体。 The laminate according to claim 20 or 21 , wherein the decorative layer is formed in a region where the uneven layer is not formed in plan view. 前記加飾層は、木目模様を有する、請求項20~22のいずれか1項に記載の積層体。The laminate according to any one of claims 20 to 22, wherein the decorative layer has a wood grain pattern.
JP2019564764A 2018-01-12 2019-01-11 laminate Active JP7173050B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018003177 2018-01-12
JP2018003177 2018-01-12
JP2018141344 2018-07-27
JP2018141344 2018-07-27
PCT/JP2019/000745 WO2019139136A1 (en) 2018-01-12 2019-01-11 Laminated body

Publications (2)

Publication Number Publication Date
JPWO2019139136A1 JPWO2019139136A1 (en) 2021-01-07
JP7173050B2 true JP7173050B2 (en) 2022-11-16

Family

ID=67219133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019564764A Active JP7173050B2 (en) 2018-01-12 2019-01-11 laminate

Country Status (2)

Country Link
JP (1) JP7173050B2 (en)
WO (1) WO2019139136A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555361A (en) * 2019-10-29 2022-05-27 Agc株式会社 Concave-convex structure and laminate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018631A (en) 2006-07-13 2008-01-31 Yoshida Seisakusho:Kk Brilliantly shining decorative body and its manufacturing method
JP2015120328A (en) 2013-11-22 2015-07-02 内藤プロセス株式会社 Changing image printed matter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3241142B2 (en) * 1993-01-20 2001-12-25 大日本印刷株式会社 Method for producing decorative decorative sheet having uneven pattern and mirror gloss and painted molded article
JP5922859B2 (en) * 2009-03-11 2016-05-24 大日本印刷株式会社 Decorative sheet and laminated board using the same
JP6052589B2 (en) * 2012-09-26 2016-12-27 大日本印刷株式会社 Laminated body on which a three-dimensionally visible image is formed, and a container provided with the laminated body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018631A (en) 2006-07-13 2008-01-31 Yoshida Seisakusho:Kk Brilliantly shining decorative body and its manufacturing method
JP2015120328A (en) 2013-11-22 2015-07-02 内藤プロセス株式会社 Changing image printed matter

Also Published As

Publication number Publication date
JPWO2019139136A1 (en) 2021-01-07
WO2019139136A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
KR101145009B1 (en) Protection panel for electronic apparatus display window and production method for protection panel
US9964676B2 (en) Optical element, window material, fitting, solar shading device, and building
US20210215864A1 (en) Color production structure
JP5449375B2 (en) Structure with observation window
CN112368610A (en) Transfer sheet, color developing article, and transfer method
WO2018221326A1 (en) Laminate and method for manufacturing same
KR101534337B1 (en) Anti-glare firm and method for manufacturing the same
JP7173050B2 (en) laminate
WO2021187301A1 (en) Multilayer body
WO2020015631A1 (en) Texture protective film, terminal and manufacture method of texture protective film
JP2010085508A (en) Display body with decorative pattern and method of manufacturing the same
JP2012066482A (en) Decoration structure
JP4139662B2 (en) Light transmissive electromagnetic wave shielding sheet and manufacturing method thereof
WO2021085084A1 (en) Uneven structural body and layered body
JP5293448B2 (en) Decorative housing, decorative film, and electronic equipment
JP2002154177A (en) Semi-transmittable laminated sheet
JP2019066832A (en) Picture projection structure and transparent screen
WO2020213465A1 (en) Multilayer body
WO2020138235A1 (en) Functional film and functional laminated glass
KR102217431B1 (en) Decorative film having glass appearance
JP2020121544A (en) Uneven structure, method for manufacturing the same, and laminate
JP5672115B2 (en) Display front substrate, manufacturing method thereof, and display device using display front substrate
CN209787223U (en) Decorative film and terminal
CN111163943A (en) Method for manufacturing sheet member and sheet member
JP2024011912A (en) Color development structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7173050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150