JP7161136B2 - 置局設計装置、置局設計方法及びプログラム - Google Patents

置局設計装置、置局設計方法及びプログラム Download PDF

Info

Publication number
JP7161136B2
JP7161136B2 JP2021524596A JP2021524596A JP7161136B2 JP 7161136 B2 JP7161136 B2 JP 7161136B2 JP 2021524596 A JP2021524596 A JP 2021524596A JP 2021524596 A JP2021524596 A JP 2021524596A JP 7161136 B2 JP7161136 B2 JP 7161136B2
Authority
JP
Japan
Prior art keywords
station
terminals
candidate
location
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021524596A
Other languages
English (en)
Other versions
JPWO2020245976A1 (ja
Inventor
一光 坂元
賢司 鈴木
陽平 片山
洋輔 藤野
浩之 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2020245976A1 publication Critical patent/JPWO2020245976A1/ja
Application granted granted Critical
Publication of JP7161136B2 publication Critical patent/JP7161136B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、置局設計装置、置局設計方法及びプログラムに関する。
IoT(Internet of Things;モノのインターネット)技術の発展により、各種センサ及び通信機能を備えたモノ(以下、「IoT機器」又は「端末」という。)をネットワークに接続し、遠隔データ収集及びIoT機器の遠隔制御等を行うことが年々盛んになっている。また、近年、IoT機器向けの無線通信方式として、LPWA(Low Power Wide Area network)が注目されている。LPWAには、例えば、アンライセンスバンド(無線局免許を必要としない周波数帯)を用いるLoRaWAN及びSigfox、ライセンスバンド(無線局免許を必要とする周波数帯)を用いるLTE-M(Long Term Evolution for Machines)及びNB(Narrow Band)-IoT等の無線通信方式がある。
IoT機器は、主に特定の場所に固定して設置され、利用されることが多い。一方で、電波伝搬は、場所依存性が高い。よって、基地局からの電波の受信電力が低い不感地帯にIoT機器が設置された場合、長期的に通信不可の状態となりうる。そのため、IoT機器の設置予定場所において十分な受信電力を確保できるように、又は、受信電力や周辺の干渉発生状況等の情報をもとに推定される通信成功率が目標値を満たすように、置局設計を行うことが重要となる。
置局設計では一般的に、基地局から送信される電波の受信電力(希望波受信電力)をもとに、コストや基地局数が最小となる最適置局パターンを決定する。特許文献1では、対象地域全体を最小限の基地局数でカバーするための技術が開示されている。
通信成功率を推定する従来技術としては、例えば、特許文献2及び特許文献3に記載の技術がある。特許文献2に記載の技術は、無線機を仮設置して実際に通信を試行することによって通信成功率を測定する技術である。また、特許文献3に記載の技術は、複数の基地局によって構成されるマルチセル環境におけるスループットを、モンテカルロシミュレーションを用いて推定する技術である。また、特許文献4には、エリア設計前後における品質の改善及び劣化を考慮してエリア設計を行うことを可能にする技術が開示されている。
特開2001-285923号公報 特開2014-72853号公報 特許第5077347号公報 特許第5245389号公報
置局設計を行うケースは大きく分類して2つある。1つは、基地局がない状況から対象地域全体をカバーできるよう新規に置局する場合に最適な置局パターンを決定するケースである。もう1つは、対象地域に既にいくつか基地局が設置されて無線エリア(セル)が構築されている状況において無線エリア拡大のために追加で置局する場合に最適な置局場所を決定するケースである。
特許文献1の技術は、前者のケースでは有効な技術であるものの、後者の無線エリア拡大のための置局には適さない。なぜなら、追加で置局を行うことにより、これまで不感地帯であった場所を新たにカバー(品質改善)できる一方で、新たな干渉源(セル間干渉)が生じたり、既存のセル間干渉の影響が変化したりするために、既存基地局からなる無線エリアに品質劣化が生じる可能性があるためである。すなわち、無線エリア拡大のための置局設計においては、希望波受信電力をもとに不感地帯解消の品質改善効果の観点のみを考慮するだけでは不十分であり、セル間干渉の変化による品質劣化も考慮した上で結果的に通信成功率が目標値を満たすように置局設計を行う必要がある。
特許文献4では、置局や無線パラメータ調整といったエリア設計の前後における品質の改善及び劣化を考慮してエリア設計を行うことを可能にしている。特許文献4では、このエリア設計において考慮する電波品質として、希望波受信電力を用いている。しかしながら、希望波受信電力が劣化することがあるのは無線パラメータの調整を行う場合のみであり、置局により希望波受信電力が劣化することはない。そのため、特許文献4は置局の場合も含めた形で記述されているものの、実質的には置局前後の品質改善/劣化を考慮した置局設計を行うことを可能にする技術ではない。
上記事情に鑑み、本発明は、無線エリアを拡大する場合の置局場所を決定することができる置局設計装置、置局設計方法及びプログラム提供することを目的としている。
本発明の一態様は、複数の置局候補地それぞれについて、前記置局候補地に基地局が設置された場合の各端末の通信品質を算出する通信品質算出部と、複数の前記置局候補地それぞれについて、前記通信品質算出部が算出した前記通信品質がしきい値以上の前記端末の数を集計する集計部と、複数の前記置局候補地それぞれについて前記集計部が集計した前記端末の数に基づいて、複数の前記置局候補地の中から置局場所を選定する置局場所選定部と、を備える置局設計装置である。
本発明の一態様は、複数の置局候補地それぞれについて、前記置局候補地に基地局が設置された場合の各端末の通信品質を算出する通信品質算出ステップと、複数の前記置局候補地それぞれについて、前記通信品質算出ステップにおいて算出された前記通信品質がしきい値以上の前記端末の数を集計する集計ステップと、前記集計ステップにおいて複数の前記置局候補地それぞれについて集計された前記端末の数に基づいて、複数の前記置局候補地の中から置局場所を選定する置局場所選定ステップと、を有する置局設計方法である。
本発明の一態様は、コンピュータを、上述した置局設計装置として機能させるためのプログラムである。
本発明により、無線エリアを拡大する場合の置局場所を決定することが可能となる。
第1の実施形態に係る置局設計装置の機能構成を示すブロック図である。 第1の実施形態に係る置局設計装置による最適置局場所選定処理を説明するための図である。 第1の実施形態に係る置局設計装置による最適置局場所選定処理を説明するための図である。 第1の実施形態に係る置局設計装置の動作を示すフローチャートである。 第2の実施形態に係る置局設計装置の機能構成を示すブロック図である。 第2の実施形態に係る置局設計装置の動作を示すフローチャートである。 通信成功率推定装置の機能構成を示すブロック図である。 通信成功率推定装置による通信成功率推定処理を説明するための図である。 通信成功率推定装置の動作を示すフローチャートである。
以下、図面を参照しながら本発明の実施形態を詳細に説明する。
<第1の実施形態>
以下、本発明の第1の実施形態について説明する。本実施形態では、既存エリアの品質劣化を考慮して最適な置局場所を選定する。
[置局設計装置の機能構成]
図1は、本発明の第1の実施形態に係る置局設計装置1の機能構成を示すブロック図である。置局設計装置1は、通信品質算出部11と、集計部12と、置局場所選定部13と、を具備する。
通信品質算出部11は、複数の置局候補地それぞれについて、置局候補地へ基地局を置局した後の各端末の通信品質を算出する。なお、端末は、固定設置されており、設置場所は既知である。また、置局候補地の選択前に既に基地局が設置されている場合もあるが、設置されていない場合もある。算出される通信品質の例は、通信成功率である。端末が固定設置される無線通信システムにおける各端末の通信成功率は、基地局と端末の設置場所情報から算出される希望波受信電力及び干渉信号電力や、トラフィックパターンや、基地局と端末の熱雑音電力等の情報をもとに推定可能である。トラヒックパターンとして、端末の上り通信頻度及び1回あたりの上り通信時間、基地局から端末へのAck(Acknowledge)の通信発生時間等を用いることができる。通信成功率の算出については、例えば、特願2019-042476に記載されている。通信成功率の算出の具体例については、図7~9を用いて後述する。
集計部12は、複数の置局候補地それぞれについて、置局候補地への置局後に想定される、通信成功率がしきい値以上の端末数を集計する。置局場所選定部13は、各置局候補地について集計した端末数を比較し、端末数が最大の置局候補地を最適置局場所として選定する。
[最適置局場所選定]
以下、置局設計装置1が実行する最適置局場所の選定処理について説明する。図2及び図3は、本発明の第1の実施形態に係る置局設計装置1による最適置局場所選定処理を説明するための図である。図2及び図3に示すように、既に基地局が設置されており、かつ、既存端末が稼働中の状況において、置局候補地のいずれかに新たに置局することで新規端末を収容する場合を例に挙げて、最適置局場所の選定処理を説明する。なお、以下では、既に設置されているP台(Pは1以上の整数)の基地局のうちp番目(pは1以上P以下の整数)の基地局を基地局#pと記載し、Q個(Qは1以上の整数)の置局候補地のうちq番目(qは1以上Q以下の整数)の置局候補地を置局候補地#qと記載する。図2及び図3は、P=2、かつ、Q=3の場合の例を示している。また、複数の既存の端末のうち、10台の端末を端末#1~#10と記載している。
図2及び図3に示すように、基地局#1が既に設置されていることによりセル#1が構築され、基地局#2が既に設置されていることによりセル#2が構築されている。また、稼働中の既存端末は、通信成功率がしきい値以上であり、品質の良い状態で稼働中であるとする。セル#1において稼働中の端末には、端末#1~#5が含まれ、セル#2において稼働中の端末には、端末#6~#10が含まれる。図2では、置局候補地#1に置局する場合に構築される新規セル#1を図示している。また、図3では、置局候補地#2に置局する場合に構築される新規セル#2、及び、置局候補地#3に置局する場合に構築される新規セル#3を図示している。
図2に示すように、置局候補地#1に置局する場合、その置局候補地#1に置局される新規基地局から10台の新規端末に十分な電力の電波が届く。つまり、新規基地局により構築される新規セルにおいて、10台の新規端末の通信成功率がしきい値以上となる。それとともに、既存端末#1~#10にも新規基地局からの電波が届く。したがって、既存端末#1~#10に新規基地局からのセル間干渉が生じ、セル間干渉により既存端末#1~#10の通信成功率がしきい値を下回る可能性がある。例えば、セル間干渉により既存端末#1~#10のいずれも通信成功率がしきい値を下回るとすると、新規基地局を置局することで新規端末10台の通信成功率がしきい値以上となる一方で、既存端末10台の通信成功率がしきい値を下回る。よって、置局前と置局後とで通信成功率がしきい値以上の端末数は変わらないという結果になる。
一方、図3に示すように、置局候補地#2に置局する場合、通信成功率がしきい値以上となる新規端末は7台である。しかし、セル間干渉により通信成功率がしきい値を下回る既存端末は端末#6の1台に留まる。よって、置局前よりも置局後は、通信成功率がしきい値以上の端末数は6台増加する。同様に、置局候補地#3に置局する場合、通信成功率がしきい値以上となる新規端末は7台であり、セル間干渉により通信成功率がしきい値を下回る既存端末は端末#5及び端末#10の2台である。よって、置局前よりも置局後は、通信成功率がしきい値以上の端末数は5台増加する。
上記のように、置局候補地#1~置局候補地#3のうち、置局候補地#2に置局した場合に、最も、既存エリアの端末の品質劣化を抑えつつ新規端末を多く収容できるため、効果的な無線エリア拡大を達成することができる。
なお、この例では、新規セルによって生じるセル間干渉の影響を受ける既存端末はすべて、通信成功率がしきい値を下回るものとして説明した。しかし、実際には既存の基地局#1、#2からの希望波受信電力の大きさ、セル間干渉電力の大きさ、希望波と干渉波の衝突確率などによって通信成功率の劣化度合いが決まる。従って、セル間干渉の影響を受ける既存端末の通信成功率が必ずしもしきい値を下回るとは限らない。そのため、通信品質算出部11は、各置局候補地について、置局後の各端末の通信成功率を算出する。集計部12は、各置局候補地について、置局後の通信成功率がしきい値以上の端末数を集計する。
置局設計装置1を、ネットワークに接続される複数台の情報処理装置により実現してもよい。この場合、置局設計装置1の各機能部を、これら複数の情報処理装置のいずれにより実現するかは任意とすることができる。例えば、通信品質算出部11及び集計部12と、置局場所選定部13とを異なる情報処理装置により実現してもよく、通信品質算出部11と、集計部12及び置局場所選定部13とを異なる情報処理装置により実現してもよい。また、同一の機能部を複数の情報処理装置により実現してもよい。
なお、上記では、通信品質として通信成功率を用いる場合について説明したが、通信品質は、希望波と干渉信号とに関連する指標であればよい。例えば、通信品質として、SINR(Signal to Interference plus Noise power Ratio;所望信号電力対干渉及び雑音電力比)を用いてもよい。
[置局設計装置の動作]
以下、置局設計装置1の動作について説明する。図4は、第1の実施形態に係る置局設計装置1の動作を示すフローチャートである。ここでは、置局候補地数をQ(Qは1以上の整数)とする。
通信品質算出部11は、置局候補地を識別する変数qに値1を代入する(ステップS1)。通信品質算出部11は、置局候補地#qに置局した場合の各端末の通信成功率を算出する(ステップS2)。集計部12は、ステップS2において算出された通信成功率がしきい値以上の端末数を集計する(ステップS3)。集計部12は、変数qが置局候補地数Qと等しいか否かを判定する(ステップS4)。集計部12は、変数qが置局候補地数Qと等しくないと判定した場合(ステップS4-NO)、変数qに値1を加算した後に(ステップS5)、ステップS2に移行する。置局設計装置1は、ステップS2からの処理を繰り返す。
そして、集計部12は、変数qが置局候補地数Qと等しいと判定した場合(ステップS4-YES)、ステップS6に移行する。置局場所選定部13は、置局候補地#1~#Qのうち、通信成功率がしきい値以上の端末数が最大である置局候補地を最適な置局場所として選定する(ステップS6)。置局場所選定部13は、選定した置局場所を出力する。出力は、置局設計装置1が備える図示しないディスプレイへの表示でもよく、記録媒体への書き込みでもよく、印刷装置による印刷でもよく、置局設計装置1と接続される装置への出力でもよい。
本実施形態の置局設計装置1によれば、端末が固定設置される無線通信システムの置局設計業務において、既存エリアの端末の品質劣化を抑えつつ、新規エリアの端末を収容するために無線エリア拡大するのに適した置局場所を決定することができる。なお、置局候補地の選択前に基地局が設置されていない場合、置局設計装置1は、とり得る置局候補地の組合せ(組合せを構成する要素が1つの置局候補地である場合を含めてもよい)それぞれについてステップS2及びステップS3の処理を行う。そして、置局設計装置1は、ステップS6において通信成功率がしきい値以上の端末数が最大である置局候補地の組合せを選定する。
<第2の実施形態>
以下、本発明の第2の実施形態について説明する。本実施形態では、既存エリアの品質劣化と端末優先度を考慮して最適な置局場所を選定する。
上述した第1の実施形態では、全ての端末を平等に取り扱い、通信成功率がしきい値以上の端末数が最大である置局候補地を最適な置局場所として選定する場合について説明した。これに対し、第2の実施形態では、端末の優先度も考慮して最適な置局場所を選定する場合について説明する。以下では、第1の実施形態との相違点を主に説明する。
[置局設計装置の機能構成]
図5は、第2の実施形態に係る置局設計装置1aの機能構成を示すブロック図である。図5において、図1に示す第1の実施形態による置局設計装置1と同一の部分には同一の符号を付し、その説明を省略する。置局設計装置1aは、通信品質算出部11と、集計部12と、置局場所選定部13aと、優先端末記憶部14と、を具備する。このように、置局場所選定部13に代えて置局場所選定部13aを備える点と、優先端末記憶部14を具備する点が、第1の実施形態に係る置局設計装置1の機能構成との相違点である。
優先端末記憶部14は、優先的に通信品質を確保する端末(以下、「優先端末」という。)の端末ID及び設置場所を記憶する。優先端末とは、他の端末と比べて優先的に通信品質が確保され、かつ、常時ネットワークに接続されることが求められる端末である。例えば、鉄道の線路状態の遠隔監視や水道管ネットワークの漏水検知のために多数のセンサを設置するケースがある。このようなケースでは、多数の鉄道が利用する重要線路や水道管ネットワークの幹線管路に設置されるセンサのデータを、常時収集し監視することが求められる。そのような優先端末については、無線エリア拡大のための置局後も所要の通信品質が確保できるように、置局候補地から適切に置局場所を選定する必要がある。
置局場所選定部13aは、優先端末記憶部14が記憶している端末ID及び設置場所を参照して優先端末を識別し、全優先端末のうち所定割合以上の優先端末の通信成功率がしきい値以上となる置局候補地を抽出する。本実施形態では、所定割合が100%である場合を例に説明する。すなわち、置局場所選定部13aは、全ての優先端末の通信成功率がしきい値以上となる置局候補地を抽出する。置局場所選定部13aは、抽出した置局候補地の中から、通信成功率がしきい値以上の端末数が最大となる置局候補地を最適置局場所として選定する。
置局設計装置1aを、ネットワークに接続される複数台の情報処理装置により実現してもよい。この場合、置局設計装置1aの各機能部を、これら複数の情報処理装置のいずれにより実現するかは任意とすることができる。例えば、通信品質算出部11、集計部12及び置局場所選定部13aと、優先端末記憶部14とを異なる情報処理装置により実現してもよい。さらに、通信品質算出部11及び集計部12と、置局場所選定部13aとを異なる情報処理装置により実現してもよく、通信品質算出部11と、集計部12及び置局場所選定部13aとを異なる情報処理装置により実現してもよい。また、同一の機能部を複数の情報処理装置により実現してもよい。
なお、上記では、通信品質として通信成功率を用いる場合について説明したが、通信品質は、第1の実施形態と同様に、希望波と干渉信号とに関連する指標であればよい。例えば、通信品質として、SINRを用いてもよい。
[置局設計装置の動作]
以下、置局設計装置1aの動作について説明する。図6は、第2の実施形態に係る置局設計装置1aの動作を示すフローチャートである。同図において、図4に示す第1の実施形態による置局設計装置1の処理と同一の処理には同一の符号を付している。また、置局候補地数をQ(Qは1以上の整数)とする。
通信品質算出部11は、置局候補地を識別する変数qに値1を代入する(ステップS1)。通信品質算出部11は、置局候補地#qに置局した場合の各端末の通信成功率を算出する(ステップS2)。集計部12は、ステップS2において算出された通信成功率がしきい値以上の端末数を集計する(ステップS3)。集計部12は、変数qが置局候補地数Qと等しいか否かを判定する(ステップS4)。集計部12は、変数qが置局候補地数Qと等しくないと判定した場合(ステップS4-NO)、変数qに値1を加算した後に(ステップS5)、ステップS2に移行する。置局設計装置1は、ステップS2からの処理を繰り返す。
そして、集計部12は、変数qが置局候補地数Qと等しい場合(ステップS4-YES)、ステップS6aに移行する。置局場所選定部13aは、優先端末記憶部14が保持している優先端末の端末IDと設置場所を参照し、全ての優先端末の通信成功率がしきい値以上である置局候補地を抽出する。置局場所選定部13aは、抽出した置局候補地のうち、通信成功率がしきい値以上の端末数が最大である置局候補地を最適な置局場所として選定する(ステップS6a)。置局場所選定部13aは、選定した置局場所を出力する。
以上説明したように、第2の実施形態に係る置局設計装置1aは、優先端末の通信品質を確保し、かつ、既存エリアの端末の品質劣化を抑えつつ、新規端末を多く収容できるような置局設計を行う。よって、効果的な無線エリア拡大を達成することができる。
以上説明した実施形態によれば、端末が固定設置される無線通信システムの置局設計業務において、既存エリアの端末の品質劣化を抑えつつ、新規エリアの端末を収容するために無線エリア拡大するのに適した置局場所を決定することが可能となる。
<通信成功率の推定>
第1の実施形態及び第2の実施形態における通信品質算出部11として用いることが可能な通信成功率推定装置の例について説明する。なお、以下では、基地局と端末とが、LoRaWANのClass A及びClass Bのプロトコルを用いる場合を例に挙げて説明する。端末から基地局への上り通信は、Class Aのプロトコルにより行われる。また、基地局から端末への下り通信は、上記上り通信に対するAck(Acknowledge)を送信する場合にはClass Aのプロトコルにより行われ、アプリケーションサーバから基地局に転送されてきたデータ送信する場合にはClass Bのプロトコルにより行われる。
また、周辺に複数の基地局がある場合、端末から送信された信号は複数の基地局において受信され、復調される。そして、受信に成功した信号は、上位のネットワークサーバへ送られる。そして、ネットワークサーバにおいて受信に成功した信号のうち、最も受信電力が高い信号が選択される(サイトダイバーシチ)。また、基地局が複数のアンテナを備える場合、端末から送信された信号は複数のアンテナで受信され、復調される。そして、基地局において受信に成功した信号のうち、最も受信電力が高い信号が選択される(アンテナダイバーシチ)。
また、下り通信では、直前の上り通信の際に選択された基地局及びアンテナにより下り通信が行われることで、高い通信品質が確保される。
なお、以下の説明において、通信成功率を推定する対象となる端末を「所望端末」といい、その他の端末を「干渉端末」という。また、所望端末が通信を行う基地局を「所望基地局」といい、その他の基地局を「干渉基地局」という。
[通信成功率推定装置の機能構成]
図7は、通信成功率推定装置110の機能構成を示すブロック図である。図1に示すように、通信成功率推定装置110は、平均受信電力算出部111と、無線設備データベース112と、所望信号電力PDF作成部113と、干渉信号電力CDF作成部114と、通信成功率推定部115と、を具備する。通信成功率推定装置110は、作業者によって指定されたエリア内に位置する基地局と端末とを推定の対象とする。
平均受信電力算出部111は、一般的な電波伝搬シミュレータに相当する。平均受信電力算出部111は、地図データを外部の機器等からインポートする。地図データは、例えば、地形の高さ、建物の高さ、土地の利用分類等を示すデータである。平均受信電力算出部111は、作業者によって指定されたエリアの地図データを、微小なメッシュ(例えば、5m間隔のメッシュ)に分割する。そして、平均受信電力算出部111は、基地局と各メッシュ(すなわち、各メッシュに相当する位置に設置されているものと仮定した仮想端末)との間の上り通信の平均受信電力を算出する。また、平均受信電力算出部111は、各基地局の位置に基づいて、基地局間で発生する基地局間干渉の平均干渉信号電力を算出する。
無線設備データベース112は、各基地局の、アンテナ本数、及び熱雑音電力等の無線設備に関わるパラメータを保持する。また、無線設備データベース112は、各端末の、アンテナ本数、熱雑音電力、及びトラフィックパターン(通信頻度、及び1回あたりの通信時間)等の無線設備に関わるパラメータを保持する。なお、LoRaWANのように、チャネルが複数あり、使用されるチャネルが通信の度にランダムに選択される場合、端末の通信頻度をチャネル数で割った値を通信頻度とすればよい。
所望信号電力PDF作成部113は、所望端末が位置するメッシュと基地局との間の平均受信電力に、瞬時変動の影響を考慮して、受信電力瞬時値の確率密度関数(PDF:Probability Density Function)を基地局ごとに作成する。以下、所望信号の受信電力瞬時値のPDFを、「所望信号電力PDF」という。
干渉信号電力CDF作成部114は、干渉端末が位置するメッシュと基地局との間の平均受信電力に、瞬時変動の影響とトラフィックパターンとを考慮して、受信電力瞬時値の確率密度関数を作成する。また、干渉信号電力CDF作成部114は、所望基地局と干渉基地局との間の平均受信電力と干渉基地局配下の干渉端末のトラフィックパターンとに基づいて、干渉信号電力のPDFを作成する。干渉信号電力CDF作成部114は、作成したPDFを集計してCDFを作成する。以下、干渉信号のPDFを集計することによって作成されたCDFを、「干渉信号電力CDF」という。
通信成功率推定部115は、所望信号電力PDF作成部113で作成された所望信号電力PDFと、干渉信号電力CDF作成部114で作成された干渉信号電力CDFと、基地局の熱雑音電力とから、所望信号電力対干渉及び雑音電力比(SINR)が所要SINR以上となる確率を算出する。通信成功率推定部115は、算出された確率に基づき、サイトダイバーシチ及びアンテナダイバーシチの効果を考慮して、通信成功率を算出する。ここで、所要SINRとは、用いられる変調方式の無線通信において、通信が成功するために必要となるSINRの値を示す。
[通信成功率推定]
通信成功率の推定処理について説明する。図8は、通信成功率推定装置110による通信成功率推定処理を説明するための図である。なお、以下では、LoRaWANの複数のチャネルのうち、Class Aの通信のみで使用されるチャネルにおける通信成功率を推定する場合について説明する。なお、Class A及びClass Bの通信で使用されるチャネルにおける通信成功率を推定する場合には、干渉信号電力CDF作成部114で干渉基地局からの干渉信号電力のPDFを作成する際に、Class Bの通信発生時間も考慮すればよい。
以下、図8に示すように、3台の基地局#1~#3により面的に無線エリアが構築されている環境に設置される端末#1及び端末#n(nは2以上の整数)の通信成功率を推定する場合について説明する。図8に示す基地局#1~#3は、第1の実施形態および第2の実施形態における既存の基地局と、置局候補地に置局される基地局とに相当する。また、端末#1及び端末#nは、既存端末又は新規端末に相当する。各基地局#1~#3は、それぞれ1本のアンテナを備える。基地局#i(i=1,2,3)における、端末#j(j=1,2,・・・)からの上り通信の平均受信電力をRup(i,j)と表す。
平均受信電力算出部111は、作業者によって指定されたエリアを、微小なメッシュに分割する。平均受信電力算出部111は、基地局と各メッシュ(すなわち、各メッシュに相当する位置に設置されているものと仮定した仮想端末)との間の上り通信の平均受信電力を算出する。平均受信電力算出部111は、端末#jが位置するメッシュにおける平均受信電力の値を取得し、基地局#iと端末#jとの間の上り通信の平均受信電力Rup(i,j)とする。また、平均受信電力算出部111は、各基地局#1~#3の位置に基づいて、基地局間で発生する基地局間干渉の平均干渉信号電力を算出する。基地局#iから基地局#kへの基地局間干渉の平均干渉信号電力を、RICI(i,k)と表す。
干渉信号電力CDF作成部114は、まず、端末からの干渉信号電力のPDFと基地局間の干渉信号電力のPDFとを作成する。
干渉信号電力CDF作成部114は、所望端末の所望基地局と端末との間の平均受信電力に、瞬時変動の影響とトラフィックパターンを考慮して、受信電力瞬時値のPDFを端末ごとに作成する。干渉信号電力CDF作成部114は、作成された複数のPDFの畳み込みを行うことによって、端末からの干渉信号電力のPDF(所望端末の所望基地局における全端末からの干渉信号のPDF)を得る。
なお、受信電力瞬時値を算出する単純な方法として、モンテカルロシミュレーション法がある。モンテカルロシミュレーション法では、基地局#iに複数の経路で到来する電波の位相を、乱数を用いてランダムに決定して合成することで、受信電力瞬時値を算出する。そして、これを繰り返し行うことによって、受信電力瞬時値のPDFを作成する。しかしながら、この繰り返し計算は、一般的に膨大な回数(数万回程度)行われる。そのため、膨大な計算時間が必要になる。
そこで、フェージングによる瞬時変動を、下記の解析式で表す。これにより、モンテカルロシミュレーションを行うことなく、所望信号電力PDFを得ることができる。
受信信号の振幅をaとした場合、レイリーフェージングにより瞬時変動する振幅aのPDFは、Rup(i,j)を用いて、以下の式(1)で表すことができる。
Figure 0007161136000001
式(1)で得られた結果を電力r=aのPDFに変換することで、受信電力瞬時値のPDFが得られる。この変換は、以下の式(2)で表すことができる。
Figure 0007161136000002
一方、基地局間の干渉信号電力のPDFを作成するためには、各端末がどの基地局に所属するか(すなわち、端末への下り通信がどの基地局から送信されるか)を決定し、各基地局に所属する端末の端末数を集計する必要がある。ここでは、各端末は、Rup(i,j)が最大となる基地局#iに所属するものとして、端末数が集計される。そして、基地局ごとに、所属する端末の上り通信のトラフィックパターンに基づいて、端末へのAck(Class Aによる下り通信)の通信発生時間が算出され、全体の時間のうち前記算出した通信発生時間の間、干渉電力RICI(i,k)の基地局間干渉が発生するものとしてPDFが作成される。
なお、基地局は、一般的に高層ビル屋上の等の高い位置に設置されることが多く、基地局同士は、周辺に反射物や遮蔽物がなく見通しがある環境であることが一般的である。そのため、基地局間干渉については、基地局同士の位置関係に基づいて算出される平均干渉信号電力を用いるものとしている。但し、基地局間の見通し経路を到来する直接波の他に、電力の低い反射波が到来するような場合においては、ライスフェージングを仮定し、基地局同士の位置関係から算出される平均干渉信号電力に、ライスフェージングによる瞬時変動の影響を考慮することによって、基地局間の干渉信号電力瞬時値のPDFを作成すればよい。
そして、干渉信号電力CDF作成部114は、基地局#1が所望基地局である場合の干渉信号電力CDFの作成にあたって、干渉基地局#2から基地局#1への干渉信号電力のPDFと、干渉基地局#3から基地局#1への干渉信号電力のPDFと、基地局#1への端末からの干渉信号電力のPDFとの畳み込みを行う。これにより、干渉信号電力CDF作成部114は、全干渉信号電力のPDF(PDF(r)と定義する)を作成し、以下の式(3)によって干渉信号電力CDF(CDFI_1(y))を作成する。
Figure 0007161136000003
同様にして、干渉信号電力CDF作成部114は、基地局#2が所望基地局である場合の干渉信号電力CDFの作成にあたって、干渉基地局#1から基地局#2への干渉信号電力のPDFと、干渉基地局#3から基地局#2への干渉信号電力のPDFと、基地局#2への端末からの干渉信号電力のPDFとの畳み込みを行う。これにより、干渉信号電力CDF作成部114は、全干渉信号電力のPDFを作成し、干渉信号電力CDF(CDFI_2(y))を作成する。
同様にして、干渉信号電力CDF作成部114は、基地局#3が所望基地局である場合の干渉信号電力CDFの作成にあたって、干渉基地局#1から基地局#3への干渉信号電力のPDFと、干渉基地局#2から基地局#3への干渉信号電力のPDFと、基地局#3への端末からの干渉信号電力のPDFとの畳み込みを行う。これにより、干渉信号電力CDF作成部114は、全干渉信号電力のPDFを作成し、干渉信号電力CDF(CDFI_3(y))を作成する。
所望信号電力PDF作成部113は、端末#1から基地局#1、基地局#2、及び基地局#3への所望信号の平均受信電力Rup(1,1)、Rup(2,1)、及びRup(3,1)に、瞬時変動の影響を考慮して、所望信号電力PDF(PDFS_1(y)、PDFS_2(y)、及びPDFS_3(y))を作成する。
通信成功率推定部115は、所望信号電力PDF作成部113で作成された所望信号電力PDFと、干渉信号電力CDF作成部114で作成された干渉信号電力CDFと、基地局の熱雑音電力とから、SINRが所要SINR以上となる確率を算出する。ここで、基地局#iにおける確率をPup(i)で表す。そして、サイトダイバーシチ効果を考慮すると、通信成功率P’upは以下の式(4)によって算出される。
Figure 0007161136000004
上記により端末#1の通信成功率の推定が完了すると、続いて同手順で他の端末#nの通信成功率を推定する。ここで、干渉信号電力CDF作成部114で実施される、基地局ごとの干渉信号電力CDFの作成までの処理は、全端末で共通である(すなわち、作成された干渉信号電力CDFは、全端末共通に利用可能である)。そのため、同じ結果を用いて端末#nの通信成功率推定を行うことができる。すなわち、所望信号電力PDF作成部113が端末#nから各基地局への所望信号電力PDFを作成し、通信成功率推定部115がPup(i)を算出し、通信成功率推定部115が、上記式(4)により上り通信成功率P’upを算出するだけでよい。
[通信成功率推定装置の動作]
以下、通信成功率推定処理における通信成功率推定装置110の動作について説明する。図9は、通信成功率推定装置110の動作を示すフローチャートである。以下では、所望端末(通信成功率を推定する対象の端末)を端末#j(jは1以上の整数)とし、所望端末数をJとする。
平均受信電力算出部111は、作業者によって指定されたエリアを微小なメッシュに分割する。平均受信電力算出部111は、分割された各メッシュから各基地局への上り通信の平均受信電力を算出する。また、平均受信電力算出部111は、各基地局の位置に基づいて基地局間干渉の平均干渉信号電力を算出する(ステップS101)。
干渉信号電力CDF作成部114は、平均受信電力が最大となる基地局に各端末が所属するものとして、各基地局の所属端末数を集計する(ステップS102)。
次に、干渉信号電力CDF作成部114は、所属端末の上り通信のトラフィックパターンに基づいて、基地局間の干渉信号電力のPDFを基地局ごとに作成する。また、干渉信号電力CDF作成部114は、基地局と端末との間の平均受信電力に、瞬時変動の影響とトラフィックパターンとを考慮して、受信電力瞬時値のPDFを端末ごとに作成する。そして、干渉信号電力CDF作成部114は、作成されたPDFの畳み込みを行うことで、端末からの干渉信号電力のPDFを基地局ごとに作成する(ステップS103)。干渉信号電力CDF作成部114は、基地局を識別する変数iに値1を代入する(ステップS104)。
干渉信号電力CDF作成部114は、基地局#iを所望基地局としたときの、干渉基地局から所望基地局への基地局間の干渉信号電力のPDFと、所望基地局への端末からの干渉信号電力のPDFとの畳み込みを行うことで全干渉信号電力のPDFを作成し、干渉信号電力CDFを作成する(ステップS105)。
干渉信号電力CDF作成部114は、変数iが基地局数Iと等しいか否かを判定する(ステップS106)。干渉信号電力CDF作成部114は、変数iが基地局数Iと等しくないと判定した場合(ステップS106-NO)、変数iに値1を加算し(ステップS107)、ステップS105に移行する。一方、干渉信号電力CDF作成部114は、変数iが基地局数Iと等しいと判定した場合(ステップS106-YES)、ステップS108に移行する。
所望信号電力PDF作成部113は、所望端末を識別する変数jに値1を代入する(ステップS108)。所望信号電力PDF作成部113は、端末#jから各基地局への所望信号の平均受信電力に、瞬時変動の影響を考慮して、所望信号電力PDFを基地局ごとに作成する(ステップS109)。
通信成功率推定部115は、所望信号電力PDFと、干渉信号電力CDFと、基地局の熱雑音電力とに基づいて、SINRが所要SINR以上となる確率を基地局ごとに算出する。そして、通信成功率推定部115は、算出された確率に基づき、上記式(4)によって上り通信成功率を算出する(ステップS110)。
通信成功率推定部115は、変数jが所望端末数Jと等しいか否かを判定する(ステップS111)。通信成功率推定部115は、変数jが所望端末数Jと等しくないと判定した場合(ステップS111-NO)、変数jに値1を加算し(ステップS112)、ステップS105に移行する。一方、通信成功率推定部115は、変数jが所望端末数Jと等しいと判定した場合(ステップS111-YES)、図9に示すフローチャートの処理を終了する。
なお、以上の説明では、Class Aの通信で用いられるチャネルが複数あり、端末からのClass Aの上り通信に対するAck送信(Class Aによる下り通信)が前記複数チャネルのいずれかのチャネルで行われることを前提に説明してきた。但し、Ack送信用のチャネルが用意され、Class Aの上り通信と下り通信とが干渉しない場合には、干渉信号電力CDFを作成するにあたって基地局間の干渉信号電力のPDFを作成する必要はなく、端末からの干渉信号電力のPDFのみを用いればよい。
以上説明した実施形態によれば、置局設計装置は、通信品質算出部と、集計部と、置局場所選定部とを備える。通信品質算出部は、複数の置局候補地それぞれについて、置局候補地に基地局が設置された場合の各端末の通信品質を算出する。例えば、通信品質算出部は、設置済みの基地局に追加して置局候補地に基地局を置局した場合の各端末の通信品質を算出する。端末は、例えば、固定の場所に設置される。また、通信品質は、信号電力対干渉雑音電力比又は通信成功率である。集計部は、複数の置局候補地それぞれについて、通信品質算出部が算出した通信品質がしきい値以上の端末の数を集計する。置局場所選定部は、複数の置局候補地それぞれについて集計部が集計した端末の数に基づいて、複数の置局候補地の中から置局場所を選定する。
あるいは、置局場所選定部は、複数の置局候補地の中から、複数の端末のうち優先度が高い端末の所定割合以上において通信品質がしきい値以上である置局候補地を抽出し、抽出された置局候補地の中から通信品質がしきい値以上の端末の数に基づいて置局場所を選定する。
上述した実施形態における置局設計装置1、1aの一部又は全部を、コンピュータで実現するようにしてもよい。その場合、置局設計装置1、1aの機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。更に「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、上述した機能の一部を実現するためのものであっても良く、更に上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、PLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されるものであってもよい。
以上、図面を参照して本発明の実施形態を説明してきたが、上記実施形態は本発明の例示に過ぎず、本発明が上記実施形態に限定されるものではないことは明らかである。したがって、本発明の技術思想及び要旨を逸脱しない範囲で構成要素の追加、省略、置換、及びその他の変更を行ってもよい。
1、1a…置局設計装置, 11…通信品質算出部, 12…集計部, 13、13a…置局場所選定部, 14…優先端末記憶部, 110…通信成功率推定装置, 111…平均受信電力算出部, 112…無線設備データベース, 113…所望信号電力PDF作成部, 114…干渉信号電力CDF作成部, 115…通信成功率推定部

Claims (6)

  1. 複数の置局候補地それぞれについて、前記置局候補地に基地局が設置された場合の各端末の通信品質を算出する通信品質算出部と、
    複数の前記置局候補地それぞれについて、前記通信品質算出部が算出した前記通信品質がしきい値以上の前記端末の数を集計する集計部と、
    複数の前記置局候補地それぞれについて前記集計部が集計した前記端末の数に基づいて、複数の前記置局候補地の中から置局場所を選定する置局場所選定部と、
    を備える置局設計装置。
  2. 前記通信品質は、信号電力対干渉雑音電力比又は通信成功率である、
    請求項1に記載の置局設計装置。
  3. 前記置局場所選定部は、複数の前記置局候補地の中から、複数の前記端末のうち優先度が高い前記端末の所定割合以上において前記通信品質がしきい値以上の置局候補地を抽出し、抽出された前記置局候補地の中から前記通信品質がしきい値以上の前記端末の数に基づいて置局場所を選定する、
    請求項1又は請求項2に記載の置局設計装置。
  4. 前記端末は、固定の場所に設置される、
    請求項1から請求項3のいずれか一項に記載の置局設計装置。
  5. 複数の置局候補地それぞれについて、前記置局候補地に基地局が設置された場合の各端末の通信品質を算出する通信品質算出ステップと、
    複数の前記置局候補地それぞれについて、前記通信品質算出ステップにおいて算出された前記通信品質がしきい値以上の前記端末の数を集計する集計ステップと、
    前記集計ステップにおいて複数の前記置局候補地それぞれについて集計された前記端末の数に基づいて、複数の前記置局候補地の中から置局場所を選定する置局場所選定ステップと、
    を有する置局設計方法。
  6. コンピュータを、
    請求項1から請求項4のいずれか一項に記載の置局設計装置として機能させるためのプログラム。
JP2021524596A 2019-06-06 2019-06-06 置局設計装置、置局設計方法及びプログラム Active JP7161136B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022525 WO2020245976A1 (ja) 2019-06-06 2019-06-06 置局設計装置、置局設計方法及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2020245976A1 JPWO2020245976A1 (ja) 2020-12-10
JP7161136B2 true JP7161136B2 (ja) 2022-10-26

Family

ID=73653097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021524596A Active JP7161136B2 (ja) 2019-06-06 2019-06-06 置局設計装置、置局設計方法及びプログラム

Country Status (3)

Country Link
US (1) US20220322212A1 (ja)
JP (1) JP7161136B2 (ja)
WO (1) WO2020245976A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100800A1 (ja) * 2022-11-09 2024-05-16 日本電信電話株式会社 置局設計支援装置、置局設計支援方法及びプログラム
WO2024100809A1 (ja) * 2022-11-09 2024-05-16 日本電信電話株式会社 置局設計装置、及びプログラム
WO2024100798A1 (ja) * 2022-11-09 2024-05-16 日本電信電話株式会社 置局設計支援装置、置局設計支援方法及びプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274444A (ja) 2002-03-19 2003-09-26 Hitachi Ltd 無線通信システムのセル設計プログラムおよび設計方法
JP2015109514A (ja) 2013-12-03 2015-06-11 株式会社東芝 位置算出方法、位置算出プログラムおよび位置算出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929736B2 (ja) * 2001-10-05 2007-06-13 株式会社エヌ・ティ・ティ・ドコモ 設計支援プログラム、設計支援プログラムを記録したコンピュータ読み取り可能な記録媒体、設計支援装置及び設計支援方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274444A (ja) 2002-03-19 2003-09-26 Hitachi Ltd 無線通信システムのセル設計プログラムおよび設計方法
JP2015109514A (ja) 2013-12-03 2015-06-11 株式会社東芝 位置算出方法、位置算出プログラムおよび位置算出装置

Also Published As

Publication number Publication date
WO2020245976A1 (ja) 2020-12-10
US20220322212A1 (en) 2022-10-06
JPWO2020245976A1 (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
Wang et al. MmWave vehicle-to-infrastructure communication: Analysis of urban microcellular networks
JP7161136B2 (ja) 置局設計装置、置局設計方法及びプログラム
CN105323774B (zh) 估计分布式天线***(das)或中继器***的覆盖区域的技术
Wen et al. Access point deployment optimization in CBTC data communication system
Niknam et al. Interference analysis for finite-area 5G mmWave networks considering blockage effect
CN103765939A (zh) 用于控制来自空白空间单元的干扰的方法
JP2004187293A (ja) 通信システムの動作条件をシミュレートする方法、シミュレーション装置及びシミュレーション装置の使用
Oehmann et al. SINR model with best server association for high availability studies of wireless networks
Kitao et al. 5G system evaluation tool
Ancans et al. Spectrum usage for 5G mobile communication systems and electromagnetic compatibility with existent technologies
US7486636B2 (en) Method, system and computer program for planning a telecommunications network
Ahmadi et al. Performance analysis for two-tier cellular systems based on probabilistic distance models
Burghal et al. Band assignment in dual band systems: A learning-based approach
WO2020203497A1 (ja) 置局支援方法および置局支援システム
Thota et al. Infrastructure to vehicle throughput performance in LTE-A using 2D and 3D 3GPP/ITU channel models
Nuraini Inter-cell interference coordination with soft frequency reuse method for LTE network
Rahman On mutual interference analysis in hybrid interweave-underlay cognitive communications
Xue et al. A probabilistic propagation graph modeling method for channel characterization in dense urban environments
US11785475B2 (en) Wireless terminal accommodation determination apparatus, wireless terminal accommodation determination method and program
WO2020250366A1 (ja) 置局支援設計装置、置局支援設計方法、及びプログラム
Nasreddine et al. Using geolocation information for dynamic spectrum access in cellular networks
JP7174249B2 (ja) 到達率推定装置、到達率推定方法、及びプログラム
Kahlon et al. Outage in a cellular network overlaid with an ad hoc network: The uplink case
Sundar et al. Interference analysis and spectrum sensing of multiple cognitive radio systems
Hervis Santana et al. Tool for Recovering after Meteorological Events Using a Real‐Time REM and IoT Management Platform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7161136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150