JP7157534B2 - Methane production device and method - Google Patents

Methane production device and method Download PDF

Info

Publication number
JP7157534B2
JP7157534B2 JP2018045737A JP2018045737A JP7157534B2 JP 7157534 B2 JP7157534 B2 JP 7157534B2 JP 2018045737 A JP2018045737 A JP 2018045737A JP 2018045737 A JP2018045737 A JP 2018045737A JP 7157534 B2 JP7157534 B2 JP 7157534B2
Authority
JP
Japan
Prior art keywords
gas
methane
carbon dioxide
hydrogen
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018045737A
Other languages
Japanese (ja)
Other versions
JP2019156760A5 (en
JP2019156760A (en
Inventor
雅典 岩城
藍 西山
友祐 藁谷
学 政本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2018045737A priority Critical patent/JP7157534B2/en
Priority to PCT/JP2019/009161 priority patent/WO2019176744A1/en
Priority to DE112019001266.5T priority patent/DE112019001266T5/en
Publication of JP2019156760A publication Critical patent/JP2019156760A/en
Publication of JP2019156760A5 publication Critical patent/JP2019156760A5/ja
Application granted granted Critical
Publication of JP7157534B2 publication Critical patent/JP7157534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/10Recycling of a stream within the process or apparatus to reuse elsewhere therein
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/542Adsorption of impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/58Control or regulation of the fuel preparation of upgrading process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/60Measuring or analysing fractions, components or impurities or process conditions during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、二酸化炭素を含有する原料ガスに水素を供給し、メタンを生成するメタン製造装置及び方法に関する。 TECHNICAL FIELD The present invention relates to a methane production apparatus and method for producing methane by supplying hydrogen to a raw material gas containing carbon dioxide.

従来、二酸化炭素(CO)と水素(H)とをメタン(CH)に変換する触媒反応(メタネーション反応)を利用して、二酸化炭素を含有する原料ガスからメタンを製造する装置が知られている。次の化1は、メタネーション反応式である。
[化1] CO+4H⇔CH+2H
Conventionally, there is an apparatus for producing methane from a raw material gas containing carbon dioxide using a catalytic reaction (methanation reaction) that converts carbon dioxide (CO 2 ) and hydrogen (H 2 ) into methane (CH 4 ). Are known. The following chemical formula 1 is a methanation reaction formula.
[Chemical Formula 1] CO 2 +4H 2 ⇔CH 4 +2H 2 O

メタネーション反応は発熱反応であるため、原料ガス及びその反応ガスは、反応場を通過する間に温度が上昇する。また、メタネーション反応は可逆反応であるため、温度が上昇することにより反応の平衡が化1の左辺側(原料側)に偏る。従って、メタネーション反応を促進するためには、反応場における温度上昇の抑制が効果的である。そこで、特許文献1,2では、反応器における温度上昇を抑制するメタン製造装置が提案されている。 Since the methanation reaction is an exothermic reaction, the temperature of the source gas and its reaction gas increases while passing through the reaction field. In addition, since the methanation reaction is a reversible reaction, the equilibrium of the reaction shifts toward the left side of Chemical Formula 1 (raw material side) as the temperature rises. Therefore, in order to promote the methanation reaction, it is effective to suppress the temperature rise in the reaction field. Therefore, Patent Literatures 1 and 2 propose a methane production apparatus that suppresses the temperature rise in the reactor.

特許文献1のメタネーション反応装置は、原料ガスと水素の一部を供給する第1反応器と、第1反応器から出たガスに水素の残部を供給する第2反応器と、第2反応器から出たガスの組成を調整する第3反応器とを備える。第1反応器の反応温度は、当該第1反応器への水素供給量によって調整される。 The methanation reaction apparatus of Patent Document 1 includes a first reactor that supplies part of the raw material gas and hydrogen, a second reactor that supplies the rest of the hydrogen to the gas emitted from the first reactor, and a second reactor. and a third reactor for adjusting the composition of the gas leaving the vessel. The reaction temperature of the first reactor is adjusted by the amount of hydrogen supplied to the first reactor.

また、特許文献2のメタン製造装置は、触媒が収容された複数の反応器と、隣り合う2つの反応器をそれぞれ連通し、前段の反応器において生成された生成ガスを後段の反応器に送出する複数の連通ラインと、複数の反応器のうち、最も前段の反応器に原料ガスとともに水蒸気を導入する原料ガス導入部と、各連通ラインにおいて前段の反応器で生成された生成ガスをメタネーション反応が開始する温度まで冷却する冷却部とを備える。 Further, in the methane production apparatus of Patent Document 2, a plurality of reactors containing catalysts and two adjacent reactors are communicated with each other, and the product gas generated in the preceding reactor is sent to the latter reactor. a plurality of communication lines, a raw material gas introduction section for introducing steam together with the raw material gas into the frontmost reactor among the plurality of reactors, and a product gas generated in the front reactor in each communication line for methanation. and a cooling unit for cooling to a temperature at which the reaction starts.

特開2013-136538号公報JP 2013-136538 A 特開2015-107943号公報JP 2015-107943 A

特許文献1では、最終段の反応器を出た生成ガスは吸着塔においてメタンが分離され、分離されたメタンは製品ガスとして回収され、生成ガスからメタンが除かれたオフガスは大気へ放出される。オフガスは、二酸化炭素、及び少量のメタンを含む。つまり、オフガスは地球温暖化に影響を及ぼす温室効果ガスである。 In Patent Document 1, methane is separated from the product gas that exits the final stage reactor in an adsorption tower, the separated methane is recovered as product gas, and the off-gas obtained by removing methane from the product gas is released to the atmosphere. . The off-gas contains carbon dioxide and small amounts of methane. In other words, off-gases are greenhouse gases that contribute to global warming.

本発明は以上の事情に鑑みてされたものであり、その目的は、混合した水素と二酸化炭素とを含む原料ガスからメタンを製造するメタン製造装置及び方法において、大気へのオフガスの排出量を低減することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a methane production apparatus and method for producing methane from a raw material gas containing mixed hydrogen and carbon dioxide, and to reduce offgas emissions into the atmosphere. It is to reduce.

本発明の一態様に係るメタン製造装置は、混合した水素と二酸化炭素とを含む原料ガスからメタンを製造するメタン製造装置であって、
メタネーション触媒が収容された反応器と、
前記反応器へ前記原料ガスを供給する原料ガス供給ラインと、
吸着剤が充填された複数の吸着槽を含む圧力変動吸着式ガス分離装置からなり、前記反応器から出た生成ガスからメタンを分離するメタン分離装置と、
前記メタン分離装置で前記生成ガスから分離された前記メタンを貯える製品ガスタンクと、
前記メタン分離装置と前記製品ガスタンクとを接続する製品ガスラインと、
前記メタン分離装置の前記複数の吸着槽の槽内をリンスするためのリンス流体を前記複数の吸着槽に通すリンスラインと、
前記メタン分離装置と前記原料ガス供給ラインとを接続し、前記メタン分離装置で前記生成ガスから前記メタンが除かれたオフガスを前記原料ガス供給ラインへ送るリサイクルラインとを備え
前記リサイクルラインが、前記オフガスを貯えるオフガスタンク、前記原料ガス供給ラインへ流入する前記オフガスの流量を所定の値に調整する流量調整器、及び、前記オフガスタンクから出て前記流量調整器へ入る前記オフガスの圧力を所定の値に調整する圧力調整器を含み、
前記リンスラインは前記リサイクルラインと接続されており、前記複数の吸着槽を通過した前記リンス流体が前記オフガスタンクで前記オフガスと混合されることを特徴としている。なお、前記反応器が、連通ラインで直列的に接続された複数の反応器を含んでいてもよい。
A methane production apparatus according to one aspect of the present invention is a methane production apparatus that produces methane from a raw material gas containing mixed hydrogen and carbon dioxide,
a reactor containing a methanation catalyst;
a raw material gas supply line for supplying the raw material gas to the reactor;
a methane separation device comprising a pressure swing adsorption gas separation device including a plurality of adsorption tanks filled with an adsorbent, the methane separation device separating methane from the product gas discharged from the reactor;
a product gas tank for storing the methane separated from the product gas by the methane separator;
a product gas line connecting the methane separator and the product gas tank;
a rinsing line through which a rinsing fluid for rinsing the interior of the plurality of adsorption tanks of the methane separation device passes through the plurality of adsorption tanks;
a recycle line connecting the methane separator and the raw material gas supply line, and sending off-gas obtained by removing the methane from the produced gas in the methane separator to the raw material gas supply line ,
The recycle line comprises an off-gas tank for storing the off-gas, a flow rate regulator for adjusting the flow rate of the off-gas flowing into the source gas supply line to a predetermined value, and the off-gas tank exiting the off-gas tank and entering the flow rate regulator. including a pressure regulator that regulates the pressure of the off-gas to a predetermined value;
The rinse line is connected to the recycle line, and the rinse fluid that has passed through the plurality of adsorption tanks is mixed with the offgas in the offgas tank . In addition, the reactor may include a plurality of reactors connected in series with communication lines.

上記構成のメタン製造装置によれば、オフガスがメタン製造装置の原料として再利用されるので、大気(又は系外)へのオフガスの排出量を低減することできる。 According to the methane production apparatus having the above configuration, the off-gas is reused as a raw material for the methane production apparatus, so that the amount of off-gas emitted to the atmosphere (or outside the system) can be reduced.

これにより、オフガスタンクで組成が均一化されたオフガスを、所定圧力且つ所定流量で原料ガスに加えることができるので、原料ガスの組成、圧力及び流量をコントロールすることができる。 As a result, the off-gas whose composition has been homogenized in the off-gas tank can be added to the raw material gas at a predetermined pressure and a predetermined flow rate, so that the composition, pressure and flow rate of the raw material gas can be controlled.

これにより、リンス流体に含まれるメタンがオフガスに伴って原料ガス供給ラインへ送られ、原料ガスとして再利用されるので、大気(又は系外)へのメタンの排出量を低減することできる。 As a result, the methane contained in the rinse fluid is sent to the raw material gas supply line along with the off-gas and reused as the raw material gas, so that the amount of methane emitted to the atmosphere (or outside the system) can be reduced.

上記構成のメタン製造装置が、前記メタン分離装置と前記製品ガスタンクとを接続する製品ガスラインと、前記製品ガスラインに設けられた水素分離装置とを更に備え、前記水素分離装置が、水素透過膜と、前記水素透過膜を介して一側に設けられた前記メタンが通るメタン流路と、前記水素透過膜を介して他側に設けられた前記水素と混合される前の前記二酸化炭素が通る二酸化炭素流路とを有していてよい。 The methane production apparatus having the above configuration further includes a product gas line connecting the methane separation apparatus and the product gas tank, and a hydrogen separation apparatus provided in the product gas line, wherein the hydrogen separation apparatus comprises a hydrogen permeable membrane. , a methane channel provided on one side through the hydrogen permeable membrane through which the methane passes, and a channel through which the carbon dioxide before being mixed with the hydrogen is provided on the other side through the hydrogen permeable membrane. and a carbon dioxide channel.

これにより、生成ガスから分離されたメタンに含まれる水素を低減することができ、回収されるメタンの純度を高めることができる。 As a result, hydrogen contained in methane separated from the produced gas can be reduced, and the purity of recovered methane can be increased.

上記構成のメタン製造装置が、前記反応器の前記触媒の温度を検出する温度センサと、前記原料ガス供給ラインに設けられた、バッファタンク、前記バッファタンクへ前記水素を供給する水素供給ライン、前記バッファタンクへ前記二酸化炭素を供給する二酸化炭素供給ライン、及び、前記二酸化炭素供給ラインに設けられた放出弁と、検出された前記触媒の温度に基づいて、前記触媒の温度が所定温度以上のときに前記二酸化炭素供給ラインを通る前記二酸化炭素の少なくとも一部が系外へ放出され、前記触媒の温度が前記所定温度未満のときに前記放出弁が閉じられるように、前記放出弁を操作する放出弁制御装置とを、更に備えていてよい。 The methane production apparatus configured as described above includes a temperature sensor for detecting the temperature of the catalyst in the reactor, a buffer tank provided in the source gas supply line, a hydrogen supply line for supplying the hydrogen to the buffer tank, and the When the temperature of the catalyst is equal to or higher than a predetermined temperature based on the carbon dioxide supply line that supplies the carbon dioxide to the buffer tank, the release valve provided in the carbon dioxide supply line, and the detected temperature of the catalyst at least part of the carbon dioxide passing through the carbon dioxide supply line is released outside the system, and the release valve is closed when the temperature of the catalyst is less than the predetermined temperature. and a valve controller.

これにより、メタネーション触媒の温度がメタネーション反応が停止する温度(又は、その近傍)まで上昇したときに、原料ガス中の二酸化炭素の割合を減らすことによって、反応器でのメタネーション反応を抑え、メタネーション触媒の温度を下げることができる。 As a result, when the temperature of the methanation catalyst rises to a temperature (or in the vicinity thereof) at which the methanation reaction stops, the methanation reaction in the reactor is suppressed by reducing the proportion of carbon dioxide in the source gas. , the temperature of the methanation catalyst can be lowered.

本発明の一態様に係るメタン製造方法は、
水素と二酸化炭素とを混合して原料ガスを調製する工程と、
前記原料ガス中の前記水素及び前記二酸化炭素をメタネーション触媒の存在下で反応させてメタン及び水を生成する工程と、
生成した前記メタン及び水、並びに、未反応の前記原料ガスを含む生成ガスから、複数の吸着槽を含む圧力変動吸着式ガス分離装置を用いて前記メタンを分離して回収し、前記メタンの一部をリンス流体として前記複数の吸着槽に通して槽内をリンスする工程と、
前記生成ガスから前記メタンが除かれたオフガスに前記複数の吸着槽を通過した前記リンス流体を混合して前記オフガスの組成を均一化し、前記オフガスの流量を所定の値に調整し、前記オフガスの圧力を所定の値に調整したうえで、前記原料ガスに混入させる工程と、
を含むことを特徴としている。
A method for producing methane according to one aspect of the present invention comprises
A step of mixing hydrogen and carbon dioxide to prepare a source gas;
reacting the hydrogen and the carbon dioxide in the source gas in the presence of a methanation catalyst to produce methane and water;
The methane is separated and recovered from the generated methane and water, and the generated gas containing the unreacted raw material gas using a pressure swing adsorption gas separation apparatus including a plurality of adsorption tanks, and a portion of the methane is recovered. a step of rinsing the interior of the adsorption tanks by passing the portion as a rinsing fluid through the plurality of adsorption tanks ;
The rinsing fluid that has passed through the plurality of adsorption tanks is mixed with the off-gas obtained by removing the methane from the generated gas to homogenize the composition of the off-gas, and the flow rate of the off-gas is adjusted to a predetermined value. a step of adjusting the pressure to a predetermined value and then mixing it into the raw material gas;
is characterized by including

上記のメタン製造方法によれば、オフガスがメタン製造装置の原料として再利用されるので、大気(又は系外)へのオフガスの排出量を低減することできる。 According to the methane production method described above, the off-gas is reused as a raw material for the methane production apparatus, so the amount of off-gas emitted to the atmosphere (or outside the system) can be reduced.

これにより、組成が均一化されたオフガスを、所定圧力且つ所定流量で原料ガスに加えることができるので、原料ガスの組成、圧力及び流量をコントロールすることができる。 As a result, the composition-uniformized off-gas can be added to the raw material gas at a predetermined pressure and a predetermined flow rate, so that the composition, pressure, and flow rate of the raw material gas can be controlled.

これにより、リンス流体に含まれるメタンが原料ガスとして再利用されるので、大気(又は系外)へのメタンの排出量を低減することができる。 As a result, the methane contained in the rinsing fluid is reused as the raw material gas, so the amount of methane emitted to the atmosphere (or outside the system) can be reduced.

上記のメタン製造方法において、前記メタンを分離する工程が、前記生成ガスから分離した前記メタンと前記水素と混合される前の前記二酸化炭素との水素分圧差を利用して、水素透過膜を用いて前記メタンからそれに含まれる水素を除去することを含んでいてよい。 In the methane production method described above, the step of separating the methane utilizes a hydrogen partial pressure difference between the methane separated from the generated gas and the carbon dioxide before being mixed with the hydrogen, using a hydrogen permeable membrane. removing hydrogen contained therein from said methane.

これにより、生成ガスから分離されたメタンに含まれる水素を低減することができ、回収されるメタンの純度を高めることができる。 As a result, hydrogen contained in methane separated from the produced gas can be reduced, and the purity of recovered methane can be increased.

本発明によれば、混合した水素と二酸化炭素とを含む原料ガスからメタンを製造するメタン製造装置及び方法において、大気へのオフガスの排出量を低減することができる。 According to the present invention, in a methane production apparatus and method for producing methane from a raw material gas containing mixed hydrogen and carbon dioxide, it is possible to reduce the amount of offgas emitted into the atmosphere.

図1は、本発明の一実施形態に係るメタン製造装置の全体的な構成を示す図である。FIG. 1 is a diagram showing the overall configuration of a methane production apparatus according to one embodiment of the present invention. 図2は、水素分離装置の構成を示す図である。FIG. 2 is a diagram showing the configuration of the hydrogen separator.

次に、図面を参照して本発明の実施の形態を説明する。本実施形態に係るメタン製造装置は、混合した水素と二酸化炭素とを含む原料ガスからメタンを製造するものである。 Next, embodiments of the present invention will be described with reference to the drawings. The methane production apparatus according to this embodiment produces methane from a source gas containing mixed hydrogen and carbon dioxide.

〔メタン製造装置100の構成〕
図1は本発明の一実施形態に係るメタン製造装置100の全体的な構成を示す図である。図1に示すメタン製造装置100は、連通ライン1で直列に接続された複数の反応器R1,R2・・・と、複数の反応器Rのうち最前段の反応器R1へ原料ガスを供給する原料ガス供給ライン2と、複数の反応器Rのうち最終段の反応器R2から出た生成ガスからメタンを分離するメタン分離装置3と、メタン分離装置3で生成ガスから分離されたメタンを貯える製品ガスタンク4と、メタン分離装置3で生成ガスからメタンが除かれたオフガスを原料ガス供給ライン2へ送るリサイクルライン5とを備える。なお、複数の反応器R1,R2・・・のうち特定の反応器を指さない場合に「反応器R」と表す。
[Configuration of methane production device 100]
FIG. 1 is a diagram showing the overall configuration of a methane production device 100 according to one embodiment of the present invention. The methane production apparatus 100 shown in FIG. 1 supplies a raw material gas to a plurality of reactors R1, R2, . A raw material gas supply line 2, a methane separator 3 for separating methane from the produced gas emitted from the reactor R2 of the final stage among the plurality of reactors R, and storing the methane separated from the produced gas by the methane separator 3. A product gas tank 4 and a recycle line 5 for sending an off-gas obtained by removing methane from the produced gas in the methane separator 3 to the source gas supply line 2 are provided. In addition, when not referring to a specific reactor among the plurality of reactors R1, R2, .

本実施形態に係るメタン製造装置100は、第1反応器R1と第2反応器R2との2つの反応器Rを備える。但し、反応器Rの数は3以上の複数であってもよい。各反応器Rには、水素及び二酸化炭素からメタン及び水を生成するメタネーション反応を促進させるメタネーション触媒が収容されている。メタネーション触媒は、特に限定されないが、例えば、市販のNi系触媒であってよい。反応器R1,R2には、メタネーション触媒の温度を検出するための温度センサT1,T2が設けられている。 A methane production apparatus 100 according to this embodiment includes two reactors R, a first reactor R1 and a second reactor R2. However, the number of reactors R may be three or more. Each reactor R contains a methanation catalyst that promotes a methanation reaction that produces methane and water from hydrogen and carbon dioxide. The methanation catalyst is not particularly limited, but may be, for example, a commercially available Ni-based catalyst. Reactors R1 and R2 are provided with temperature sensors T1 and T2 for detecting the temperature of the methanation catalyst.

第1反応器R1と第2反応器R2との間は、連通ライン1で接続されており、第1反応器R1から出た生成ガスは、連通ライン1を通じて第2反応器R2へ流入する。生成ガスには、メタネーション反応で生成したメタン及び水に加えて、未反応の二酸化炭素及び水素が含まれる。本実施形態では、反応器Rの数が2つであるため連通ライン1の数は1であるが、メタン製造装置100は反応器Rの数に応じた数の連通ライン1を備える。 A communication line 1 connects between the first reactor R1 and the second reactor R2, and the product gas coming out of the first reactor R1 flows through the communication line 1 into the second reactor R2. The product gas contains unreacted carbon dioxide and hydrogen in addition to methane and water produced in the methanation reaction. In this embodiment, since the number of reactors R is two, the number of communication lines 1 is one.

連通ライン1には、第1熱交換器11と、水分離器12と、第2熱交換器13とが設けられている。第1熱交換器11では、生成ガスと冷却水との熱交換が行われる。水分離器12では、第1熱交換器11で冷却されることによって凝縮した生成ガス中の水分が、生成ガスから分離される。第2熱交換器13では、反応器R2の冷却に利用されたホットオイルと生成ガスとの熱交換が行われる。第1熱交換器11及び第2熱交換器13によって、連通ライン1から次段の反応器(第2反応器R2)へ流入する生成ガスの温度は、メタネーション反応が開始する温度以上且つメタネーション反応が停止する温度未満に調整される。 The communication line 1 is provided with a first heat exchanger 11 , a water separator 12 and a second heat exchanger 13 . The first heat exchanger 11 exchanges heat between the generated gas and cooling water. In the water separator 12, moisture in the produced gas condensed by being cooled by the first heat exchanger 11 is separated from the produced gas. In the second heat exchanger 13, heat is exchanged between the hot oil used for cooling the reactor R2 and the produced gas. By the first heat exchanger 11 and the second heat exchanger 13, the temperature of the product gas flowing from the communication line 1 into the next-stage reactor (second reactor R2) is set to the temperature at which the methanation reaction starts or higher and to the methanation temperature. adjusted below the temperature at which the nation reaction stops.

原料ガス供給ライン2には、原料ガスが貯えられるバッファタンク21と、バッファタンク21から出た原料ガスを圧縮する圧縮機22と、圧縮された原料ガスをメタネーション反応に適した温度に調整する熱交換器23とが設けられている。 The raw material gas supply line 2 includes a buffer tank 21 for storing the raw material gas, a compressor 22 for compressing the raw material gas discharged from the buffer tank 21, and adjusting the compressed raw material gas to a temperature suitable for the methanation reaction. A heat exchanger 23 is provided.

バッファタンク21には、水素供給ライン24から水素が供給され、二酸化炭素供給ライン25から二酸化炭素が供給される。バッファタンク21では、定常時は、水素と二酸化炭素の割合がモル比で3.2~4.0となるように(水素/二酸化炭素=3.2~4.0)、均一に混合される。 The buffer tank 21 is supplied with hydrogen from a hydrogen supply line 24 and carbon dioxide from a carbon dioxide supply line 25 . In the buffer tank 21, in a steady state, the hydrogen and carbon dioxide are uniformly mixed so that the molar ratio is 3.2 to 4.0 (hydrogen/carbon dioxide = 3.2 to 4.0). .

二酸化炭素供給ライン25には、放出弁制御装置27によって制御される放出弁26が設けられている。放出弁制御装置27は、温度センサT1で検出された第1反応器R1のメタネーション触媒の温度に基づいて、触媒の温度が所定温度以上のときに二酸化炭素供給ライン25を通る二酸化炭素の少なくとも一部が系外へ放出され、触媒の温度が所定温度未満のときに放出弁26が閉じられるように、放出弁26を動作させる。これにより、第1反応器R1のメタネーション触媒の温度が所定温度以上のときは、バッファタンク21から第1反応器R1へ送られる原料ガスの二酸化炭素の割合が上記定常時よりも小さくなる。 The carbon dioxide supply line 25 is provided with a release valve 26 controlled by a release valve control device 27 . Based on the temperature of the methanation catalyst in the first reactor R1 detected by the temperature sensor T1, the release valve control device 27 releases at least carbon dioxide passing through the carbon dioxide supply line 25 when the temperature of the catalyst is equal to or higher than a predetermined temperature. A portion of the catalyst is discharged outside the system, and the release valve 26 is operated so that the release valve 26 is closed when the temperature of the catalyst is below a predetermined temperature. As a result, when the temperature of the methanation catalyst in the first reactor R1 is equal to or higher than the predetermined temperature, the proportion of carbon dioxide in the raw material gas sent from the buffer tank 21 to the first reactor R1 is lower than that in the steady state.

圧縮機22では、原料ガスがメタネーション反応に適した圧力となるように圧縮される。メタネーション反応に適した圧力は、メタネーション触媒の種類や、反応器Rの仕様によって異なる。第1反応器R1に流入する原料ガスの圧力条件は、例えば、絶対圧で0~3MPaである。 The compressor 22 compresses the raw material gas to a pressure suitable for the methanation reaction. The pressure suitable for the methanation reaction varies depending on the type of methanation catalyst and the specifications of the reactor R. The pressure condition of the raw material gas flowing into the first reactor R1 is, for example, 0 to 3 MPa in absolute pressure.

熱交換器23では、第1反応器R1の冷却に利用されたホットオイルと原料ガスとの熱交換が行われ、原料ガスがメタネーション反応に適した温度に調整される。メタネーション反応に適した温度は、メタネーション触媒の種類や、反応器Rの段数によって異なる。例えば、第1反応器R1へ流入する原料ガスは約250~350℃であり、第2反応器R2へ流入する反応ガスは約150~250℃である。 In the heat exchanger 23, heat is exchanged between the hot oil used for cooling the first reactor R1 and the raw material gas, and the raw material gas is adjusted to a temperature suitable for the methanation reaction. The temperature suitable for the methanation reaction varies depending on the type of methanation catalyst and the number of stages of the reactor R. For example, the raw material gas flowing into the first reactor R1 has a temperature of about 250-350°C, and the reaction gas flowing into the second reactor R2 has a temperature of about 150-250°C.

最終段の反応器R2から出た生成ガスは、生成ガスライン30を通じてメタン分離装置3へ送られる。生成ガスライン30には、最終段の反応器R2から出た生成ガスと水との熱交換が行われる熱交換器31と、熱交換器31で冷却されることによって凝縮した生成ガス中の水分を分離する水分離器32とが設けられている。 The product gas from the final stage reactor R2 is sent to the methane separator 3 through the product gas line 30 . The product gas line 30 includes a heat exchanger 31 for heat exchange between the product gas coming out of the reactor R2 at the final stage and water, and water in the product gas condensed by being cooled by the heat exchanger 31. A water separator 32 is provided to separate the

メタン分離装置3は、圧力変動吸着(Pressure Swing Adsorption)法を利用する、圧力変動吸着式ガス分離装置である。メタン分離装置3として、公知の圧力変動吸着式ガス分離装置が利用されてよい。 The methane separation device 3 is a pressure swing adsorption gas separation device that utilizes a pressure swing adsorption method. A known pressure swing adsorption gas separation device may be used as the methane separation device 3 .

一般に、圧力変動吸着式ガス分離装置は、吸着剤が充填された複数の吸着槽と、吸着槽へ送る元ガスを加圧する圧縮機とを備える(いずれも図示略)。そして、均圧工程、吸着工程、再生工程、均圧工程が各吸着槽で交互に経時的に行われる。均圧工程では、複数の吸着槽が連通され、槽内のガスを移動させることにより圧力を回収する。吸着工程では、元ガスを吸着槽へ供給し、内部圧力を高めることと、元ガスを供給しながら吸着槽から製品ガス(分離されたガス)を取り出すこととが行われる。再生工程では、吸着槽の圧力を下げて、易吸着成分を吸着剤から脱離させ、吸着剤を再生させることと、吸着槽にリンス流体を供給して槽内をリンスすることとが行われる。リンス流体には、通常、製品ガスが用いられる。 Generally, a pressure swing adsorption gas separation apparatus includes a plurality of adsorption tanks filled with an adsorbent and a compressor for pressurizing the source gas to be sent to the adsorption tanks (both not shown). A pressure equalizing process, an adsorption process, a regeneration process, and a pressure equalizing process are alternately performed in each adsorption tank over time. In the pressure equalization step, a plurality of adsorption tanks are communicated, and the pressure is recovered by moving the gas within the tanks. In the adsorption step, the source gas is supplied to the adsorption tank to increase the internal pressure, and the product gas (separated gas) is extracted from the adsorption tank while supplying the source gas. In the regeneration step, the pressure in the adsorption tank is lowered to desorb the easily adsorbable components from the adsorbent to regenerate the adsorbent, and a rinsing fluid is supplied to the adsorption tank to rinse the inside of the tank. . Product gas is typically used as the rinse fluid.

メタン分離装置3には、製品ガスライン40を通じて製品ガスタンク4が接続されている。メタン分離装置3で生成ガスから分離されたメタンは、製品ガスライン40を通じて製品ガスタンク4へ流入し、製品として回収される。 A product gas tank 4 is connected to the methane separator 3 through a product gas line 40 . The methane separated from the product gas by the methane separator 3 flows through the product gas line 40 into the product gas tank 4 and is recovered as a product.

製品ガスライン40を流れるガスの主成分はメタンであるが、僅かな水素が混入している。そこで、製品ガスライン40には、製品ガスライン40を流れるガスから水素を分離する水素分離装置42が設けられている。水素分離装置42で水素が分離されることによって、製品ガスタンク4に回収されるメタンの純度を更に高めることができる。 The main component of the gas flowing through the product gas line 40 is methane, but it is mixed with a small amount of hydrogen. Therefore, the product gas line 40 is provided with a hydrogen separator 42 that separates hydrogen from the gas flowing through the product gas line 40 . Separation of hydrogen by the hydrogen separator 42 can further increase the purity of the methane recovered in the product gas tank 4 .

図2は、水素分離装置42の構成を示す図である。図2に示す水素分離装置42は、水素のみを通過させる水素透過膜71と、水素透過膜71を介して一側に設けられたメタン流路72と、水素透過膜71を介して他側に設けられた二酸化炭素流路73とを含む。メタン分離装置3から出たメタンがメタン流路72を通過する。また、二酸化炭素供給ライン25の二酸化炭素、即ち、水素と混合される前の二酸化炭素が、二酸化炭素流路73を通過する。メタン流路72のメタンの流れと、二酸化炭素流路73の二酸化炭素の流れは対向している。このような水素分離装置42では、二酸化炭素流路73を流れるガスの水素分圧は0であり、メタン流路72を流れるガスの水素分圧は0よりも大きい(例えば、10000Pa)。この水素分圧の差をドライビングフォースとして、メタン流路72を流れるガス中の水素が、水素透過膜71を透過して、二酸化炭素流路73へ移動する。 FIG. 2 is a diagram showing the configuration of the hydrogen separator 42. As shown in FIG. The hydrogen separator 42 shown in FIG. 2 includes a hydrogen permeable membrane 71 that allows only hydrogen to pass through, a methane flow path 72 provided on one side through the hydrogen permeable membrane 71, and a methane flow path 72 on the other side through the hydrogen permeable membrane 71. and a carbon dioxide channel 73 provided. Methane coming out of the methane separator 3 passes through the methane flow path 72 . Carbon dioxide in the carbon dioxide supply line 25 , that is, carbon dioxide before being mixed with hydrogen passes through the carbon dioxide channel 73 . The flow of methane in the methane channel 72 and the flow of carbon dioxide in the carbon dioxide channel 73 face each other. In such a hydrogen separator 42, the hydrogen partial pressure of the gas flowing through the carbon dioxide channel 73 is 0, and the hydrogen partial pressure of the gas flowing through the methane channel 72 is greater than 0 (for example, 10000 Pa). Using this hydrogen partial pressure difference as a driving force, hydrogen in the gas flowing through the methane channel 72 permeates the hydrogen permeable membrane 71 and moves to the carbon dioxide channel 73 .

製品ガスライン40には、製品ガスライン40を通るメタンをリンス流体としてメタン分離装置3の複数の吸着槽を通過させるリンスライン43が接続されている。リンスライン43は、リサイクルライン5と接続されている。メタン分離装置3で複数の吸着槽をリンスしたリンス流体は、リサイクルライン5へ排出される。 The product gas line 40 is connected to a rinse line 43 that passes the methane passing through the product gas line 40 as a rinse fluid through a plurality of adsorption tanks of the methane separator 3 . Rinse line 43 is connected to recycle line 5 . The rinsing fluid that has rinsed the plurality of adsorption tanks in the methane separator 3 is discharged to the recycle line 5 .

メタン分離装置3には、オフガスを原料ガス供給ライン2へ戻すリサイクルライン5が接続されている。リサイクルライン5の下流側端部は、バッファタンク21と接続されている。但し、リサイクルライン5の下流側端部は、原料ガス供給ライン2において圧縮機22よりも上流に接続されていればよく、バッファタンク21の下流側且つ圧縮機22の上流側、又は、バッファタンク21の上流側に接続されていてもよい。オフガスは、メタン分離装置3で生成ガスからメタンが除かれたガスである。オフガスは、二酸化炭素、水素、水、分離しきれなかったメタンなどを含む。更に、リサイクルライン5を流れるオフガスには、リンス流体(メタン)が混合している。 The methane separator 3 is connected with a recycle line 5 for returning the off-gas to the source gas supply line 2 . A downstream end of the recycle line 5 is connected to the buffer tank 21 . However, the downstream end of the recycle line 5 only needs to be connected upstream of the compressor 22 in the source gas supply line 2, and is downstream of the buffer tank 21 and upstream of the compressor 22, or 21 may be connected upstream. The off-gas is a gas obtained by removing methane from the generated gas in the methane separator 3 . Off-gases include carbon dioxide, hydrogen, water, unseparated methane, and the like. Furthermore, the off-gas flowing through the recycle line 5 is mixed with a rinsing fluid (methane).

リサイクルライン5には、オフガスタンク51と、圧力調整器52と、流量調整器53とが設けられている。 The recycle line 5 is provided with an off-gas tank 51 , a pressure regulator 52 and a flow rate regulator 53 .

オフガスタンク51には、メタン分離装置3から排出されたオフガスと、リンスライン43を通じてメタン分離装置3から排出されたリンス流体(メタン)とが流入し、混合される。オフガスタンク51は、オフガスタンク51を流れるオフガス(リンス流体を含む)の組成が均一となるように、十分な容積を有する。 The offgas discharged from the methane separator 3 and the rinse fluid (methane) discharged from the methane separator 3 through the rinse line 43 flow into the offgas tank 51 and are mixed. The offgas tank 51 has sufficient volume so that the composition of the offgas (including the rinse fluid) flowing through the offgas tank 51 is uniform.

流量調整器53は、原料ガス供給ライン2へ流入するオフガスの流量を調整する手段である。流量調整器53は、例えば、定流量弁であって、原料ガス供給ライン2へ流入するオフガスの流量を所定値に維持する。 The flow rate regulator 53 is means for adjusting the flow rate of the off-gas flowing into the source gas supply line 2 . The flow rate regulator 53 is, for example, a constant flow valve, and maintains the flow rate of the off-gas flowing into the source gas supply line 2 at a predetermined value.

圧力調整器52は、オフガスタンク51から出て流量調整器53へ流入するオフガスの圧力を調整する手段である。圧力調整器52は、例えば、定圧弁であって、流量調整器53へ流入するオフガスの圧力を所定の圧力に維持する。 The pressure regulator 52 is means for regulating the pressure of the off-gas coming out of the off-gas tank 51 and flowing into the flow regulator 53 . The pressure regulator 52 is, for example, a constant pressure valve, and maintains the pressure of the off-gas flowing into the flow rate regulator 53 at a predetermined pressure.

〔メタン製造方法〕
ここで、上記構成のメタン製造装置100を用いたメタン製造方法を説明する。
[Methane production method]
Here, a methane production method using the methane production apparatus 100 configured as described above will be described.

先ず、バッファタンク21で、水素供給ライン24から供給された水素と二酸化炭素供給ライン25から供給された二酸化炭素とが所定の割合で混合されて、原料ガスが調製される。 First, in the buffer tank 21, hydrogen supplied from the hydrogen supply line 24 and carbon dioxide supplied from the carbon dioxide supply line 25 are mixed at a predetermined ratio to prepare a source gas.

原料ガスは、圧縮機22及び熱交換器23を経て、第1反応器R1に流入する。第1反応器R1では、原料ガス中の水素及び二酸化炭素がメタネーション触媒の存在下でメタネーション反応して、メタン及び水が生成される。第1反応器R1で生成されたメタン及び水、並びに、未反応の水素及び二酸化炭素を含む生成ガスは、連通ライン1へ流出する。 The raw material gas passes through the compressor 22 and the heat exchanger 23 and flows into the first reactor R1. In the first reactor R1, hydrogen and carbon dioxide in the raw material gas undergo a methanation reaction in the presence of a methanation catalyst to produce methane and water. The methane and water produced in the first reactor R1 and the produced gas containing unreacted hydrogen and carbon dioxide flow out to the communication line 1 .

連通ライン1に流れ出た生成ガスは、第1熱交換器11、水分離器12、及び第2熱交換器13を経て第2反応器R2に流入する。第2反応器R2でも、生成ガス中の水素及び二酸化炭素がメタネーション触媒の存在下でメタネーション反応して、メタン及び水が生成される。第2反応器R2で生成されたメタン及び水、並びに、未反応の水素及び二酸化炭素を含む生成ガスは、生成ガスライン30へ流出する。 The product gas flowing out to the communication line 1 passes through the first heat exchanger 11, the water separator 12, and the second heat exchanger 13 and flows into the second reactor R2. Also in the second reactor R2, hydrogen and carbon dioxide in the product gas undergo a methanation reaction in the presence of a methanation catalyst to produce methane and water. The product gas containing methane and water produced in the second reactor R 2 and unreacted hydrogen and carbon dioxide flows out to the product gas line 30 .

生成ガスライン30に流れ出た生成ガスは、熱交換器31及び水分離器32を経てメタン分離装置3へ流入する。メタン分離装置3では、生成ガスからメタンが分離される。分離したメタンは、製品ガスライン40を通じて製品ガスタンク4へ流入し、製品ガスとして回収される。一方、生成ガスからメタンが除かれたオフガスは、リサイクルライン5へ流出する。また、メタン分離装置3の分離工程で吸着槽を通じたリンス流体はリサイクルライン5へ排出される。 The product gas flowing out to the product gas line 30 flows through the heat exchanger 31 and the water separator 32 into the methane separator 3 . The methane separator 3 separates methane from the produced gas. The separated methane flows into the product gas tank 4 through the product gas line 40 and is recovered as product gas. On the other hand, the off-gas obtained by removing methane from the generated gas flows out to the recycle line 5 . Also, the rinse fluid passed through the adsorption tank in the separation process of the methane separator 3 is discharged to the recycle line 5 .

リサイクルライン5に流れ出たオフガス(リンス流体を含む)は、オフガスタンク51に流入して、組成が均一化される。オフガスタンク51で組成が均一化されたオフガスは、圧力調整器52及び流量調整器53によって流量及び圧力が調整されたうえで、原料ガス供給ライン2を流れる原料ガスに混入する。 The off-gas (including the rinse fluid) that has flowed out to the recycle line 5 flows into the off-gas tank 51 and is homogenized in composition. The off-gas whose composition has been homogenized in the off-gas tank 51 is adjusted in flow rate and pressure by the pressure regulator 52 and the flow rate regulator 53 and then mixed with the raw material gas flowing through the raw material gas supply line 2 .

以上に説明したように、本実施形態のメタン製造装置100は、メタネーション触媒が収容された反応器Rと、反応器Rへ原料ガスを供給する原料ガス供給ライン2と、反応器Rから出た生成ガスからメタンを分離するメタン分離装置3と、メタン分離装置3で生成ガスから分離されたメタンを貯える製品ガスタンク4と、メタン分離装置3と原料ガス供給ライン2とを接続し、メタン分離装置3で生成ガスからメタンが除かれたオフガスを原料ガス供給ライン2へ送るリサイクルライン5とを備えている。なお、本実施形態では、反応器Rが連通ライン1で直列的に接続された複数の反応器R1,R2を含むが、反応器Rは単数であってもよい。 As described above, the methane production apparatus 100 of the present embodiment includes the reactor R containing the methanation catalyst, the source gas supply line 2 for supplying the source gas to the reactor R, and the A methane separator 3 for separating methane from the produced gas, a product gas tank 4 for storing methane separated from the produced gas by the methane separator 3, and the methane separator 3 and the source gas supply line 2 are connected to separate the methane. A recycle line 5 is provided for sending the off-gas obtained by removing methane from the produced gas in the device 3 to the source gas supply line 2 . In addition, in this embodiment, the reactor R includes a plurality of reactors R1 and R2 connected in series with the communication line 1, but the reactor R may be singular.

また、本実施形態のメタン製造方法は、水素と二酸化炭素とを混合して原料ガスを調製する工程と、原料ガス中の水素及び二酸化炭素をメタネーション触媒の存在下で反応させてメタン及び水を生成する工程と、生成したメタン及び水、並びに、未反応の原料ガスを含む生成ガスから、メタンを分離して回収する工程と、生成ガスからメタンが除かれたオフガスを原料ガスに混入させる工程とを含む。 Further, the methane production method of the present embodiment includes a step of mixing hydrogen and carbon dioxide to prepare a source gas, and reacting hydrogen and carbon dioxide in the source gas in the presence of a methanation catalyst to produce methane and water. a step of separating and recovering methane from the produced gas containing methane and water as well as unreacted raw material gas; and a step.

上記メタン製造装置100及び方法によれば、オフガスがメタン製造装置100の原料として再利用されるので、大気(又は系外)へのオフガスの排出量を低減することできる。 According to the methane production apparatus 100 and method described above, the off-gas is reused as a raw material for the methane production apparatus 100, so the amount of off-gas emitted to the atmosphere (or outside the system) can be reduced.

また、本実施形態に係るメタン製造装置100では、リサイクルライン5が、オフガスを貯えるオフガスタンク51、原料ガス供給ライン2へ流入するオフガスの流量を調整する流量調整器53、及び、オフガスタンク51から出て流量調整器53へ入るオフガスの圧力を調整する圧力調整器52を含んでいる。 Further, in the methane production apparatus 100 according to the present embodiment, the recycle line 5 includes an offgas tank 51 that stores offgas, a flow rate regulator 53 that adjusts the flow rate of the offgas flowing into the source gas supply line 2, and from the offgas tank 51 It includes a pressure regulator 52 that regulates the pressure of the offgas exiting and entering the flow regulator 53 .

同様に、本実施形態に係るメタン製造方法は、オフガスを原料ガスに混入させる工程が、オフガスの組成を均一化させることと、オフガスの流量及び圧力を調整して原料ガスに混入させることとを含んでいる。 Similarly, in the method for producing methane according to the present embodiment, the step of mixing the off-gas into the raw material gas includes homogenizing the composition of the off-gas and adjusting the flow rate and pressure of the off-gas to mix it into the raw material gas. contains.

これにより、オフガスタンク51で組成が均一化されたオフガスを、所定圧力且つ所定流量で原料ガスに加えることができるので、原料ガスの組成、圧力及び流量をコントロールすることができる。 As a result, the off-gas whose composition has been homogenized in the off-gas tank 51 can be added to the raw material gas at a predetermined pressure and a predetermined flow rate, so that the composition, pressure and flow rate of the raw material gas can be controlled.

また、本実施形態に係るメタン製造装置100では、メタン分離装置3は、複数の吸着槽を含む圧力変動吸着式ガス分離装置であって、複数の吸着槽を通じたリンス流体をリサイクルライン5へ排出するように構成されている。 Further, in the methane production apparatus 100 according to the present embodiment, the methane separation apparatus 3 is a pressure swing adsorption gas separation apparatus including a plurality of adsorption tanks, and the rinse fluid passed through the plurality of adsorption tanks is discharged to the recycling line 5. is configured to

同様に、本実施形態に係るメタン製造方法は、メタンを分離する工程が、複数の吸着槽を含む圧力変動吸着式ガス分離装置を用いてメタンを分離することを含み、オフガスを原料ガスに混入させる工程が、複数の吸着槽を通じたリンス流体が混入したオフガスを原料ガスに混入させることを含む。 Similarly, in the method for producing methane according to the present embodiment, the step of separating methane includes separating methane using a pressure swing adsorption gas separation device including a plurality of adsorption tanks, and the off-gas is mixed with the source gas. The step of applying includes entraining the feed gas with the off-gas entrained with the rinse fluid through the plurality of adsorption vessels.

これにより、リンス流体に含まれるメタンがオフガスに伴って原料ガス供給ライン2へ送られ、原料ガスとして再利用されるので、大気(又は系外)へのメタンの排出量を低減することできる。 As a result, the methane contained in the rinsing fluid is sent to the source gas supply line 2 along with the off-gas and reused as the source gas, so the amount of methane emitted to the atmosphere (or outside the system) can be reduced.

また、本実施形態に係るメタン製造装置100は、メタン分離装置3と製品ガスタンク4とを接続する製品ガスライン40と、製品ガスライン40に設けられた水素分離装置42とを更に備えている。そして、水素分離装置42が、水素透過膜71と、水素透過膜71を介して一側に設けられたメタンが通るメタン流路72と、水素透過膜71を介して他側に設けられた水素と混合される前の二酸化炭素が通る二酸化炭素流路73とを有している。 The methane production apparatus 100 according to this embodiment further includes a product gas line 40 connecting the methane separator 3 and the product gas tank 4 and a hydrogen separator 42 provided in the product gas line 40 . The hydrogen separation device 42 includes a hydrogen permeable membrane 71, a methane flow path 72 provided on one side through the hydrogen permeable membrane 71 and through which methane passes, and a hydrogen flow path 72 provided on the other side through the hydrogen permeable membrane 71. and a carbon dioxide flow path 73 through which carbon dioxide before being mixed with is passed.

同様に、本実施形態に係るメタン製造方法は、メタンを分離する工程が、生成ガスから分離したメタンと、水素と混合される前の二酸化炭素との水素分圧差を利用して、水素透過膜71を用いてメタンからそれに含まれる水素を除去することを含んでいる。 Similarly, in the method for producing methane according to the present embodiment, the step of separating methane utilizes the hydrogen partial pressure difference between methane separated from the produced gas and carbon dioxide before being mixed with hydrogen to produce a hydrogen permeable membrane. 71 to remove the contained hydrogen from methane.

これにより、生成ガスから分離されたメタンに含まれる水素を低減することができ、製品ガスタンク4に回収されるメタンの純度を高めることができる。 Thereby, the hydrogen contained in the methane separated from the produced gas can be reduced, and the purity of the methane recovered in the product gas tank 4 can be increased.

また、本実施形態に係るメタン製造装置100は、最前段の反応器R1の触媒の温度を検出する温度センサT1と、原料ガス供給ライン2に設けられた、バッファタンク21、バッファタンク21へ水素を供給する水素供給ライン24、及び、バッファタンク21へ二酸化炭素を供給する二酸化炭素供給ライン25と、二酸化炭素供給ライン25に設けられた放出弁26と、放出弁26を制御する放出弁制御装置27とを備えている。そして、放出弁制御装置27は、検出された触媒の温度に基づいて、触媒の温度が所定温度以上のときに二酸化炭素供給ライン25を通る二酸化炭素の少なくとも一部が系外へ放出され、触媒の温度が所定温度未満のときに放出弁26が閉じられるように、放出弁26を動作させる。 In addition, the methane production apparatus 100 according to the present embodiment includes a temperature sensor T1 that detects the temperature of the catalyst in the front reactor R1, a buffer tank 21 provided in the raw material gas supply line 2, and hydrogen to the buffer tank 21. and a carbon dioxide supply line 25 that supplies carbon dioxide to the buffer tank 21, a release valve 26 provided in the carbon dioxide supply line 25, and a release valve control device that controls the release valve 26 27. Then, based on the detected temperature of the catalyst, the release valve control device 27 releases at least part of the carbon dioxide passing through the carbon dioxide supply line 25 to the outside of the system when the temperature of the catalyst is equal to or higher than a predetermined temperature. The release valve 26 is operated such that the release valve 26 is closed when the temperature of is below a predetermined temperature.

これにより、メタネーション触媒の温度が、例えば、メタネーション反応が停止する温度(又は、その近傍)まで上昇したときに、原料ガス中の二酸化炭素の割合を減らすことによって、反応器Rでのメタネーション反応を抑え、メタネーション触媒の温度を下げることができる。 As a result, when the temperature of the methanation catalyst rises to, for example, a temperature at which the methanation reaction stops (or near the temperature), the rate of carbon dioxide in the raw material gas is reduced, thereby The methanation reaction can be suppressed, and the temperature of the methanation catalyst can be lowered.

以上に本発明の好適な実施の形態を説明したが、本発明の精神を逸脱しない範囲で、上記実施形態の具体的な構造及び/又は機能の詳細を変更したものも本発明に含まれ得る。 Although preferred embodiments of the present invention have been described above, the present invention may also include modifications of the details of the specific structures and/or functions of the above embodiments without departing from the spirit of the present invention. .

1 :連通ライン
2 :原料ガス供給ライン
3 :メタン分離装置
4 :製品ガスタンク
5 :リサイクルライン
11 :第1熱交換器
12 :水分離器
13 :第2熱交換器
21 :バッファタンク
22 :圧縮機
23 :熱交換器
24 :水素供給ライン
25 :二酸化炭素供給ライン
26 :放出弁
27 :放出弁制御装置
30 :生成ガスライン
31 :熱交換器
32 :水分離器
40 :製品ガスライン
42 :水素分離装置
43 :リンスライン
51 :オフガスタンク
52 :圧力調整器
53 :流量調整器
71 :水素透過膜
72 :メタン流路
73 :二酸化炭素流路
100 :メタン製造装置
R,R1,R2 :反応器
T1,T2 :温度センサ
Reference Signs List 1: communication line 2: source gas supply line 3: methane separator 4: product gas tank 5: recycling line 11: first heat exchanger 12: water separator 13: second heat exchanger 21: buffer tank 22: compressor 23: Heat exchanger 24: Hydrogen supply line 25: Carbon dioxide supply line 26: Release valve 27: Release valve control device 30: Product gas line 31: Heat exchanger 32: Water separator 40: Product gas line 42: Hydrogen separation Device 43: Rinse line 51: Off-gas tank 52: Pressure regulator 53: Flow rate regulator 71: Hydrogen permeable membrane 72: Methane channel 73: Carbon dioxide channel 100: Methane production device R, R1, R2: Reactor T1, T2: temperature sensor

Claims (9)

混合した水素と二酸化炭素とを含む原料ガスからメタンを製造するメタン製造装置であって、
メタネーション触媒が収容された反応器と、
前記反応器へ前記原料ガスを供給する原料ガス供給ラインと、
吸着剤が充填された複数の吸着槽を含む圧力変動吸着式ガス分離装置からなり、前記反応器から出た生成ガスからメタンを分離するメタン分離装置と、
前記メタン分離装置で前記生成ガスから分離された前記メタンを貯える製品ガスタンクと、
前記メタン分離装置と前記製品ガスタンクとを接続する製品ガスラインと、
前記メタン分離装置の前記複数の吸着槽の槽内をリンスするためのリンス流体を前記複数の吸着槽に通すリンスラインと、
前記メタン分離装置と前記原料ガス供給ラインとを接続し、前記メタン分離装置で前記生成ガスから前記メタンが除かれたオフガスを前記原料ガス供給ラインへ送るリサイクルラインとを備え、
前記リサイクルラインが、前記オフガスを貯えるオフガスタンク、前記原料ガス供給ラインへ流入する前記オフガスの流量を所定の値に調整する流量調整器、及び、前記オフガスタンクから出て前記流量調整器へ入る前記オフガスの圧力を所定の値に調整する圧力調整器を含み、
前記リンスラインは前記リサイクルラインと接続されており、前記複数の吸着槽を通過した前記リンス流体が前記オフガスタンクで前記オフガスと混合される、
メタン製造装置。
A methane production apparatus for producing methane from a raw material gas containing mixed hydrogen and carbon dioxide,
a reactor containing a methanation catalyst;
a raw material gas supply line for supplying the raw material gas to the reactor;
a methane separation device comprising a pressure swing adsorption gas separation device including a plurality of adsorption tanks filled with an adsorbent, the methane separation device separating methane from the product gas discharged from the reactor;
a product gas tank for storing the methane separated from the product gas by the methane separator;
a product gas line connecting the methane separator and the product gas tank;
a rinsing line through which a rinsing fluid for rinsing the interior of the plurality of adsorption tanks of the methane separation device passes through the plurality of adsorption tanks;
a recycle line connecting the methane separator and the raw material gas supply line, and sending off-gas obtained by removing the methane from the produced gas in the methane separator to the raw material gas supply line,
The recycle line comprises an off-gas tank for storing the off-gas, a flow rate regulator for adjusting the flow rate of the off-gas flowing into the source gas supply line to a predetermined value, and the off-gas tank exiting the off-gas tank and entering the flow rate regulator. including a pressure regulator that regulates the pressure of the off-gas to a predetermined value;
The rinse line is connected to the recycle line, and the rinse fluid that has passed through the plurality of adsorption tanks is mixed with the offgas in the offgas tank.
Methane production equipment.
前記リンスラインが前記製品ガスラインと接続されており、前記製品ガスラインを通る前記メタンの一部が前記リンス流体として前記リンスラインに流入する、
請求項1に記載のメタン製造装置。
wherein the rinse line is connected to the product gas line, and a portion of the methane passing through the product gas line enters the rinse line as the rinse fluid;
The methane production apparatus according to claim 1.
記製品ガスラインに設けられた水素分離装置とを更に備え、
前記水素分離装置が、水素透過膜と、前記水素透過膜を介して一側に設けられた前記メタンが通るメタン流路と、前記水素透過膜を介して他側に設けられた前記水素と混合される前の前記二酸化炭素が通る二酸化炭素流路とを有する、
請求項1又は2に記載のメタン製造装置。
A hydrogen separation device provided in the product gas line,
The hydrogen separation device includes a hydrogen permeable membrane, a methane flow path provided on one side through the hydrogen permeable membrane through which the methane passes, and a methane channel provided on the other side through the hydrogen permeable membrane. and a carbon dioxide flow path through which the carbon dioxide before being treated,
The methane production apparatus according to claim 1 or 2.
前記反応器の前記触媒の温度を検出する温度センサと、
前記原料ガス供給ラインに設けられた、バッファタンク、前記バッファタンクへ前記水素を供給する水素供給ライン、及び、前記バッファタンクへ前記二酸化炭素を供給する二酸化炭素供給ラインと、
前記二酸化炭素供給ラインに設けられた放出弁と、
検出された前記触媒の温度に基づいて、前記触媒の温度が所定温度以上のときに前記二酸化炭素供給ラインを通る前記二酸化炭素の少なくとも一部が系外へ放出され、前記触媒の温度が前記所定温度未満のときに前記放出弁が閉じられるように、前記放出弁を動作させる放出弁制御装置とを、更に備える、
請求項1~3のいずれか一項に記載のメタン製造装置。
a temperature sensor that detects the temperature of the catalyst in the reactor;
a buffer tank, a hydrogen supply line for supplying the hydrogen to the buffer tank, and a carbon dioxide supply line for supplying the carbon dioxide to the buffer tank, provided in the source gas supply line;
a release valve provided in the carbon dioxide supply line;
Based on the detected temperature of the catalyst, at least part of the carbon dioxide passing through the carbon dioxide supply line is released outside the system when the temperature of the catalyst is equal to or higher than a predetermined temperature, and the temperature of the catalyst reaches the predetermined temperature. a release valve control that operates the release valve such that the release valve is closed when below temperature;
The methane production apparatus according to any one of claims 1 to 3.
前記反応器が、連通ラインで直列的に接続された複数の反応器を含む、
請求項1~4のいずれか一項に記載のメタン製造装置。
wherein the reactor comprises a plurality of reactors connected in series with communication lines;
The methane production apparatus according to any one of claims 1 to 4.
水素と二酸化炭素とを混合して原料ガスを調製する工程と、
前記原料ガス中の前記水素及び前記二酸化炭素をメタネーション触媒の存在下で反応させてメタン及び水を生成する工程と、
生成した前記メタン及び水、並びに、未反応の前記原料ガスを含む生成ガスから、複数の吸着槽を含む圧力変動吸着式ガス分離装置を用いて前記メタンを分離して回収し、前記メタンの一部をリンス流体として前記複数の吸着槽に通して槽内をリンスする工程と、
前記生成ガスから前記メタンが除かれたオフガスに前記複数の吸着槽を通過した前記リンス流体混合して前記オフガスの組成を均一化し、前記オフガスの流量を所定の値に調整し、前記オフガスの圧力を所定の値に調整したうえで、前記原料ガスに混入させる工程と、を含む
メタン製造方法。
A step of mixing hydrogen and carbon dioxide to prepare a source gas;
reacting the hydrogen and the carbon dioxide in the source gas in the presence of a methanation catalyst to produce methane and water;
The methane is separated and recovered from the generated methane and water, and the generated gas containing the unreacted raw material gas using a pressure swing adsorption gas separation apparatus including a plurality of adsorption tanks, and a portion of the methane is recovered. a step of rinsing the interior of the adsorption tanks by passing the portion as a rinsing fluid through the plurality of adsorption tanks ;
The rinsing fluid that has passed through the plurality of adsorption tanks is mixed with the off-gas obtained by removing the methane from the generated gas to homogenize the composition of the off-gas, the flow rate of the off-gas is adjusted to a predetermined value, and the off-gas is mixed. After adjusting the pressure of to a predetermined value, mixing into the raw material gas ,
Methane production method.
前記メタンを分離する工程が、前記生成ガスから分離した前記メタンと前記水素と混合される前の前記二酸化炭素との水素分圧差を利用して、水素透過膜を用いて前記メタンからそれに含まれる水素を除去することを含む、
請求項6記載のメタン製造方法。
separating said methane contained therein from said methane using a hydrogen permeable membrane using a hydrogen partial pressure difference between said methane separated from said product gas and said carbon dioxide before being mixed with said hydrogen; removing hydrogen,
The method for producing methane according to claim 6.
混合した水素と二酸化炭素とを含む原料ガスからメタンを製造するメタン製造装置であって、A methane production apparatus for producing methane from a raw material gas containing mixed hydrogen and carbon dioxide,
メタネーション触媒が収容された反応器と、a reactor containing a methanation catalyst;
前記反応器へ前記原料ガスを供給する原料ガス供給ラインと、a raw material gas supply line for supplying the raw material gas to the reactor;
前記反応器から出た生成ガスからメタンを分離するメタン分離装置と、a methane separation device for separating methane from the product gas discharged from the reactor;
前記メタン分離装置で前記生成ガスから分離された前記メタンを貯える製品ガスタンクと、a product gas tank for storing the methane separated from the product gas by the methane separator;
前記メタン分離装置と前記原料ガス供給ラインとを接続し、前記メタン分離装置で前記生成ガスから前記メタンが除かれたオフガスを前記原料ガス供給ラインへ送るリサイクルラインと、a recycle line connecting the methane separator and the source gas supply line, and sending off-gas obtained by removing the methane from the product gas in the methane separator to the source gas supply line;
前記反応器の前記触媒の温度を検出する温度センサと、a temperature sensor that detects the temperature of the catalyst in the reactor;
前記原料ガス供給ラインに設けられた、バッファタンク、前記バッファタンクへ前記水素を供給する水素供給ライン、及び、前記バッファタンクへ前記二酸化炭素を供給する二酸化炭素供給ラインと、a buffer tank, a hydrogen supply line for supplying the hydrogen to the buffer tank, and a carbon dioxide supply line for supplying the carbon dioxide to the buffer tank, provided in the source gas supply line;
前記二酸化炭素供給ラインに設けられた放出弁と、a release valve provided in the carbon dioxide supply line;
検出された前記触媒の温度に基づいて、前記触媒の温度が所定温度以上のときに前記二酸化炭素供給ラインを通る前記二酸化炭素の少なくとも一部が系外へ放出され、前記触媒の温度が前記所定温度未満のときに前記放出弁が閉じられるように、前記放出弁を動作させる放出弁制御装置と、を備え、Based on the detected temperature of the catalyst, at least part of the carbon dioxide passing through the carbon dioxide supply line is released outside the system when the temperature of the catalyst is equal to or higher than a predetermined temperature, and the temperature of the catalyst reaches the predetermined temperature. a release valve controller operable to operate the release valve such that the release valve is closed when below temperature;
前記リサイクルラインが、前記オフガスを貯えるオフガスタンク、前記原料ガス供給ラインへ流入する前記オフガスの流量を所定の値に調整する流量調整器、及び、前記オフガスタンクから出て前記流量調整器へ入る前記オフガスの圧力を所定の値に調整する圧力調整器を含む、The recycle line comprises an off-gas tank for storing the off-gas, a flow rate regulator for adjusting the flow rate of the off-gas flowing into the source gas supply line to a predetermined value, and the off-gas tank exiting the off-gas tank and entering the flow rate regulator. including a pressure regulator to regulate the pressure of the off-gas to a predetermined value;
メタン製造装置。Methane production equipment.
水素供給ラインを通じてバッファタンクへ供給された水素と二酸化炭素供給ラインを通じて前記バッファタンクへ供給された二酸化炭素とを前記バッファタンクで混合して原料ガスを調製する工程と、a step of mixing hydrogen supplied to a buffer tank through a hydrogen supply line and carbon dioxide supplied to the buffer tank through a carbon dioxide supply line in the buffer tank to prepare a source gas;
前記原料ガス中の前記水素及び前記二酸化炭素をメタネーション触媒の存在下で反応させてメタン及び水を生成する工程と、reacting the hydrogen and the carbon dioxide in the source gas in the presence of a methanation catalyst to produce methane and water;
生成した前記メタン及び水、並びに、未反応の前記原料ガスを含む生成ガスから、前記メタンを分離して回収する工程と、a step of separating and recovering the methane from the generated methane and water, and the generated gas containing the unreacted raw material gas;
前記生成ガスから前記メタンが除かれたオフガスを、前記オフガスの組成を均一化し、前記オフガスの流量を所定の値に調整し、前記オフガスの圧力を所定の値に調整したうえで、前記原料ガスに混入させる工程と、を含み、The off-gas obtained by removing the methane from the produced gas is homogenized in composition of the off-gas, adjusted to a predetermined value in the flow rate of the off-gas, and adjusted to a predetermined value in pressure of the off-gas. and
前記原料ガスを調製する工程が、前記触媒の温度を検出し、前記触媒の温度が所定温度以上のときに前記二酸化炭素供給ラインに設けられた放出弁を開放して前記二酸化炭素の少なくとも一部を系外へ放出し、前記触媒の温度が前記所定温度未満のときに前記放出弁を閉じるように前記放出弁を動作させることを含む、The step of preparing the raw material gas detects the temperature of the catalyst, and when the temperature of the catalyst is equal to or higher than a predetermined temperature, opens a release valve provided in the carbon dioxide supply line to release at least part of the carbon dioxide. out of the system, and operating the release valve to close the release valve when the temperature of the catalyst is less than the predetermined temperature,
メタン製造方法。Methane production method.
JP2018045737A 2018-03-13 2018-03-13 Methane production device and method Active JP7157534B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018045737A JP7157534B2 (en) 2018-03-13 2018-03-13 Methane production device and method
PCT/JP2019/009161 WO2019176744A1 (en) 2018-03-13 2019-03-07 Methane production device and method
DE112019001266.5T DE112019001266T5 (en) 2018-03-13 2019-03-07 Apparatus and method for the production of methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045737A JP7157534B2 (en) 2018-03-13 2018-03-13 Methane production device and method

Publications (3)

Publication Number Publication Date
JP2019156760A JP2019156760A (en) 2019-09-19
JP2019156760A5 JP2019156760A5 (en) 2021-05-06
JP7157534B2 true JP7157534B2 (en) 2022-10-20

Family

ID=67906744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045737A Active JP7157534B2 (en) 2018-03-13 2018-03-13 Methane production device and method

Country Status (3)

Country Link
JP (1) JP7157534B2 (en)
DE (1) DE112019001266T5 (en)
WO (1) WO2019176744A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7487590B2 (en) 2020-07-10 2024-05-21 株式会社豊田中央研究所 Carbon dioxide capture device and carbon dioxide capture method
DE102021125884A1 (en) * 2021-10-06 2023-04-06 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Process and device for producing a methane-containing product gas
CN114955998A (en) * 2022-06-21 2022-08-30 中科氢焱零碳人居科技(苏州)有限公司 Natural gas hydrogen production reactor
WO2024106373A1 (en) * 2022-11-16 2024-05-23 株式会社レゾナック Method for producing hydrocarbon and method for producing silicon carbide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015051954A (en) 2013-09-09 2015-03-19 千代田化工建設株式会社 Hydrogen and synthetic natural gas production apparatus and method
US20170355919A1 (en) 2015-11-26 2017-12-14 Industry-Academic Cooperation Foundation Chosun University Method and apparatus for synthesizing methane gas from carbon dioxide and hydrogen at room temperature and atmospheric pressure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128003A (en) * 1991-10-17 1992-07-07 United Technologies Corporation Method for the conversion of carbon dioxide and hydrogen to variable methane and oxygen ratios
JP6922526B2 (en) * 2017-07-31 2021-08-18 三菱ケミカル株式会社 How to make methane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015051954A (en) 2013-09-09 2015-03-19 千代田化工建設株式会社 Hydrogen and synthetic natural gas production apparatus and method
US20170355919A1 (en) 2015-11-26 2017-12-14 Industry-Academic Cooperation Foundation Chosun University Method and apparatus for synthesizing methane gas from carbon dioxide and hydrogen at room temperature and atmospheric pressure

Also Published As

Publication number Publication date
DE112019001266T5 (en) 2020-12-03
WO2019176744A1 (en) 2019-09-19
JP2019156760A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP7157534B2 (en) Methane production device and method
US9802820B2 (en) Plant for hydrogen production
CA3006900C (en) Method for the provision of carbon dioxide for the synthesis of urea
JP2019156658A (en) Method for recycling carbon dioxide
CN110237650B (en) FTrPSA separation method for reaction circulating gas in preparation of ethylene oxide by direct oxidation of ethylene
EA028109B1 (en) Gas separation process for production of hydrogen by autothermal reforming of natural gas, with carbon dioxide recovery
CA2948370C (en) Method for the manufacture of urea
JP2018512368A (en) Reformer including CO2 membrane
JP2019156760A5 (en)
CA2771491A1 (en) Ammonia production process
CN115843289A (en) Process for purifying synthesis gas
JP5101540B2 (en) Argon purification method and argon purification apparatus
KR102517055B1 (en) Systems and methods for producing syngas
RU2680047C1 (en) Process for producing ammonia synthesis gas
JP4316386B2 (en) Method and apparatus for producing hydrogen from hydrogen rich feed gas
JP7061484B2 (en) Methane production equipment and method
JP2005517622A5 (en)
JP4079695B2 (en) Carburizing atmosphere gas generator and method
JPWO2022012944A5 (en)
RU2426717C2 (en) Method and apparatus for producing methanol
RU2782754C1 (en) Method and installation for methanol synthesis
EP4311852A1 (en) Process improvement upgrading in power-to-x (ptx) processes
JP7488344B2 (en) METHOD AND REACTOR FOR METHANOL PRODUCTION
RU2800952C2 (en) Method and unit for methanol synthesis
JP2007320779A (en) Method and apparatus for producing source gas for ammonia synthesis

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221007

R150 Certificate of patent or registration of utility model

Ref document number: 7157534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150