JP7164320B2 - 磁気共鳴イメージング装置、医用画像処理装置、及び画像再構成方法 - Google Patents

磁気共鳴イメージング装置、医用画像処理装置、及び画像再構成方法 Download PDF

Info

Publication number
JP7164320B2
JP7164320B2 JP2018092339A JP2018092339A JP7164320B2 JP 7164320 B2 JP7164320 B2 JP 7164320B2 JP 2018092339 A JP2018092339 A JP 2018092339A JP 2018092339 A JP2018092339 A JP 2018092339A JP 7164320 B2 JP7164320 B2 JP 7164320B2
Authority
JP
Japan
Prior art keywords
space data
phase
data
reconstruction
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018092339A
Other languages
English (en)
Other versions
JP2019195582A (ja
Inventor
正晃 長島
博司 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to JP2018092339A priority Critical patent/JP7164320B2/ja
Priority to US16/409,105 priority patent/US11138769B2/en
Publication of JP2019195582A publication Critical patent/JP2019195582A/ja
Application granted granted Critical
Publication of JP7164320B2 publication Critical patent/JP7164320B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56308Characterization of motion or flow; Dynamic imaging
    • G01R33/56325Cine imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4818MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/567Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating
    • G01R33/5673Gating or triggering based on a physiological signal other than an MR signal, e.g. ECG gating or motion monitoring using optical systems for monitoring the motion of a fiducial marker
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Power Engineering (AREA)
  • Pulmonology (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明の実施形態は、磁気共鳴イメージング装置、医用画像処理装置、及び画像再構成方法に関する。
磁気共鳴イメージング(Magnetic Resonance Imaging:MRI)により心臓を観察する方法として、心臓のシネ撮像が行われている。例えば、被検体が息止めをしている間に心電同期下においてシネ撮像を行うことで、複数の心時相で心臓の画像を生成する。生成された複数の心時相の画像は、心時相に応じた時系列で再生することができる。また、心電同期法としては、プロスペクティブゲート法(prospective gating method)やレトロスペクティブゲート法(retrospective gating method)が知られている。
特開2009-160378号公報
本発明が解決しようとする課題は、所望の時間分解能での画像化を可能にする磁気共鳴イメージング装置、医用画像処理装置、及び画像再構成方法を提供することである。
実施形態に係る磁気共鳴イメージング装置は、取得部と、第1再構成部と、生成部と、第2再構成部とを備える。取得部は、間引きサンプリングにより、複数の第1収集時刻における複数の第1k空間データを取得する。第1再構成部は、前記間引きサンプリングに対応する再構成処理により、前記第1k空間データから第1画像データを再構成する。生成部は、前記第1画像データに対するフーリエ逆変換処理により、フルサンプリングに対応する複数の第2k空間データを生成するとともに、各第2k空間データの擬似的な第2収集時刻を生成する。第2再構成部は、前記第2収集時刻に基づいて前記第2k空間データに対して並べ替え処理を行い、前記並べ替え処理後の第2k空間データを用いて第2画像データを再構成する。
図1は、第1の実施形態に係るMRI装置100を示すブロック図である。 図2は、第1の実施形態に係るMRI装置100による処理手順を示すフローチャートである。 図3は、第1の実施形態に係る取得機能123a及び第1再構成機能123bの処理を説明するための図である。 図4は、第1の実施形態に係る生成機能123cの処理を説明するための図である。 図5は、第1の実施形態に係る第2再構成機能123dの処理を説明するための図である。 図6は、第1の実施形態に係る第2再構成機能123dの処理を説明するための図である。 図7は、第1の実施形態の変形例に係る第2再構成機能123dの処理を説明するための図である。 図8は、第2の実施形態に係るMRI装置100による処理手順を示すフローチャートである。 図9は、第2の実施形態に係る取得機能123aの処理を説明するための図である。 図10は、第2の実施形態に係るフェーズ数決定処理の処理手順を示すフローチャートである。 図11は、第2の実施形態に係る第2再構成機能123dの処理を説明するための図である。 図12は、第2の実施形態に係る第2再構成機能123dの処理を説明するための図である。 図13は、第2の実施形態の変形例に係る取得機能123aの処理を説明するための図である。 図14は、その他の実施形態に係る医用画像処理装置200を示すブロック図である。
以下、図面を参照して、実施形態に係る磁気共鳴イメージング装置、医用画像処理装置、及び画像再構成方法を説明する。なお、実施形態は、以下の実施形態に限られるものではない。また、一つの実施形態に記載した内容は、原則として他の実施形態にも同様に適用可能である。
(第1の実施形態)
図1は、第1の実施形態に係るMRI装置100を示すブロック図である。図1に示すように、MRI装置100は、静磁場磁石101と、傾斜磁場コイル102と、傾斜磁場電源103と、寝台104と、寝台制御回路105と、送信コイル106と、送信回路107と、受信コイルアレイ108と、受信回路109と、シーケンス制御回路110と、ECG(Electrocardiogram)回路111と、計算機システム120とを備える。なお、MRI装置100に被検体P(例えば、人体)は含まれない。
静磁場磁石101は、中空の円筒形状(円筒の軸に直交する断面が楕円状となるものを含む)に形成された磁石であり、内部の空間に一様な静磁場を発生する。静磁場磁石101は、例えば、永久磁石、超伝導磁石などである。
傾斜磁場コイル102は、中空の円筒形状(円筒の軸に直交する断面が楕円状となるものを含む)に形成されたコイルであり、静磁場磁石101の内側に配置される。傾斜磁場コイル102は、互いに直交するX,Y,Zの各軸に対応する3つのコイルが組み合わされて形成されており、これら3つのコイルは、傾斜磁場電源103から個別に電流の供給を受けて、X、Y、Zの各軸に沿って磁場強度が変化する傾斜磁場を発生する。ここで、傾斜磁場コイル102によって発生するX,Y,Z各軸の傾斜磁場は、例えば、スライス選択用傾斜磁場Gs、位相エンコード用傾斜磁場Ge及びリードアウト用傾斜磁場Grにそれぞれ対応する。スライス選択用傾斜磁場Gsは、任意に撮像断面を決めるために利用される。位相エンコード用傾斜磁場Geは、空間的位置に応じてMR信号の位相を変化させるために利用される。リードアウト用傾斜磁場Grは、空間的位置に応じてMR信号の周波数を変化させるために利用される。
傾斜磁場電源103は、傾斜磁場コイル102に電流を供給する。例えば、傾斜磁場電源103は、傾斜磁場コイル102を形成する3つのコイルのそれぞれに、個別に電流を供給する。
寝台104は、被検体Pが載置される天板104aを備え、寝台制御回路105による制御のもと、天板104aを、被検体Pが載置された状態で傾斜磁場コイル102の空洞(撮像口)内へ挿入する。通常、寝台104は、長手方向が静磁場磁石101の中心軸と平行になるように設置される。
寝台制御回路105は、計算機システム120による制御のもと、寝台104を駆動して天板104aを長手方向及び上下方向へ移動するプロセッサである。
送信コイル106は、傾斜磁場コイル102の内側に配置され、送信回路107からRFパルスの供給を受けて、高周波磁場を発生する。
送信回路107は、対象とする原子の種類及び磁場の強度で決まるラーモア周波数に対応するRFパルスを送信コイル106に供給する。
受信コイルアレイ108は、傾斜磁場コイル102の内側に配置され、高周波磁場の影響によって被検体Pから発せられる磁気共鳴信号(以下、MR信号と称する)を受信する。受信コイルアレイ108は、MR信号を受信すると、受信したMR信号を受信回路109へ出力する。なお、第1の実施形態において、受信コイルアレイ108は、1以上、典型的には複数の受信コイルを有するコイルアレイである。
受信回路109は、受信コイルアレイ108から出力されるMR信号に基づいてMRデータを生成する。例えば、受信回路109は、受信コイルアレイ108から出力されるMR信号をデジタル変換することによってMRデータを生成する。また、受信回路109は、生成したMRデータをシーケンス制御回路110へ送信する。
なお、受信回路109は、静磁場磁石101や傾斜磁場コイル102などを備える架台装置側に備えられていてもよい。ここで、第1の実施形態において、受信コイルアレイ108の各コイルエレメント(各受信コイル)から出力されるMR信号は、適宜分配・合成されることで、チャネルなどと呼ばれる単位で受信回路109に出力される。このため、MRデータは、受信回路109以降の後段の処理においてチャネル毎に取り扱われる。コイルエレメントの総数とチャネルの総数との関係は、同一の場合もあれば、コイルエレメントの総数に対してチャネルの総数が少ない場合、あるいは反対に、コイルエレメントの総数に対してチャネルの総数が多い場合もある。以下において、「チャネル毎」のように表記する場合、その処理が、コイルエレメント毎に行われてもよいし、あるいは、コイルエレメントが分配・合成されたチャネル毎に行われてもよいことを示す。なお、分配・合成のタイミングは、上述したタイミングに限られるものではない。MR信号若しくはMRデータは、後述する再構成処理の前までに、チャネル単位に分配・合成されればよい。
シーケンス制御回路110は、計算機システム120から送信されるシーケンス情報に基づいて、傾斜磁場電源103、送信回路107及び受信回路109を駆動することによって、被検体Pの撮像を行う。例えば、シーケンス制御回路110は、プロセッサにより実現される。ここで、シーケンス情報は、撮像を行うための手順を定義した情報である。シーケンス情報には、傾斜磁場電源103が傾斜磁場コイル102に供給する電源の強さや電源を供給するタイミング、送信回路107が送信コイル106に送信するRFパルスの強さやRFパルスを印加するタイミング、受信回路109がMR信号を検出するタイミングなどが定義される。
なお、シーケンス制御回路110は、傾斜磁場電源103、送信回路107及び受信回路109を駆動して被検体Pを撮像した結果、受信回路109からMRデータを受信すると、受信したMRデータを計算機システム120へ転送する。
ECG回路111は、ECGセンサ111aから出力される心電信号に基づいて、所定の心電波形を検出する。ECGセンサ111aは、被検体Pの体表に装着され、被検体Pの心電信号を検出するセンサである。ECGセンサ111aは、検出した心電信号をECG回路111に出力する。
例えば、ECG回路111は、所定の心電波形として、R波を検出する。そして、ECG回路111は、R波を検出したタイミングでトリガー信号を生成し、生成したトリガー信号をインタフェース回路121に出力する。トリガー信号は、インタフェース回路121により記憶回路122に格納される。ここで、トリガー信号は、無線通信によって、ECG回路111からインタフェース回路121へ送信されてもよい。なお、本実施形態では、心電信号をECGセンサ111aにより検出する場合を説明するが、これに限らず、例えば、脈波計により検出されてもよい。また、図1において、ECGセンサ111aおよびECG回路111がMRI装置100の一部となる例を説明したが、これに限らない。つまり、MRI装置100とは別に設けられたECGセンサ111aおよびECG回路111から得られる心電信号をMRI装置100が取得するようにしてもよい。
計算機システム120は、MRI装置100の全体制御や、データ収集、画像再構成などを行う。計算機システム120は、インタフェース回路121、記憶回路122、処理回路123、入力インタフェース124、及びディスプレイ125を有する。
インタフェース回路121は、シーケンス情報をシーケンス制御回路110へ送信し、シーケンス制御回路110からMRデータを受信する。また、インタフェース回路121は、MRデータを受信すると、受信したMRデータを記憶回路122に格納する。記憶回路122に格納されたMRデータは、処理回路123によってk空間に配置される。この結果、記憶回路122は、複数チャネル分のk空間データを記憶する。このようにして、k空間データが収集される。インタフェース回路121は、例えば、ネットワークインタフェースカードにより実現される。
記憶回路122は、インタフェース回路121によって受信されたMRデータや、後述の取得機能123aによってk空間に配置された時系列データ(k-t空間データ)、後述する第2再構成機能123dによって生成された画像データなどを記憶する。また、記憶回路122は、各種のプログラムを記憶する。記憶回路122は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等により実現される。
入力インタフェース124は、医師や診療放射線技師等の操作者からの各種指示や情報入力を受け付ける。入力インタフェース124は、例えば、トラックボール、スイッチボタン、マウス、キーボード等によって実現される。入力インタフェース124は、処理回路123に接続されており、操作者から受け取った入力操作を電気信号に変換して処理回路123へと出力する。
ディスプレイ125は、処理回路123による制御のもと、各種GUI(Graphical User Interface)や、第2再構成機能123dによって生成されたMR(Magnetic Resonance)画像等を表示する。
処理回路123は、MRI装置100の全体制御を行う。具体的には、処理回路123は、入力インタフェース124を介して操作者から入力される撮像条件に基づいてシーケンス情報を生成し、生成したシーケンス情報をシーケンス制御回路110に送信することによって撮像を制御する。また、処理回路123は、撮像の結果としてシーケンス制御回路110から送られるMRデータに基づいて行われる画像の再構成を制御したり、ディスプレイ125による表示を制御したりする。処理回路123は、プロセッサにより実現される。
処理回路123は、取得機能123aと、第1再構成機能123bと、生成機能123cと、第2再構成機能123dと、出力制御機能123eとを有する。なお、取得機能123aは、取得部の一例である。また、第1再構成機能123bは、第1再構成部の一例である。また、生成機能123cは、生成部の一例である。また、第2再構成機能123dは、第2再構成部の一例である。また、出力制御機能123eは、出力制御部の一例である。
ここで、例えば、処理回路123の構成要素である取得機能123a、第1再構成機能123b、生成機能123c、第2再構成機能123d及び出力制御機能123eの各処理機能は、コンピュータによって実行可能なプログラムの形態で記憶回路122に記憶されている。処理回路123は、各プログラムを記憶回路122から読み出し、読み出した各プログラムを実行することで、各プログラムに対応する機能を実現する。換言すると、各プログラムを読み出した状態の処理回路123は、図1の処理回路123内に示された各機能を有することとなる。なお、図1においては、単一の処理回路123にて、取得機能123a、第1再構成機能123b、生成機能123c、第2再構成機能123d及び出力制御機能123eの各処理機能が実現されるものとして説明したが、複数の独立したプロセッサを組み合わせて処理回路123を構成し、各プロセッサが各プログラムを実行することにより各処理機能を実現するものとしても構わない。
上記説明において用いた「プロセッサ」という文言は、例えば、CPU(central preprocess unit)、GPU(Graphics Processing Unit)、或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。なお、記憶回路122にプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むように構成しても構わない。この場合、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。
ここで、一般的に、MRI装置は、被検体から放出された電磁波をコイルにより測定する。この測定された電磁波をデジタル化することで得られた信号をk空間データと呼ぶ。
k空間データは、例えば、1次元の撮像を繰り返すことで得られる2次元あるいは3次元のデータである。そして、被検体内部の原子分布画像は、k空間データに対して、フーリエ変換(以後、フーリエ変換といえばフーリエ逆変換も含む場合がある)を施すことにより得られる。得られた原子分布画像をMR画像と呼び、k空間データからMR画像を算出する過程を、再構成あるいは画像再構成、画像生成などと呼ぶ。k空間データの中心部は、MR画像にフーリエ変換を施した際の低周波成分、k空間データの辺縁部は、MR画像にフーリエ変換を施した際の高周波成分に対応する。
MRI装置では、1次元の撮像を繰り返し行うことで再構成に必要なk空間データを得るが、この撮像は一般に時間がかかることが知られている。さらに、被検体の状態が時間とともに変化する場合には、再構成されたMR画像の画質が劣化することも知られている。したがって、被検体の状態が変化し且つデータ量の多い時系列データを取得する場合、例えば心臓を撮像する場合では、撮像時間を短縮したいとの要求が強い。そこで、より高速な撮像を行うために、例えば、コイルの配置によって感度が異なることを利用して、k空間データを複数のコイルで同時に間引き撮像し、得られた複数のk空間データから、アーティファクトを抑えつつMR画像を再構成する、パラレルイメージング(Parallel Imaging:PI)の研究開発が行われている。
一般に、PIでは、位相エンコード方向にk空間データを間引いて収集することで、撮像時間の短縮を図る。間引いて収集されたk空間データからは、折り返し画像が生成されるため、PIでは、感度が異なる複数のチャネルで収集されたk空間データに対し、チャネル間の感度の違いを利用して折り返しの無い画像を再構成する。つまり、PIでは、間引き率に応じた高速化が可能となる。なお、間引き率は倍速率と呼ばれる場合もある。例えば間引き率が4であれば、撮像時間はおよそ4分の1に短縮される。
また、PIにView Sharing処理を組み合わせることにより、時間分解能を上げることが期待される。つまり、PIにより、位相エンコード方向に間引かれたk空間データ群を複数時相にわたって収集する。そして、隣り合う2時相の間でk空間データを共有することで、2時相の間の中間時相に相当する画像を再構成する。これにより、PIによる高速な撮像を実行しつつ、約2倍の時間分解能を得ることができる。
ところで、更なる高速化(撮像時間の短縮化)を図るためには、位相エンコード方向に加えて、時相方向(時間方向)にもk空間データを間引いて取得することが有効である。時相方向にk空間データを間引いて収集する手法として、例えば、k-t BLAST(k-space time Broad-use Linear Acquisition Speed-up Technique)やk-t SENSEと呼ばれる技術が知られている。なお、コイルの数が間引いたサンプルの割合に対して少ない場合はk-t BLAST、そうでない場合をk-t SENSEと呼ぶが、以後の説明では明示的に区別しない限り、k-t BLASTも含めてk-t SENSEと呼ぶことにする。以後、主にコイルが複数の場合について説明するが、k-t BLASTの特別な場合として、コイルの数が1つである場合も許容される。コイルが1つの場合でも便宜上、k-t SENSEと呼ぶことにする。
k-t SENSEでは、収集されたk空間データ群を、フーリエ変換により画像空間と時間スペクトルとから成るx-f空間データに変換する。そして、このx-f空間データにおいて、x-f空間上の感度マップを用いて折り返し信号が除去されたx-f空間データが生成される。そして、生成されたx-f空間データを逆フーリエ変換によりx-t空間データに変換することにより、時系列に並ぶ複数のMR画像が生成される。
ところが、k-t SENSEでは、時系列に沿ってk空間データの間引きパターン(サンプリングパターン)が規則的に変化する。例えば、k-t SENSEでは、1単位時相ごとに、間引きパターンを位相エンコード方向に1サンプルずつずらしてサンプリングする。このため、k-t SENSEにより収集されたk空間データ群に対してView Sharing処理を行って、隣り合う2時相の間でk空間データを共有したとしても、中間時相に含まれるk空間データの間引きパターンは異なる種類の間引きパターンが混在してしまう。したがって、k-t SENSEでは、View Sharing処理による中間時相の再構成を行うことができない。
そこで、第1の実施形態に係るMRI装置100は、間引きサンプリングによる高速な撮像を実行しつつ、所望の時間分解能の画像を得ることを可能にするために、以下の処理機能を実行する。
すなわち、第1の実施形態に係るMRI装置100において、取得機能123aは、カーテシアン収集やラディアル収集などでの間引きサンプリングにより、複数の第1収集時刻における複数の第1k空間データを取得する。第1再構成機能123bは、間引きサンプリングに対応する再構成処理により、第1k空間データから第1画像データを再構成する。生成機能123cは、第1画像データに対するフーリエ逆変換処理により、フルサンプリングに対応する複数の第2k空間データを生成するとともに、各第2k空間データの擬似的な第2収集時刻を生成する。第2再構成機能123dは、第2収集時刻に基づいて第2k空間データに対して並べ替え処理を行い、並べ替え処理後の第2k空間データを用いて第2画像データを再構成する。第1の実施形態では、第2再構成機能123dは、並べ替え処理として、第2k空間データを用いてView Sharing処理を行う。これにより、第1の実施形態に係るMRI装置100は、所望の時間分解能での画像化を可能にする。
なお、本実施形態は、例えばk-t SENSEのように、位相エンコード方向及び時相方向にk空間データを間引いて収集するPI(間引きサンプリング)に適用されるのが好適であるが、これに限定されるものではない。例えば、本実施形態は、位相エンコード方向のみにk空間データを間引いて収集するPIにも適用可能である。また、例えば、本実施形態は、位相エンコード方向に不規則的に間引いてサンプリングを行う圧縮センシング(Compressed Sensing:CS)にも適用可能である。なお、圧縮センシングは、信号のスパース性を利用することで、少数のk空間データから画像を再構成する高速撮像法である。
また、上述したk-t SENSEにおいて、感度マップを得るには、本撮像前又は本撮像途中において、キャリブレーションスキャン(トレーニングスキャンとも呼ばれる)を行うのが通例である。キャリブレーションスキャンとは、位相エンコード方向の中心付近において時間方向の間引きを行わない撮像である。しかしながら、本実施形態では、キャリブレーションスキャンを行わなくとも感度マップを得ることができる。例えば、本実施形態では、時間スペクトル方向での折り返し信号の強弱に着目し、折り返し信号が相対的に弱い低周波成分では感度マップを直接推定し、高周波成分では低周波成分を用いて推定することで、感度マップを得ることができる。
図2を用いて、第1の実施形態に係るMRI装置100による処理手順を説明する。図2は、第1の実施形態に係るMRI装置100による処理手順を示すフローチャートである。図2に示す処理手順は、例えば、操作者により入力された撮像開始要求を契機として開始される。なお、以下では、k-t SENSEが実行される場合を説明するが、これに限定されるものではない。また、以下では、撮像部位として心臓が適用される場合を説明するが、これに限定されるものではない。
ステップS101において、取得機能123aは、間引きサンプリングを用いたシネ撮像により、複数のk空間データを収集する。なお、取得機能123aにより取得されるk空間データは、第1k空間データの一例である。また、第1k空間データに対応づけられている収集時刻は、第1収集時刻の一例である。
ステップS102において、第1再構成機能123bは、間引きサンプリングに対応する再構成処理により、複数の画像データを再構成する。なお、第1再構成機能123bにより再構成される画像データは、第1画像データの一例である。
図3を用いて、第1の実施形態に係る取得機能123a及び第1再構成機能123bの処理を説明する。図3は、第1の実施形態に係る取得機能123a及び第1再構成機能123bの処理を説明するための図である。図3において、縦軸に示した「k」は、位相エンコード方向に対応し、横軸に示した「t」は、時相方向に対応する。図3では、説明の都合上、位相エンコード方向に16個のサンプリング位置(枠)にk空間データが配置されるk-t空間データを例示する。また、黒丸印は、1ラインのk空間データが収集される位置を示す。言い換えると、黒丸印が配置されない枠は、k空間データが収集されない位置である。なお、各k空間データは、1次元の周波数エンコード方向及び1次元の位相エンコード方向から成る2次元のk空間に対応する。
例えば、取得機能123aは、入力インタフェース124を介して操作者から入力される撮像条件に基づいてシーケンス情報を生成する。このシーケンス情報には、例えば、k-t SENSEを実行するための各種の撮像条件が設定される。そして、取得機能123aは、生成したシーケンス情報をシーケンス制御回路110に送信することで、シーケンス制御回路110にk-t SENSEを実行させる。これにより、取得機能123aは、時相P1,P2,P3,P4・・・の各時相について、4つのk空間データ(サンプル)を収集する。例えば、時相P1には、4つのk空間データS1,S2,S3,S4が含まれる。
図3に示す例では、1単位時相ごとに、位相エンコード方向に1サンプルずつサンプリング位置をずらしてサンプリングされる。例えば、時相P2に含まれる4つのk空間データは、時相P1に含まれる4つのk空間データと比較して、位相エンコード方向(図中の下方向)に1サンプルずれた位置でサンプリングされる。また、時相P3に含まれる4つのk空間データは、時相P2に含まれる4つのk空間データと比較して、位相エンコード方向に1サンプルずれた位置でサンプリングされる。また、時相P4に含まれる4つのk空間データは、時相P3に含まれる4つのk空間データと比較して、位相エンコード方向に1サンプルずれた位置でサンプリングされる。つまり、図3の例では、4分の1に間引かれたk空間データが、4単位時相ごとに周期的にサンプリングされる。
なお、図示の都合上、各時相に含まれる複数のk空間データは、時相方向において同一位置に図示されているため、同一時刻に収集されているように見えるが、実際には互いに異なる時刻に収集されたものである。例えば、時相P1に含まれる4つのk空間データは、k空間データS1,S2,S3,S4の順に収集されたものである。各k空間データの収集時刻は、各k空間データに対応づけられている。つまり、取得機能123aは、複数のk空間データと、各k空間データに対応づけられた収集時刻とを取得する。
また、図3の左側の矩形は、各k空間データのフェーズ中心との距離を示す図である。矩形の縦方向は位相エンコード方向に対応し、白抜き領域の横方向の長さがフェーズ中心との距離に対応する。つまり、図3の例では、k空間データS1~S4のうちフェーズ中心の最も近くに位置するのはk空間データS3であり、フェーズ中心から最も遠くに位置するのはk空間データS1である。
そして、第1再構成機能123bは、各時相のk空間データを、フーリエ変換により画像空間と時間スペクトルとから成るx-f空間データに変換する。また、第1再構成機能123bは、x-f空間上の感度マップを用いて、x-f空間データにおける折り返し信号が除去されたx-f空間データを生成する。そして、第1再構成機能123bは、生成したx-f空間データをフーリエ逆変換によりx-t空間データに変換することにより、時系列の複数の画像データを生成する。
すなわち、図3に示すように、再構成機能123dは、k-t SENSEに対応する再構成処理を実行することで、各時相P1,P2,P3,P4のk-t空間データから、各時相に対応する画像データI1,I2,I3,I4を生成する。
なお、図3に示したk-t SENSEによるサンプリング及び再構成処理はあくまで一例であり、他の公知技術にも適用可能である。例えば、図3では、キャリブレーションスキャンを行わずに感度マップを生成する場合を図示したが、キャリブレーションスキャンを実行して感度マップを生成する場合にも適用可能である。
図2の説明に戻る。ステップS103において、生成機能123cは、フーリエ逆変換処理により、フルサンプリングに対応する複数のk空間データを生成する。なお、生成機能123cにより生成されるk空間データは、第2k空間データの一例である。
ステップS104において、生成機能123cは、複数のk空間データそれぞれに対して、擬似的な収集時刻を付与する。なお、擬似的な収集時刻は、第2収集時刻の一例である。
図4を用いて、第1の実施形態に係る生成機能123cの処理を説明する。図4は、第1の実施形態に係る生成機能123cの処理を説明するための図である。図4には、図3と同様のk-t空間データを例示する。
図4に示すように、生成機能123cは、各時相P1,P2,P3,P4・・・の画像データI1,I2,I3,I4・・・に対してフーリエ逆変換処理(IFFT)を実行する。これにより、生成機能123cは、各時相P1,P2,P3,P4・・・のk-t空間がフルサンプリングされた状態に相当する複数のk空間データを生成する。例えば、生成機能123cは、画像データI1に対するフーリエ逆変換処理により、16個のk空間データS’1,S’2,S’3,・・・S’16を生成する。ここで、この16個のk空間データS’1,S’2,S’3,・・・S’16は、時相P1の16個のサンプリング位置のフルサンプリングに相当する。生成機能123cは、他の時相についても同様に、フルサンプリングに相当する複数のk空間データを生成する。
そして、生成機能123cは、フルサンプリングに相当する複数のk空間データに対して、擬似的な収集時刻を付与する。例えば、k空間データS’1は、図3に示したk空間データS1と同一時相かつ同一位相エンコード量である。このため、生成機能123cは、k空間データS1の収集時刻をk空間データS’1の収集時刻として付与する。また、k空間データS’5は、図3に示したk空間データS2と同一時相かつ同一位相エンコード量である。このため、生成機能123cは、k空間データS2の収集時刻をk空間データS’5の収集時刻として付与する。
また、k空間データS’2,S’3,S’4は、k空間データS’1とS’5との間に等間隔に配置される。このため、生成機能123cは、k空間データS’1の収集時刻とS’5の収集時刻との間を4等分した時刻を、各k空間データS’2,S’3,S’4の収集時刻として付与する。具体的には、k空間データS’3の収集時刻は、k空間データS’1の収集時刻とS’5の収集時刻との中間値である。また、k空間データS’2の収集時刻は、k空間データS’1の収集時刻とS’3の収集時刻との中間値である。また、k空間データS’4の収集時刻は、k空間データS’3の収集時刻とS’5の収集時刻との中間値である。このように、生成機能123cは、第1k空間データの第1収集時刻に基づいて、フルサンプリングに相当する第2k空間データの第2収集時刻を算出し、付与する。
図2の説明に戻る。ステップS105において、第2再構成機能123dは、View Sharing処理により、複数の画像データを再構成する。例えば、第2再構成機能123dは、生成機能123cにより生成されたフルサンプリングに相当する複数のk空間データを用いて、View Sharing処理を行う。なお、第2再構成機能123dにより再構成される画像データは、第2画像データの一例である。
図5及び図6を用いて、第1の実施形態に係る第2再構成機能123dの処理を説明する。図5及び図6は、第1の実施形態に係る第2再構成機能123dの処理を説明するための図である。図5及び図6において、横軸に示した「t」は、時相方向に対応する。また、各時相P1~Pnに対応する矩形は、各k空間データのフェーズ中心との距離を示す図である。矩形の横方向は位相エンコード方向に対応し、白抜き領域の縦方向の長さがフェーズ中心との距離に対応する。つまり、図5及び図6の矩形は、図3に示した矩形を90度回転させて時相ごとに図示したものである。
図5に示すように、第2再構成機能123dは、時相P1~Pnのk空間データを用いて、View Sharing処理を行う。例えば、第2再構成機能123dは、時相P1のk空間データと、時相P2のk空間データとを用いて、View Sharing処理を行う。なお、View Sharing処理は、Sliding Window処理とも呼ばれる。
図6に示すように、時相P1には、フルサンプリングに相当する16個のk空間データS’1~S’16が含まれる。また、時相P2には、フルサンプリングに相当する16個のk空間データS’17~S’32が含まれる。この場合、第2再構成機能123dは、時相P1の8個のk空間データS’9~S’16と、時相P2の8個のk空間データS’17~S’24と抽出する。そして、第2再構成機能123dは、抽出した合計16個のk空間データを、画像1枚分の位相エンコードのパターンに一致するように入れ替える。
例えば、第2再構成機能123dは、時相P1から抽出した8個のk空間データS’9~S’16と、時相P2から抽出した8個のk空間データS’17~S’24とを入れ替える。このとき、第2再構成機能123dは、k空間データS’9~S’16の収集時刻の順序、及び、k空間データS’17~S’24の収集時刻の順序については維持したまま入れ替える。これにより、第2再構成機能123dは、k空間データS’17,S’18,S’19,S’20,S’21,S’22,S’23,S’24,S’9,S’10,S’11,S’12,S’13,S’14,S’15,S’16の順に並べ替える。この結果、この順に並んだ16個のk空間データは画像1枚分の位相エンコードのパターンに一致するので、第2再構成機能123dは、この16個のk空間データを時相P’1のk空間データとして再構成に利用する。時相P’1は、時相P1及び時相P2の中間時相に相当する。そして、第2再構成機能123dは、時相P’1のk空間データに対して再構成処理(フーリエ変換処理)を行うことで、時相P’1に対応する画像データI’1を生成する。
このように、第2再構成機能123dは、連続する2時相に含まれる複数のk空間データから中間時相に相当するk空間データを抽出する。そして、第2再構成機能123dは、抽出した中間時相に相当するk空間データに対して再構成処理を行うことで、中間時相に対応する画像データを生成する。この一連の処理により、第2再構成機能123dは、フェーズ数「n」の各画像データの間に、フェーズ数「n-1」の中間時相の画像データを生成することで、フェーズ数「2n-1」の画像データを生成することができる(図5参照)。つまり、第2再構成機能123dは、時間分解能を約2倍にすることができる。
図2の説明に戻る。ステップS106において、出力制御機能123eは、複数の画像データを表示する。例えば、出力制御機能123eは、第2再構成機能123dにより生成されたフェーズ数「2n-1」の画像データをシネ再生する。なお、出力制御機能123eは、シネ再生に限らず、例えば、時系列に並ぶ複数の画像データを並べて表示することもできる。
上述してきたように、第1の実施形態に係るMRI装置100において、取得機能123aは、間引きサンプリングにより、複数の第1収集時刻における複数の第1k空間データを取得する。第1再構成機能123bは、間引きサンプリングに対応する再構成処理により、第1k空間データから第1画像データを再構成する。生成機能123cは、第1画像データに対するフーリエ逆変換処理により、フルサンプリングに対応する複数の第2k空間データを生成するとともに、各第2k空間データの擬似的な第2収集時刻を生成する。第2再構成機能123dは、第2収集時刻に基づいて第2k空間データに対してView Sharing処理を行い、View Sharing処理後の第2k空間データを用いて第2画像データを再構成する。これにより、第1の実施形態に係るMRI装置100は、間引きサンプリングによる高速な撮像を実行しつつ、約2倍の時間分解能の画像を得ることができる。
なお、第1の実施形態に係るMRI装置100の処理は、リアルタイム処理として実行しても良いし、予め収集された複数のk空間データを読み出して事後的に実行してもよい。事後的に実行する場合には、間引きサンプリングにより収集された複数のk空間データと、各k空間データの収集時刻とが対応づけられた情報が、所定の記憶装置(記憶回路122等)に予め記憶されている。
(第1の実施形態の変形例)
第1の実施形態では、View Sharing処理を行う場合を説明したが、実施形態はこれに限定されるものではない。例えば、MRI装置100は、フーリエ逆変換処理により生成されたフルサンプリングに対応する複数のk空間データを用いて、任意のフェーズ数(枚数)の画像データを生成することも可能である。
例えば、第2再構成機能123dは、時系列に並ぶ複数の第2k空間データから、所望の時相数に対応する所定数の第2k空間データを抽出する。そして、第2再構成機能123dは、抽出した所定数の第2k空間データを、位相エンコードのパターンに応じて入れ替えてから再構成することで、所望の時相数の第2画像データを生成する。
図7を用いて、第1の実施形態の変形例に係る第2再構成機能123dの処理を説明する。図7は、第1の実施形態の変形例に係る第2再構成機能123dの処理を説明するための図である。図7において、横軸に示した「t」は、時相方向に対応する。また、各時相P1~P30に対応する矩形は、図5に示した矩形と同様である。
図7に示す例では、フェーズ数「30」の画像データからフェーズ数「25」の画像データを生成する場合を説明する。この場合、フェーズ数「30」の画像データが撮像済みであり、フェーズ数「30」に対応する複数のk空間データと、各k空間データの収集時刻が記憶回路122に予め記憶されている。そして、操作者は、この記憶されたk空間データを元に、フェーズ数「25」の画像データを閲覧したい旨の入力を行う。
フェーズ数「25」の画像データを閲覧したい旨の入力を受け付けると、生成機能123cは、フルサンプリングに相当する複数のk空間データの生成と、各k空間データの擬似的な収集時刻の付与を行う。なお、ここまでの処理は、図2のステップS101~S104までの処理と同様であるので、説明を省略する。
そして、第2再構成機能123dは、図7に示すように、フルサンプリングに相当する時系列のk空間データから、フェーズ数「25」に対応する所定数のk空間データを抽出する。ここで、図7の例では、各時相に含まれるサンプル数(k空間データの数)は、「8個」である。そこで、第2再構成機能123dは、連続する8個のk空間データを一組(1時相分)として、時相P1~P30までのk空間データの中から25時相分のk空間データを抽出する。これにより、第2再構成機能123dは、時相P’1~P’25のk空間データを抽出する。
そして、第2再構成機能123dは、抽出した8個のk空間データを、位相エンコードのパターンに応じて入れ替えてから再構成する。
具体例を挙げると、第2再構成機能123dは、時相P’1として8個のk空間データS’2~S’9を抽出している。このうち、7個のk空間データS’2~S’8は時相P1に由来するk空間データであり、k空間データS’9は時相P2に由来するk空間データである。ここで、第2再構成機能123dは、k空間データS’9,S’2,S’3,S’4,S’5,S’6,S’7,S’8の順に並べ替える。この結果、この順に並んだ8個のk空間データは画像1枚分の位相エンコードのパターンに一致するので、第2再構成機能123dは、この8個のk空間データを時相P’1のk空間データとして再構成に利用する。そして、第2再構成機能123dは、同様の処理により、時相P’2~P’25のk空間データも抽出し、再構成に利用する。
これにより、第2再構成機能123dは、フェーズ数「30」の画像データから、フェーズ数「25」の画像データを等間隔に生成することができる。なお、図7では、フェーズ数を「30」から「25」に減らす場合を説明したが、これに限定されるものではない。例えば、フェーズ数を「35」などに増やすことも可能である。この場合、新たな時相P‘1と時相P’2との間で、同じk空間データを共有することとなる。
(第2の実施形態)
第1の実施形態では、View Sharing処理により時間分解能を上げる場合を説明したが、実施形態はこれに限定されるものではない。例えば、プロスペクティブゲート法による撮像(以下、「プロスペクティブ撮像」と記載)により複数心拍にわたって同一スライスのk空間データを収集する場合には、複数心拍にわたるk空間データを用いて時間分解能を上げることができる。
第2の実施形態に係るMRI装置100は、図1に示したMRI装置100と同様の構成を備え、処理回路123における処理の一部が相違する。そこで、第2の実施形態では、第1の実施形態と相違する点を中心に説明することとし、第1の実施形態において説明した構成と同様の機能を有する点については、説明を省略する。
すなわち、第2の実施形態に係るMRI装置100において、取得機能123aは、被検体の心電信号における特徴点の検出に応じて複数の第1k空間データを複数心拍にわたって取得するとともに、各第1収集時刻に対応する第1心時相情報を取得する。第1再構成機能123bは、複数心拍にわたる複数の第1k空間データから複数心拍にわたる複数の第1画像データを再構成する。生成機能123cは、複数心拍にわたる複数の第1画像データに対するフーリエ逆変換により、複数心拍にわたる複数の第2k空間データを生成するとともに、第1心時相情報に基づいて第2収集時刻に対応する第2心時相情報を生成する。第2再構成機能123dは、第2心時相情報に基づいて、複数心拍にわたる複数の第2k空間データに対して並べ替え処理を行うことで、1心拍に対応する複数の第2画像データを再構成する。
図8を用いて、第2の実施形態に係るMRI装置100による処理手順を説明する。図8は、第2の実施形態に係るMRI装置100による処理手順を示すフローチャートである。図8に示す処理手順は、例えば、操作者により入力された撮像開始要求を契機として開始される。
ステップS201において、取得機能123aは、間引きサンプリングを用いたプロスペクティブ撮像により、複数のk空間データを収集する。例えば、取得機能123aは、複数のk空間データとして、心電信号における特徴点を開始点とする第1期間に含まれる複数の第3k空間データと、特徴点とは異なる時相を開始点とする第2期間に含まれる複数の第4k空間データとを取得する。
図9を用いて、第2の実施形態に係る取得機能123aの処理を説明する。図9は、第2の実施形態に係る取得機能123aの処理を説明するための図である。図9において、横軸に示した「t」は、時相方向に対応する。また、図9の上段にはトリガー信号を例示し、図9の下段にはプロスペクティブ撮像の撮像シーケンスを例示する。なお、トリガー信号は、心電信号における特徴点の一例である。
図9に示すように、シーケンス制御回路110は、取得機能123aの制御のもと、プロスペクティブ撮像を実行し、期間T1及び期間T2のそれぞれでk-t SENSEによる1心拍分の撮像を同一スライスに対して実行する。なお、図示しないが、シーケンス制御回路110は、ダミーショット等を適宜挿入して撮像シーケンスを実行可能である。
ここで、取得機能123aは、期間T1についてはトリガー信号を開始点とする一方で、期間T2についてはトリガー信号とは異なる時相を開始点とするように制御する。例えば、取得機能123aは、期間T1の撮像中にトリガー信号(n)を検知すると、前回のトリガー信号(n-1)とトリガー信号(n)との時間差に基づいて、次のトリガー信号(n+1)の時刻を推定する。ここで、次のトリガー信号(n+1)の時刻を推定できるのは、連続する2心拍の期間は大きく変化しない(揺らぎが少ない)ことが知られているからである。
そして、取得機能123aは、トリガー信号(n+1)とは異なる時刻から期間T2の撮像が開始するように、トリガー信号(n+1)の時刻と期間T2の開始点との間に待ち時間Δtを挿入する。この待ち時間Δtは、操作者の任意の値を設定可能であるが、各画像のフェーズ中心のピッチ幅の半分相当の値(半ピッチ)を設定するのが好適である。なお、フェーズ中心のピッチ幅は、撮像条件から算出可能である。
このように、取得機能123aは、トリガー信号を開始点とする期間T1に含まれる複数のk空間データ(第3k空間データ)を取得するとともに、トリガー信号とは異なる時相を開始点とする期間T2に含まれる複数のk空間データ(第4k空間データ)を取得する。
図8の説明に戻る。ステップS202~S204の処理は、期間T1で収集された複数のk空間データと、期間T2で収集された複数のk空間データとのそれぞれに対して処理を実行する点を除き、基本的にステップS102~S104の処理と同様である。
つまり、ステップS202において、第1再構成機能123bは、間引きサンプリングに対応する再構成処理により、複数の画像データを再構成する。具体的には、第1再構成機能123bは、期間T1に含まれる複数のk空間データに基づいて、期間T1に含まれる複数の画像データ(第3画像データ)を再構成する。また、第1再構成機能123bは、期間T2に含まれる複数のk空間データに基づいて、期間T2に含まれる複数の画像データ(第4画像データ)を再構成する。
ステップS203において、生成機能123cは、フーリエ逆変換処理により、フルサンプリングに対応する複数のk空間データを生成する。具体的には、生成機能123cは、期間T1に含まれる複数の画像データに基づいて、期間T1に含まれるフルサンプリング相当の複数のk空間データ(第5k空間データ)を生成する。また、生成機能123cは、期間T2に含まれる複数の画像データに基づいて、期間T2に含まれるフルサンプリング相当の複数のk空間データ(第6k空間データ)を生成する。
ステップS204において、生成機能123cは、フルサンプリング相当の複数のk空間データそれぞれに対して、擬似的な収集時刻を付与する。具体的には、生成機能123cは、期間T1に含まれるフルサンプリング相当の複数のk空間データに対して、擬似的な収集時刻を付与する。また、生成機能123cは、期間T2に含まれるフルサンプリング相当の複数のk空間データに対して、擬似的な収集時刻を付与する。
ステップS205において、第2再構成機能123dは、フェーズ数決定処理を実行する。ここで、図10及び図11を用いて、第2再構成機能123dによるフェーズ数決定処理を説明する。図10は、第2の実施形態に係るフェーズ数決定処理の処理手順を示すフローチャートである。図11は、第2の実施形態に係る第2再構成機能123dの処理を説明するための図である。
図11には、トリガー信号(図11の上から1段目)と、期間T1の収集データ(図11の上から2段目)と、期間T2の収集データ(図11の上から3段目)と、決定されるフェーズ数(図11の上から4段目)との関係を図示する。図11において、横軸に示した「t」は、時相方向に対応する。また、各時相(PA1~PA12、PB1~PB12、P1~P11)に対応する矩形は、各k空間データのフェーズ中心との距離を示す図である。矩形の横方向は位相エンコード方向に対応し、白抜き領域の縦方向の長さがフェーズ中心との距離に対応する。つまり、図11の矩形は、図5の矩形と同様である。また、各矩形の中心は、フェーズ中心のk空間データに対応する。
図11では、最小フェーズ数として「10」が設定される場合を説明する。最小フェーズ数とは、1心拍の間で画像化される最小の枚数であり、例えば、撮像条件が設定される際に操作者により指定される。なお、1心拍分の撮像を行う場合、心拍の揺らぎを考慮してRR間隔を120%程度充足するように設定される。このため、期間T1及び期間T2は、いずれもRR間隔を120%程度充足するように設定される。このため、期間T1及び期間T2は、概ね12フェーズ相当の収集が行われている。つまり、期間T1は時相PA1~PA12の12フェーズを含み、期間T2は時相PB1~PB12の12フェーズを含む。
ステップS301において、第2再構成機能123dは、最小フェーズ数(N)を読み出す。図11に示す例では、最小フェーズ数として「10」が設定される。このため、第2再構成機能123dは、最小フェーズ数「10」を初期値として読み出す。
ステップS302において、第2再構成機能123dは、Nを1インクリメントする。ここで、読み出した最小フェーズ数は「10」であるので、第2再構成機能123dは、「N=10+1」により「N=11」を設定する。つまり、第2再構成機能123dは、1心拍を11等分するように、時相P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11を設定する(図11の上から4段目)。
ステップS303において、第2再構成機能123dは、各時相のフェーズ中心の心時相情報[%]を算出する。ここで、心時相情報は、1心拍における時相方向の位置を示す情報である。例えば、心時相情報は、RR間隔を100%とした場合に、収集されたk空間データがRR間隔の起点(トリガー信号)から何%の位置で収集されたかを示す。
例えば、第2再構成機能123dは、期間T1に含まれる各時相PA1~PA12について、フェーズ中心の心時相情報を算出する。具体的に、時相PA1のフェーズ中心の心時相情報は「5%」、時相PA2のフェーズ中心の心時相情報は「15%」、時相PA3のフェーズ中心の心時相情報は「25%」、時相PA4のフェーズ中心の心時相情報は「35%」、時相PA5のフェーズ中心の心時相情報は「45%」、時相PA6のフェーズ中心の心時相情報は「55%」、時相PA7のフェーズ中心の心時相情報は「65%」、時相PA8のフェーズ中心の心時相情報は「75%」、時相PA9のフェーズ中心の心時相情報は「85%」、時相PA10のフェーズ中心の心時相情報は「95%」、時相PA11のフェーズ中心の心時相情報は「105%」、時相PA12のフェーズ中心の心時相情報は「115%」である。
また、第2再構成機能123dは、期間T2に含まれる各時相PB1~PB12について、フェーズ中心の心時相情報を算出する。具体的に、時相PB1のフェーズ中心の心時相情報は「10%」、時相PB2のフェーズ中心の心時相情報は「20%」、時相PB3のフェーズ中心の心時相情報は「30%」、時相PB4のフェーズ中心の心時相情報は「40%」、時相PB5のフェーズ中心の心時相情報は「50%」、時相PB6のフェーズ中心の心時相情報は「60%」、時相PB7のフェーズ中心の心時相情報は「70%」、時相PB8のフェーズ中心の心時相情報は「80%」、時相PB9のフェーズ中心の心時相情報は「90%」、時相PB10のフェーズ中心の心時相情報は「100%」、時相PB11のフェーズ中心の心時相情報は「110%」、時相PB12のフェーズ中心の心時相情報は「120%」である。
また、第2再構成機能123dは、1心拍を11等分した各時相P1~P11について、フェーズ中心の心時相情報[%]を算出する。具体的に、時相P1のフェーズ中心の心時相情報は「4.5%」、時相P2のフェーズ中心の心時相情報は「13.6%」、時相P3のフェーズ中心の心時相情報は「22.7%」、時相P4のフェーズ中心の心時相情報は「31.8%」、時相P5のフェーズ中心の心時相情報は「40.9%」、時相P6のフェーズ中心の心時相情報は「50.0%」、時相P7のフェーズ中心の心時相情報は「59.1%」、時相P8のフェーズ中心の心時相情報は「68.2%」、時相P9のフェーズ中心の心時相情報は「77.3%」、時相P10のフェーズ中心の心時相情報は「86.4%」、時相P11のフェーズ中心の心時相情報は「95.5%」である。
ステップS304において、第2再構成機能123dは、全ての心時相情報[%]に対応するフェーズ中心のk空間データが存在するか否かを判定する。例えば、第2再構成機能123dは、各時相P1~P11のフェーズ中心の心時相情報から所定の閾値以内に、時相PA1~PA12及び時相PB1~PB12のフェーズ中心の心時相情報が存在するか否かを判定する。ここでは、閾値が「2.4」である場合を説明する。
図11に示すように、時相P1のフェーズ中心の心時相情報「4.5%」に最も近いものは、時相PA1のフェーズ中心の心時相情報「5%」であり、その差は「-0.5」である。時相P2のフェーズ中心の心時相情報「13.6%」に最も近いものは、時相PA2のフェーズ中心の心時相情報「15%」であり、その差は「-1.4」である。時相P3のフェーズ中心の心時相情報「22.7%」に最も近いものは、時相PA3のフェーズ中心の心時相情報「25%」であり、その差は「-2.3」である。時相P4のフェーズ中心の心時相情報「31.8%」に最も近いものは、時相PB3のフェーズ中心の心時相情報「30%」であり、その差は「1.8」である。時相P5のフェーズ中心の心時相情報「40.9%」に最も近いものは、時相PB4のフェーズ中心の心時相情報「40%」であり、その差は「0.9」である。時相P6のフェーズ中心の心時相情報「50.0%」に最も近いものは、時相PB5のフェーズ中心の心時相情報「50%」であり、その差は「0」である。時相P7のフェーズ中心の心時相情報「59.1%」に最も近いものは、時相PB6のフェーズ中心の心時相情報「60%」であり、その差は「-0.9」である。時相P8のフェーズ中心の心時相情報「68.2%」に最も近いものは、時相PB7のフェーズ中心の心時相情報「70%」であり、その差は「-1.8」である。時相P9のフェーズ中心の心時相情報「77.3%」に最も近いものは、時相PA8のフェーズ中心の心時相情報「75%」であり、その差は「2.3」である。時相P10のフェーズ中心の心時相情報「86.4%」に最も近いものは、時相PA9のフェーズ中心の心時相情報「85%」であり、その差は「1.4」である。時相P11のフェーズ中心の心時相情報「95.5%」に最も近いものは、時相PA10のフェーズ中心の心時相情報「95%」であり、その差は「0.5」である。
ここで、時相P1~P11のいずれにおいても、最も近い心時相情報との差(絶対値)は閾値「2.4」未満である。この場合、第2再構成機能123dは、全ての時相の心時相情報[%]に対応するフェーズ中心のk空間データが存在すると判定し(ステップS304,Yes)、ステップS302に移行する。つまり、第2再構成機能123dは、フェーズ数を1増加させるごとに、増加させたフェーズ数のフェーズ中心のk空間データが存在するか否かを判定する。
一方、時相P1~P11のいずれかにおいて、最も近い心時相情報との差が閾値「2.4」を超えていた場合には、第2再構成機能123dは、全ての時相の心時相情報[%]に対応するフェーズ中心のk空間データが存在しないと判定し(ステップS304,No)、ステップS305に移行する。
ステップS305において、第2再構成機能123dは、N-1をフェーズ数として決定する。つまり、第2再構成機能123dは、全ての時相の心時相情報[%]に対応するフェーズ中心のk空間データが存在すると判定されたフェーズ数のうちの最大値を、フェーズ数として決定する。
図8の説明に戻る。ステップS206において、第2再構成機能123dは、決定したフェーズ数の画像データを再構成する。このとき、第2再構成機能123dは、決定したフェーズ数に対応する複数のk空間データを、期間T1及び期間T2に含まれる複数のk空間データから抽出する。そして、第2再構成機能123dは、抽出した各時相に対応する複数のk空間データが、画像1枚分の位相エンコードのパターンに一致するように並べ替える。そして、第2再構成機能123dは、並べ替えた後の各時相に対応する複数のk空間データを用いて、各時相の画像データを再構成する。
図12を用いて、決定したフェーズ数に対応する複数のk空間データを抽出する処理を説明する。図12は、第2の実施形態に係る第2再構成機能123dの処理を説明するための図である。図12には、図11の時相P4、時相PA4、及び時相PB3の周辺を抜き出した拡大図を示す。なお、図12において、黒丸印は、k空間データを示す。
図12では、時相P4に対応する複数のk空間データを、時相PA4及び時相PB3に含まれるk空間データから抽出する場合の処理を説明する。第2再構成機能123dは、時相P4に配置するk空間データと同一の位相エンコード量を有し、かつ、心時相情報[%]が近いk空間データを、時相PA4及び時相PB3に含まれるk空間データから抽出する。
時相P4のk空間データP4-SCは、時相P4の位相エンコード方向の中心(フェーズ中心)に位置するk空間データである。ここで、k空間データP4-SCと同一の位相エンコード量を有するものは、k空間データPA4-S’C及びk空間データPB3-S’Cである。このうち、k空間データP4-SCの心時相情報[%]に近いものは、k空間データPB3-S’Cである。このため、第2再構成機能123dは、期間T2の収集データからk空間データPB3-S’Cを抽出し、k空間データP4-S1の位置に配置する。
また、時相P4のk空間データP4-S1は、時相P4の位相エンコード方向の端部に位置するk空間データである。ここで、k空間データP4-S1と同一の位相エンコード量を有するものは、k空間データPA4-S’1及びk空間データPB3-S’1である。このうち、k空間データP4-S1の心時相情報[%]に近いものは、k空間データPAB4-S’1である。このため、第2再構成機能123dは、期間T1の収集データからk空間データPA4-S’1を抽出し、k空間データP4-S1の位置に配置する。
このように、第2再構成機能123dは、決定したフェーズ数に対応する各時相に配置するk空間データを、時相PA4及び時相PB3に含まれるk空間データから抽出する。そして、第2再構成機能123dは、抽出したk空間データを、画像1枚分の位相エンコードのパターンに一致するように並び替え、再構成を行う。そして、出力制御機能123eは、再構成された画像データを適宜表示する。
上述してきたように、第2の実施形態に係るMRI装置100は、間引きサンプリングを用いたプロスペクティブ撮像により、複数心拍にわたるk空間データを収集する。そして、MRI装置100は、間引きサンプリングに対応する再構成処理により、複数心拍にわたる画像データを再構成する。そして、MRI装置100は、フーリエ逆変換処理により、複数心拍にわたるフルサンプリング相当のk空間データを生成する。そして、MRI装置100は、各時相のフェーズ中心の心時相情報から所定の閾値以内に、フルサンプリング相当のk空間データが存在するか否かに基づいて、時間分解能を向上させたフェーズ数を決定する。そして、MRI装置100は、複数心拍にわたるフルサンプリング相当のk空間データから、決定したフェーズ数の画像データを再構成する。これにより、MRI装置100は、プロスペクティブ撮像により収集した複数心拍にわたるk空間データを用いて、時間分解能を向上させることができる。
また、通常、プロスペクティブ撮像では、複数心拍の間で各画像データの心時相を揃えるために、トリガー信号に応じて撮像の開始点を同期させる。これに対して、第2の実施形態に係るMRI装置100は、プロスペクティブ撮像を行いつつ一方の収集期間に待機時間Δtを設けることで、複数心拍の間で各画像データの心時相を意図的にずらす。これにより、収集される各時相のフェーズ中心の心時相情報が多様化するので、時間分解能を向上させることができる。
なお、第2の実施形態では、時間分解能を上げるためにフェーズ数を1ずつ増加させる処理を例示したが、これに限定されるものではない。例えば、操作者が所望するフェーズ数の入力を受け付けて、受け付けたフェーズ数について、ステップS304の判定を行っても良い。
(第2の実施形態の変形例)
第2の実施形態では、複数心拍にわたるk空間データを収集する場合に、一方の収集期間に待機時間Δtを設けることで、複数心拍の間で各画像データの心時相を意図的にずらす場合を説明した。しかしながら、実施形態はこれに限定されるものではない。
例えば、健常者においても、連続する2心拍の期間は少しずつ変化している(揺らいでいる)ことが知られている。そこで、この揺らぎを利用することで、収集される各時相のフェーズ中心の心時相情報を多様化させることができる。
図13を用いて、第2の実施形態の変形例に係る取得機能123aの処理を説明する。図13は、第2の実施形態の変形例に係る取得機能123aの処理を説明するための図である。図13において、横軸に示した「t」は、時相方向に対応する。また、図13の上段にはトリガー信号を例示し、図13の下段にはプロスペクティブ撮像の撮像シーケンスを例示する。
図13に示すように、シーケンス制御回路110は、取得機能123aの制御のもと、プロスペクティブ撮像を実行し、期間T1及び期間T2を連続的に撮像する。このように、待機時間Δtを設けずに連続的に撮像したとしても、連続する2心拍の期間の揺らぎを利用して、期間T1及び期間T2の各画像データの心時相をずらせることが期待される。
(その他の実施形態)
上述した実施形態以外にも、種々の異なる形態にて実施されてもよい。
(医用画像処理装置)
例えば、上記の実施形態では、処理回路123の構成要素である取得機能123a、第1再構成機能123b、生成機能123c、第2再構成機能123d及び出力制御機能123eの各処理機能が、MRI装置100において実行される場合を説明したが、実施形態はこれに限定されるものではない。例えば、上記の各処理機能は、ワークステーションなどの医用画像処理装置において実行されてもよい。
図14は、その他の実施形態に係る医用画像処理装置200を示すブロック図である。医用画像処理装置200は、例えば、パーソナルコンピュータやワークステーション等の情報処理装置に対応する。
図14に示すように、医用画像処理装置200は、入力インタフェース201、ディスプレイ202、記憶回路210、及び処理回路220を備える。入力インタフェース201、ディスプレイ202、記憶回路210、及び処理回路220は、相互に通信可能に接続される。
入力インタフェース201は、マウス、キーボード、タッチパネル等、操作者からの各種の指示や設定要求を受け付けるための入力装置である。ディスプレイ202は、医用画像を表示したり、操作者が入力インタフェース201を用いて各種設定要求を入力するためのGUIを表示したりする表示装置である。
記憶回路210は、例えば、NAND(Not AND)型フラッシュメモリやHDD(Hard Disk Drive)であり、医用画像データやGUIを表示するための各種のプログラムや、当該プログラムによって用いられる情報を記憶する。本実施形態では、記憶回路210は、例えば、間引きサンプリングにより収集された複数のk空間データと、各k空間データの収集時刻とが対応づけられた情報が予め記憶されている。
処理回路220は、医用画像処理装置200における処理全体を制御する電子機器(プロセッサ)である。処理回路220は、取得機能221、第1再構成機能222、生成機能223、第2再構成機能224、及び出力制御機能225を実行する。処理回路220が実行する各処理機能は、例えば、コンピュータによって実行可能なプログラムの形態で記憶回路210内に記録されている。処理回路220は、各プログラムを読み出し、実行することで読み出した各プログラムに対応する機能を実現する。取得機能221、第1再構成機能222、生成機能223、第2再構成機能224、及び出力制御機能225は、図1に示した取得機能123a、第1再構成機能123b、生成機能123c、第2再構成機能123d、及び出力制御機能123eと基本的に同様の処理を実行可能である。
すなわち、医用画像処理装置200において、取得機能221は、カーテシアン収集やラディアル収集などで間引きサンプリングが行われた、複数の第1収集時刻における複数の第1k空間データを取得する。第1再構成機能222は、間引きサンプリングに対応する再構成処理により、第1k空間データから第1画像データを再構成する。生成機能223は、第1画像データに対するフーリエ逆変換処理により、フルサンプリングに対応する複数の第2k空間データを生成するとともに、各第2k空間データの擬似的な第2収集時刻を生成する。第2再構成機能224は、第2収集時刻に基づいて第2k空間データに対して並べ替え処理を行い、並べ替え処理後の第2k空間データを用いて第2画像データを再構成する。これにより、医用画像処理装置200は、所望の時間分解能での画像化を可能にする。
なお、第2の実施形態に係る処理を医用画像処理装置200にて実行する場合には、トリガー信号の情報を記憶回路210に格納しておくのが好適である。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。更に、各装置にて行なわれる各処理機能は、その全部又は任意の一部が、CPU及び当該CPUにて解析実行されるプログラムにて実現され、或いは、ワイヤードロジックによるハードウェアとして実現され得る。
また、上記の実施形態及び変形例において説明した各処理のうち、自動的に行なわれるものとして説明した処理の全部又は一部を手動的に行なうこともでき、或いは、手動的に行なわれるものとして説明した処理の全部又は一部を公知の方法で自動的に行なうこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
また、上記の実施形態及び変形例で説明した画像再構成方法は、予め用意された画像再構成プログラムをパーソナルコンピュータやワークステーション等のコンピュータで実行することによって実現することができる。この画像再構成プログラムは、インターネット等のネットワークを介して配布することができる。また、この画像再構成プログラムは、ハードディスク、フレキシブルディスク(FD)、CD-ROM、MO、DVD等のコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することもできる。
以上説明した少なくともひとつの実施形態によれば、所望の時間分解能での画像化を可能にする。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
100 MRI装置
123 処理回路
123a 取得機能
123b 第1再構成機能
123c 生成機能
123d 第2再構成機能
123e 出力制御機能

Claims (9)

  1. 間引きサンプリングにより、複数の第1収集時刻における複数の第1k空間データを取得する取得部と、
    前記間引きサンプリングに対応する再構成処理により、前記第1k空間データから第1画像データを再構成する第1再構成部と、
    前記第1画像データに対するフーリエ逆変換処理により、フルサンプリングに対応する複数の第2k空間データを生成するとともに、各第2k空間データを収集したとみなす擬似的な第2収集時刻を生成する生成部と、
    前記第2収集時刻に基づいて前記第2k空間データに対して並べ替え処理を行い、前記並べ替え処理後の第2k空間データを用いて第2画像データを再構成する第2再構成部と
    を備える、磁気共鳴イメージング装置。
  2. 前記第2再構成部は、前記並べ替え処理として、前記第2k空間データを用いてView Sharing処理を行う、
    請求項1に記載の磁気共鳴イメージング装置。
  3. 前記取得部は、被検体の心電信号における特徴点の検出に応じて前記複数の第1k空間データを複数心拍にわたって取得するとともに、各第1収集時刻に対応する第1心時相情報を取得し、
    前記第1再構成部は、複数心拍にわたる前記複数の第1k空間データから複数心拍にわたる複数の第1画像データを再構成し、
    前記生成部は、複数心拍にわたる前記複数の第1画像データに対するフーリエ逆変換により、複数心拍にわたる前記複数の第2k空間データを生成するとともに、前記第1心時相情報に基づいて前記第2収集時刻に対応する第2心時相情報を生成し、
    前記第2再構成部は、前記第2心時相情報に基づいて、複数心拍にわたる前記複数の第2k空間データに対して並べ替え処理を行うことで、1心拍に対応する複数の第2画像データを再構成する、
    請求項1に記載の磁気共鳴イメージング装置。
  4. 前記取得部は、前記複数の第1k空間データとして、
    前記心電信号における特徴点を開始点とする第1期間に含まれる複数の第3k空間データと、
    前記特徴点とは異なる時相を開始点とする第2期間に含まれる複数の第4k空間データとを取得し、
    前記第1再構成部は、前記複数の第1画像データとして、
    前記複数の第3k空間データに基づいて、前記第1期間に含まれる複数の第3画像データを再構成するとともに、
    前記複数の第4k空間データに基づいて、前記第2期間に含まれる複数の第4画像データを再構成し、
    前記生成部は、前記複数の第2k空間データとして、
    前記複数の第3画像データに基づいて、前記第1期間に含まれる複数の第5k空間データと、
    前記複数の第4画像データに基づいて、前記第2期間に含まれる複数の第6k空間データを生成し、
    前記第2再構成部は、前記複数の第2画像データとして、
    前記複数の第5k空間データに基づいて、前記第1期間に含まれる複数の第5画像データを再構成するとともに、
    前記複数の第6k空間データに基づいて、前記第2期間に含まれる複数の第6画像データを再構成する、
    請求項3に記載の磁気共鳴イメージング装置。
  5. 前記第2再構成部は、操作者により指定された数の前記第2画像データを再構成する、
    請求項1~4のいずれか一つに記載の磁気共鳴イメージング装置。
  6. 間引きサンプリングにより、複数の第1収集時刻における複数の第1k空間データを取得する取得部と、
    前記間引きサンプリングに対応する再構成処理により、前記第1k空間データから第1画像データを再構成する第1再構成部と、
    前記第1画像データに対するフーリエ逆変換処理により、フルサンプリングに対応する複数の第2k空間データを生成するとともに、各第2k空間データを収集したとみなす擬似的な第2収集時刻を生成する生成部と、
    前記第2収集時刻に基づいて前記第2k空間データに対して並べ替え処理を行い、前記並べ替え処理後の第2k空間データを用いて第2画像データを再構成する第2再構成部と
    を備える、医用画像処理装置。
  7. 間引きサンプリングにより、複数の第1収集時刻における複数の第1k空間データを取得し、
    前記間引きサンプリングに対応する再構成処理により、前記第1k空間データから第1画像データを再構成し、
    前記第1画像データに対するフーリエ逆変換処理により、フルサンプリングに対応する複数の第2k空間データを生成するとともに、各第2k空間データを収集したとみなす擬似的な第2収集時刻を生成し、
    前記第2収集時刻に基づいて前記第2k空間データに対して並べ替え処理を行い、前記並べ替え処理後の第2k空間データを用いて第2画像データを再構成する、
    ことを含む、画像再構成方法。
  8. 間引きサンプリングにより、複数の時相それぞれに対応する第1k空間データを取得する取得部と、
    前記間引きサンプリングに対応する再構成処理をともない、前記各第1k空間データから間引き情報が補間された複数の第2k空間データを生成する生成部と、
    前記各第2k空間データのうち前後の時相にそれぞれ対応する第2k空間データを用いて、前記前後の時相とは異なる中間時相に対応する第3k空間データを生成し、前記第3k空間データを用いて第2画像データを再構成する再構成部と
    を備える、磁気共鳴イメージング装置。
  9. 前記再構成部は、前記前の時相に対応する第2k空間データのうち疑似的に収集したとみなす時刻が遅いデータと、前記後の時相に対応する第2k空間データのうち疑似的に収集したとみなす時刻が早いデータとを用いて、前記第3k空間データを生成する、
    請求項8に記載の磁気共鳴イメージング装置。
JP2018092339A 2018-05-11 2018-05-11 磁気共鳴イメージング装置、医用画像処理装置、及び画像再構成方法 Active JP7164320B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018092339A JP7164320B2 (ja) 2018-05-11 2018-05-11 磁気共鳴イメージング装置、医用画像処理装置、及び画像再構成方法
US16/409,105 US11138769B2 (en) 2018-05-11 2019-05-10 Image reconstruction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018092339A JP7164320B2 (ja) 2018-05-11 2018-05-11 磁気共鳴イメージング装置、医用画像処理装置、及び画像再構成方法

Publications (2)

Publication Number Publication Date
JP2019195582A JP2019195582A (ja) 2019-11-14
JP7164320B2 true JP7164320B2 (ja) 2022-11-01

Family

ID=68463295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018092339A Active JP7164320B2 (ja) 2018-05-11 2018-05-11 磁気共鳴イメージング装置、医用画像処理装置、及び画像再構成方法

Country Status (2)

Country Link
US (1) US11138769B2 (ja)
JP (1) JP7164320B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10670676B2 (en) * 2018-01-31 2020-06-02 Canon Medical Systems Corporation Image reconstructing method and reconstructing apparatus
JP7473374B2 (ja) 2019-03-25 2024-04-23 キヤノンメディカルシステムズ株式会社 画像再構成方法及び再構成装置
US10996306B2 (en) * 2019-04-25 2021-05-04 General Electric Company MRI system and method using neural network for detection of patient motion
JP7473413B2 (ja) * 2020-07-17 2024-04-23 富士フイルムヘルスケア株式会社 磁気共鳴イメージング装置及びその制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509057A (ja) 1997-01-21 2001-07-10 ウイスコンシン アラムナイ リサーチ フオンデーシヨン ゲート化され時間解像されたコントラスト増幅3次元mr血管造影法
JP2002325744A (ja) 2000-12-30 2002-11-12 Ge Medical Systems Global Technology Co Llc 可変サンプリングを用いた高速/息止め3dmrデータ獲得方法と装置
US20080242972A1 (en) 2007-03-29 2008-10-02 Bernd Jung Method for accelerating data acquisition in dynamic magnetic resonance measurements (MRT) using parallel imaging
JP2013240571A (ja) 2012-04-27 2013-12-05 Toshiba Corp 磁気共鳴イメージング装置及び画像処理装置
JP2014069007A (ja) 2012-10-01 2014-04-21 Toshiba Corp 磁気共鳴イメージング装置及び画像処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592809B1 (en) * 2005-11-23 2009-09-22 General Electric Company Hybrid k-t method of dynamic imaging with improved spatiotemporal resolution
JP5854575B2 (ja) 2007-12-10 2016-02-09 株式会社東芝 磁気共鳴イメージング装置
US8417007B2 (en) 2007-12-10 2013-04-09 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method
DE112012004208T5 (de) * 2011-11-08 2014-09-18 Hitachi Medical Corporation Magnetresonanzabbildungsvorrichtung und Messverfahren für die Verteilung eines eingestrahlten Magnetfelds
US9213916B2 (en) * 2012-03-22 2015-12-15 The Charles Stark Draper Laboratory, Inc. Compressive sensing with local geometric features
JP6058451B2 (ja) * 2013-03-29 2017-01-11 東芝メディカルシステムズ株式会社 磁気共鳴撮像装置
CN103323805B (zh) * 2013-05-29 2015-04-29 杭州电子科技大学 基于小波域稀疏表示的speed快速磁共振成像方法
KR101629165B1 (ko) * 2013-12-10 2016-06-21 삼성전자 주식회사 자기공명영상장치 및 그 제어방법
US9581671B2 (en) * 2014-02-27 2017-02-28 Toshiba Medical Systems Corporation Magnetic resonance imaging with consistent geometries
EP2924457B1 (en) * 2014-03-28 2016-11-02 Albert-Ludwigs-Universität Freiburg Half Fourier MRI with iterative reconstruction
WO2016064990A1 (en) * 2014-10-21 2016-04-28 Dignity Health System and method for convolution operations for data estimation from covariance in magnetic resonance imaging
CN105184755B (zh) * 2015-10-16 2017-12-05 西南石油大学 基于自一致性的含联合全变分的并行磁共振成像高质量重构方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509057A (ja) 1997-01-21 2001-07-10 ウイスコンシン アラムナイ リサーチ フオンデーシヨン ゲート化され時間解像されたコントラスト増幅3次元mr血管造影法
JP2002325744A (ja) 2000-12-30 2002-11-12 Ge Medical Systems Global Technology Co Llc 可変サンプリングを用いた高速/息止め3dmrデータ獲得方法と装置
US20080242972A1 (en) 2007-03-29 2008-10-02 Bernd Jung Method for accelerating data acquisition in dynamic magnetic resonance measurements (MRT) using parallel imaging
JP2013240571A (ja) 2012-04-27 2013-12-05 Toshiba Corp 磁気共鳴イメージング装置及び画像処理装置
JP2014069007A (ja) 2012-10-01 2014-04-21 Toshiba Corp 磁気共鳴イメージング装置及び画像処理装置

Also Published As

Publication number Publication date
US20190347834A1 (en) 2019-11-14
US11138769B2 (en) 2021-10-05
JP2019195582A (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
JP7164320B2 (ja) 磁気共鳴イメージング装置、医用画像処理装置、及び画像再構成方法
KR101642428B1 (ko) 확대된 임시 윈도우의 서브 세트를 유연하게 가시화하기 위한 자기 공명 촬상 장치 및 자기 공명 촬상 방법
JP4646015B2 (ja) 磁気共鳴イメージング(mri)システムの作動方法
US10921405B2 (en) Image reconstructing method and reconstructing apparatus
US8417007B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP5854575B2 (ja) 磁気共鳴イメージング装置
Menchón-Lara et al. Reconstruction techniques for cardiac cine MRI
US20150097565A1 (en) Methods and apparatus for reducing scan time of phase contrast mri
JP7183055B2 (ja) 画像再構成方法及び再構成装置
US7684848B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging apparatus control method
JP2012505709A (ja) 移動テーブルmri装置及び方法
JP5037866B2 (ja) 磁気共鳴イメージング装置
JP6647816B2 (ja) 磁気共鳴イメージング装置、画像再構成方法及び画像再構成プログラム
JP2017047027A (ja) 磁気共鳴イメージング装置及び画像処理装置
JP6792983B2 (ja) 磁気共鳴イメージング装置
US8706191B2 (en) Magnetic resonance imaging apparatus and magnetic resonance angiography method
US10162035B2 (en) System and method for controlling motion effects in magnetic resonance imaging (MRI) images
JP7473374B2 (ja) 画像再構成方法及び再構成装置
JP7292930B2 (ja) 画像再構成方法及び再構成装置
JP7271100B2 (ja) 磁気共鳴イメージング装置
JP4454268B2 (ja) 磁気共鳴イメージング装置
JP4745650B2 (ja) 磁気共鳴イメージング装置
EP2202530A1 (en) MRI involving retrospective data extraction
US20220390539A1 (en) Magnetic resonance imaging apparatus and image processing apparatus
JP4265783B2 (ja) 核磁気共鳴撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221020

R150 Certificate of patent or registration of utility model

Ref document number: 7164320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150