JP7154468B2 - 情報処理装置、情報処理方法及び情報処理プログラム - Google Patents

情報処理装置、情報処理方法及び情報処理プログラム Download PDF

Info

Publication number
JP7154468B2
JP7154468B2 JP2022544236A JP2022544236A JP7154468B2 JP 7154468 B2 JP7154468 B2 JP 7154468B2 JP 2022544236 A JP2022544236 A JP 2022544236A JP 2022544236 A JP2022544236 A JP 2022544236A JP 7154468 B2 JP7154468 B2 JP 7154468B2
Authority
JP
Japan
Prior art keywords
performance
unit
elements
information processing
improvement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022544236A
Other languages
English (en)
Other versions
JPWO2022059183A1 (ja
Inventor
直輝 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2022059183A1 publication Critical patent/JPWO2022059183A1/ja
Application granted granted Critical
Publication of JP7154468B2 publication Critical patent/JP7154468B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Automation & Control Theory (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Stored Programmes (AREA)

Description

本開示は、性能を改善するための分析を行う技術に関する。
工場等の生産システムでは、品質、コスト、納期、生産数量といった管理指標の内、時々の状況に応じて優先目標が設定される。そして、設定された優先目標を達成すべく生産管理が行われる。
優先目標はKGI(Key Goal Indicator)と呼ばれる。例えば、KGIに品質を設定した場合、品質の目標値を達成するよう日々の生産管理が行われる。生産管理とは、生産システムから現在の運用状況の情報を収集して現在値と目標値を比較し、現在値が目標値を達成していない場合は現在値が目標値を達成するように改善活動を行うことである。改善活動とは、生産システム内の設備の増強、パラメタの調整、作業員の教育、作業手順の見直し、材料及び/又は在庫の見直し等の活動である。
従来、このような改善活動は生産システム管理者の経験によって行われることが多く、必ずしも優先目標の達成に寄与しない改善活動又は効果の低い改善活動が行われる、という課題があった。
このような課題に対して、近年では生産システムのIoT(Internet of Things)化を進めることで解決が図られている。具体的には、以下のような活動により課題が解決される。ある生産システムにおけるKGIの現在値に加え、その時々の生産システム内の工程、設備、設備内の機器の状態について詳細なデータが収集される。そして、収集したデータを分析することで生産システム内のデータの関係性が明らかにされる。そして、明らかにされた関係性を生産管理の参考にする。
例えば特許文献1では、それぞれが複数の工程及び/又は複数の設備の管理指標である複数のKPI(Key Performance Indicator)のそれぞれの関係性の階層構造が定義される。また、特許文献1では、KPIを算出するための情報が工程及び/又は設備から収集される。そして、特許文献1では、各KPIを相関分析することで異常が発生した際に管理者に異常を通知するアラームが効率的に選別される。
特開2019-117464号公報
しかしながら、特許文献1の技術で用いられる相関分析では、収集した情報が外れ値であった場合の影響が大きいため、この影響を取り除くための煩雑な前処理が必要となる。また、相関分析では異なる工程のKPIについて1:1で関係を分析するため、例えばKGIと複数のKPIとの間の関係性といった1対多の情報の関係性については分析することができないという課題がある。
このように、特許文献1の技術では、生産システムのように多数の要素で構成されるシステムにおいて改善活動を行う場合、KGIを改善しようとする要素、すなわち性能を改善しようとする要素と他の複数の要素との関係性を分析することが困難である。このため、特許文献1の技術では、性能を改善しようとする要素の性能の改善に寄与する他の要素を特定することが容易ではない、という課題がある。
本開示は、このような課題を解決することを主な目的の一つとしている。より具体的には、本開示は、性能を改善すべき要素の性能の改善に寄与する要素の特定を効率的に行うことを主な目的とする。
本開示に係る情報処理装置は、
3以上の要素のうち性能を改善させるべき要素を指定要素として指定する指定部と、
前記指定要素以外の要素の中から前記指定要素と有意な関係にある2以上の要素を関連要素として抽出する抽出部と、
前記抽出部により抽出された2以上の関連要素の各々の性能が前記指定要素の性能に与える影響を分析して、前記2以上の関連要素の中から、前記指定要素の性能の改善のために性能を改善させるべき関連要素である改善対象関連要素を推定する推定部とを有する。
本開示によれば、性能を改善すべき要素の性能の改善に寄与する要素の特定を効率的に行うことができる。
実施の形態1に係る改善箇所分析装置の機能構成例を示す図。 実施の形態1に係る改善箇所分析装置のハードウェア構成例を示す図。 実施の形態1に係る情報モデルの構成例を示す図。 実施の形態1に係る設定項目の例を示す図。 実施の形態1に係る評価部の動作例を示すフローチャート。 実施の形態1に係る評価部による評価結果の例を示す図。 実施の形態1に係る評価部による評価結果の例を示す図。 実施の形態1に係る改善箇所分析部の動作例を示すフローチャート。 実施の形態1に係る改善箇所分析部の動作例を示すフローチャート。 実施の形態1に係る分析対象の例を示す図。 実施の形態1に係る分析条件の例を示す図。 実施の形態1に係る改善箇所分析部の分析結果の例を示す図。 実施の形態2に係る設定項目の例を示す図。 実施の形態2に係る分析条件の例を示す図。 実施の形態2により得られる効果の例を示す図。 実施の形態3に係る設定項目の例を示す図。 実施の形態4に係る情報モデルの構成例を示す図。 実施の形態4に係る分析条件の例を示す図。 実施の形態4に係る改善箇所分析部の動作例を示すフローチャート。 実施の形態5に係る分析条件の例を示す図。 実施の形態5に係る出力例を示す図。 実施の形態6に係る改善箇所分析装置の機能構成例を示す図。 実施の形態6に係る改善実績の例を示す図。 実施の形態6に係る分析条件の例を示す図。 実施の形態6に係る出力例を示す図。 実施の形態7に係る分析条件の例を示す図。 実施の形態7に係る機械学習装置の機能構成例を示す図。 実施の形態7に係る機械学習装置の動作例を示すフローチャート。 実施の形態7に係る分析結果出力の補正手順を示すフローチャート。 実施の形態7に係るニューラルネットワークの例を示す図。
以下、実施の形態を図を用いて説明する。以下の実施の形態の説明及び図面において、同一の符号を付したものは、同一の部分又は相当する部分を示す。
実施の形態1.
***構成の説明***
図1は、本実施の形態に係る改善箇所分析装置100の機能構成例を示す。
本実施の形態に係る改善箇所分析装置100は、ネットワーク300を介して分析対象200と接続されている。本実施の形態では、分析対象200は生産システムである。
改善箇所分析装置100は情報処理装置に相当する。また、改善箇所分析装置100の動作手順は情報処理方法に相当する。
図1に示すように、改善箇所分析装置100は、情報記憶部101、評価部102、改善箇所分析部103及び情報収集部104を有する。
情報記憶部101、評価部102、改善箇所分析部103及び情報収集部104の詳細は後述する。
図2は、改善箇所分析装置100のハードウェア構成例を示す。
改善箇所分析装置100は、コンピュータである。
改善箇所分析装置100は、ハードウェアとして、プロセッサ901、記憶装置902及び通信インタフェース903を備える。プロセッサ901、記憶装置902及び通信インタフェース903は、相互にバス905により接続される。
記憶装置902はプログラム904を記憶する。プログラム904は、図1に示す評価部102、改善箇所分析部103及び情報収集部104の機能を実現するためのプログラムである。
プロセッサ901は記憶装置902からプログラム904を読み出し、プログラム904を実行する。プロセッサ901がプログラム904を実行することにより、後述する評価部102、改善箇所分析部103及び情報収集部104の機能が実現される。
プログラム904は、情報処理プログラムに相当する。
また、図示は省略しているが、記憶装置902は、プログラム904以外に、本実施の形態に係る改善箇所分析装置100の機能の実現に必要な各種情報を記憶している。図1に示す情報記憶部101は記憶装置902により実現される。
通信インタフェース903は、分析対象200である生産システムとの通信に用いられる。
図3は、本実施の形態で用いられる情報モデルの構成例を示す。
情報モデルでは、分析対象200である生産システムを構成する複数の要素が示される。また、情報モデルでは、各要素間の関係を、階層構造及び/又は論理構造により示す。図3において、実線は階層構造による関係性を示しており、破線矢印は論理構造による関係性を示している。
図3の情報モデルでは、階層として、生産ライン、工程、設備及び機器が含まれる。
そして、階層:生産ラインを構成する要素として、「製品A生産リードタイム」が定義されている。図3は、生産システムのKGIとして「製品A生産リードタイム」を設定して生産管理する例を示している。
「製品A生産リードタイム」の下位の階層として、生産システムの各工程のリードタイムである、「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」が定義されている。「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」は、「製品A生産リードタイム」と階層構造による関係性で接続されている。つまり、「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」は、「製品A生産リードタイム」に影響を与え得る。更に、各工程は生産プロセスに基づいた論理構造による関係性で接続されている。ここでは「工程#1」、「工程#2」、「工程#3」の順に生産が行われている例を示している。なお、本明細書では、「リードタイム」は所要時間の意味である。つまり、「製品A生産リードタイム」は製品Aの生産を完了するのに要する所要時間である。
設備及び機器の階層についても同様に上位階層の要素との関係性が示される。
具体的には、階層:設備を構成する要素として、「設備#1-1リードタイム」、「設備#1-2リードタイム」、「設備#2-1リードタイム」、「設備#3-1リードタイム」及び「設備#3-2リードタイム」が定義されている。「設備#1-1リードタイム」及び「設備#1-2リードタイム」は「工程#1リードタイム」に影響を与え得る。また、「設備#2-1リードタイム」は「工程#2リードタイム」に影響を与え得る。また、「設備#3-1リードタイム」と「設備#3-2リードタイム」は「工程#3リードタイム」に影響を与え得る。
また、階層:機器を構成する要素として、「PLC#1-1-1サイクルタイム」、「サーボ#1-1-2モータ電流値」、「センサ#1-1-3対象角度」、「PLC#1-2-1サイクルタイム」及び「ロボット#1-2-2到達率」が定義されている。「PLC#1-1-1サイクルタイム」、「サーボ#1-1-2モータ電流値」及び「センサ#1-1-3対象角度」は「設備#1-1リードタイム」に影響を与え得る。また、「PLC#1-2-1サイクルタイム」及び「ロボット#1-2-2到達率」は、「設備#1-2リードタイム」に影響を与え得る。更に、「サーボ#1-1-2モータ電流値」は、「PLC#1-1-1サイクルタイム」及び「センサ#1-1-3対象角度」に影響を与え得る。また、「センサ#1-1-3対象角度」は「ロボット#1-2-2到達率」に影響を与え、「ロボット#1-2-2到達率」は「PLC#1-2-1サイクルタイム」に影響を与え得る。
ここで、図1に示す情報記憶部101、評価部102、改善箇所分析部103及び情報収集部104を説明する。
情報記憶部101は、図3に例示した情報モデルを記憶する。
また、情報記憶部101は、後述する設定項目を記憶する。
また、情報記憶部101は、評価部102による評価結果を記憶する。
また、情報記憶部101は、改善箇所分析部103による分析結果を記憶する。
また、情報記憶部101は、情報収集部104により収集された情報を記憶する。
評価部102は、分析対象200に含まれる要素ごとに、性能の基準に性能が合致するか否かを評価する。評価部102は、各要素が要素ごとに定義された性能の基準に性能が合致するか否かを評価する。
また、上述のように各要素は複数の階層を構成しているが、評価部102は、階層ごとに異なる時間幅で各要素の性能が性能の基準に合致するか否かを評価してもよい。
更に、評価部102は、評価を行う度に、評価結果を出力してもよい。
改善箇所分析部103は、評価部102による評価結果に基づき、分析対象200に含まれる要素のうち性能を改善させるべき要素を指定要素として指定する。
また、改善箇所分析部103は、推定した改善対象関連要素(後述)を新たな指定要素に指定することもある。更に、改善箇所分析部103は、新たな改善対象関連要素を推定する度に、推定した新たな改善対象関連要素を新たな指定要素に指定することを繰り返してもよい。
また、改善箇所分析部103は、指定要素以外の要素の中から指定要素と有意な関係にある1以上の要素を関連要素として抽出する。本実施の形態では、指定要素と関連要素との1:1の関係についても分析可能であるため、改善箇所分析部103は1以上の要素を関連要素として抽出する例を説明する。1つの指定要素に対して複数の関連要素の各々との関係を分析する場合は、改善箇所分析部103は2以上の要素を関連要素として抽出する。「有意な関係」とは、指定要素の性能に影響を与え得る関係である。より具体的には、図3の情報モデルにおいて、指定要素と実線(階層構造による関係性)で接続された下位の階層の要素又は指定要素に向かう破線矢印(論理構造による関係性)の起点に位置する要素である。
例えば、評価部102により「製品A生産リードタイム」が指定要素に指定された場合は、改善箇所分析部103は、「製品A生産リードタイム」と有意な関係になる要素(関連要素)として、「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」を抽出する。また、例えば、評価部102により「工程#2リードタイム」が指定要素に指定された場合は、改善箇所分析部103は、「工程#2リードタイム」と有意な関係になる要素(関連要素)として、「工程#1リードタイム」及び「設備#2-1リードタイム」を抽出する。なお、「性能」とは、測定及び/又は計算により得られる値である。例えば、「製品A生産リードタイム」の性能は、各工程の所要時間を測定し、各工程の所要時間を加算して得られる時間である。また、例えば、「サーボ#1-1-2モータ電流値」の性能は、サーボ#1-1-2に対して実際に測定を行って得られたモータ電流値である。
また、改善箇所分析部103は、抽出した1以上の関連要素の各々の性能が指定要素の性能に与える影響を分析して、1以上の関連要素の中から、指定要素の性能の改善のために性能を改善させるべき関連要素である改善対象関連要素を推定する。改善箇所分析部103は、指定要素の性能が改善されること(又は悪化すること)を結論部に用い、1以上の関連要素の各々の性能が改善されること(又は悪化すること)を条件部に用いたアソシエーション分析を行って、改善対象関連要素を推定する。アソシエーション分析については後述する。
また、改善箇所分析部103は、複数の改善対象関連要素を推定した場合に、各々の改善対象関連要素の性能が他の改善対象関連要素の性能に与える影響を分析して、複数の改善対象関連要素の間に優先順位を設定する。
また、改善箇所分析部103は、評価部102により新たな指定要素が指定された場合に、新たな指定要素と有意な関係にある、新たな指定要素以外の1以上の要素を新たな関連要素として抽出する。そして、改善箇所分析部103は、抽出した1以上の新たな関連要素の各々の性能が新たな指定要素の性能に与える影響を分析して、1以上の新たな関連要素の中から、新たな指定要素の性能の改善のために性能を改善させるべき新たな関連要素を新たな改善対象関連要素として推定する。
また、改善箇所分析部103は、新たな指定要素を指定する度に、指定した新たな指定要素以外の1以上の要素を新たな関連要素として抽出することを繰り返し、また、1以上の新たな関連要素を抽出する度に、新たな改善対象関連要素を推定することを繰り返してもよい。
なお、改善箇所分析部103は指定部、抽出部及び推定部に相当する。また、改善箇所分析部103により行われる処理は指定処理、抽出処理及び推定処理に相当する。
ここで、アソシエーション分析について説明する。
複数の情報の間の関係性を分析する手法として、アソシエーション分析(バスケット分析、アソシエーションルール等とも呼ばれる)が知られている。
アソシエーション分析では、統計情報が入力として用いられ、条件部と結論部の関係について支持度、信頼度、リフト値が算出される。支持度とは、全データ数の内、条件部と結論部を共に含むデータの割合である。信頼度とは、条件部を含むデータ数の内、条件部と結論部を共に含むデータの割合である。リフト値は、信頼度を、結論部を含むデータ数で割って得られる値である。一般的にリフト値が1より大きい場合に、条件部が結論部に与える影響が大きく、結論部と条件部の間に関係があると定量的に判断できる。
しかしながら、アソシエーション分析では入力となる情報の組み合わせごとに支持度、信頼度、リフト値を算出する必要があることから計算量が膨大となる。このため、情報の種類が多い生産システムにアソシエーション分析を単純に適用することができないという課題がある。
本実施の形態では、改善箇所分析部103は、アソシエーション分析に含まれる複数の計算項目(支持度、信頼度、リフト値)のうちのいずれかの計算項目において計算維持条件が不成立の場合に、複数の計算項目のうちの未計算の計算項目の計算を行わない。このようにすることで、本実施の形態では、情報の種類が多い生産システムにもアソシエーション分析を効果的に適用する。
情報収集部104は、分析対象200である生産システムから、図3に示す各要素についての情報を収集する。
例えば、情報収集部104は、図3に示す要素ごとに性能を収集する。具体的には、情報収集部104は、「製品A生産リードタイム」の性能として、測定された各工程の所要時間を収集し、各工程の所要時間を加算して製品Aの生産に要する時間を得る。また、情報収集部104は、「サーボ#1-1-2モータ電流値」の性能として、サーボ#1-1-2を実際に測定して得られたモータ電流値を収集する。
情報収集部104は、収集した情報を情報記憶部101に格納する。
図4は、情報収集部104の設定項目の例を示す。
情報収集部104は、図4に示す設定項目に従って、情報モデルに含まれる各要素の情報を収集する。
図4では、情報収集部104の設定項目として、要素、収集対象、監視期間、判定基準が定義されている。
図4の設定項目のうち、要素の欄には、情報モデルに含まれる要素が示される。
収集対象の欄には、情報の収集方法が示される。収集方法としては、生産システム内に存在するいずれかの機器から直接情報を収集する方法と、いずれかの機器から収集した情報を基に計算する方法がある。機器から直接情報を収集する場合は、収集対象の欄に情報収集元の機器が示される。
監視期間の欄には、判定基準を適用する時間幅が示される。
判定基準の欄には、評価部102での評価に用いられる基準、つまり性能の基準が示される。
情報収集部104により収集された情報は、記憶内容に示すように、時系列データとして評価部102で保持される。
***動作の説明***
図5は、評価部102の動作例を示すフローチャートである。
図6は、評価部102の評価結果の例をグラフ形式で示す。
図7は、評価部102の評価結果の例を表形式で示す。
図8は、改善箇所分析部103の動作例を示すフローチャートである。
図9は、図8のステップS204の詳細を示すフローチャートである。
図10は、本実施の形態に係る分析対象の例を示す。
図11は、本実施の形態に係る分析条件の例を示す。
図12は、改善箇所分析部103の分析結果の例を示す。
以降、図1~図12を参照しながら本実施の形態に係る改善箇所分析装置100の動作例を説明する。
事前設定フェーズ
生産システムの管理者あるいは設計者は、生産システムの管理のため、図3に示す情報モデルと図4に示す設定項目を生成する。そして、生産システムの管理者あるいは設計者は、生成した情報モデルと設定項目を改善箇所分析装置100の情報記憶部101に格納する。
情報モデル及び設定項目は、生産システムの設計情報を基に生成することが望ましい。
情報収集フェーズ
情報収集部104は、図4の設定項目に基づき、分析対象200である生産システムから情報を収集する。そして、収集した情報を情報記憶部101に格納する。
なお、情報収集部104は、改善箇所分析装置100以外の外部装置が収集した情報を外部装置から取得し、外部装置から取得した情報を設定項目に対応付けて情報記憶部101に格納してもよい。
評価フェーズ
次に、評価フェーズとして、評価部102が図5に示すフローチャートを行う。
具体的には、評価部102は、図4に示す設定項目を情報記憶部101から読み込む(ステップS101)。
次に、評価部102は、情報収集部104により収集された情報を情報記憶部101から読み込む(ステップS102)。
次に、情報収集部104は、設定項目と収集された情報とを用いて各要素の性能の評価を行い、評価結果を情報記憶部101に格納する(ステップS103)。つまり、情報収集部104は、設定項目に示す要素ごとに、監視期間の単位で、情報収集部104により収集された情報が判定基準に合致するか否かを判定する。なお、「製品A生産リードタイム」のように「収集対象」が「算出」と定義されている場合は、評価部102は、情報収集部104により収集された情報に基づく計算を行い、計算により得られた値と判定基準とを比較する。
図6及び図7は、評価部102による評価結果の例を示す。図6は評価結果をグラフ形式で示しており、図7は評価結果を表形式で示している。
例えば、「製品A生産リードタイム」は判定基準が閾値X1である。評価部102は、ある監視期間で「製品A生産リードタイム」の性能(所要時間)が閾値X1を上回った場合はHIGH(バイナリ値における1)と評価する。また、評価部102は、別の監視期間で「製品A生産リードタイム」の性能(所要時間)が閾値X1以下であった場合はLOW(バイナリ値における0)と評価する。本実施の形態では、「製品A生産リードタイム」をKGIに設定しているため、「製品A生産リードタイム」の性能(所要時間)が判定基準より高い(=HIGH)場合は生産性が低下していることを意味する。
なお、評価部102は、評価結果を逐次、HMI(Human Machine Interface)に出力してもよい。このように構成すれば、生産システムの改善担当者がHMIを参照することで生産システムの状況をリアルタイムに理解し、改善要否を判断することができる。
改善箇所分析フェーズ
生産システムの改善担当者は、評価部102による評価結果を参照し、KGIに対する評価部102の評価状況から改善要否を判断する。例えば、図6及び図7に示すように、「製品A生産リードタイム」が判定基準より高い、つまり生産性が低下している期間が複数回存在する場合は、生産システムの改善担当者は、改善が必要であると判断する。
改善が必要と判断した場合は、生産システムの改善担当者は改善箇所分析装置100に改善箇所分析部103による分析を指示する。
改善箇所分析部103は、生産システムの改善担当者からの指示に基づき、図8のフローを実行する。
なお、ここでは生産システムの改善担当者からの指示に基づき、改善箇所分析部103が図8のフローを実行する例を示すが、改善箇所分析部103が図8のフローを周期的に実行してもよい。あるいは評価部102による評価結果が規定数蓄積した場合に改善箇所分析部103が図8のフローを実行してもよい。更に、改善箇所分析部103が評価部102による評価結果を参照して改善要否を判定し、改善が必要と判定した場合に、図8のフローを実行してもよい。
図8に示すように、改善箇所分析部103は、図3に示す情報モデルを情報記憶部101から読み込む(ステップS201)。
また、改善箇所分析部103は、評価部102による評価結果を情報記憶部101から読み込む(ステップS202)。
ステップS201とステップS202は順序が入れ替わってもよいし、ステップS201とステップS202が並行して行われてもよい。
次に、改善箇所分析部103は、分析対象である指定要素を指定し、分析条件の設定又は読み込みを行う(ステップS203)。
改善箇所分析部103は、生産システムの改善担当者の指示に従って指定要素を指定してもよいし、評価部102による評価結果を分析して指定要素を指定してもよい。例えば、改善箇所分析部103は、複数回にわたって性能が判定基準に合致していない要素のうちで最上位の階層の要素を指定要素に指定する。
なお、分析条件の詳細は後述する。
次に、改善箇所分析部103は、分析を行い、分析結果を情報記憶部101に格納する(ステップS204)。
また、更に分析を続ける場合(ステップS205でYES)は、処理がステップS203に戻り、改善箇所分析部103が新たな指定要素を指定する。改善箇所分析部103は、例えば、ステップS204で得られた改善対象関連要素を新たな指定要素に指定する。
図9は、ステップS204の詳細を示す。以下、図9を参照してステップS204の詳細を説明する。
まず、改善箇所分析部103は、情報モデルからアソシエーション分析における結論部と条件部の有意な組み合わせを抽出する(ステップS2041)。
有意な組み合わせとは、結論部及と条件部が情報モデルにおける階層構造による関係性、論理構造による関係性の両観点で矛盾がないことを示す。すなわち、有意な組み合わせとは、結論部と条件部が階層構造による関係性において正しい方向で接続されている、あるいは論理構造による関係性において正しい方向で接続されていることを意味する。結論部の要素と階層構造による関係性において正しい方向で接続されている要素及び結論部の要素と論理構造による関係性において正しい方向で接続されている要素は、結論部の要素の性能に影響を与え得る要素である。
具体的には、改善箇所分析部103は、ステップS203で指定された指定要素を結論部に設定する。そして、改善箇所分析部103は、情報モデルに基づき、指定要素と階層構造による関係性において正しい方向で接続されている要素及び指定要素と論理構造による関係性において正しい方向で接続されている要素を条件部に設定する。条件部に設定される要素が関連要素に相当する。
例えば、改善箇所分析部103がステップS203で「製品A生産リードタイム」を指定要素に指定した場合に、改善箇所分析部103は、「製品A生産リードタイム」と階層構造による関係性において正しい方向で接続されている「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」を関連要素として抽出する。
この場合は、改善箇所分析部103は、図10に示すように、「製品A生産リードタイムの値が判定基準より高くなる」ことを結論部に設定し、「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」を条件部に設定する。
また、例えば、改善箇所分析部103がステップS203で「工程#1リードタイム」を指定要素に指定した場合は、「工程#2リードタイム」及び「工程#3リードタイム」は論理構造による関係性と矛盾し、有意な組み合わせとはならない(工程#2又は工程#3のリードタイムに変化があっても、工程#1のリードタイムは変化しない)。このため、改善箇所分析部103は「工程#2リードタイム」及び「工程#3リードタイム」は関連要素として抽出しない。
次に、改善箇所分析部103は、抽出した条件部及び結論部の組み合わせに対してアソシエーション分析を実行する(ステップS2042)。
ここでは、改善箇所分析部103は、アソシエーション分析における支持度、信頼度及びリフト値を計算するものとする。これらの計算項目の計算順序は特に定めない。
改善箇所分析部103は、分析条件を参照して、いずれかの計算項目において計算維持条件が不成立の場合は、未計算の計算項目の計算を停止してもよい。このように構成することでアソシエーション分析の計算量を削減できる。
図11は、分析条件の例を示す。
図11の分析条件では、分析対象の区間(時間幅)、アソシエーション分析の各計算項目の計算維持条件が定義されている。
なお、図11の例では、区間の条件を階層にかかわらず一定の区間としている。上位の階層の要素ほど長い周期で収集されることが一般的であり、下位の階層の要素の変化が上位の階層に伝わるまで一定の遅延を含む場合がある。このような場合は上位の階層の要素と下位の階層の要素で分析対象とする区間(時間幅)をずらして設定するとよい。
また、図11の例では、リフト値の計算維持条件が1以上であり、支持度の計算維持条件が0.001より大きく、信頼度の計算維持条件が0.001より大きいことが示される。
図12は、改善箇所分析部103による分析結果の例を示す。
なお、図12において、支持度、信頼度及びリフト値のすべてが斜線で打ち消されている組み合わせは、有意な組み合わせではないためアソシエーション分析の対象とならなかった組み合わせである。
図12の上段は、改善箇所分析部103が、製品A生産リードタイムに各工程のリードタイムが与える影響を分析して得られた結果を示す。上述した通り、改善箇所分析部103は有意な組み合わせのみ抽出して分析する。このため、図12の上段では、「製品A生産リードタイム」を結論部に設定し、「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」の各々を条件部に設定して行ったアソシエーション分析の結果を示す。
図12の上段の例では、「工程#1リードタイム」が判定基準より高い(=HIGH)場合を条件部にしたアソシエーション分析と「工程#2リードタイム」が判定基準より高い(=HIGH)場合を条件部にしたアソシエーション分析において、リフト値が1より大きい。このため、「工程#1リードタイム」及び「工程#2リードタイム」が「製品A生産リードタイム」の悪化の要因である可能性が高い。従って、改善箇所分析部103は「工程#1リードタイム」及び「工程#2リードタイム」を改善対象関連要素と推定する。つまり、改善箇所分析部103は、「製品A生産リードタイム」の性能を改善するために性能を改善させるべき要素として、「工程#1リードタイム」及び「工程#2リードタイム」を抽出する。
図12の下段は、改善箇所分析部103が、「工程#1リードタイム」、「工程#2リードタイム」及び「工程#3リードタイム」の各々が他の工程のリードタイムに与える影響を分析して得られた結果を示す。
図12の上段では、リフト値が1より大きい組み合わせが複数あることから、改善箇所分析部103は、各工程のリードタイムが他の工程のリードタイムに与える影響も分析している。つまり、改善箇所分析部103は、各工程を新たな指定要素として指定し、また、新たな指定要素として指定した工程以外の工程を新たな関連要素として抽出して、アソシエーション分析を行う。
図12の下段の例では、「工程#1リードタイム」が判定基準より高い(=HIGH)場合を条件部に設定し、「工程#2リードタイム」が高くなることを結論部に設定したアソシエーション分析において、リフト値が1より大きい。従って、「工程#1リードタイム」が「工程#2リードタイム」の悪化の要因である可能性が高い。従って、改善箇所分析部103は、「工程#2リードタイム」の性能を改善するために性能を改善させるべき要素として、「工程#1リードタイム」を抽出する。
この結果、改善箇所分析部103は、「工程#1リードタイム」を最優先の改善対象関連要素と推定する。つまり、改善箇所分析部103は、「製品A生産リードタイム」の性能の改善のために「工程#1リードタイム」が最も有効な改善対象関連要素であると判定し、「工程#2リードタイム」が次に有効な改善対象関連要素であると判定する。
図12の上段の例のように複数の改善対象関連要素が得られた場合に、改善箇所分析部103は、図12の下段の例のように、複数の改善対象関連要素の間に優先順位を設定する。
以上の分析結果から、改善箇所分析部103は、「製品A生産リードタイム悪化は工程#1リードタイムの悪化と工程#2リードタイムの悪化が要因である」と推定することができる。また、改善箇所分析部103は、「工程#2リードタイムの悪化は、工程#1リードタイム悪化が要因である」と推定することができる。このため、改善箇所分析部103は、「先ずは、両リードタイムの悪化の要因である工程#1リードタイムを改善すべきである」と生産システムの改善担当者に改善箇所を提案することができる。
改善箇所分析部103は、このような分析結果(改善箇所の提案)をHMIに出力し、また、分析結果を情報記憶部101に格納する(ステップS2043)。
更に、改善箇所分析部103は、必要に応じて「工程#1リードタイム」の悪化の要因について分析の深堀を行うことができる(図8のステップS205)。
具体的には、改善箇所分析部103は、図3の情報モデルの階層構造の関係性に基づき、「工程#1リードタイム」を新たな指定要素として結論部に設定し、「設備#1-1リードタイム」及び「設備#1-2リードタイム」を新たな関連要素として条件部に設定したアソシエーション分析を行う。
設備階層の分析が完了した後、改善箇所分析部103は、更に必要に応じて機器階層の要素を新たな関連要素として条件部に設定したアソシエーション分析を行ってもよい。このようにして、改善箇所分析部103は、分析の深堀を行うことができる。なお、分析条件として、このような分析の深堀の繰り返し回数を設けてもよい。
***実施の形態の効果の説明***
以上、本実施の形態によれば、性能を改善すべき要素の性能の改善に寄与する要素の特定を効率的に行うことができる。
つまり、本実施の形態に係る改善箇所分析装置100は、情報モデルに定義した階層構造及び論理構造による関係性を参照しつつKGIと複数の情報の関係性を段階的かつ論理的に分析する。このため、本実施の形態によれば、KGIの改善に寄与する改善箇所の特定を効率的に行うことができる。
また、本実施の形態によれば、評価部102が評価結果を逐次HMIに出力することで、生産システムの改善担当者が生産システムの状況をリアルタイムに理解し、改善要否を即座に判断することができる。
また、本実施の形態によれば、改善箇所分析部103が分析条件を参照して、いずれかの計算項目が計算維持条件に該当しない場合は未計算の計算項目の計算を行わないため、分析時の計算量を削減することができる。
また、本実施の形態によれば、改善箇所分析部103による分析の深堀のための繰り返し回数を設けることで、生産システムの改善担当者が改善箇所分析装置100の最終結果を待たずとも、自身の経験が通用する範囲で分析結果を得ることができ、改善活動を効率化できる。
また、本実施の形態によれば、改善箇所分析部103は、階層の異なる分析対象である場合に、階層に応じて分析区間を調整できるため、有効に分析を行うことができる。
実施の形態2.
***目的***
実施の形態1では、単一の判定基準による評価で得られた評価結果をバイナリ化している。実施の形態1の方法では、特に情報モデルにおける機器階層の改善を図る際、機器階層の要素がいずれの値となった場合に指定要素の性能に影響を与えるのかを明確に分析できない可能性がある。
実施の形態2は、このような課題の解決を主な目的としている。
本実施の形態では、主に実施の形態1との差異を説明する。
なお、以下で説明していない事項は、実施の形態1と同様である。
***構成の説明**
本実施の形態においても、改善箇所分析装置100の構成は図1及び図2に示す通りである。
本実施の形態では、実施の形態1で示した情報収集における設定項目(図4)に、図13に示すように、追加の判定基準を設ける。更に、図14に示すように、分析条件(図11)に細分化条件を設ける。
図13では、情報収集における設定項目の内、「センサ#1-1-3対象角度」について、判定基準の一つ目に閾値X6を設定し、さらに追加の判定基準として閾値X7及びX8を設定している。更に、図14では、細分化の条件として、リフト値が2より大きい場合と、支持度が0.5より大きい場合を設定している。
***動作の説明***
本実施の形態では、改善箇所分析フェーズの完了までは実施の形態1と同一の動作が行われる。
このとき、図12に示すような分析結果が得られ、更に、図14の分析条件の細分化の条件を満たしている場合に、評価部102は、図13の追加の判定基準で更に評価を行う。
図15は実施の形態2における効果の例を示す。
つまり、本実施の形態では、改善箇所分析部103が「設備#1-1リードタイム」を結論部、「センサ#1-1-3対象角度」を条件部に設定してアソシエーション分析を行っている。そして、改善箇所分析部103は、「センサ#1-1-3対象角度」を改善対象関連要素として推定している。そして、アソシエーション分析の結果が上述した細分化の条件(図14)を満たしている。このため、評価部102が細分化として、改善対象関連要素である「センサ#1-1-3対象角度」の性能が追加の判定基準である判定基準2(閾値X7及びX8)に合致するか否かの評価を行っている。図15は、判定基準2を用いた評価により得られた評価結果を示す。
図15では図示を省略しているが、細分化により新たに判定基準2を用いて分析した結果(リフト値、支持度、信頼度)についても併せて示すことが可能である。この場合は、「センサ#1-1-3対象角度」が具体的にどの値となった場合に「センサ#1-1-3対象角度」が「設備#1-1リードタイム」の性能の悪化に影響するかを分析することができる。
***実施の形態の効果の説明***
以上のように、本実施の形態では、複数の判定基準を設け、評価部102が複数の判定基準を適用するための細分化の条件を設けている。このため、本実施の形態によれば、単一の判定基準における評価結果を複数の判定基準により細分化することができ、指定要素の性能に影響を与え得る要素が具体的にいずれの値となった場合に指定要素の性能に影響を与えるかを明確に判断することができる。
実施の形態3.
***目的***
実施の形態1及び2では、情報収集部104における設定項目の判定基準及び改善箇所分析部103における分析条件について、設計情報等を参考に予め値を設定することを前提としている。
しかしながら、設計情報が得られない場合及び設計情報と生産システムの実態に差異がある場合には、実施の形態1及び2における効果が得られない可能性がある。
実施の形態3は、このような課題の解決を主な目的としている。
本実施の形態では、主に実施の形態1との差異を説明する。
なお、以下で説明していない事項は、実施の形態1と同様である。
***構成の説明***
本実施の形態においても、改善箇所分析装置100の構成は図1及び図2に示す通りである。但し、本実施の形態では、情報収集部104の判定基準の設定方法を図16に示すようにする。
図16では、情報収集部104の設定項目における判定基準に、収集した情報に対する統計処理を定義している。統計処理は、例えば「平均値」のように設定される。これ以外にも、平均値に標準偏差を考慮したもの(平均値±標準偏差)、度数分布における最頻値、極小値なども好適であるがこれらに限定しない。
***動作の説明***
本実施の形態では、情報収集と評価フェーズの途中まで実施の形態1と同一の動作を行う。
本実施の形態では、図5のフローチャートにおいて、ステップS103で、評価部102は、情報収集部104により収集され、情報記憶部101において記憶されている情報に対する統計処理を行う。そして、評価部102は、統計処理の結果を図16の判定基準に設定する。そして評価部102は、情報収集部104により収集され、情報記憶部101において記憶されている個々の情報と、判定基準として設定された統計処理の結果とを比較して評価を行う。その後、評価部102は、評価結果を情報記憶部101に格納する。
以降、改善箇所分析フェーズでは実施の形態1と同一の動作が行われる。
***実施の形態の効果の説明***
以上のように、本実施の形態では、判定基準として統計処理の結果を設定するため、分析対象の設計値が得られない場合においても実施の形態1及び2の効果を得ることができる。
また、判定基準として統計処理の結果を設定することで、判定基準を予め設定しなければならないという手間を削減することができる。
実施の形態4.
***目的***
実施の形態1から3では、情報モデルで階層構造及び/又は論理構造による関係性を定義することを前提としている。
しかしながら、特に機器階層においては、設計者が生産システムの設計者と異なる等の理由から機器の情報を厳密に定義することが困難である。このため、階層構造及び/又は論理構造による関係性を正確に定義できない場合がある。関係性が誤って定義されている場合又は関係性が定義できない場合は、誤った分析結果が出力されることがある。また、想定されるすべての組み合わせに対する分析が発生することがある。このような場合には、効率が低下する。
実施の形態4は、このような課題の解決を主な目的としている。
本実施の形態では、主に実施の形態1との差異を説明する。
なお、以下で説明していない事項は、実施の形態1と同様である。
***構成の説明***
本実施の形態においても、改善箇所分析装置100の構成は図1及び図2に示す通りである。本実施の形態では、情報モデルの構成と改善箇所分析部103の分析条件及びフローチャートが異なる。
図17は、実施の形態4に係る情報モデルの例を示す。図17では、機器階層において、階層構造及び論理構造による関係性が定義されていない。つまり、図17に示す情報モデルでは、機器階層に存在する要素のみが定義されている。
図18は、実施の形態4における分析条件での追加項目を示す。図18では、分析条件に関係性に関する項目を追加している。関係性に関する条件として、例えば「機器階層の関係性については自動生成する」等を定義することが考えられる。機器階層以外の階層の関係性を自動生成することを定義してもよいし、自動生成以外の方法により関係性を生成するように定義してもよい。更に、一度生成した関係性を定期的に確認するように定義してもよい。
図19は、図8のステップS204(分析の実行及び記憶)において改善箇所分析部103が追加で行う手順を示す。
***動作の説明***
情報収集フェーズ、評価フェーズ及び図8のステップS203までは、実施の形態1と同一の動作が行われる。
ステップS204では、図9のフローに先立ち、図19のフローが行われる。つまり、いずれかの要素間の関係が不明な場合に、改善箇所分析部103が、関係が不明な要素間の関係を推定し、当該要素間の関係性を自動生成する。
具体的には、改善箇所分析部103は、図18の設定項目を参照し、機器階層について関係性を自動生成するために図19のフローを実行する。
図19では、機器階層に含まれる要素のうち、上位層である設備階層との階層構造が定義されている「PLC#1-1-1サイクルタイム」と、特段の関係性が定義されていない「サーボ#x-1モータ電流値」との間の関係性を自動生成する手順を示している。
はじめに、ステップS301において、改善箇所分析部103は、「PLC#1-1-1サイクルタイム」と「サーボ#x-1モータ電流値」とについてアソシエーション分析を実行する。図19の例では、改善箇所分析部103は、「PLC#1-1-1サイクルタイム」が判定基準よりも高い(=HIGH)ことを条件部に設定し、「サーボ#x-1モータ電流値」が判定基準より高い(=HIGH)ことを結論部に設定した組合せ(以下、「組合せ1」という)の支持度、信頼度、リフト値を算出している。更に、改善箇所分析部103は、「サーボ#x-1モータ電流値」が判定基準よりも高い(=HIGH)ことを条件部に設定し、「PLC#1-1-1サイクルタイム」が判定基準より高い(=HIGH)ことを結論部に設定した組合せ(以下、「組合せ2」という)の支持度、信頼度、リフト値を算出している。なお、情報の意味が未知である場合は、改善箇所分析部103はそれぞれの要素の値が判定基準よりも低い(=LOW)場合の組合せを含めてアソシエーション分析を実行することが望ましい。
次に、ステップS302において、改善箇所分析部103は、ステップS301の分析結果を評価する。ここでは、改善箇所分析部103は、分析結果の支持度、信頼度、リフト値について、どちらの組み合わせで高い値が得られたかを評価している。つまり、改善箇所分析部103は、組合せ1と組合せ2のいずれで高い値が得られたかを評価する。アソシエーション分析においてはリフト値の評価結果が1より大きいと条件部と結論部との間に関係性があると評価できる。このため、改善箇所分析部103は、リフト値を重視するよう各項目の結果に重みを設けて評価を行ってもよい。これら重みについては、図18の設定項目に設けるとよい。また、関係性を生成する条件についても、同様に図18の設定項目に設けるとよい。
最後に、ステップS303において、改善箇所分析部103は、評価結果を参照して要素間の関係性を構築し、構築した要素間の関係性を情報記憶部101に記憶する。
図19の例では「サーボ#x-1モータ電流値」が判定基準よりも高いことを条件部に設定し、「PLC#1-1-1サイクルタイム」が判定基準よりも高いことを結論部に設定した組み合わせ(組合せ1)において、支持度、信頼度、リフト値が高い。このため、改善箇所分析部103は、「サーボ#x-1モータ電流値」が「PLC#1-1-1サイクルタイム」の性能に影響を与えるという関係性を情報モデルに追加する。
なお、本例では「PLC#1-1-1サイクルタイム」と「サーボ#x-1モータ電流値」との間の関係性を自動生成する手順を示した。図17に示した、関係性が定義されていない「センサ#x-2対象角度」及び「ロボット#x-3到達率」についても、改善箇所分析部103は同様の手順で関係性を自動生成する。
***実施の形態の効果の説明***
以上のように、本実施の形態では、いずれかの要素間の関係が不明な場合に、改善箇所分析部103が、関係が不明な要素間の関係を推定し、当該要素間の関係性を自動生成する。このため、本実施の形態によれば、情報モデルに階層構造及び/又は論理構造による関係性を正確に定義できない場合においても、実際に収集した情報を基に要素間の関係性を構築することができ、分析を効率よく行うことができるようになる。
また、要素間の関係性を誤って定義した場合においても、実際に収集した情報を基に要素間の関係性を評価することで、情報モデルを修正することができる。
実施の形態5.
***目的***
実施の形態1から4では、分析結果を支持度、信頼度、リフト値といった複数項目で出力している。改善箇所となる要素は、これら複数項目の出力を勘案して判断する必要がある。しかしながら、いずれの要素が改善箇所であるか、特に分析に不慣れである生産システム管理者には判断が難しいという課題がある。
実施の形態5は、このような課題の解決を主な目的としている。
本実施の形態では、主に実施の形態1との差異を説明する。
なお、以下で説明していない事項は、実施の形態1と同様である。
***構成の説明***
本実施の形態においても、改善箇所分析装置100の構成は図1及び図2に示す通りである。本実施の形態では、改善箇所分析部103の分析条件が異なる。
図20は、実施の形態5に係る分析条件を示す。図20では、図11と比較して、新たに分析結果出力の項目を追加している。分析結果出力の条件として、例えば、算出式「A1+A2+A3」が定義される。なお、「A1」は支持度が0.1より大きい場合に1、支持度が0.1より小さい場合に0が設定される。同様に、「A2」は信頼度が0.1より大きい場合に1、信頼度が0.1より小さい場合に0が設定される。「A3」はリフト値が1以上の場合にリフト値がそのまま設定され、リフト値が1より小さい場合に0が設定される。
なお、支持度、信頼度及びリフト値のいずれかを重視するよう算出式を調整してもよい。例えば重みαを用いてA1+A2+A3×αのように調整する。重みαは、生産システムの設計者又は改善担当者が設定する。
本実施の形態では、図20に示すように、改善箇所分析部103が、アソシエーション分析に含まれる複数の計算項目についての複数の計算値を用いた計算を行い、複数の計算値を用いた計算の計算値を出力する。
***動作の説明***
情報収集フェーズ、評価フェーズ及び改善箇所分析フェーズの図9のステップS2042までは実施の形態1と同一の動作が行われる。
ステップS2043では、改善箇所分析部103は、図20の分析結果出力の算出式に従って分析結果出力を算出し、算出結果を出力し、また、算出結果を情報記憶部101に格納する。
図21は、実施の形態5に係る出力の一例を示す。図21に示すように、本実施の形態に係る出力では、図20の分析結果出力の算出式に従って得られた分析結果が含まれる。
***実施の形態の効果の説明***
以上のように、本実施の形態では、分析条件に分析結果出力の算出方法が定義され、当該算出方法に従って算出された分析結果が出力される。このため、本実施の形態によれば、分析に不慣れである生産システム管理者がいずれの要素が改善箇所であるか容易に判断できるようになる。
実施の形態6.
***目的***
実施の形態5では、改善箇所の分析結果出力のための算出式を生産システムの設計者又は改善担当者が適宜設定する必要がある。しかしながら、特に複雑な生産システムにおいては分析結果出力と実際の改善箇所が異なっている可能性がある。
実施の形態6は、このような課題の解決を主な目的としている。
本実施の形態では、主に実施の形態5との差異を説明する。
なお、以下で説明していない事項は、実施の形態5と同様である。
***構成の説明***
図22は、実施の形態6に係る改善箇所分析装置100の構成例を示す。図22の構成では、図1の構成に、改善実績記憶部105が追加されている。改善実績記憶部105には改善実績が記憶されている。改善実績記憶部105以外は、図1の示すものと同じである。
図23は、改善実績記憶部105が記憶する改善実績の例を示す。図23に示す改善実績には、発生した事象と、事象の要因(改善箇所)が含まれる。事象及び要因については、具体的な値を含めて詳細に記述することが望ましい。改善実績は、分析対象を稼働していく中で改善担当者が記述する。あるいは、同種の分析対象の改善実績が存在する場合は、同種の分析対象の改善実績を流用してもよい。但し、この場合は、別の分析対象の改善実績であることがわかるように記述することが望ましい。または、実施の形態5に示した分析結果出力を参照した改善担当者がHMIを通して分析結果出力に対して与えた正誤の評価結果又は数値を伴う評価結果を改善実績としてもよい。このとき、改善実績記憶部105に記述した内容は、情報モデル内に関係性が定義されていることが望ましい。情報モデル内に関係性が定義されていない場合、情報モデル内に関係性が定義されるよう構成しても良い。
図24は、実施の形態6に係る分析条件の例を示す。図24では、分析結果出力の条件として、改善実績を出力に反映する算出式が定義されている。図24では、補正値「A4」として改善実績数が記述されており、また、算出式にも「A4」が含まれている。
***動作の説明***
情報収集フェーズ、評価フェーズ及び改善箇所分析フェーズの図9のステップS2042までは実施の形態1と同一の動作が行われる。
ステップS2043では、改善箇所分析部103は、図24の分析結果出力の算出式に従って分析結果出力を算出し、算出結果を出力し、また、算出結果を情報記憶部101に格納する。つまり、ステップS2043では、改善箇所分析部103は、アソシエーション分析における条件部に相当する関連要素に対する改善実績を用いて、算出式「A1+A2+A3」により得られる計算値を補正し、補正後の計算値を出力する。
図25は実施の形態6に係る分析結果出力の一例を示す。図25に示すように、本実施の形態では、図23の改善実績を補正値として出力し、また、改善実績数に基づく補正後の分析結果出力を出力する。
***実施の形態の効果の説明***
以上のように、本実施の形態では、改善実績を記憶し、改善実績に合わせて分析結果出力を補正する。このため、本実施の形態によれば、生産システムの実態に即した改善箇所を出力することができる。
実施の形態7.
***目的***
実施の形態5及び6では、算出式を用いて分析結果出力を算出し、得られた分析結果出力を出力することで、より確度の高い分析結果が得られる。
しかしながら、大規模あるいは複雑な生産システムの場合、要素の種類が膨大かつ要素間の関係性が複雑である。このため、分析対象の実態に即した分析結果出力となるよう算出式を定義することが困難な場合がある。
実施の形態7は、このような課題の解決を主な目的としている。
本実施の形態では、主に実施の形態5との差異を説明する。
なお、以下で説明していない事項は、実施の形態5と同様である。
***構成の説明***
図26は、実施の形態7に係る分析条件の設定を示す。図26では、図20又は図24における分析結果出力を、後述する機械学習を用いて学習した学習済みモデルを活用して算出することが設定されている。
図27は、改善箇所分析装置100が活用する機械学習装置400の構成例を示す。機械学習装置400は、データ取得部401、教師データ取得部402、学習部403、学習済みモデル記憶部405及び出力部404を備える。機械学習装置400は、ハードウェア構成として、図2と同様に、プロセッサ、記憶装置、通信インタフェース及びバスを備える。データ取得部401、教師データ取得部402、学習部403は、例えば、プログラムにより実現される。当該プログラムはプロセッサにより実行される。学習済みモデル記憶部405は記憶装置により実現される。
データ取得部401は、図10、図11、図20及び図24に示す条件部、結論部、支持度、信頼度、リフト値を状態変数として取得する。なお、データ取得部401は、図6及び図7に示す評価部102の評価結果を取得してもよい。
教師データ取得部402は、図23の改善実績に示される要因及び事象を取得する。
学習部403は、データ取得部401から出力される条件部、結論部、支持度、信頼度、リフト値及び教師データ取得部402から出力される要因及び事象の組合せに基づいて作成されるデータセットに基づいて、出力の補正方法を学習する。すなわち、学習部403は、改善箇所分析装置100の改善箇所分析部103の分析結果である条件部、結論部、支持度、信頼度、リフト値と、実際の改善実績である要因及び事象から分析結果出力の補正方法を推測する学習済みモデルを生成する。ここで、データセットは、状態変数及び教師データを互いに関連付けたデータである。
なお、機械学習装置400は、改善箇所分析装置100の出力の補正方法を学習するために使用されるが、例えば、ネットワークを介して改善箇所分析装置100に接続された、改善箇所分析装置100とは別個の装置であってもよい。また、機械学習装置400は、改善箇所分析装置100に内蔵されていてもよい。さらに、機械学習装置400は、クラウドサーバ上に存在していてもよい。
学習部403が用いる学習アルゴリズムはどのようなものを用いてもよい。本実施の形態では、一例として、ニューラルネットワークを適用した場合について説明する。
学習部403は、例えば、ニューラルネットワークモデルに従って、いわゆる教師あり学習により、出力の補正方法を学習する。ここで、教師あり学習とは、ある入力と結果(ラベル)のデータの組を大量に機械学習装置400に与えることで、それらのデータセットにある特徴を学習し、入力から結果を推定するモデルをいう。
ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層(隠れ層)及び複数のニューロンからなる出力層で構成される。中間層は、1層でもよいし、又は2層以上でもよい。
例えば、図30に示すような3層のニューラルネットワークであれば、複数の入力データが入力層(X1‐X3)に入力されると、各入力データの値に重みW1(w11‐w16)を掛けて重みW1が掛けられた各入力データが中間層(Y1‐Y2)に入力される。そして、中間層(Y1‐Y2)の結果にさらに重みW2(w21‐w26)を掛けて重みW2が掛けられた中間層(Y1‐Y2)の結果が出力層(Z1‐Z3)から出力される。出力結果は、重みW1の値と重みW2の値によって変わる。
本願において、ニューラルネットワークは、データ取得部401によって取得される条件部、結論部、支持度、信頼度、リフト値、並びに、教師データ取得部402によって取得される要因及び事象の組合せに基づいて作成されるデータセットに従って、いわゆる教師あり学習により、出力の補正方法を学習する。
すなわち、ニューラルネットワークは、入力層に条件部、結論部、支持度、信頼度、リフト値を入力して出力層から出力された結果が、要因及び事象に近づくように重みW1とW2を調整することで学習する。
また、ニューラルネットワークは、いわゆる教師なし学習によって、出力の補正方法を学習することもできる。教師なし学習とは、入力データのみを大量に機械学習装置400に与えることで、機械学習装置400が入力データがどのような分布をしているか学習する。教師なし学習では、対応する教師出力データを与えなくても、入力データに対して圧縮、分類、整形等を行って学習することが可能である。つまり、教師なし学習では、複数のデータセットにある特徴を似た者同士にクラスタリングすることができる。クラスタリングの結果を使って、何らかの基準を設けてクラスタリング結果を最適にするような出力の割り当てを行うことで、出力の予測を実現することできる。また、教師なし学習と教師あり学習の中間的な問題設定として、半教師あり学習がある。半教師あり学習では、一部のみ入力データと出力データの組が存在し、それ以外は入力データのみが存在する。
学習部403は、以上のような学習を実行することで学習済みモデルを生成する。
学習済みモデル記憶部405は、学習部403で生成された学習済みモデルを記憶する。
出力部404は、学習済みモデルを利用して得られる、改善箇所分析装置100の分析結果出力の補正方法を出力する。すなわち、データ取得部401に条件部、結論部、支持度、信頼度、リフト値を入力することで、出力部404から学習済みモデルに基づいて条件部、結論部、支持度、信頼度、リフト値に適した出力の補正方法を得ることができる。
なお、本実施の形態では、機械学習装置400の出力部404が、学習部403での学習で得られた学習済みモデルを用いて分析結果出力の補正方法を改善箇所分析装置100に出力する例を説明するが、改善箇所分析装置100が学習済みモデルを取得し、この学習済みモデルに基づいて分析結果出力の補正方法を取得するようにしてもよい。
***動作の説明***
次に、図28を用いて、機械学習装置400が学習する処理について説明する。図28は機械学習装置400の学習処理に関するフローチャートである。
始めに、ステップS401において、データ取得部401は条件部、結論部、支持度、信頼度、リフト値を状態変数として取得する。
次に、ステップS402において、教師データ取得部402は改善実績である要因及び事象を取得する。なお、本実施の形態では上述の順でデータを取得するものとしたが、条件部、結論部、支持度、信頼度、リフト値、及び要因及び事象を関連づけて入力できればよく、これらのステップが同時に実行されてもよいし、逆順に実行されてもよい。
さらに、ステップS403において、学習部403は、データ取得部401によって取得された条件部、結論部、支持度、信頼度、リフト値、並びに、教師データ取得部402によって取得された要因及び事象の組合せに基づいて作成されるデータセットに従って、いわゆる教師あり学習により、分析結果出力の補正方法を学習し、学習済みモデルを生成する。
最後に、ステップS404において、学習済みモデル記憶部405は、学習部403が生成した学習済みモデルを記憶する。
次に、図29を用いて、機械学習装置400を使って分析結果出力の補正方法を得るための処理を説明する。
始めに、ステップS501において、データ取得部401は、条件部、結論部、支持度、信頼度、リフト値を取得する。
次に、ステップS502において、学習部403は学習済みモデル記憶部405に記憶された学習済みモデルに条件部、結論部、支持度、信頼度、リフト値を入力し、分析結果出力の補正方法を得る。学習部403は得られた分析結果出力の補正方法を出力部404に出力する。
更に、ステップS503において、出力部404は、学習済みモデルにより得られた分析結果出力の補正方法を出力する。
最後に、ステップS504において、改善箇所分析装置100の改善箇所分析部は、出力された分析結果出力の補正方法を用いて、分析結果を補正し、補正後の分析結果を出力する。これにより、生産システムの実態に即した改善箇所を出力することができる。
なお、本実施の形態では、学習部403が用いる学習アルゴリズムに教師あり学習を適用した場合について説明したが、これに限られるものではない。学習アルゴリズムについては、教師あり学習以外にも、強化学習、教師なし学習、又は半教師あり学習等を適用することも可能である。
また、学習部403は、複数の改善箇所分析装置100から収集されるデータセットに従って、出力の補正方法を学習するようにしてもよい。
なお、学習部403は、同一のエリアで使用される複数の改善箇所分析装置100からデータセットを取得してもよい。或いは、学習部403は、異なるエリアで独立して動作する複数の改善箇所分析装置100から収集されるデータセットを利用して分析結果出力の補正方法を学習してもよい。さらに、学習部403は、データセットを収集する改善箇所分析装置100を途中で追加することも可能である。或いは、学習部403は、逆に、データセットを収集する改善箇所分析装置100から、いずれかの改善箇所分析装置100を途中で除去することも可能である。
さらに、ある改善箇所分析装置100に関して分析結果出力の補正方法を学習した機械学習装置400を、これとは別の改善箇所分析装置100に適用し、当該別の改善箇所分析装置100に関して分析結果出力の補正方法を再学習して更新するようにしてもよい。
また、学習部403に用いられる学習アルゴリズムとしては、特徴量そのものの抽出を学習する、深層学習(Deep Learning)を用いることもでき、他の公知の方法、例えば遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行してもよい。
***実施の形態の効果の説明***
以上のように、本実施の形態では、機械学習を活用して分析結果出力の補正方法を取得する。このため、本実施の形態によれば、分析対象が大規模あるいは複雑な生産システムであっても、生産システムの実態に即した改善箇所を出力することができる。
以上、実施の形態1~7を説明したが、これらの実施の形態のうち、2つ以上を組み合わせて実施しても構わない。
あるいは、これらの実施の形態のうち、1つを部分的に実施しても構わない。
あるいは、これらの実施の形態のうち、2つ以上を部分的に組み合わせて実施しても構わない。
また、これらの実施の形態に記載された構成及び手順を必要に応じて変更してもよい。
***ハードウェア構成の補足説明***
最後に、改善箇所分析装置100のハードウェア構成の補足説明を行う。
図2に示すプロセッサ901は、プロセッシングを行うIC(Integrated Circuit)である。
プロセッサ901は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)等である。
図2に示す記憶装置902は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)等である。
図2に示す通信インタフェース903は、データの通信処理を実行する電子回路である。
通信インタフェース903は、例えば、通信チップ又はNIC(Network Interface Card)である。
また、補助記憶装置902には、OS(Operating System)も記憶されている。
そして、OSの少なくとも一部がプロセッサ901により実行される。
プロセッサ901はOSの少なくとも一部を実行しながら、プログラム904を実行する。
プロセッサ901がOSを実行することで、タスク管理、メモリ管理、ファイル管理、通信制御等が行われる。
また、評価部102、改善箇所分析部103及び情報収集部104の処理の結果を示す情報、データ、信号値及び変数値の少なくともいずれかが、記憶装置902、プロセッサ901内のレジスタ及びキャッシュメモリの少なくともいずれかに記憶される。
また、プログラム904は、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD等の可搬記録媒体に格納されていてもよい。そして、プログラム904が格納された可搬記録媒体を流通させてもよい。
また、評価部102、改善箇所分析部103及び情報収集部104の「部」を、「回路」又は「工程」又は「手順」又は「処理」に読み替えてもよい。
また、改善箇所分析装置100は、処理回路により実現されてもよい。処理回路は、例えば、ロジックIC(Integrated Circuit)、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)である。
この場合は、評価部102、改善箇所分析部103及び情報収集部104は、それぞれ処理回路の一部として実現される。
なお、本明細書では、プロセッサと処理回路との上位概念を、「プロセッシングサーキットリー」という。
つまり、プロセッサと処理回路とは、それぞれ「プロセッシングサーキットリー」の具体例である。
100 改善箇所分析装置、101 情報記憶部、102 評価部、103 改善箇所分析部、104 情報収集部、105 改善実績記憶部、200 分析対象、300 ネットワーク、400 機械学習装置、401 データ取得部、402 教師データ取得部、403 学習部、404 出力部、405 学習済みモデル記憶部、901 プロセッサ、902 記憶装置、903 通信インタフェース、904 プログラム、905 バス。

Claims (18)

  1. 3以上の要素のうち性能を改善させるべき要素を指定要素として指定する指定部と、
    前記指定要素以外の要素の中から前記指定要素と有意な関係にある2以上の要素を関連要素として抽出する抽出部と、
    前記抽出部により抽出された2以上の関連要素の各々の性能が前記指定要素の性能に与える影響を分析して、前記2以上の関連要素の中から、前記指定要素の性能の改善のために性能を改善させるべき関連要素である改善対象関連要素を推定する推定部とを有する情報処理装置。
  2. 前記推定部は、
    複数の改善対象関連要素を推定した場合に、各々の改善対象関連要素の性能が他の改善対象関連要素の性能に与える影響を分析して、前記複数の改善対象関連要素の間に優先順位を設定する請求項1に記載の情報処理装置。
  3. 前記指定部は、
    前記推定部により推定された前記改善対象関連要素を新たな指定要素に指定し、
    前記抽出部は、
    前記新たな指定要素と有意な関係にある、前記新たな指定要素以外の2以上の要素を新たな関連要素として抽出し、
    前記推定部は、
    前記抽出部により抽出された2以上の新たな関連要素の各々の性能が前記新たな指定要素の性能に与える影響を分析して、前記2以上の新たな関連要素の中から、前記新たな指定要素の性能の改善のために性能を改善させるべき新たな関連要素を新たな改善対象関連要素として推定する請求項1に記載の情報処理装置。
  4. 前記指定部は、
    前記推定部により新たな改善対象関連要素が推定される度に、推定された新たな改善対象関連要素を新たな指定要素に指定することを繰り返し、
    前記抽出部は、
    前記指定部により新たな指定要素が指定される度に、指定された新たな指定要素以外の2以上の要素を新たな関連要素として抽出することを繰り返し、
    前記推定部は、
    前記抽出部により2以上の新たな関連要素が抽出される度に、新たな改善対象関連要素を推定することを繰り返す請求項3に記載の情報処理装置。
  5. 前記推定部は、
    前記指定要素の性能が改善されることを結論部に用い、前記2以上の関連要素の各々の性能が改善されることを条件部に用いたアソシエーション分析を行って、前記改善対象関連要素を推定する請求項1に記載の情報処理装置。
  6. 前記推定部は、
    前記アソシエーション分析に含まれる複数の計算項目のうちのいずれかの計算項目において計算維持条件が不成立の場合に、前記複数の計算項目のうちの未計算の計算項目の計算を行わない請求項5に記載の情報処理装置。
  7. 前記情報処理装置は、更に、
    要素ごとに、性能の基準に性能が合致するか否かを評価する評価部を有し、
    前記指定部は、
    前記評価部により性能の基準に性能が合致しないと評価された要素を前記指定要素として指定する請求項1に記載の情報処理装置。
  8. 前記評価部は、
    各要素の性能が要素ごとに定義された性能の基準に合致するか否かを評価する請求項7に記載の情報処理装置。
  9. 前記3以上の要素は複数の階層を構成しており、
    前記評価部は、
    階層ごとに異なる時間幅で各要素の性能が性能の基準に合致するか否かを評価する請求項7に記載の情報処理装置。
  10. 前記評価部は、
    評価を行う度に、評価結果を出力する請求項7に記載の情報処理装置。
  11. 前記評価部は、
    前記推定部により推定された改善対象関連要素に追加の性能の基準が定義されており、前記追加の性能の基準を前記改善対象関連要素に適用するための条件が成立する場合に、前記改善対象関連要素の性能が前記追加の性能の基準に合致するか否かを評価する請求項7に記載の情報処理装置。
  12. 前記評価部は、
    統計処理により得られた前記性能の基準を用いて評価を行う請求項7に記載の情報処理装置。
  13. 前記推定部は、
    前記3以上の要素のうちのいずれか2以上の要素の間の関係が不明の場合に、関係が不明な要素の間の関係を推定する請求項1に記載の情報処理装置。
  14. 前記推定部は、
    前記アソシエーション分析に含まれる複数の計算項目についての複数の計算値を用いた計算を行い、前記複数の計算値を用いた計算の計算値を出力する請求項5に記載の情報処理装置。
  15. 前記推定部は、
    前記アソシエーション分析に含まれる複数の計算項目についての複数の計算値を用いた計算により得られる計算値を前記2以上の関連要素のうちの少なくともいずれかに対する改善実績に基づいて補正し、補正後の計算値を出力する請求項5に記載の情報処理装置。
  16. 前記推定部は、
    前記アソシエーション分析に含まれる複数の計算項目についての複数の計算値を用いた計算により得られる計算値の補正方法を機械学習により取得し、取得した補正方法により前記複数の計算値を用いた計算により得られる計算値を補正し、補正後の計算値を出力する請求項5に記載の情報処理装置。
  17. コンピュータが、3以上の要素のうち性能を改善させるべき要素を指定要素として指定し、
    前記コンピュータが、前記指定要素以外の要素の中から前記指定要素と有意な関係にある2以上の要素を関連要素として抽出し、
    前記コンピュータが、抽出された2以上の関連要素の各々の性能が前記指定要素の性能に与える影響を分析して、前記2以上の関連要素の中から、前記指定要素の性能の改善のために性能を改善させるべき関連要素である改善対象関連要素を推定する情報処理方法。
  18. 3以上の要素のうち性能を改善させるべき要素を指定要素として指定する指定処理と、
    前記指定要素以外の要素の中から前記指定要素と有意な関係にある2以上の要素を関連要素として抽出する抽出処理と、
    前記抽出処理により抽出された2以上の関連要素の各々の性能が前記指定要素の性能に与える影響を分析して、前記2以上の関連要素の中から、前記指定要素の性能の改善のために性能を改善させるべき関連要素である改善対象関連要素を推定する推定処理とをコンピュータに実行させる情報処理プログラム。
JP2022544236A 2020-09-18 2020-09-18 情報処理装置、情報処理方法及び情報処理プログラム Active JP7154468B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/035512 WO2022059183A1 (ja) 2020-09-18 2020-09-18 情報処理装置、情報処理方法及び情報処理プログラム

Publications (2)

Publication Number Publication Date
JPWO2022059183A1 JPWO2022059183A1 (ja) 2022-03-24
JP7154468B2 true JP7154468B2 (ja) 2022-10-17

Family

ID=80776087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022544236A Active JP7154468B2 (ja) 2020-09-18 2020-09-18 情報処理装置、情報処理方法及び情報処理プログラム

Country Status (4)

Country Link
JP (1) JP7154468B2 (ja)
CN (1) CN116194945A (ja)
TW (1) TW202230060A (ja)
WO (1) WO2022059183A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104523A (ja) 2007-10-25 2009-05-14 Sharp Corp 不良要因抽出方法および装置、工程安定化支援システム、プログラム、並びにコンピュータ読み取り可能な記録媒体
JP2018195130A (ja) 2017-05-18 2018-12-06 パナソニックIpマネジメント株式会社 異常原因推定装置、異常原因推定方法、および異常原因推定プログラム
WO2020149389A1 (ja) 2019-01-17 2020-07-23 日本電気株式会社 工程改善支援装置、工程改善支援方法および工程改善支援プログラムが記録された記録媒体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249683A (ja) * 1997-03-14 1998-09-22 Omron Corp 工程改善支援方法及び装置
JP2002006930A (ja) * 2000-06-20 2002-01-11 Hitachi Ltd 製造来歴追跡システム
JP2019049940A (ja) * 2017-09-12 2019-03-28 安川情報システム株式会社 異常工程推定方法、異常工程推定装置および異常工程推定プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104523A (ja) 2007-10-25 2009-05-14 Sharp Corp 不良要因抽出方法および装置、工程安定化支援システム、プログラム、並びにコンピュータ読み取り可能な記録媒体
JP2018195130A (ja) 2017-05-18 2018-12-06 パナソニックIpマネジメント株式会社 異常原因推定装置、異常原因推定方法、および異常原因推定プログラム
WO2020149389A1 (ja) 2019-01-17 2020-07-23 日本電気株式会社 工程改善支援装置、工程改善支援方法および工程改善支援プログラムが記録された記録媒体

Also Published As

Publication number Publication date
TW202230060A (zh) 2022-08-01
CN116194945A (zh) 2023-05-30
WO2022059183A1 (ja) 2022-03-24
JPWO2022059183A1 (ja) 2022-03-24

Similar Documents

Publication Publication Date Title
CN108875784B (zh) 用于工业中的性能指标的基于数据的优化的方法和***
CN104350471B (zh) 在处理环境中实时地检测异常的方法和***
US9208209B1 (en) Techniques for monitoring transformation techniques using control charts
US20150120263A1 (en) Computer-Implemented Systems and Methods for Testing Large Scale Automatic Forecast Combinations
JP6299759B2 (ja) 予測関数作成装置、予測関数作成方法、及びプログラム
JP6521096B2 (ja) 表示方法、表示装置、および、プログラム
JP2018180759A (ja) システム分析装置、及びシステム分析方法
EP3795975A1 (en) Abnormality sensing apparatus, abnormality sensing method, and abnormality sensing program
US20220245405A1 (en) Deterioration suppression program, deterioration suppression method, and non-transitory computer-readable storage medium
JP6489235B2 (ja) システム分析方法、システム分析装置、および、プログラム
JP7481902B2 (ja) 管理計算機、管理プログラム、及び管理方法
CN111680085A (zh) 数据处理任务分析方法、装置、电子设备和可读存储介质
Patel et al. Doctor for machines: a failure pattern analysis solution for industry 4.0
US20230297095A1 (en) Monitoring device and method for detecting anomalies
Liu et al. Residual useful life prognosis of equipment based on modified hidden semi-Markov model with a co-evolutional optimization method
JP7154468B2 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
JP7212292B2 (ja) 学習装置、学習方法および学習プログラム
WO2019073512A1 (ja) システム分析方法、システム分析装置、および、プログラム
JP2007164346A (ja) 決定木変更方法、異常性判定方法およびプログラム
US11636377B1 (en) Artificial intelligence system incorporating automatic model updates based on change point detection using time series decomposing and clustering
JP5826892B1 (ja) 変化点検出装置、変化点検出方法、及びコンピュータプログラム
US11651271B1 (en) Artificial intelligence system incorporating automatic model updates based on change point detection using likelihood ratios
US11762562B2 (en) Performance analysis apparatus and performance analysis method
US20220172002A1 (en) Dynamic and continuous composition of features extraction and learning operation tool for episodic industrial process
US20210373987A1 (en) Reinforcement learning approach to root cause analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220721

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221004

R150 Certificate of patent or registration of utility model

Ref document number: 7154468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150