JP7165462B1 - ALUMINUM METAL MATERIAL EXCELLENT IN CONDUCTIVITY AND PRODUCTION METHOD THEREOF - Google Patents

ALUMINUM METAL MATERIAL EXCELLENT IN CONDUCTIVITY AND PRODUCTION METHOD THEREOF Download PDF

Info

Publication number
JP7165462B1
JP7165462B1 JP2022523191A JP2022523191A JP7165462B1 JP 7165462 B1 JP7165462 B1 JP 7165462B1 JP 2022523191 A JP2022523191 A JP 2022523191A JP 2022523191 A JP2022523191 A JP 2022523191A JP 7165462 B1 JP7165462 B1 JP 7165462B1
Authority
JP
Japan
Prior art keywords
electrolysis
film
aluminum
anodized film
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022523191A
Other languages
Japanese (ja)
Other versions
JPWO2023079671A1 (en
JPWO2023079671A5 (en
Inventor
成憲 田中
政弘 秋本
Original Assignee
株式会社アート1
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アート1 filed Critical 株式会社アート1
Application granted granted Critical
Publication of JP7165462B1 publication Critical patent/JP7165462B1/en
Publication of JPWO2023079671A1 publication Critical patent/JPWO2023079671A1/ja
Publication of JPWO2023079671A5 publication Critical patent/JPWO2023079671A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】アルミニウムの陽極酸化皮膜に電気伝導性を与え、硬質アルマイト以上の硬さをもつ材料開発をする。【解決手段】本発明は、アルミニウムの陽極酸化皮膜が絶縁材料として利用されているバリヤー層を除去後に通電性の良い皮膜を作り、更に金属を析出することにより、電気抵抗1×10-2Ω以下を保ち皮膜としての硬さHV470以上を有し、耐食性等を改善することにより、アルミニウム材として従来にない実用に即した低抵抗で硬さに優れた材料である。この材料は4段階の電解を施すことによって製造できる。【選択図】 図5Kind Code: A1 To develop a material that imparts electrical conductivity to an anodized aluminum film and has hardness greater than that of hard anodized aluminum. In the present invention, an aluminum anodic oxide film forms a film having good conductivity after removing a barrier layer used as an insulating material, and further deposits a metal to achieve an electrical resistance of 1×10 -2 Ω or less. It has a hardness of HV470 or more as a coating, and by improving corrosion resistance, etc., it is a material with low resistance and excellent hardness that is suitable for practical use as an aluminum material. This material can be produced by applying a four-step electrolysis. [Selection drawing] Fig. 5

Description

本発明は、導電性に優れたアルミニウム金属材料及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to an aluminum metal material having excellent conductivity and a method for producing the same.

アルミニウム陽極酸化皮膜(以下、アルマイトと呼ぶ。)は電気的には絶縁材料として開発されたが、加飾技術、耐食技術、硬さ・耐摩耗性技術等の改良を行うことにより今日のアルミニウムの発展の一翼を担ってきた。例えば、加飾と耐食技術によりビルのカラーパネル、窓枠のカラーサッシ、日用雑貨品のカラー化等があり、硬さの技術により摺動性の必要とされる機械部品の軽量化、耐食技術により屋外でのエクステリア、水中カメラ等が軽量化になり、多方面にアルミニウムが使われるようになった。今後、アルミニウムを今以上に発展させるには、素材の開発は勿論のこと、陽極酸化皮膜の出発点である絶縁材料を打破し、導電性、磁性等+軽量で加工がしやすい優位さを利用して電気、電子、半導体分野に進出する必要に迫られ、従来の特性に加えて導電性を有する陽極酸化皮膜の開発、実用化が待ち望まれていた。例えば、陽極酸化皮膜は静電気によるスパークで電子回路を破損する事故、スマートフォン、衛星放送、タクシー無線等に使用されている中波~極超短波の磁界シールド効果が出せずに、表面にめっきを行なうことによって対応してきたが、めっき液の処理及び廃棄、再生時に重金属が発生し、LCA対応としては問題があり、この問題を解決できるLCA対応可能な皮膜が望まれている。 Aluminum anodized film (hereafter referred to as anodized aluminum) was developed as an electrically insulating material. played a part in its development. For example, decoration and corrosion-resistant technology can be used to create color panels for buildings, colored sashes for window frames, and colored daily necessities. Technology has made outdoor exteriors, underwater cameras, etc. lighter, and aluminum has come to be used in many ways. In order to further develop aluminum in the future, it is necessary not only to develop materials, but also to overcome the insulating material that is the starting point of anodized film, and use the advantages of conductivity, magnetism, etc. + light weight and easy processing. As a result, the development and practical application of an anodized film that has conductivity in addition to conventional properties has been eagerly awaited. For example, the anodized film can damage electronic circuits due to sparks caused by static electricity. However, heavy metals are generated during treatment, disposal, and recycling of the plating solution, and there is a problem in terms of LCA compatibility.

アルマイトの陽極酸化皮膜に導電性を付与することに関しては硝酸イオンを含む陽極酸化浴中で処理する方法が提案されている(特許文献1)。この方法で達成される導電性は、抵抗値で105~6Ω以上のレベルであり、静電防止機能を持ち各種のコンピュータ関連製品に利用できると記載されているが、実用面では静電気によるスパークで電子回路を破損する事故を防ぎ、スマートフォン、衛星放送、タクシー無線等に使用されている中波~極超短波の磁界シールド効果を発揮するには不十分な性能である。この文献には表面硬度に関する記述がないが実際にはHv280程度の硬さしか出すことが出来なくて硬質アルマイトの利用分野には硬さ不足で利用することはできず、改良が必要である。As for imparting conductivity to the anodized film of alumite, a method of treating it in an anodizing bath containing nitrate ions has been proposed (Patent Document 1). The conductivity achieved by this method is on the level of 10 5 to 6 Ω or more in terms of resistance, and is described as having an antistatic function and can be used for various computer-related products. The performance is insufficient to prevent accidents that damage electronic circuits due to sparks, and to demonstrate the magnetic shielding effect of medium to ultra-short waves used in smartphones, satellite broadcasting, taxi radios, etc. Although this document does not describe the surface hardness, in reality only a hardness of about Hv 280 can be obtained, and it cannot be used in the application field of hard alumite due to insufficient hardness, and improvement is necessary.

アルマイトの陽極酸化皮膜は、多孔質層とバリヤー層(無孔層)より成り立っている。アルマイトは当初理化学研究所で絶縁材料として開発され、今日に至ってきた。しかし、1970~80年代に硫酸皮膜を硬くする手法として金属材料研究所からバリヤー層を除去し、電解着色技術で表面まで金属を析出させたときに導電性があることを確認したことを示した論文が出されている。(非特許文献1) An anodized aluminum film consists of a porous layer and a barrier layer (non-porous layer). Anodized aluminum was originally developed as an insulating material at RIKEN and has continued to this day. However, in the 1970s and 1980s, as a method to harden the sulfuric acid film, the barrier layer was removed from the Institute for Metals, and electro-coloring technology was used to deposit metal on the surface. A paper has been published. (Non-Patent Document 1)

非特許文献1には電解液を硫酸とし、皮膜作成時の最終電圧15~20Vから一気に0.05V付近まで降下させ、更にスイッチ切断後バリヤー層を溶解してからNi電析を行ってHV50~100程度の硬度増を達成したことが記載されている。そしてAl素地と皮膜表面との間にはテスターによる導通があることを報告している。しかしこの製法によるニッケル電析の皮膜硬度は最大でもHV450であり、更に最大の欠点はアルマイトの最大の特徴である耐食性を全くなくしてしまうことで、実用的に使用されにくい製品である。一方陽極酸化皮膜の耐食性に影響のない亜鉛電析では皮膜硬度の向上に全くまたはほとんど役立たず、精々HV330が達成された程度であり、硬質アルマイトとしては全く不十分な硬度である。 Non-Patent Document 1 uses sulfuric acid as the electrolytic solution, drops the final voltage from 15 to 20 V at the time of film formation to around 0.05 V at once, and further dissolves the barrier layer after switching off, and then performs Ni electrodeposition to HV 50 to 50. It is described that a hardness increase of about 100 was achieved. They also reported that there is conduction between the Al substrate and the film surface by a tester. However, the film hardness of nickel electrodeposition by this manufacturing method is HV450 at maximum, and the biggest drawback is that it completely loses the corrosion resistance that is the greatest feature of anodized aluminum, making it a product that is difficult to use practically. On the other hand, zinc electrodeposition, which does not affect the corrosion resistance of the anodized film, is of no or almost no use in improving the film hardness.

再公表特許 WO 00/01865 公報Republished patent WO 00/01865 publication

金属表面材料Vol33,No5 232-237(1982)Metal Surface Materials Vol33, No5 232-237 (1982)

本発明は、従来使用できなかったアルマイトに導電性と硬さを付与し、軽量の材料として、その製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to impart conductivity and hardness to anodized aluminum, which could not be used conventionally, and to provide a method for producing the same as a lightweight material.

実施形態においては、体積抵抗が1×10-2Ω以下の性能を持ち、更に皮膜断面硬さがHV470以上の硬さを持つアルミニウム又はその合金からなる陽極酸化皮膜を有する材料及びその製造方法である。 In an embodiment, a material having an anodized film made of aluminum or its alloy having a volume resistivity of 1×10 −2 Ω or less and a film cross-sectional hardness of HV470 or more, and a method for producing the same. There is.

実施形態における電気抵抗の測定法は、低抵抗測定に優れている直流方式4端子法(電圧降下法)を抵抗計RM3548(日置電機株式会社製)にて表面と素地との間の電気抵抗を測定すると1×10-2Ω以下で、且つ皮膜断面硬さはJIS‐Z2244(ビッカース硬さ試験)方法にて荷重0.098N(10grf)、保持時間15秒で計測定したときにHV470以上の硬さを持つアルミニウム又はその合金からなる陽極酸化皮膜を有する材料及びその製造方法である。The method for measuring the electrical resistance in the embodiment is the DC four-terminal method (voltage drop method), which is excellent for low resistance measurement, and the electrical resistance between the surface and the substrate is measured with a resistance meter RM3548 (manufactured by Hioki Electric Co., Ltd.). When measured, it is 1×10 −2 Ω or less, and the cross-sectional hardness of the film is HV470 or more when measured by the JIS-Z2244 (Vickers hardness test) method with a load of 0.098 N (10 grf) and a holding time of 15 seconds. A material having an anodized film made of hard aluminum or its alloy, and a method for producing the same.

実施形態においては、表面と素地との間の体積抵抗が1×10-2Ω以下で、皮膜断面硬さがHV470以上の性能を持ち、更に300℃で2週間耐熱試験を実施した場合の加熱前と加熱後の色差(ΔE)が3.0以下好ましくは2.5以下であり、500℃‐1時間の耐熱試験でも加熱前と加熱後の色差(ΔE)が3.0以下好ましくは2.5以下であり、皮膜表面のクラックが、空気中にて200℃、30分加温後に、目視にて正面から見たときにクラックが観察されないものである。本発明の皮膜は導電性、硬さ、耐熱性に優れたアルミニウム又はその合金からなる材料及びその製造方法である。 In the embodiment, the volume resistance between the surface and the substrate is 1 × 10 -2 Ω or less, the film cross-sectional hardness is HV470 or more, and the heat resistance test is performed at 300 ° C. for 2 weeks. The color difference (ΔE) before and after heating is 3.0 or less, preferably 2.5 or less, and the color difference (ΔE) before and after heating is 3.0 or less, preferably 2, even in a heat resistance test at 500° C. for 1 hour. 0.5 or less, and no cracks on the surface of the film are observed when viewed from the front after heating in air at 200° C. for 30 minutes. The film of the present invention is a material made of aluminum or its alloy having excellent conductivity, hardness and heat resistance, and a method for producing the same.

本開示によれば、高い導電性を有し、かつ比較高度および耐久性に優れたアルミニウム金属材料およびその製造方法が提供できる。 ADVANTAGE OF THE INVENTION According to this disclosure, it is possible to provide an aluminum metal material having high electrical conductivity, relatively high hardness and excellent durability, and a method for producing the same.

本実施形態により製造された陽極酸化皮膜の全体像を示す図。The figure which shows the whole image of the anodized film manufactured by this embodiment. 本実施形態により製造された陽極酸化皮膜の断面及び表面状態を示す図。FIG. 2 is a diagram showing a cross section and surface state of an anodized film manufactured according to the present embodiment; 本実施形態の製造工程における第2電解での、バリヤー層除去の概念図。The conceptual diagram of barrier layer removal in the 2nd electrolysis in the manufacturing process of this embodiment. 本実施形態の製造工程における第3電解での、微細孔の底部における皮膜形成を示す概念図。FIG. 4 is a conceptual diagram showing film formation on the bottom of micropores in the third electrolysis in the manufacturing process of the present embodiment. 本実施形態の製造工程における第4電解での金属の析出を示す概念図。FIG. 4 is a conceptual diagram showing deposition of metal in the fourth electrolysis in the manufacturing process of the present embodiment; 本実施形態における、陽極酸化皮膜を含むアルミニウムの電気抵抗の測定法を示す概念図。FIG. 4 is a conceptual diagram showing a method of measuring the electrical resistance of aluminum containing an anodized film in the present embodiment. 本実施形態により製造された陽極酸化皮膜の各種特性を示す図。FIG. 4 is a diagram showing various characteristics of an anodized film produced according to the present embodiment;

以下、本開示を実施形態に基づいて説明するが、本開示は以下の本実施形態に限定されるものではない。
本実施形態の耐食試験はJIS‐Z2371の中性塩水噴霧試験機STP‐90V‐4(株式会社スガ試験機株式会社製)を用いて、連続噴霧時間1カ月(720時間)後、評価法はJIS‐H8679‐1(アルミニウム及びアルミニウム合金の陽極酸化皮膜に発生した孔食の評価方法‐第1部:レイティングナンバー方法(RN)にて行う。
レイティングナンバーとは皮膜を貫通し金属素地に達した孔食だけに適応し、(皮膜を貫通していない変色などの表面欠陥及び試験片に生じた端面の腐食は評価の対象としない。)レイティングナンバーと孔食の腐食面積率との関係は、RN10は0%(孔食なし)、RN9.8は0.00を超え、0.02%以下、RN9.5は0.02%を超え、0.05%以下、RN9.3は0.05%を超え、0.07%以下をいい、判定基準はJIS‐H8603‐5.6(アルミニウム及びアルミニウム合金の硬質陽極酸化皮膜‐耐食性)にて行うが、H8603-4:種類(素材の材質)によって表1のように分けられている。
Although the present disclosure will be described below based on embodiments, the present disclosure is not limited to the following embodiments.
The corrosion resistance test of this embodiment is performed using a JIS-Z2371 neutral salt spray tester STP-90V-4 (manufactured by Suga Test Instruments Co., Ltd.) after one month of continuous spraying (720 hours). JIS-H8679-1 (Evaluation method of pitting corrosion generated in anodized film of aluminum and aluminum alloy-Part 1: Rating number method (RN).
The rating number applies only to pitting corrosion that has penetrated the coating and reached the metal substrate. The relationship between the number and the corrosion area ratio of pitting corrosion is as follows: RN10 is 0% (no pitting corrosion), RN9.8 is over 0.00 and 0.02% or less, RN9.5 is over 0.02%, 0.05% or less, RN9.3 is more than 0.05% and 0.07% or less, and the criterion is JIS-H8603-5.6 (hard anodized film of aluminum and aluminum alloy-corrosion resistance) H8603-4: Classified as shown in Table 1 according to type (material).

Figure 0007165462000002
Figure 0007165462000002

表1に記載されたうち、1種は中性塩水噴霧試験機にて336時間噴霧試験を行い点食(孔食)がないこと(RN10)と規定され、1種以外の材質に関しては受渡当事者間の協定によると規定されている。本実施形態では上記規定を適合し、更に720時間(1ヵ月)における判定基準を加えた。実際は塩水噴霧試験機より取り出し後、表面の腐食生成物を物理的、化学的に除去し、よく水洗し表面に付着物がないのを確認後、乾燥し、孔食の大きさ、数量をレイティングナンバー標準図表と比較して評価する。 Among the materials listed in Table 1, one type is specified as having no pitting corrosion (pitting corrosion) after 336 hours of spray test using a neutral salt spray tester (RN10). stipulated in the agreement between In this embodiment, the above regulation is met, and a criterion for 720 hours (one month) is added. Actually, after removing from the salt spray tester, the corrosion products on the surface are physically and chemically removed, washed thoroughly with water, and after confirming that there is no deposit on the surface, it is dried, and the size and number of pitting corrosion are rated. Evaluate by comparing with number standard chart.

本実施形態の材料は通電性があり断面硬度HV470以上を有する。非特許文献1の記載では通電性があり且つ硬度が大きいが、腐食においては「24時間の塩水噴霧試験でピットが発生し、240時間で表面がかなり腐食生成物によって覆われていた」とあり耐食性のない材料しかなかったのである。 The material of this embodiment is conductive and has a cross-sectional hardness of HV470 or more. According to Non-Patent Document 1, it has conductivity and high hardness, but in terms of corrosion, it states that "pits were generated in the salt spray test for 24 hours, and the surface was considerably covered with corrosion products after 240 hours." There were only materials that were not corrosion resistant.

本願発明の材料は、1種、2種-(a)の材料においてはRN9.5以上、2種―(b)においてはRN7以上、3種―(a)材料においては8以上を達成する耐食性を有するものである。 The material of the present invention has a corrosion resistance that achieves RN 9.5 or higher for type 1 and type 2-(a) materials, RN 7 or higher for type 2-(b), and 8 or higher for type 3-(a) materials. It has

陽極酸化皮膜の厚さは、JIS‐H8680‐2(渦電流式測定法)を用い校正用標準板(プラスチックフィルム)にて校正後計測をすると6~50μmで、好ましくは10~30μm、特に好ましくは20~30μmで、色調が薄い褐色~濃い褐色系~黒系の皮膜を形成する。一般にアルマイトの皮膜は、一般的に皮膜厚さを厚くすると褐色から黒になる傾向にあり、80μmを越えると黒となるが、100℃に加熱するとクラックで全面が網目模様となってしまう。本実施形態の皮膜は従来よりも薄膜で黒系になっており、且つ硬さがあり、クラック発生が目視では観察できない特性を併せ持っている。 The thickness of the anodized film is 6 to 50 μm, preferably 10 to 30 μm, particularly preferably 10 to 30 μm, when measured after calibration with a calibration standard plate (plastic film) using JIS-H8680-2 (eddy current measurement method). is 20 to 30 μm, and forms a film with a color tone of light brown to dark brown to black. In general, anodized aluminum film tends to turn from brown to black as the film thickness increases. When the film thickness exceeds 80 μm, the film turns black. The coating of the present embodiment is thinner and blacker than the conventional coating, and has hardness, so that the occurrence of cracks cannot be visually observed.

本実施形態の製造工程は電解が4工程と、後処理とを含んでおり、第1電解は、母体となる皮膜作成(図1、2)、第2電解は、第1電解と同一又は異なる電解液にて微細孔の皮膜の底部にあるバリー層の除去(図3)、第3電解は、再度皮膜の作成(図4)、第4電解は、金属の微細孔への析出(図5)より成り立つ。 The manufacturing process of this embodiment includes four steps of electrolysis and a post-treatment. The electrolytic solution removes the valley layer at the bottom of the film of the micropores (Fig. 3), the third electrolysis creates the film again (Fig. 4), and the fourth electrolysis deposits the metal into the micropores (Fig. 5). ).

更に本開示の製造方法では、後処理として封孔等の作業を行うことにより電気抵抗が1×10-2Ω以下で、ビッカース硬さ試験法での皮膜断面硬さがHV470以上あり、色調は薄い褐色形~濃い褐色系~黒系の色調を持つ陽極酸化皮膜を形成するアルミニウム又はその合金からなる材料を製造することが出来る。Furthermore, in the production method of the present disclosure, the electric resistance is 1 × 10 -2 Ω or less by performing work such as sealing as a post-treatment, the film cross-sectional hardness is HV 470 or more in the Vickers hardness test method, and the color tone is A material composed of aluminum or an alloy thereof that forms an anodized film having a light brown to dark brown to black tone can be produced.

以下、製造方法における各工程を詳細に説明する。
<第1電解>
第1電解では、皮膜に一定以上の硬さを付加する必要があるが硫酸系のみでは添加剤を加えても硬さがHV350~400である。これ以上を求める場合には、有機酸系を単体もしくは添加剤を加えることにより、皮膜の硬さを、HV450程度まで上げることが出来る。しかし、この電解条件は、液管理が複雑なので実際には特殊処理以外に使われることはない。又、この皮膜は、本実施形態の工程における第2電解方法でバリヤー層の除去が短時間でできず、長すぎると皮膜の溶解が起きカブリとなり、短すぎるとバリヤー層が除去できず抵抗が高くなり、第4電解の金属の析出にバラツキが生じたり、スポーリング(皮膜が破壊され素地が現れる現象)が発生することがある。
Each step in the manufacturing method will be described in detail below.
<First electrolysis>
In the first electrolysis, it is necessary to add a certain level of hardness to the film, but with the sulfuric acid system alone, the hardness is HV350 to 400 even with the addition of additives. If a higher hardness is required, the hardness of the film can be increased to about HV450 by adding an organic acid alone or an additive. However, since the liquid management is complicated, this electrolysis condition is not actually used except for special treatment. In addition, the barrier layer cannot be removed in a short time by the second electrolysis method in the process of the present embodiment. As a result, the deposition of the metal in the fourth electrolysis becomes uneven, and spalling (a phenomenon in which the film is destroyed and the substrate is exposed) may occur.

本実施形態の第1電解は母体となる皮膜作成を行う工程で、液組成は好ましくは有機酸の溶液を主とし、無機酸及び/または主成分とした有機酸以外の有機酸と、必要に応じて添加剤を加えた電解液中で電解を行う。 The first electrolysis of the present embodiment is a step of forming a base film, and the liquid composition is preferably a solution of an organic acid as a main component, and an inorganic acid and / or an organic acid other than the organic acid as the main component, and optionally Electrolysis is performed in an electrolytic solution containing additives as required.

電解方式は、直流波形で液温0~40℃、電流密度0.6~3.0A/dm、10~120分、好ましくは液温10~30℃、電流密度0.8~2.0A/dm、電解時間20~90分で行うか、パルス波形、PRパルス波形、交流波形で、1サイクルでの正電流の平均電流密度0.1~10A/dm、負電流の平均電流0.0~10A/dm、液温0~40℃で好ましくは、1サイクルでの正電流の平均電流密度0.6~3.0A/dm、負電流の平均電流0.0~3.0A/dm、液温10~30℃で、直流波形、交流波形パルス波形、PRパルス波形の単独又は2つ以上の組合せた電流または電圧波形を用いて陽極酸化処理を施す。The electrolysis method is DC waveform, liquid temperature 0 to 40°C, current density 0.6 to 3.0A/dm 2 , 10 to 120 minutes, preferably liquid temperature 10 to 30°C, current density 0.8 to 2.0A. /dm 2 , electrolysis time 20-90 minutes, pulse waveform, PR pulse waveform, AC waveform, average current density of positive current 0.1-10 A / dm 2 in one cycle, average current of negative current 0 0 to 10 A/dm 2 , a liquid temperature of 0 to 40° C. Preferably, the average current density of positive current is 0.6 to 3.0 A/dm 2 and the average current of negative current is 0.0 to 3.0 A/dm 2 in one cycle. Anodizing is performed at 0 A/dm 2 and at a liquid temperature of 10 to 30° C. using a current or voltage waveform of a DC waveform, an AC waveform pulse waveform, and a PR pulse waveform alone or a combination of two or more of them.

ビッカース断面硬さ試験でHV470以上あり、色調は薄い褐色形~濃い褐色系~黒系の色調を持つ陽極酸化皮膜を形成する。ここで形成された陽極酸化皮膜の全体像を図1に示し、図2に、その断面(図2(A))及び表面視野図(図2(b))を示す。 It has a Vickers section hardness test of HV470 or more, and forms an anodic oxide film with a color tone ranging from light brown to dark brown to black. An overall image of the anodized film formed here is shown in FIG. 1, and its cross section (FIG. 2(A)) and surface field view (FIG. 2(b)) are shown in FIG.

<第2電解>
本実施形態の第2電解は、第1電解において目的の皮膜厚さに達したら、電源を切らずに1~5分保持し、その後段階的に電圧を0Vまで下げる。方法は最終電圧から1~10V下げ、その電圧で10~120秒保持、更に1~10V下げ、10~120秒保持の繰り返しで10Vまで下げ、その後5V,3V,2V,1V,0Vと順次下げていく、この時の保持時間は各40秒とし、全体の電圧効果時間は5~60分で行い、好ましくは2~5V下げ、20~20秒保持で、10~40分で0Vまで到達することが望ましい。この工程で微細孔の低位部にあるバリヤー層が除去される。この模式図を図3に示す。
<Second electrolysis>
In the second electrolysis of this embodiment, when the target film thickness is reached in the first electrolysis, the power is maintained for 1 to 5 minutes without turning off the power, and then the voltage is gradually lowered to 0V. The method is to lower the final voltage by 1 to 10V, hold it for 10 to 120 seconds, lower it further by 1 to 10V, hold it for 10 to 120 seconds, and then lower it to 10V, and then lower it to 5V, 3V, 2V, 1V, and 0V in order. At this time, the holding time is 40 seconds each, and the total voltage effect time is 5 to 60 minutes. Preferably, the voltage is lowered by 2 to 5 V, held for 20 to 20 seconds, and reached 0 V in 10 to 40 minutes. is desirable. This step removes the barrier layer at the lower portion of the pores. This schematic diagram is shown in FIG.

<第3電解>
本実施形態の第3電解は、アルカリ溶液に添加剤を加えた電解液で、直流波形にて電圧1~30V、時間5~20分、液温0~20℃で、好ましくは電圧5~15V、時間10~15分、10~15℃にて陽極酸化処理を行うことが望ましい。この工程でアルカリ皮膜独特のセル形状(160nm)が硫酸皮膜(44nm)の約4倍で通電性がよく、微細孔の底に2μm以下の皮膜が形成される。この模式図を図4に示した。
<Third electrolysis>
The third electrolysis of the present embodiment is an electrolytic solution obtained by adding an additive to an alkaline solution, with a DC waveform, a voltage of 1 to 30 V, a time of 5 to 20 minutes, a liquid temperature of 0 to 20 ° C., and a voltage of preferably 5 to 15 V. , for 10 to 15 minutes at 10 to 15°C. In this process, the cell shape (160 nm) peculiar to the alkali film is about four times that of the sulfuric acid film (44 nm), and the electrical conductivity is good, and a film of 2 μm or less is formed at the bottom of the micropores. A schematic diagram of this is shown in FIG.

<第4電解>
第4電解は、金属塩を含む酸性液と、添加剤とを含んで成り立っている電解液で行われる。電解液中では金属塩は、溶解して金属イオンとして用いられる。電解は、交流、直流、パルス、PRパルス波形を単独または2つ以上を組合せて行い、電圧は5~40V、時間は3~30分、液温は10~40℃、好ましくは10~25V、5~15分、16~30℃で行い、電源に極性がある場合は(被処理部材を)陰極側にセットし、陽極側は炭素板電極を用いて電解を行い、電解着色前後の水洗は脱イオン水又は純水で十分に行う。この工程で陽極酸化皮膜の微細孔中に金属が析出する。この模式図を図5に示した。
<Fourth electrolysis>
The fourth electrolysis is performed with an electrolytic solution containing an acid solution containing a metal salt and an additive. In the electrolytic solution, the metal salt is dissolved and used as metal ions. Electrolysis is carried out by AC, DC, pulse, or PR pulse waveforms alone or in combination of two or more. Perform for 5 to 15 minutes at 16 to 30 ° C. If the power source has polarity, set (the member to be treated) on the cathode side, electrolyze the anode side using a carbon plate electrode, and wash with water before and after electrolytic coloring. Deionized or pure water is sufficient. In this process, metal is deposited in the micropores of the anodized film. This schematic diagram is shown in FIG.

本実施形態の第1、2電解に用いられる電解液は、脂肪族又は芳香族のスルホン酸および/又はカルボン酸系の有機酸を主とする単独又は混合系が好ましい。あるいはこれに無機酸及び/または上記の主として用いた有機酸とは異なる有機酸、または必要に応じて添加剤を加えた電解液である。これらの液濃度は0.1~4.5mol/Lが好ましい。 The electrolytic solution used in the first and second electrolysis of the present embodiment is preferably a single or mixed system mainly composed of an aliphatic or aromatic sulfonic acid and/or carboxylic acid organic acid. Alternatively, it is an electrolytic solution obtained by adding an inorganic acid and/or an organic acid different from the organic acid mainly used above, or an additive if necessary. These liquid concentrations are preferably 0.1 to 4.5 mol/L.

本実施形態の第3電解に用いる電解液はアルカリ性の溶液で、アルカリ性化合物の単体または2つ以上を加え、更に添加剤として有機物系を加えたものを用いる。具体的には、水酸化ナトリウム、炭酸ナトリウム、リン酸ナトリウムなどで、これらを1種又は2種以上組合せて陽極酸化の電解液として用いる。これらの液濃度は0.05~2.0mol/Lで、好ましくは0.1~0.5mol/Lである。 The electrolytic solution used in the third electrolysis of the present embodiment is an alkaline solution to which an alkaline compound alone or two or more is added and an organic compound is added as an additive. Specifically, sodium hydroxide, sodium carbonate, sodium phosphate and the like are used as the electrolytic solution for anodization, either singly or in combination of two or more. The concentration of these liquids is 0.05 to 2.0 mol/L, preferably 0.1 to 0.5 mol/L.

本実施形態の第3電解液の添加剤は、カルボン酸塩、炭酸塩、リン酸塩、フッ化物及びアルミン酸塩などを1種又は2種以上組合せて添加剤として用いる。具体的には酒石酸アンモニウム、酒石酸ナトリウム、炭酸アンモニウム、炭酸ナトリウム、ポリリン酸ナトリウム、フッ化ナトリウム、フッ化アンモニウム、アルミン酸ナトリウムなどで、液濃度は0.05~1.0mol/Lで、好ましくは0.1~0.5mol/Lである。 The additive of the third electrolytic solution of the present embodiment is one or a combination of two or more of carboxylate, carbonate, phosphate, fluoride, aluminate, and the like. Specifically, ammonium tartrate, sodium tartrate, ammonium carbonate, sodium carbonate, sodium polyphosphate, sodium fluoride, ammonium fluoride, sodium aluminate, etc., with a liquid concentration of 0.05 to 1.0 mol/L, preferably 0.1 to 0.5 mol/L.

第4電解に用いる電解液は、金属塩を含む酸性液と添加剤より成り立っており、金属塩は溶解可能な金属イオンの状態で用いられている。酸性液の代表的なものとして硫酸化合物、シュウ酸化合物を主とし、添加剤としてカルボン酸系の有機酸、ホウ酸等を加えた液、添加される金属塩化合物としては、金、銀、銅、白金、錫、コバルト、ニッケル、鉄、タングステン、モリブデン、クロム、亜鉛、パラジウム、ジルコニウム、ロジウム、ルテニウム、バナジウム、チタン、マンガンなどの化合物が用いられる。得られた材料の陽極酸化皮膜の優れた耐食性を維持するには亜鉛が最も好ましい。 The electrolytic solution used in the fourth electrolysis is composed of an acid solution containing a metal salt and an additive, and the metal salt is used in the form of soluble metal ions. Typical acidic liquids are mainly composed of sulfuric acid compounds and oxalic acid compounds, and carboxylic acid organic acids, boric acid, etc. are added as additives. Metal salt compounds to be added include gold, silver, and copper. , platinum, tin, cobalt, nickel, iron, tungsten, molybdenum, chromium, zinc, palladium, zirconium, rhodium, ruthenium, vanadium, titanium and manganese. Zinc is most preferred to maintain the excellent corrosion resistance of the anodized coating of the resulting material.

本実施形態は、厚さ6~50μm、特に10~30μmの皮膜においても薄い褐色系~濃い褐色系~黒系の陽極酸化皮膜が形成されているが、この黒色系皮膜は染料または顔料などで着色されたものではなく、第4電解の金属析出により形成されたものである。この皮膜は300℃で、2週間加熱処理しても、500℃にて1時間加熱しても、目視での色調の変化が殆ど認められず、高い安定性を有する。 In this embodiment, even in a film having a thickness of 6 to 50 μm, particularly 10 to 30 μm, a light brown to dark brown to black anodized film is formed. It is not colored, but formed by metal deposition in the fourth electrolysis. Even if this film is heat-treated at 300° C. for 2 weeks or heated at 500° C. for 1 hour, almost no change in color tone is visually observed, and it has high stability.

一方、一般的な染色系の黒アルマイトは、200℃で加熱すると短時間の内に変色が始まり、200℃を越えた使用環境下で変色無く長時間使用できる染色系の黒アルマイト製品は殆どないのが現状である。 On the other hand, general dyed black anodized aluminum begins to discolor within a short period of time when heated at 200°C, and there are almost no dyed black anodized products that can be used for a long time without discoloration in an environment exceeding 200°C. is the current situation.

本実施形態において退色の指標を示す色差ΔEを検知するために300℃という温度を使用した理由は以下のとおりである。 The reason why the temperature of 300° C. is used to detect the color difference ΔE that indicates the index of fading in this embodiment is as follows.

アルミニウムは、再結晶化温度が凡そ250℃であり、この温度を境にアルミニウム加工品内に残る加工硬化(常温で圧延など変形加工を施した際に生ずる加工ひずみ)の原因である粗結晶が250℃以上で軟化し、再結晶化して生成した結晶粒は内部ひずみを持たない安定したものとなる。実用上は凡そ350℃で軟化させて内部応力を下げる作業、いわゆる焼きなまし(焼鈍)が必要となる。 Aluminum has a recrystallization temperature of about 250°C, and after this temperature, rough crystals, which are the cause of work hardening (work strain that occurs when deformation processing such as rolling at room temperature) remain in aluminum processed products, are generated. At 250° C. or higher, the crystal grains soften and recrystallize and become stable without internal strain. Practically, an operation of softening at about 350° C. to reduce the internal stress, that is, annealing is required.

アルミニウムを加工する場合に再結晶温度以下で行なう場合を冷間加工というが、この加工法の場合は常に加工硬化が起こるので、焼きなましが必要になるが、加工製品を使用時に長時間再結晶温度以上で使用することはまれであるので、軟化の起点である300℃での耐熱試験で色の退色性に異常がなければ、実用面においての退色に関しても問題なく使用することができるためである。 Cold working is the process of working aluminum below the recrystallization temperature. In this working method, work hardening always occurs, so annealing is required. Since it is rarely used above, if there is no abnormality in color fading in a heat test at 300 ° C., which is the starting point of softening, it can be used without problems in terms of fading in practical terms. .

本実施形態において瞬間的の耐熱試験を500℃の1時間に設定したのは、軟化の起点である300℃以上で長時間行うと素材自体に異常が生じるために実用上1時間が限界であるため、この間の耐熱性があれば十分とした。 In this embodiment, the momentary heat resistance test is set at 500°C for 1 hour because the material itself will be abnormal if it is performed for a long time at 300°C or higher, which is the starting point of softening, so 1 hour is the practical limit. Therefore, it was determined that heat resistance during this period was sufficient.

本実施形態における第1電解及び第2電解において好ましく用いる有機酸は、脂肪族又は芳香族のスルホン酸および/又はカルボン酸系の単独又は混合系で、具体的にはシュウ酸、マロン酸、コハク酸、リンゴ酸、マレイン酸、クエン酸、酒石酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸など、スルホン酸系ではスルホサリチル酸、スルホフタル酸、スルホ酢酸などで、これらを1種又は2種以上組合せて陽極酸化の際の電解液として用いる。 The organic acid preferably used in the first electrolysis and the second electrolysis in the present embodiment is an aliphatic or aromatic sulfonic acid and/or carboxylic acid alone or in a mixed system, specifically oxalic acid, malonic acid, and succinic acid. acid, malic acid, maleic acid, citric acid, tartaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, and sulfosalicylic acid, sulfophthalic acid, sulfoacetic acid, etc. One or a combination of two or more of these is used as an electrolytic solution for anodization.

これらの液濃度は0.1~4.5mol/Lが好ましい。電解方式は直流波形で液温0~40℃、電流密度0.6~3.0A/dm、10~120分、好ましくは液温10~30℃、電流密度0.8~2.0A/dm、電解時間20~90分で行うか、パルス波形、PRパルス波形、交流波形で、1サイクルでの正電流の平均電流密度0.1~10A/dm、負電流の平均電流0.0~10A/dm、液温0~40℃で好ましくは、1サイクルでの正電流の平均電流密度0.6~3.0A/dm、負電流の平均電流0.0~3.0A/dm、液温10~30℃で、直流波形、交流波形パルス波形、PRパルス波形の単独又は2つ以上の組合せた電流または電圧波形を用いて液温-10~60℃で、陽極酸化処理して陽極酸化皮膜の厚さを6~50μmに製造する。These liquid concentrations are preferably 0.1 to 4.5 mol/L. The electrolysis method is DC waveform, liquid temperature 0-40°C, current density 0.6-3.0A/dm 2 , 10-120 minutes, preferably liquid temperature 10-30°C, current density 0.8-2.0A/dm 2 . dm 2 , electrolysis time 20-90 minutes, pulse waveform, PR pulse waveform, AC waveform, average current density of positive current 0.1-10 A/dm 2 , average current of negative current 0.1-10 A/dm 2 in one cycle. 0 to 10 A/dm 2 , liquid temperature 0 to 40° C. Preferably, average current density of positive current 0.6 to 3.0 A/dm 2 , average current of negative current 0.0 to 3.0 A in one cycle /dm 2 , at a liquid temperature of 10 to 30°C, anodizing at a liquid temperature of -10 to 60°C using a current or voltage waveform alone or in combination of two or more of DC waveform, AC waveform pulse waveform, and PR pulse waveform. After treatment, the thickness of the anodized film is produced to be 6 to 50 μm.

通常使用される直流電解の電流密度とは、電気量(A・秒)を電解時間(秒)と被処理物の表面積(dm)で割った値をいい、直流定電流電解(通常直流電解という)では被処理物に対して時間によって電流変化がないので、電流密度と平均電流密度は同意語として使われており、その単位はA/dmで表される。しかし、パルス、PRパルス波形の様な場合には時間によって「正電流」、「0(電流の流れない時間)」または極性が反転した「負電流」が流れるので、波形における平均電流密度は電流波形の1周期(サイクル)において、正電流部分と負電流部分に分けてそれぞれの電気量(A・秒)を電解時間と被処理物の表面積で割った値を、正電流平均電流密度、負電流平均電流密度として表示することが必要になる。The current density of DC electrolysis, which is usually used, refers to the value obtained by dividing the amount of electricity (A sec) by the electrolysis time (sec) and the surface area (dm 2 ) of the object to be treated. ), current density and average current density are used synonymously, and the unit is A/dm 2 , because the current does not change with time for the object to be processed. However, in the case of pulse and PR pulse waveforms, depending on the time, "positive current", "0 (no current flow)", or "negative current" with reversed polarity flows, so the average current density in the waveform is the current In one period (cycle) of the waveform, the positive current average current density and negative It is necessary to display the current as the average current density.

例として、PR波形で、電解面積2dmの被処理物を電解した際に、波形の1サイクルを10秒として正電流2Aで4秒流した後に負電流を1Aで6秒流す場合、正電流及び負電流の平均電流密度はそれぞれ0.4A/dm、0.3A/dmとなる。なお、正電流のみを使用する場合には負電流の平均電流密度は0.0A/dmになる。As an example, when electrolyzing a workpiece with an electrolysis area of 2 dm 2 with a PR waveform, one cycle of the waveform is set to 10 seconds, and a positive current of 2 A is applied for 4 seconds, followed by a negative current of 1 A for 6 seconds. and the average current densities of negative current are 0.4 A/dm 2 and 0.3 A/dm 2 , respectively. When only positive current is used, the average current density of negative current is 0.0 A/dm 2 .

有機酸を主とする電解液に添加剤として添加できるものは、無機酸系もしくは有機酸系の1種又は2種以上の化合物である。有機酸系の化合物としては上記した脂肪族又芳香族のスルホン酸および/又はカルボン酸系の化合物であるが、有機酸を主とする電解液に用いた有機酸とは異なるものを添加剤として用いる。他にまたエチレングリコール、ジエチレングリコール、グリセリン等のアルコール系化合物も溶媒として使用でき、その量は60%までとし、これらアルコール系化合物は水と共に溶媒の一部として使用することも可能である。無機酸系の化合物としてはホウ酸、ケイ酸、フッ酸、硫酸、リン酸、硝酸もしくはこれらの塩類、ピロリン酸、スルファミン酸もしくはこれらの塩類、又はフッ化物塩、重フッ化物塩、過マンガン酸塩などの1種または2種以上を使用することが出来る。これら添加剤の使用量は、電解液に主として使用した有機酸の使用量より少ない量で、0.001~0.9mol/Lの液濃度とすることは好ましい。 What can be added as an additive to the electrolytic solution mainly composed of an organic acid is one or more compounds of an inorganic acid type or an organic acid type. The organic acid-based compound is the above-described aliphatic or aromatic sulfonic acid and/or carboxylic acid-based compound. use. In addition, alcohol compounds such as ethylene glycol, diethylene glycol, glycerin, etc. can also be used as solvents, the amount of which is up to 60%, and these alcohol compounds can be used together with water as part of the solvent. Inorganic acid compounds include boric acid, silicic acid, hydrofluoric acid, sulfuric acid, phosphoric acid, nitric acid or salts thereof, pyrophosphoric acid, sulfamic acid or salts thereof, fluoride salts, bifluoride salts, permanganic acid. One or two or more can be used, such as salt. The amount of these additives used is less than the amount of the organic acid used in the electrolytic solution, and the concentration of the liquid is preferably 0.001 to 0.9 mol/L.

本実施形態の第4電解は薄い褐色系~黒系の耐候・退色性に優れ、優れた表面硬度を持つ陽極酸化皮膜を製造することが出来る。その場合の第4電解の電解条件は、電流もしくは電圧波形として交流、直流、パルス、PRパルス波形を単独または2つ以上を組合せて行い、電圧は5~40V、時間は3~30分、液温は10~40℃、好ましくは10~25V、5~15分、16~30℃で行い、電源に極性がある場合は(被処理部材を)陰極側にセットし、陽極側は炭素板電極を用いて電解を行い、電解前後の水洗は脱イオン水又は純水で十分に行う。 The fourth electrolysis of the present embodiment can produce a light brown to black anodized film with excellent weather resistance and fading resistance and excellent surface hardness. In that case, the electrolysis conditions of the fourth electrolysis are as follows. The temperature is 10 to 40° C., preferably 10 to 25 V, 5 to 15 minutes, 16 to 30° C. When the power supply has polarity, the (member to be treated) is set on the cathode side, and the anode side is a carbon plate electrode. is used to perform electrolysis, and washing before and after electrolysis is sufficiently performed with deionized water or pure water.

本実施形態で退色性の少なさを示す尺度として用いている色差(ΔE)とは、従来官能評価することしかできなかった「色の差」を定量的に表すようにしたものである。例えば人間の目には同じに見えても測色器を用いて、基準色の点の色相、彩度、明度を三次元測定し、サンプル色の点についても同様に測定し、この三次元2点間の距離を色差として表す手法である。本実施形態では耐熱試験を実施する際に、加熱前の色を基準点とし、加熱後の色を分光測色計で測定し、三次元2点間の距離をΔEで表示したもので、現在では分光測色計で自動的に数値が表示できるようになっている。一般的に色差ΔE=1程度は二つの色を横に並べて見比べたときに違いが判別できる程度の差、ΔE=2~3程度は二つの色を離して見比べたときに違いが判る程度を示している。 The color difference (ΔE), which is used as a measure of the degree of fading resistance in the present embodiment, quantitatively expresses the “color difference” that could only be evaluated conventionally by sensory evaluation. For example, even if they look the same to the human eye, a colorimeter is used to three-dimensionally measure the hue, saturation, and lightness of the point of the reference color, and the point of the sample color is measured in the same way. This is a method of expressing the distance between points as a color difference. In this embodiment, when the heat resistance test is performed, the color before heating is used as a reference point, the color after heating is measured with a spectrophotometer, and the distance between two three-dimensional points is indicated by ΔE. can automatically display numerical values with a spectrophotometer. In general, color difference ΔE = 1 is a difference that can be distinguished when comparing two colors side by side, and ΔE = 2 to 3 is a difference that can be seen when two colors are separated and compared. showing.

色についての表現方法にはマンセル(1905年)法があり、色相、明度、彩度で表されている。これを数値化する過程で国際照明委員会(CIE)が1931年にXYZ表色系、1976年にL色空間が制定され、日本でもJISZ8781-4に採用された。後L色空間に改良され、JIS規格になっている。本実施形態の色差はL色空間で表した色の2点簡の距離を色差(ΔE)として表し、本実施形態の色差(ΔE)は試料の同一面をコニカミノルタ社製の分光測色計(CM-700d)を用いて、L色空間法で測定し、その各色差を算出した。There is a Munsell (1905) method for expressing colors, which are expressed by hue, lightness, and saturation. In the process of quantifying this, the International Commission on Illumination (CIE) established the XYZ color system in 1931 and the L * a * b * color space in 1976, which were also adopted in Japan as JISZ8781-4. Later, it was improved to the L * a * b * color space and became the JIS standard. The color difference in this embodiment is expressed as the color difference (ΔE), which is the distance between two points of color expressed in the L * a * b * color space. was measured by the L * a * b * color space method using a spectral colorimeter (CM-700d), and each color difference was calculated.

本実施形態の陽極酸化皮膜は、従来品ならば200℃を超える温度での加熱で茶褐色系へ退色し始め、300℃では凡そ1時間程度で色差ΔEが3.0を越えてしまうが、本実施形態では同温度で2週間耐熱試験してもΔEは3.0以下を保つことが出来き、短時間ならば500℃で1時間の耐熱試験においても同様の結果が得られる。また、電解着色皮膜の場合、ニッケル又はコバルトを多孔質細孔内に沈着させた皮膜では400℃で100時間(4日間)、褪色性に変化がない皮膜の提案もあるが、黒系の陽極酸化皮膜の300℃で2週間もの加熱処理で、ΔEが3.0以下であるような材料はまだ見出されていない。更に表面硬度もHV470程度で実用上は耐傷の防止にもなる。 If the anodized film of this embodiment is a conventional product, it will begin to fade to a brownish color when heated at a temperature exceeding 200°C, and at 300°C, the color difference ΔE will exceed 3.0 in about 1 hour. In the embodiment, ΔE can be maintained at 3.0 or less even after a two-week heat resistance test at the same temperature, and similar results can be obtained in a one hour heat resistance test at 500° C. for a short period of time. In the case of an electrolytically colored film, there is a proposal for a film in which nickel or cobalt is deposited in porous pores, and there is no change in discoloration at 400° C. for 100 hours (4 days). No material has yet been found that shows ΔE of 3.0 or less after heat treatment of an oxide film at 300° C. for 2 weeks. Furthermore, the surface hardness is about HV470, and practically, it also prevents scratch resistance.

また、本実施形態の陽極酸化皮膜は、と同時にビッカース硬さ試験でHV470以上の硬さを有するものである。さらに、電磁波シールド効果が500KHz~1000MHzにおいて電磁界の特性がアルミ素地と同等という優れた特徴を同時に有している。 In addition, the anodized film of this embodiment also has a hardness of HV470 or higher in a Vickers hardness test. In addition, it has an excellent electromagnetic wave shielding effect at the frequency of 500 kHz to 1000 MHz, which is equivalent to that of the aluminum base.

本実施形態により製造される陽極酸化皮膜の電磁波シールド効果測定は一般社団法人KEC関西電子工業振興センター、試験事業部においてKEC法にて100KHz-1000MHz(1GHz)までの電解、磁界測定を行った結果、保証可能な数値として500KHz-1000MHz(1GHz)においては30db以上あり、これはアルミニウム素地と同じ値で、アルミニウムの限界値と同等のシールド効果を持っている。これにより耐熱性があり、耐食性があることにより腐食がされにくく、シールド効果が長期にわたり安定に保たれ、しかも傷が付きにくく、熱吸収・放射の良い材料としての役割が加わり従来にない材料として考えられる。 Electromagnetic shielding effect measurement of the anodized film manufactured by this embodiment is the result of electrolysis and magnetic field measurement up to 100 kHz-1000 MHz (1 GHz) by the KEC method at the KEC Kansai Electronic Industry Promotion Center, Test Division. , 500kHz-1000MHz (1GHz) as a guaranteed value is 30db or more, which is the same value as the aluminum base, and has a shielding effect equivalent to the limit value of aluminum. As a result, it has heat resistance and corrosion resistance, so it is difficult to corrode, the shielding effect is maintained stably for a long time, and it is hard to be scratched. Conceivable.

電磁波は空間の電場と磁場の変化によって形成される波(波動)で、光や電波は電磁波の1種であり、一般に赤外線よりも波長が長いもの(mm以上のもの)を電波、1μm程度までを赤外線、0.7~0.3μmまでを可視光、更に短く数nmまでを紫外線とよび、10nm~1pmまでをX線と大まかに分類をしている。また電磁波は波と粒子の性質を併せ持ち、散乱、反射、屈折や干渉など、波長によって様々な波としての性質を示す一方で、微視的には粒子として個数を数えることができる。 Electromagnetic waves are waves (waves) formed by changes in the electric and magnetic fields in space. Light and radio waves are a type of electromagnetic waves. In general, radio waves have longer wavelengths (mm or longer) than infrared rays, up to about 1 μm. is called infrared rays, 0.7 to 0.3 μm is called visible light, shorter wavelengths up to several nm are called ultraviolet rays, and 10 nm to 1 pm is called X-rays. Electromagnetic waves have both wave and particle properties, and show various wave properties such as scattering, reflection, refraction, and interference depending on the wavelength.

本実施形態において使用する電波を大別すると、長波(LF)、中波(MF),短波(HF)、超短波(VHF)、極超短波(UHF)、センチ波(SHF)、ミリ波(EHF),サブミリ波があり、この中の中波~極超短波の500KHz~1000MHz(1GHz)で、主な用途として携帯電話、スマートフォン、TV、タクシー無線、航空機電話、AMラジオ、FM放送、船舶、国際放送、船舶・航空機用ビーコン等に使用されている波長域のシールドを行う目的である。 Broadly speaking, the radio waves used in this embodiment are long waves (LF), medium waves (MF), short waves (HF), very high frequencies (VHF), ultrahigh frequencies (UHF), centimeter waves (SHF), and millimeter waves (EHF). , There are submillimeter waves, of which 500KHz to 1000MHz (1GHz) from medium waves to ultrashort waves, which are mainly used for mobile phones, smartphones, TVs, taxi radios, aircraft phones, AM radios, FM broadcasting, ships, international broadcasting. The purpose is to shield the wavelength range used for beacons for ships and aircraft.

近年、携帯電話はスマートフォンとなり、ロボット、ドローン等の多くの機器が無線で通信するようになり、身の回りに電子機器が満ち溢れている。これらは必要な電磁波を受け入れ、不必要な電磁波を排除(シールド)するという電磁両立性(EMC対策)がますます高まってきた。また、機器同士のノイズ対策に加え、電磁波過敏症等の人体への影響を心配する人たちも実際に多く存在する。 In recent years, mobile phones have become smart phones, and many devices such as robots and drones have come to communicate wirelessly, and electronic devices are everywhere around us. Electromagnetic compatibility (EMC countermeasures), which accepts necessary electromagnetic waves and eliminates (shields) unnecessary electromagnetic waves, has become more and more enhanced. Moreover, in addition to countermeasures against noise between devices, there are actually many people who are concerned about the effects on the human body, such as electromagnetic hypersensitivity.

ここで一般的には電磁波シールドはRFと呼ばれ約300Hz~3THzの周波数を対象にしている。電磁波シールドの基本は反射損失、吸収損失またはそれらの組み合わせの多重反射損失よりシールドの性能を上げている。反射損失とは電磁波がシールド材に入射し透過する際にシールド表面で反射することによる損失(減衰)、吸収損失は電磁波がシールド材に入射する際にシールド材内部に誘導電流として吸収され、多重反射損失は複数のシールド材を積層に組み、電磁波がシールド材の内側に侵入するときに一部は反射し、1部は透過し、次のシールド材に伝播し、再び反射と侵入と透過を繰り返すことにより減衰しシールド効果を高める。 Here, the electromagnetic wave shield is generally called RF and targets frequencies of about 300 Hz to 3 THz. The basis of electromagnetic wave shielding is to raise the performance of the shield from multiple reflection losses of reflection loss, absorption loss or a combination thereof. Reflection loss is the loss (attenuation) due to reflection on the surface of the shield when an electromagnetic wave enters the shield material and is transmitted through it. Reflection loss is measured by assembling multiple shielding materials in layers, and when an electromagnetic wave penetrates inside the shielding material, part of it is reflected, part of it is transmitted, it propagates to the next shielding material, and reflection, penetration, and transmission occur again. Attenuates by repeating and enhances the shield effect.

電磁波シールド効果は、デシベル(dB)を使って表現される。電磁波がシールド前及びシールド後でどのくらい減衰したかを相対的に表す単位で、以下の計算式より導き出されている。 Electromagnetic shielding effectiveness is expressed using decibels (dB). It is a unit that relatively expresses how much electromagnetic waves are attenuated before and after shielding, and is derived from the following formula.

Figure 0007165462000003
Figure 0007165462000003

電磁波シールド材の性能を評価の代表的な方法は社団法人関西電子工業センターが開発した「KEC法」がある。なお、デシベルとシールド率と減衰率の関係を、表2に示す。 A representative method for evaluating the performance of electromagnetic wave shielding materials is the "KEC method" developed by the Kansai Electronics Industry Center . Table 2 shows the relationship between the decibel, the shield rate, and the attenuation rate.

Figure 0007165462000004
Figure 0007165462000004

アルミニウムの陽極酸化皮膜が当初絶縁材料として開発され、長い年月が過ぎ改良に改良を加え今日の陽極酸化皮膜となり、アルミニウムの発展に寄与したことは間違いがないが、近年の半導体の進歩により実装密度が格段に上がりこれに伴って電子機器の小型化が急速に進んできた、このために従来問題にならなかった空間が極端に狭められ、静電気によるスパークが発生しそれが電子機器に重大なダメージを招く結果となってきた。この問題を解決する為に静電気を表面に溜めないで常にグラウンドに落とせるような、導体で硬さを兼ね備えしかもLCAを満足できる皮膜が求められていたところ、本実施形態の陽極酸化皮膜が導電性と硬さに加えさらに耐熱性、耐食性、電磁波シールド効果、放熱・吸熱効果も併せ持った優れた皮膜が開発された。これらを組み合わせることにより電子機器の更なる小型化、通信では5Gのシールド効果、スマートフォン等のチャージ等としても使用されることに期待される。 The anodized film of aluminum was originally developed as an insulating material, and after many years of improvement, it became the anodized film of today, and there is no doubt that it contributed to the development of aluminum. Density has risen markedly, and along with this, the miniaturization of electronic equipment has progressed rapidly.For this reason, the space that was not a problem in the past has become extremely narrow, and static electricity sparks occur, which is a serious problem for electronic equipment. It has resulted in damage. In order to solve this problem, there has been a demand for a film that is a conductor, has hardness, and satisfies the LCA, so that the static electricity does not accumulate on the surface and can always be dropped to the ground. In addition to hardness, we have developed an excellent film that has heat resistance, corrosion resistance, electromagnetic wave shielding effect, heat dissipation and heat absorption effect. By combining these, it is expected that electronic devices will be further miniaturized, 5G shielding effect will be used in communication, and it will be used as a charge for smartphones and the like.

以下、本開示の本実施形態を、実施例を以て具体的に説明する。なお、実施例において、電気抵抗の測定法は、低抵抗測定に優れている直流方式4端子法(電圧降下法)を図6のように用いて行った。抵抗計RM3548(日置電機株式会社製)6を陽極酸化皮膜の表面12と素地3とに1cmの銅に金メッキをした電極11を乗せ表面に50g/cmの加重をかけ電気抵抗を測定する。ビッカース硬さ試験は顕微鏡断面測定法により株式会社島津製作所社製の微小硬度計(HMV-G-XY-D)を用いて荷重10gfで15秒行って測定した平均皮膜硬さを示す。Hereinafter, the present embodiment of the present disclosure will be specifically described with examples. In the examples, the electrical resistance was measured by using the direct-current four-terminal method (voltage drop method), which is excellent in low resistance measurement, as shown in FIG. An ohmmeter RM3548 (manufactured by Hioki Electric Co., Ltd.) 6 is placed on the surface 12 of the anodized film and the substrate 3, and an electrode 11 made of gold-plated copper with a thickness of 1 cm 2 is placed, and a weight of 50 g/cm 2 is applied to the surface to measure the electrical resistance. . The Vickers hardness test shows the average film hardness measured under a load of 10 gf for 15 seconds using a micro-hardness tester (HMV-G-XY-D) manufactured by Shimadzu Corporation by microscopic cross-section measurement.

但し、皮膜厚さが20μm以下の場合にはヌープ式の圧子を用いて同一荷重、同一時間にて測定したものである。皮膜厚さは株式会社ケット科学研究所社製渦電流膜厚計(LH-373)で計測した平均厚さを示す。耐食試験はJIS‐Z2371の中性塩水噴霧試験機(株式会社スガ試験機社製)を用いて、連続噴霧時間1カ月(720時間)後、評価法としてJIS‐H8679‐1(アルミニウム及びアルミニウム合金の陽極酸化皮膜に発生した孔食の評価方法‐第1部:レイティングナンバー方法(RN)にて行う。 However, when the film thickness is 20 μm or less, the measurement was performed using a Knoop type indenter under the same load and at the same time. The film thickness is the average thickness measured by an eddy current film thickness meter (LH-373) manufactured by Kett Science Laboratory Co., Ltd. The corrosion resistance test was performed using a JIS-Z2371 neutral salt spray tester (manufactured by Suga Test Instruments Co., Ltd.), and after one month of continuous spraying (720 hours), the evaluation method was JIS-H8679-1 (aluminum and aluminum alloy Evaluation method of pitting corrosion generated in the anodized film of - Part 1: Performed by the rating number method (RN).

実際は塩水噴霧試験機より取り出し後、表面の腐食生成物を物理的、化学的に除去し、乾燥後レイティングナンバー標準図表と比較して評価する。耐熱試験は2種類あり、1方は300℃で2週間加熱処理、他方は500℃,1時間の加熱処理を行い、室温になった時点でコニカミノルタ社製の分光測色計(CM-700d)で計測し、加熱前後の色差をL色空間法における色差(ΔE)で表した。電磁波シールド効果測定は一般社団法人KEC関西電子工業振興センター、試験事業部においてKEC法にて100KHz-1000MHz(1GHz)までの電界、磁界測定を行った結果を表し、熱放射率は赤外線放射率測定器として株式会社島津製作所製の分光放射率測定システム(IRTracer-100)を用いて被測定物温度を100℃とし、黒体の放射率を100%としたときの中赤外線波長3~6の全放射率及び波長3~25μmの中~遠赤外線領域の全放射率をそれぞれ測定し、%で表示する。In practice, after taking it out of the salt spray tester, the corrosive products on the surface are removed physically and chemically, and after drying, it is evaluated by comparing with the rating number standard chart. There are two types of heat resistance tests, one is heat treatment at 300 ° C. for 2 weeks, the other is heat treatment at 500 ° C. for 1 hour. ), and the color difference before and after heating was expressed as the color difference (ΔE) in the L * a * b * color space method. Electromagnetic shield effect measurement is the result of electric field and magnetic field measurement up to 100KHz-1000MHz (1GHz) by the KEC method at KEC Kansai Electronics Industry Promotion Center, Test Division, and thermal emissivity is infrared emissivity measurement. Using a spectral emissivity measurement system (IRTracer-100) manufactured by Shimadzu Corporation as a device, the temperature of the object to be measured is 100 ° C., and the emissivity of the black body is 100%. The emissivity and the total emissivity in the middle to far infrared region with a wavelength of 3 to 25 μm are measured and expressed in %.

アルミニウムA1050材(Si 0.25%、Mn0.05%以下)で50×100×t1.0mmのテストピースを前処理として、エマルジョン脱脂・45℃×5分―5%硝酸・室温×3分-エッチング20%水酸化ナトリウム・室温×1分―脱スマット・10%硫酸・室温×3分を行い、第1電解液をマロン酸0.7mol/Lに、添加剤として硫酸0.05mol/Lを加えたものとし、液温25±1℃、電源は直流波形を用い、電流密度1.4±0.1A/dmで70分行なった。A test piece of aluminum A1050 material (Si 0.25%, Mn 0.05% or less) of 50 × 100 × t 1.0 mm is pretreated by emulsion degreasing / 45 ° C × 5 minutes - 5% nitric acid / room temperature × 3 minutes - Etching 20% sodium hydroxide/room temperature x 1 minute - desmutting/10% sulfuric acid/room temperature x 3 minutes; The liquid temperature was 25±1° C., the current density was 1.4±0.1 A/dm 2 , and the current density was 1.4±0.1 A/dm 2 for 70 minutes.

第2電解は、電源を切らずに第1電解の最終電圧70Vを2分保ち、その後5V下げ、60秒保持、次に再び5V下げ―60秒保持を電圧10Vまで繰り返し、その後7V,5V,3V,2V,1V、0Vと順次下げていく、この時の保持時間は各60秒で、17分で0Vになった。 In the second electrolysis, the final voltage of the first electrolysis was maintained at 70 V for 2 minutes without turning off the power, then lowered by 5 V, held for 60 seconds, then lowered again by 5 V and held for 60 seconds, repeatedly up to a voltage of 10 V, then 7 V, 5 V, The voltage was gradually lowered to 3 V, 2 V, 1 V, and 0 V, and the holding time at this time was 60 seconds each, and 0 V was reached in 17 minutes.

第2電解終了後水洗を十分に行い、第3電解として、液組成は水酸化ナトリウム0.3mol/Lに添加剤として酒石酸アンモニウム0.05mol/Lを加え液温は5℃、直流波形で電流密度0.8A/dm、電解時間10分行った。After completion of the second electrolysis, it was thoroughly washed with water. As the third electrolysis, the liquid composition was 0.3 mol/L of sodium hydroxide, and 0.05 mol/L of ammonium tartrate was added as an additive, and the liquid temperature was 5°C. Density was 0.8 A/dm 2 and electrolysis time was 10 minutes.

その後、十分に水洗後、第4電解として直流電解で、液組成は硫酸亜鉛300g/L、硫酸アンモニウム28g/L、ホウ酸25g/L、の液で、PH=2~3.5、浴温29±1℃、電流密度1.0A/dmで20分電解した。 Then, after sufficiently washing with water, DC electrolysis is performed as the fourth electrolysis. The liquid composition is 300 g/L of zinc sulfate, 28 g/L of ammonium sulfate, and 25 g/L of boric acid. Electrolysis was performed for 20 minutes at ±1° C. and a current density of 1.0 A/dm 2 .

その後、更に封孔処理を95~98℃で20分沸騰水封孔を行った結果、皮膜表面とアルミニウム素地の体積抵抗が、8×10-3Ω、顕微鏡断面測定法による平均皮膜硬さがHV475で、平均皮膜厚さが21μm、色調は濃い褐色系の黒、耐食性は720時間でRN9.8、電磁波シールド効果は電界が43dB以上,磁界が36dB以上、耐熱性は300℃加熱前後のL色空間の色差(ΔE)は2.6であり、500℃で2.2、赤外線放射率の中赤外線波長領域3~6μmの全放射率は78.3%、波長3~25μmの中~遠赤外線領域の全放射率が86.9%の陽極酸化皮膜を得た。また、得られた陽極酸化皮膜には、クラックの発生は見られなかった。 After that, the sealing treatment was further carried out with boiling water at 95 to 98°C for 20 minutes. HV475, average film thickness is 21 μm, color is dark brownish black, corrosion resistance is RN9.8 after 720 hours, electromagnetic wave shielding effect is 43 dB or more for electric field, 36 dB or more for magnetic field, heat resistance is L before and after heating at 300°C. The color difference (ΔE) in the * a * b * color space is 2.6, which is 2.2 at 500°C. An anodized film having a total emissivity of 86.9% in the middle to far infrared region of 25 μm was obtained. Also, no cracks were observed in the obtained anodized film.

比較例1Comparative example 1

試験片A1050材、100×50×t1.0mmを用いて、有機脱脂後、50g/dmの水酸化ナトリウム水溶液、70℃で30秒エッチングしてから、第1電解は98g/dm硫酸水溶液、30℃、電圧20V(約3A/dm)時間30分、対極はカーボンとし電解をし、第2電解のバリヤー除去は電解終了前に浴電圧を3分で0.08Vまで下げ電源を切り、更に試験片と対極(カーボン)とを導線でつないだまま液中でガルバニックに溶解を15分行った。第3電解は亜鉛の電析を行い、液組成は350g/L硫酸亜鉛‐30g/L硫酸アンモニウム‐30g/Lホウ酸‐15g/Lデキストリン、対極 亜鉛で、PH=2~3.5、浴温30±1℃、電流密度1.0A/dmで20分電解した。Using a test piece A1050 material, 100 × 50 × t1.0 mm, after organic degreasing, 50 g / dm 3 sodium hydroxide aqueous solution, etching at 70 ° C. for 30 seconds, the first electrolysis is 98 g / dm 3 sulfuric acid aqueous solution , 30° C., voltage 20 V (approximately 3 A/dm 2 ), time 30 minutes, electrolysis using carbon as the counter electrode, barrier removal in the second electrolysis, the bath voltage was lowered to 0.08 V in 3 minutes before the end of the electrolysis, and the power was turned off. Further, while the test piece and the counter electrode (carbon) were connected with a lead wire, the sample was galvanically dissolved in the liquid for 15 minutes. In the third electrolysis, zinc was electrodeposited, and the liquid composition was 350g/L zinc sulfate - 30g/L ammonium sulfate - 30g/L boric acid - 15g/L dextrin, counter electrode zinc, pH = 2 to 3.5, bath temperature. Electrolysis was performed at 30±1° C. and a current density of 1.0 A/dm 2 for 20 minutes.

その結果得られた陽極酸化皮膜は、体積抵抗が4×10-1Ω、断面皮膜硬さはHV380、断面平均皮膜厚さは26μm、耐食性はRN9.0、200℃に加熱冷却後クラックは網目状に発生し、比較例1では抵抗、硬度、耐食性、電磁波シールド効果、耐熱性、赤外線放射率が十分ではなく、目的とする材料が得られなかった。 The resulting anodized film had a volume resistivity of 4×10 -1 Ω, a cross-sectional film hardness of HV380, a cross-sectional average film thickness of 26 μm, a corrosion resistance of RN9.0, and after heating and cooling to 200° C., the cracks were network-like. In Comparative Example 1, resistance, hardness, corrosion resistance, electromagnetic wave shielding effect, heat resistance and infrared emissivity were not sufficient, and the desired material could not be obtained.

比較例2Comparative example 2

試験片A1100材、100×100×t1.0を用いて、有機脱脂後、50g/Lの水酸化ナトリウム、70℃、30秒エッチング―30%硝酸溶液、常温、10秒浸漬による脱スマットをおこない、第1電解は、硫酸100g/L、30℃、電圧20V、電解時間20分、対極はカーボンとし、第2電解のバリヤー除去は、皮膜作成後電圧を一気に0Vまで下げ、その後0.1Vの電圧を13分かけ、第3電解の金属析出は、硫酸ニッケル280g/L、塩化ニッケル45g/L、ホウ酸30g/L、硫酸コバルト15g/L、サッカリン1g/L、PH4.0、液温50~60℃、電流密度0.15A/dm、10分、対極Ni、第4電解として酢酸ニッケル5g/L,ホウ酸5g/L,70℃、20分、さらに純水を98℃以上の沸騰水にて、20分を行った。Using a test piece A1100 material, 100×100×t1.0, after organic degreasing, desmutting is performed by etching with 50 g/L sodium hydroxide at 70° C. for 30 seconds and immersing in a 30% nitric acid solution at room temperature for 10 seconds. , 1st electrolysis, sulfuric acid 100 g / L, 30 ° C., voltage 20 V, electrolysis time 20 minutes, carbon as the counter electrode, barrier removal in the 2nd electrolysis, the voltage is lowered to 0 V at once after forming the film, and then 0.1 V Voltage was applied for 13 minutes, and metal deposition in the third electrolysis was nickel sulfate 280 g/L, nickel chloride 45 g/L, boric acid 30 g/L, cobalt sulfate 15 g/L, saccharin 1 g/L, pH 4.0, solution temperature 50. Up to 60°C, current density 0.15A/dm 2 , 10 minutes, counter electrode Ni, fourth electrolysis: nickel acetate 5g/L, boric acid 5g/L, 70°C, 20 minutes, pure water boiling at 98°C or higher 20 min in water.

その結果、得られた陽極酸化皮膜は、平均皮膜厚さが22μm、体積抵抗が平均1.67×10-1Ω、硬さがヌープ方式でHV380、耐食性がRN8、耐熱性は300℃‐2週間、色差(ΔE)3.8、500℃‐1時間で、色差(ΔE)3.5、熱放射率は3~6μmで0.631(63.1%)、3~25μmでは72.8%であった。また、得られた陽極酸化皮膜を、200℃に加熱冷却したところ、クラックが網目状に発生し、抵抗、硬度、耐食性、電磁波シールド効果、耐熱性、赤外線放射率が十分ではなく、目的とする材料が得られなかった。 As a result, the obtained anodized film had an average film thickness of 22 μm, an average volume resistance of 1.67×10 −1 Ω, a hardness of HV380 by the Knoop method, a corrosion resistance of RN8, and a heat resistance of 300° C.-2. Weekly color difference (ΔE) 3.8, 500° C.-1 hour color difference (ΔE) 3.5, thermal emissivity 0.631 (63.1%) at 3-6 μm, 72.8 at 3-25 μm %Met. In addition, when the obtained anodized film was heated and cooled to 200 ° C., cracks occurred in a mesh pattern, and the resistance, hardness, corrosion resistance, electromagnetic wave shielding effect, heat resistance, and infrared emissivity were not sufficient. No material was available.

比較例3Comparative example 3

材料、前処理、第1電解、第4電解、封孔処理及び皮膜の計測は実施例1と同様に行い、第第2、3電解を除き第4電解処理を行い表面観察するとスポーリングが発生し、皮膜が火山の噴火口の様に見られたので以後の工程を中止した。 The materials, pretreatment, first electrolysis, fourth electrolysis, sealing treatment, and film measurement were performed in the same manner as in Example 1. Except for the second and third electrolysis, the fourth electrolysis treatment was performed, and when the surface was observed, spalling occurred. However, the film looked like a volcanic crater, so the subsequent processes were stopped.

比較例4Comparative example 4

材料、前処理、第4電解、封孔処理及び皮膜の計測は実施例1と同様に行い、第1電解を硫酸15%、電流密度1.0~1.1A/dm、電解電圧14~16V、浴温19~20℃、電解時間60分、電解終了後十分水洗をし、第2,3電解を除き、第4電解、封孔処理を行って、陽極酸化皮膜を得た。The materials, pretreatment, fourth electrolysis, sealing treatment, and measurement of the film were performed in the same manner as in Example 1. 16 V, bath temperature 19 to 20° C., electrolysis time 60 min.

得られた陽極酸化皮膜は、均一な濃い褐色となり、皮膜表面とアルミニウム素地の体積抵抗は10Ω以上の絶縁体で、硬さはヌープ式の断面平均硬さHV290、平均皮膜厚さは20μm、耐食性はRN10で腐食無し、電磁波シールド効果は電界が45dB,磁界が28dB上、耐熱試験は300℃‐14日で加熱処理前後のL色空間での色差(ΔE)は3.2、500℃‐1時間で色差(Δ3.1)、赤外線放射率は中赤外線領域(3~6μm)の全放射率は65.3%、中~遠赤外線領域(3~25μm)の全放射率は75.2%であり、クラックが全面に網目状に発生した。この製法では硬度を除き、抵抗、硬度、耐食性、電磁波シールド効果赤外線放射率が十分ではなく、目的とする材料が得られなかった。 The resulting anodized film had a uniform dark brown color, and the film surface and the aluminum substrate were insulators with a volume resistivity of 10 6 Ω or more. , Corrosion resistance is RN10, no corrosion, electromagnetic shielding effect is 45 dB for electric field, 28 dB for magnetic field, heat resistance test is 300 ° C - 14 days, color difference (ΔE) in L * a * b * color space before and after heat treatment is 3 2. Color difference (Δ3.1) at 500℃-1 hour, total infrared emissivity in mid-infrared region (3-6μm) is 65.3%, total emissivity in mid-to-far infrared region (3-25μm) The emissivity was 75.2%, and cracks were generated in a mesh pattern over the entire surface. Except for hardness, this manufacturing method was not sufficient in terms of resistance, hardness, corrosion resistance, electromagnetic wave shielding effect, and infrared emissivity, and the target material could not be obtained.

比較例5Comparative example 5

材料、前処理、第1電解、第2電解、第4電解、封孔処理及び皮膜の計測は実施例1と同様に行い、第3電解を除いて陽極酸化皮膜を製造した。得られた陽極酸化皮膜は、皮膜表面とアルミニウム素地の体積抵抗は36.2Ω、顕微鏡断面測定法による平均皮膜硬さはHV438で、平均皮膜厚さは21μm、色調は濃い褐色系の黒、耐食性は720時間でRN8(腐食面積率0.10%を超え、0.25%以下)、電磁波シールド効果は電界が42dB,磁界が27dB、耐熱性は300℃加熱前後のL色空間の色差(ΔE)は3.3であり、500℃で色差(ΔE)3.1、赤外線放射率は中赤外線波長領域3~6μmの全放射率で65.7%、波長3~25μmの中~遠赤外線領域の全放射率は73.4%であり、クラックの発生は見られなかったが、比較例5では抵抗、硬度、耐食性、電磁波シールド効果赤外線放射率が十分ではなく、目的とする材料が得られなかった。 Materials, pretreatment, first electrolysis, second electrolysis, fourth electrolysis, sealing treatment and film measurement were performed in the same manner as in Example 1, except for the third electrolysis to produce an anodized film. The resulting anodized film had a volume resistivity of 36.2 Ω between the film surface and the aluminum substrate, an average film hardness of HV438 as measured by microscopic cross-section measurement, an average film thickness of 21 μm, a deep brownish black color, and corrosion resistance. was RN8 in 720 hours (corrosion area rate exceeded 0.10%, 0.25% or less), electromagnetic wave shielding effect was 42 dB for electric field and 27 dB for magnetic field, and heat resistance was L * a * b * color before and after heating at 300°C. The spatial color difference (ΔE) is 3.3, and the color difference (ΔE) is 3.1 at 500°C. The total emissivity in the middle to far infrared region was 73.4%, and no cracks were observed. material was not obtained.

比較例6Comparative example 6

材料、前処理、第1電解、第2電解、第3電解、封孔処理及び皮膜の計測は実施例1と同様に行い、第4電解を除いた結果、皮膜表面とアルミニウム素地の体積抵抗は10Ω以上で、顕微鏡断面測定法による平均皮膜硬さはHV437で、平均皮膜厚さは19μm、色調は褐色、耐食性は720時間でRN6(腐食面積率0.50%を超え、1.00%以下)、電磁波シールド効果は電界が43dB,磁界が26dB上、耐熱性は300℃加熱前後のL色空間の色差(ΔE)は3.2であり、500℃で色差(ΔE)2.8、赤外線放射率は中赤外線波長領域3~6μmの全放射率で71.3%、波長3~25μmの中~遠赤外線領域の全放射率は78.5%が得られ、クラックの発生は見られなかった。しかしながら、比較例6では抵抗、硬度、耐食性、電磁波シールド効果、赤外線放射率とも十分ではなく、目的とする材料が得られなかった。 The materials, pretreatment, first electrolysis, second electrolysis, third electrolysis, sealing treatment, and measurement of the film were performed in the same manner as in Example 1. As a result of excluding the fourth electrolysis, the volume resistance of the film surface and the aluminum substrate was 10 6 Ω or more, the average film hardness measured by microscopic cross section measurement is HV437, the average film thickness is 19 μm, the color tone is brown, and the corrosion resistance is RN6 (corrosion area rate exceeds 0.50%, 1.00% after 720 hours). %), the electromagnetic wave shielding effect is 43 dB for the electric field and 26 dB for the magnetic field, and the heat resistance is L * a * b * before and after heating at 300°C. ΔE) 2.8, the infrared emissivity is 71.3% in the mid-infrared wavelength region of 3 to 6 μm, and the total emissivity in the middle to far infrared region in the wavelength of 3 to 25 μm is 78.5%, No cracks were observed. However, in Comparative Example 6, the resistance, hardness, corrosion resistance, electromagnetic wave shielding effect, and infrared emissivity were all insufficient, and the desired material could not be obtained.

比較例7Comparative example 7

材料、前処理、第1電解、第2電解、第3電解、封孔処理及び皮膜の計測は実施例1と同様に行い、第4電解を直流波形で、液組成は硫酸第一錫10g/L、硫酸ニッケル6水和物15g/L、硫酸15g/L、酒石酸8g/Lの液で、PH=1、浴温23℃、電解電圧16Vで20分2次電解し、更に封孔処理として95℃で20分沸騰水封孔を行った結果、皮膜表面とアルミニウム素地の電気抵抗は0.3Ωで充分な電導性が得られなかった。顕微鏡断面測定法による平均皮膜硬さはHV478で、平均皮膜厚さは21μm、色調は濃い褐色、耐食性は720時間でRN8(腐食面積率0.10%を超え、0.25%以下)、電磁波シールド効果は電解が33dB、磁界が30dB,耐熱性は300℃加熱前後のL色空間の色差(ΔE)は3.5であり、500℃で色差(ΔE)3.3、赤外線放射率は中赤外線波長領域3~6μmの全放射率で64.8%、波長3~25μmの中~遠赤外線領域の全放射率は87.5%が得られ、クラックの発生は見られなかった。しかしながら、比較例7では、硬度及び中~遠赤外線反射率を除き、耐食性、電磁波シールド効果赤外線が十分ではなく、目的とする材料が得られなかった。The materials, pretreatment, first electrolysis, second electrolysis, third electrolysis, sealing treatment, and film measurement were performed in the same manner as in Example 1. The fourth electrolysis was performed with a DC waveform, and the solution composition was 10 g of stannous sulfate. L, nickel sulfate hexahydrate 15 g/L, sulfuric acid 15 g/L, tartaric acid 8 g/L, PH = 1, bath temperature 23 ° C., electrolysis voltage 16 V, secondary electrolysis for 20 minutes, and further as sealing treatment As a result of sealing with boiling water at 95° C. for 20 minutes, the electric resistance between the film surface and the aluminum substrate was 0.3Ω, and sufficient electrical conductivity was not obtained. The average film hardness measured by microscopic cross-section measurement is HV478, the average film thickness is 21 μm, the color is dark brown, the corrosion resistance is RN8 (corrosion area rate exceeds 0.10%, 0.25% or less) after 720 hours, and electromagnetic waves The shielding effect is 33 dB for electrolysis, 30 dB for magnetic field, and the heat resistance is 3.5 before and after heating at 300°C. The infrared emissivity is 64.8% in the mid-infrared wavelength region of 3 to 6 μm, and 87.5% in the middle to far infrared region of 3 to 25 μm, and no cracks are observed. I didn't. However, in Comparative Example 7, except for hardness and medium to far infrared reflectance, the corrosion resistance and electromagnetic wave shielding effect of infrared rays were insufficient, and the desired material could not be obtained.

材料、前処理、第2電解、第3電解、第4電解、封孔処理及び皮膜の計測は実施例1と同様に行い、第1電解の液組成は同じで、電解条件をPRパルス波形で、プラス側電流密度を2.0A/dm、マイナス側の電流密度を0.5A/dm、プラス側最大電圧70V、マイナス側最大電圧-15Vで、1パルスを3.3msとし、プラス側を20パルス、マイナス側を3パルスとし、極性が変わるときに3パルス分の休止時間を入れ、これを1サイクルとして、液温25±1℃、電解時間70分処理した結果、皮膜の色調は濃い褐色で、以後第2、第3、第4電解、封孔処理と進めた結果、皮膜表面とアルミニウム素地の電気抵抗は2×10‐3Ω、平均皮膜さはHV480で、平均皮膜厚さは21μm、色調は濃い褐色系の黒、耐食性は720時間でRN9.8、電磁波シールド効果は電界が38dB,磁界が32dB、耐熱性は300℃加熱前後のL色空間の色差(ΔE)は2.6であり、500℃で2.2、赤外線放射率の中赤外線波長領域3~6μmの全放射率は90.7%、波長3~25μmの中~遠赤外線領域の全放射率は93.4%が得られ、クラックの発生は見られず、良好な特性の陽極酸化皮膜が得られた。The materials, pretreatment, second electrolysis, third electrolysis, fourth electrolysis, sealing treatment, and film measurement were performed in the same manner as in Example 1. The liquid composition of the first electrolysis was the same, and the electrolysis conditions were a PR pulse waveform. , the positive side current density is 2.0 A/dm 2 , the negative side current density is 0.5 A/dm 2 , the positive side maximum voltage is 70 V, the negative side maximum voltage is −15 V, and 1 pulse is 3.3 ms. 20 pulses, 3 pulses on the negative side, and a rest period of 3 pulses when the polarity changes. This is regarded as one cycle. It was dark brown, and as a result of proceeding with the second, third, and fourth electrolysis and sealing treatments, the electrical resistance of the film surface and the aluminum substrate was 2×10 -3 Ω, the average film hardness was HV480, and the average film thickness was The thickness is 21 μm, the color is dark brownish black, the corrosion resistance is RN9.8 after 720 hours, the electromagnetic wave shielding effect is 38 dB for electric field and 32 dB for magnetic field, and the heat resistance is L * a * b * color space before and after heating at 300°C. The color difference (ΔE) is 2.6, which is 2.2 at 500°C. A total emissivity of 93.4% was obtained, no cracks were observed, and an anodized film with good properties was obtained.

材料、前処理、第2電解、第3電解、第4電解、封孔処理及び皮膜の計測は実施例1と同様に行い、第1電解の液組成をシュウ酸3%、電解条件は交直重畳で、電流密度は+側で、1.5A/dm、-側で0.5A/dm、電圧は直流分が50V、交流分が90V、浴温25℃、電解時間60分の条件で行なった結果、皮膜表面とアルミニウム素地の気抵抗は3×10-3Ω、断面平均硬さはHV475、濃い褐色の黒、平均皮膜厚さ36μm、耐食性は720時間でRN9.5、電磁波シールド効果は電界が35dB以上,磁界が32dB以上、耐熱性は300℃加熱前後のL色空間の色差(ΔE)は2.7であり、500℃で2.4、赤外線放射率の中赤外線波長領域3~6μmの全放射率は76.3%、波長3~25μmの中~遠赤外線領域の全放射率は82.1%が得られ、クラックの発生は見られず、良好な特性の陽極酸化皮膜が得られた。The materials, pretreatment, second electrolysis, third electrolysis, fourth electrolysis, sealing treatment, and film measurement were performed in the same manner as in Example 1. The liquid composition of the first electrolysis was 3% oxalic acid, and the electrolysis conditions were AC/DC superposition. The current density is 1.5 A/dm 2 on the + side and 0.5 A/dm 2 on the - side, the voltage is 50 V for DC and 90 V for AC, bath temperature is 25° C., and electrolysis time is 60 minutes. As a result, the electrical resistance of the film surface and the aluminum substrate was 3×10 −3 Ω, the average cross-sectional hardness was HV475, the dark brown black, the average film thickness was 36 μm, the corrosion resistance was RN9.5 after 720 hours, and the electromagnetic shielding was achieved. The effect is an electric field of 35 dB or more, a magnetic field of 32 dB or more, and the heat resistance is L * a * b * before and after heating at 300°C. A total emissivity of 76.3% in the middle infrared wavelength region of 3 to 6 μm and a total emissivity of 82.1% in the middle to far infrared region of 3 to 25 μm were obtained, and no cracks were observed. An anodized film with excellent properties was obtained.

なお、上記の実験の結果を、図7の表に纏める。表中、欄内の「-」は、未測定又は測定不可を表す。 The results of the above experiments are summarized in the table of FIG. In the table, "-" in the column indicates unmeasured or impossible to measure.

本実施形態の材料はアルミニウムの陽極酸化皮膜で1×10Ω以下の低抵抗の皮膜とHV450以上の硬さを併せ持つことにより、導電性がある軽量の傷つきにくい筐体、電子機器における静電気のスパークによる破損防止、500KHz~1000MHzまでの特に磁界のシールド効果、300℃‐2週間と、500℃‐1時間の加熱処理で色差ΔE3.0以下の耐熱性を持ち未利用エネルギー温度帯材料として軽量で硬い摺動性のある導体材料として使用されることが期待される。The material of the present embodiment is an anodized aluminum film having both a low resistance film of 1×10 0 Ω or less and a hardness of HV450 or more. Prevents breakage due to sparks, shielding effect especially against magnetic fields from 500KHz to 1000MHz, heat resistance with color difference ΔE of 3.0 or less after heat treatment at 300°C for 2 weeks and 500°C for 1 hour, and is lightweight as an unused energy temperature zone material. It is expected that it will be used as a conductor material with hard slidability.

1.微細孔 2.壁
3.素材(アルミニウム) 4.多孔質層
5.バリヤー層 6.再皮膜
7.微細孔中への金属析出 8.抵抗計:RM3548
9.直流定電圧電源 10.電圧系
11.金めっき電極 12.陽極酸化皮膜
1. Micropores 2 . wall3. Material (aluminum) 4. porous layer 5 . barrier layer 6 . Recoating7. 8. Metal deposition in micropores; Resistance meter: RM3548
9. DC constant voltage power supply 10 . voltage system 11 . Gold plated electrode 12 . Anodized film

Claims (10)

表面と素地との間の体積抵抗が1×10-2Ω以下の性能を持ち、皮膜断面硬度がビッカース硬さ試験でHV470以上の陽極酸化皮膜を有することを特徴とするアルミニウム又はその合金からなる材料。 Made of aluminum or its alloy characterized by having an anodized film with a volume resistance between the surface and the substrate of 1 × 10 -2 Ω or less and a film cross-sectional hardness of HV470 or more in the Vickers hardness test. material. 材料の耐食性が中性塩水噴霧試験で720時間行い、RN(レイティングナンバー)7以上の陽極酸化皮膜を有することを特徴とする請求項1のアルミニウム又はその合金からなる材料。 2. A material made of aluminum or an alloy thereof according to claim 1, characterized by having an anodic oxide film with an RN (rating number) of 7 or more after 720 hours of corrosion resistance in a neutral salt spray test. 陽極酸化皮膜表面のクラックが、200℃にて30分間空気中での加温後に、目視にて正面から見たときにクラックが観察されない陽極酸化皮膜を有することを特徴とする請求項1又は2の材料。 Claim 1 or 2, characterized in that the anodized film has no cracks on the surface of the anodized film after being heated in the air at 200°C for 30 minutes, when visually viewed from the front. material. アルミニウム又はその合金の陽極酸化皮膜を有する材料の電磁波シールド効果が周波数500KHz~1GHzの範囲において30dB以上の陽極酸化皮膜を有することを特徴とする請求項1~3のいずれか1項に記載のアルミニウム又はその合金からなる材料。 The aluminum according to any one of claims 1 to 3, wherein the material having an anodized film of aluminum or its alloy has an electromagnetic wave shielding effect of 30 dB or more in a frequency range of 500 kHz to 1 GHz. Or a material made of its alloy. 陽極酸化皮膜の耐熱性が300℃で2週間の耐熱試験において加熱前と加熱後の色差(ΔE)が3.0以下の陽極酸化皮膜を有することを特徴とする請求項1ないし4のいずれか1項に記載のアルミニウム又はその合金からなる材料。 5. The anodized film according to any one of claims 1 to 4, wherein the heat resistance of the anodized film is such that the color difference (ΔE) before and after heating is 3.0 or less in a heat resistance test at 300° C. for 2 weeks. A material comprising aluminum or an alloy thereof according to item 1. 陽極酸化皮膜の耐熱性が500℃で1時間の耐熱試験において加熱前と加熱後の色差(ΔE)が3.0以下の陽極酸化皮膜を有することを特徴とする請求項1ないし5のいずれか1項に記載のアルミニウム又はその合金からなる材料。 6. The anodized film according to any one of claims 1 to 5, wherein the heat resistance of the anodized film has a color difference (ΔE) of 3.0 or less before and after heating in a heat resistance test of 500° C. for 1 hour. A material comprising aluminum or an alloy thereof according to item 1. 陽極酸化皮膜の赤外線放射率を被測定物質の測定温度を100℃とし、黒体の放射率を100%(1.00)としたときの全放射率は波長3~6μmの中赤外線領域において75%(0.75)以上であり、波長3~25μmの中~遠赤外線領域において80%(0.80)以上の陽極酸化皮膜を有することを特徴とする請求項1ないし6のいずれか1項に記載のアルミニウム又はその合金からなる材料。 The infrared emissivity of the anodized film is 75 in the mid-infrared region with a wavelength of 3 to 6 μm when the measurement temperature of the material to be measured is 100° C. and the emissivity of the black body is 100% (1.00). % (0.75) or more, and has an anodic oxide film of 80% (0.80) or more in the middle to far infrared region with a wavelength of 3 to 25 μm. A material made of aluminum or its alloy according to . 皮膜の厚さが6~50μmの陽極酸化皮膜であることを特徴とする請求項1ないし7のいずれか1項に記載のアルミニウム又はその合金からなる材料。 A material made of aluminum or an alloy thereof according to any one of claims 1 to 7, characterized in that the film is an anodized film with a thickness of 6 to 50 µm. 陽極酸化皮膜を有するアルミニウム又はその合金からなる材料の製造方法であって、
第1の有機酸系化合物を主成分とし、これに無機酸系化合物又は第2の有機酸系化合物を加えた前記第1電解液を用いて液温0~40℃、電流密度0.6~3.0A/dm 、10~120分の第1電解を行い、
第1電解液中で、電源を切らずに1~5分保持し、その後1~10V単位で、10Vまで電圧を第1の所定時間維持しながら段階的に低下させ、その後5V、3V、2V、1Vで第2の所定時間各電圧で維持しながら0Vまで下げる第2電解を行い、
アルカリ性の電解液中にて液温0~20℃、電圧1~30V、時間5~20分の第3電解を行い、水洗を行った後、
金属塩を含むpH2~3.5の酸性溶液中にて液温10~40℃、電流密度0.1~2.0A/dm 、電圧5~40V、電解時間2~60分、第4電解を行い、
陽極酸化皮膜を有するアルミニウム又はその合金からなる前記材料が、表面と素地との間の体積抵抗が1×10-2Ω以下、皮膜断面硬度がビッカース硬さ試験でHV470以上を持つ陽極酸化皮膜を有することを特徴とする製造方法。
A method for producing a material made of aluminum or its alloy having an anodized film,
The first electrolytic solution containing the first organic acid-based compound as the main component and the inorganic acid-based compound or the second organic acid-based compound added thereto is used at a liquid temperature of 0 to 40 ° C. and a current density of 0.6 to 0.6. Perform the first electrolysis at 3.0 A/dm 2 for 10 to 120 minutes ,
In the first electrolytic solution, hold for 1 to 5 minutes without turning off the power, then lower the voltage in steps of 1 to 10 V to 10 V while maintaining the voltage for the first predetermined time, and then 5 V, 3 V, 2 V. , while maintaining each voltage at 1 V for a second predetermined time, performing a second electrolysis that lowers to 0 V,
After performing a third electrolysis in an alkaline electrolytic solution at a liquid temperature of 0 to 20 ° C., a voltage of 1 to 30 V, and a time of 5 to 20 minutes, and washing with water,
Fourth electrolysis in an acidic solution containing a metal salt and pH 2-3.5, liquid temperature 10-40°C, current density 0.1-2.0A/dm 2 , voltage 5-40V, electrolysis time 2-60 minutes. and
The material having an anodized film made of aluminum or its alloy has a volume resistance between the surface and the substrate of 1×10 −2 Ω or less, and an anodized film having a film cross-sectional hardness of HV470 or more in a Vickers hardness test. A manufacturing method characterized by having
アルミニウムまたはその合金の前記第1電解~前記第4電解の電流もしくは電圧波形を、直流波形、交流波形、交直重畳波形、パルス波形、PRパルス波形の単独又は2つ以上の組合せた波形を用いることを特徴とする、請求項9に記載の製造方法。 The current or voltage waveforms for the first to fourth electrolysis of aluminum or its alloys are DC waveforms, AC waveforms, AC/DC superimposed waveforms, pulse waveforms, and PR pulse waveforms, either alone or in combination of two or more. The manufacturing method according to claim 9, characterized by:
JP2022523191A 2021-11-05 2021-11-05 ALUMINUM METAL MATERIAL EXCELLENT IN CONDUCTIVITY AND PRODUCTION METHOD THEREOF Active JP7165462B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040703 WO2023079671A1 (en) 2021-11-05 2021-11-05 Aluminum metal material having excellent conductivity, and production method therefor

Publications (3)

Publication Number Publication Date
JP7165462B1 true JP7165462B1 (en) 2022-11-04
JPWO2023079671A1 JPWO2023079671A1 (en) 2023-05-11
JPWO2023079671A5 JPWO2023079671A5 (en) 2023-10-03

Family

ID=83897830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022523191A Active JP7165462B1 (en) 2021-11-05 2021-11-05 ALUMINUM METAL MATERIAL EXCELLENT IN CONDUCTIVITY AND PRODUCTION METHOD THEREOF

Country Status (5)

Country Link
JP (1) JP7165462B1 (en)
KR (1) KR20230132583A (en)
CN (1) CN117203378A (en)
CA (1) CA3208948A1 (en)
WO (1) WO2023079671A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000001865A1 (en) 1998-07-07 2000-01-13 Izumi Techno Inc. Method of treating surface of aluminum blank
JP2002332578A (en) * 2001-05-10 2002-11-22 Canon Inc Method of manufacturing nano-structure
JP2006291259A (en) * 2005-04-07 2006-10-26 Kumabo Metal:Kk Method for forming surface of aluminum or aluminum alloy suppressing electrification, and aluminum or aluminum alloy member suppressing electrification
JP2019147988A (en) * 2018-02-27 2019-09-05 富士フイルム株式会社 Metal film, structure, composite material, production method of metal film, production method of structure, and production method of composite material
JP2021070865A (en) * 2019-10-29 2021-05-06 株式会社アート1 Aluminum metal material excellent in thermal resistance and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021181609A (en) * 2020-05-18 2021-11-25 株式会社アート1 Aluminum metal material with excellent electrical conductivity and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000001865A1 (en) 1998-07-07 2000-01-13 Izumi Techno Inc. Method of treating surface of aluminum blank
JP2002332578A (en) * 2001-05-10 2002-11-22 Canon Inc Method of manufacturing nano-structure
JP2006291259A (en) * 2005-04-07 2006-10-26 Kumabo Metal:Kk Method for forming surface of aluminum or aluminum alloy suppressing electrification, and aluminum or aluminum alloy member suppressing electrification
JP2019147988A (en) * 2018-02-27 2019-09-05 富士フイルム株式会社 Metal film, structure, composite material, production method of metal film, production method of structure, and production method of composite material
JP2021070865A (en) * 2019-10-29 2021-05-06 株式会社アート1 Aluminum metal material excellent in thermal resistance and method for producing the same

Also Published As

Publication number Publication date
KR20230132583A (en) 2023-09-15
JPWO2023079671A1 (en) 2023-05-11
CN117203378A (en) 2023-12-08
WO2023079671A1 (en) 2023-05-11
CA3208948A1 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
JP6306897B2 (en) Colored aluminum molded body and method for producing the same
US4163083A (en) Process for improving corrosion resistant characteristics of chrome plated aluminum and aluminum alloys
EP3526374B1 (en) Method for increasing the corrosion resistance of a chrome-plated substrate
JP2021181609A (en) Aluminum metal material with excellent electrical conductivity and its production method
US6379523B1 (en) Method of treating surface of aluminum blank
KR102164123B1 (en) Sn plated steel plate
JP5868890B2 (en) Composite double-sided black copper foil and method for producing the same
JP2010510387A (en) Treatment method for copper coating aluminum cookware
CA2162423C (en) Aluminium surfaces for technical lighting purposes
JP7165462B1 (en) ALUMINUM METAL MATERIAL EXCELLENT IN CONDUCTIVITY AND PRODUCTION METHOD THEREOF
Zemanova et al. Nickel electrolytic colouring of anodic alumina for selective solar absorbing films
JP2021193208A (en) Aluminum metal material excellent in electric conductivity and abrasion resistance, and method of producing the same
US20240240349A1 (en) Aluminum metal material having excellent conductivity, and production method therefor
JP2022146838A (en) Aluminum metal material with excellent conductivity and corrosion resistance and production method of the same
CN115449878A (en) Black coloring process for aluminum profile
JP2023073933A (en) Aluminum metallic material with excellent conductivity and production method thereof
JPS5948960B2 (en) How to color aluminum or aluminum alloy with primary colors
JP2000355795A (en) Surface treatment of aluminum and aluminum alloy
Alves et al. Application of experimental design for AA6351 aluminum alloy anodization and coloring
JP2021070865A (en) Aluminum metal material excellent in thermal resistance and method for producing the same
US7276293B1 (en) Far-infrared radiator and method for producing method
KR102181607B1 (en) surface treatment method for glass and surface-treated glass
KR20230136173A (en) Aluminum or its alloy material and manufacturing method
KR101365663B1 (en) Method for treating surface of metal using anodizing process
EP0936288A2 (en) A process for producing colour variations on electrolytically pigmented anodized aluminium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220428

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7165462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150