JP7154363B2 - オゾン発生装置 - Google Patents

オゾン発生装置 Download PDF

Info

Publication number
JP7154363B2
JP7154363B2 JP2021167175A JP2021167175A JP7154363B2 JP 7154363 B2 JP7154363 B2 JP 7154363B2 JP 2021167175 A JP2021167175 A JP 2021167175A JP 2021167175 A JP2021167175 A JP 2021167175A JP 7154363 B2 JP7154363 B2 JP 7154363B2
Authority
JP
Japan
Prior art keywords
ozone
gas
ozone generator
discharge
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021167175A
Other languages
English (en)
Other versions
JP2022124451A (ja
Inventor
昌樹 葛本
太一郎 民田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2021/005421 external-priority patent/WO2022172426A1/ja
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2021167175A priority Critical patent/JP7154363B2/ja
Publication of JP2022124451A publication Critical patent/JP2022124451A/ja
Application granted granted Critical
Publication of JP7154363B2 publication Critical patent/JP7154363B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本願は、オゾン発生装置に関する。
高圧電極と接地電極との間の放電空間に発生させた放電を用いてオゾンを発生させるオゾン発生装置が知られている(例えば、特許文献1)。当オゾン発生装置は、酸素ガス(O)に対し放電空間で電子衝突を生じさせ、オゾン(O)を生成する。
上述したオゾン発生装置において、電子衝突が生じた酸素ガス(O)から、解離によって酸素ラジカル(O)が生成される(O+e→O+O+e、eは電子を示す)。生成された酸素ラジカルは、周辺に存在する酸素ガスと結合してオゾン(O)を生成する(O+O+M→O+M、Mは第三体を示す)。
特開昭62-132706号公報
しかしながら、生成したオゾンに対し同一の放電空間で更に電子衝突が生じた場合、オゾンの分解反応(O+e→O+O+e)も進行し得る。生成したオゾンに対してオゾン分解反応が進行した場合、オゾン発生装置が生成するオゾン生成効率が低下し得る。
本願は、上記のような事情を鑑みてなされたものであり、オゾン生成効率低下を抑制し得る安価な電源システムで構成されたオゾン発生装置を提供することを目的とする。
本願の一側面に係るオゾン発生装置は、一対の放電電極を備えた複数のオゾン発生ユニットと、電源周波数が周期的に変化する電源とを備えたオゾン発生装置であって、複数のオゾン発生ユニットは電源の1つの出力端子に対して並列に接続されており、複数のオゾン発生ユニットと電源の1つの出力端子との間にはそれぞれインダクタンスが異なるリアクトルが直列に接続されている。
本願の一側面においては、オゾン生成効率低下を抑制し得る安価な電源システムで構成されたオゾン発生装置を提供することが可能となる。
実施の形態1に係るオゾン発生装置の構成を示す模式図である。 ガス圧力Pの変化と酸素ラジカルからオゾンへの変換時間τとの関係を示すグラフの図である。 実施の形態2に係るオゾン発生装置の構成を示す模式図である。 実施の形態2における電源出力の波形と放電電力との関係を示した説明図である。
以下、添付図面を参照して、本願が開示するオゾン発生装置および方法の実施の形態を詳細に説明する。なお、以下に示す実施の形態は一例であり、これらの実施の形態によって本願が限定されるものではない。
実施の形態1.
図1は、実施の形態1に係るオゾン発生装置の構成を示す模式図である。オゾン発生装置10は、図1に示してあるように、高周波電源1、高圧電極2、接地電極3、高圧側誘電体4、接地側誘電体5を備える。またオゾン発生装置10は、オゾン発生の原材料となる酸素ガスを含んだガスを図1の紙面に向かって左から右へ、つまり矢印で示されるガス導入方向54に導入し、矢印で示されるガス導出方向55に導出する。
高周波電源1は、高圧電極2および接地電極3に接続してあり、高圧電極2および接地電極3の間に高周波の電圧を印加する。高圧電極2および接地電極3は、例えば金属で構成されている。また、高圧側誘電体4および接地側誘電体5は、例えばアルミナセラミックス板で構成されている。
高圧電極2は、図1に示してあるように、酸素ガスを含んだガスのガス導入方向54に沿った幅がLdであり、ガス導入方向54と直角な図1の紙面の奥に向かって長さLwで延出する電極部材である。また高圧電極2は、図1に示してあるように、図1の下方で後述する高圧側誘電体4と接続してある。
接地電極3は、図1に示してあるように、酸素ガスを含んだガスのガス導入方向54に沿った幅がLdであり、ガス導入方向54と直角な図1の紙面の奥に向かって長さLwで延出する電極部材である。また接地電極3は、一端が接地してあり、図1の紙面に対して上下方向に離隔して高圧電極2に対向するように配置してある。更に接地電極3は、図1に示してあるように、図1の上方で後述する接地側誘電体5と接続してあり、幅Ldと長さLwとの向きが高圧電極2と同方向となるよう対向配置してある。
高圧側誘電体4と接地側誘電体5とは、図1の紙面に対して上下に離隔距離dで離隔するように配置してある。高圧側誘電体4と接地側誘電体5との間の空間が後述する放電空間部位として機能する。すなわち、高圧側誘電体4の一方の面の一部に高圧電極2が設けられた放電電極と、接地側誘電体5の一方の面の一部に接地電極3が設けられた放電電極とが高圧側誘電体4および接地側誘電体5の他方の面同士を対向させて配置されてオゾン発生ユニット11が構成されている。
高圧側誘電体4と接地側誘電体5とは、図1の紙面に対して上下方向の離隔距離がdよりも大きな値からガス導入方向54に向かってdへと縮まっており、放電空間部位52に導入されるガスの流れを縮める縮小部位51と、図1の紙面に対して上下方向に離隔距離dがガス導入方向54に沿ってLdの長さ続く放電空間部位52と、図1の紙面に対して上下方向の離隔距離がdからガス導出方向55に向かってdよりも大きな値へ拡大しており、放電空間部位52から流れ出たガスの流れを拡大させて導出する拡大部位53とを備える。縮小部位51は例えば、縮小角度45度を有している。拡大部位53は例えば、拡大角度10度を有している。縮小部位51は、ガスを導入する導入部位の一例として機能し、拡大部位53はオゾンを導出する導出部位の一例として機能する。
言い換えると、本実施の形態のオゾン発生装置10は、誘電体の一方の面の一部に金属電極が設けられた一対の放電電極が誘電体の他方の面同士を対向させて配置されたオゾン発生ユニット11と、金属電極に電圧を印加する高周波電源1とを有している。そして、オゾン発生ユニット11は、一対の放電電極の間が酸素を含んだガスが流れるガス流路となっており、誘電体の他方の面同士の間隔が、金属電極が設けられた部位が最も狭く、ガス流路の上流側および下流側に向かって広くなっている。
放電空間部位52は、高周波電源1が高圧電極2および接地電極3に高電圧を印加した場合に放電プラズマが発生する空間である。また放電空間部位52は、縦、横および高さが後述するLd、Lwおよびdで構成される空間である。高圧電極2は、高圧電極2の幅Ld部分が高圧側誘電体4の放電空間部位52を構成する幅Ld部分と対向するよう配置してある。接地電極3は、接地電極3の幅Ld部分が接地側誘電体5の放電空間部位52を構成する幅Ld部分と対向するよう配置してある。そのため本実施の形態に係るオゾン発生装置10は、高圧側誘電体4と接地側誘電体5とで構成される空間である縮小部位51、放電空間部位52、および拡大部位53のうちの放電空間部位52で放電による電子衝突を発生させるよう構成してある。
本実施の形態に係るオゾン発生装置10は、高圧側誘電体4と接地側誘電体5とについて、ガス導入方向54の長さLdがガス導入方向54に直角な延出方向の長さLwよりも小さくなるように構成してある。好ましくは、ガス導入方向54の長さLdがガス導入方向54に直角な延出方向の長さLwの1/10以下となるように構成してある。また本実施の形態に係るオゾン発生装置10は、高圧側誘電体4と接地側誘電体5との離隔距離dが0.2mm以下となるようにしてある。このような構成を採用することによって本実施の形態に係るオゾン発生装置10は、後述するように、生成したオゾンが放電空間部位52に留まる時間を短くすることができ、比較的簡単な構成でオゾン生成効率低下を抑制し得る装置となる。そのため、高圧側誘電体4と接地側誘電体5とを備えるこのような構成は、発生したオゾンが電子衝突によって分解される分解反応を抑制する分解反応抑制機構の一例として機能する。
本実施の形態に係るオゾン発生装置10は、高周波電源1が高圧電極2および接地電極3に高電圧を印加した場合、高圧側誘電体4を介し、長さLd、Lwおよびdで構成される放電空間部位52に放電プラズマを発生する。その際、図1の矢印で示されるガス導入方向54の方向で放電空間部位52に導入された酸素ガスを含むガスは、発生した放電プラズマと反応し、放電空間部位52から外部となる拡大部位53、拡大部位53よりも下流へと矢印で示されるガス導出方向55の方向で導出される。
放電空間部位52に導入された酸素ガスと放電空間部位52に発生した放電プラズマとが反応した場合、電子衝突によって酸素ガスが解離し、酸素ラジカル(O)が生成する(O+e→O+O+e:eは電子を示す)。生成した酸素ラジカル(O)が酸素ガスと反応した場合、オゾン発生装置10は、放電空間部位52内にオゾンを発生させる(O+O+M→O+M、Mは第三体を示す)。しかしながら、生成したオゾンに対して電子衝突が生じた場合、生成したオゾンが酸素ラジカルと酸素ガスとに分解され得る(O+e→O+O+e)。生成したオゾンに対する分解が発生した場合、オゾン発生装置から排出されるオゾンの生成効率低下が発生し得る。
ここで、酸素ラジカルからオゾンへの変換速度について検討する。酸素ラジカルがオゾンに変換されることによって減少する過程は、以下の(1)式で表される。[O]、[O]は、酸素ラジカル(O)および酸素ガス(O)の粒子密度(particles/cm)を示す。kは、反応速度定数(cm/s)を示す。ただし、供給ガスが酸素ガスである場合を仮定して、第三体であるMを酸素ガス(O)とした。なお、ガス温度(K)をTとした場合にkは6.45×10-35exp(663/T)である、と報告されている。
d[O]/dt = -k×[O]×[O ・・・(1)
上述した(1)式に対し、酸素ラジカル(O)からオゾン(O)への変換の変換時間τは、(2)式のように求められる。
τ=1/(k×[O) ・・・(2)
図2は、ガス圧力Pの変化と酸素ラジカルからオゾンへの変換時間τとの関係を示すグラフである。上述した(2)式を考慮し、ガス圧力P(kPa)が変化したときの酸素ラジカル(O)からオゾン(O)への変換時間τ(sec)を示している。またグラフには、ガス温度が300K、500K、1000Kの場合について示してある。(2)式および図2から明らかなように、オゾンへの変換時間τは、ガス圧力の2乗に反比例する。ガス温度が300Kの場合、10kPaで0.29msec、100kPaで2.9μsecとなる。また図2からも明らかなように、ガス温度が高くなった場合にオゾンへの変換時間τも長くなる、と解釈され得る。当解釈を考慮した場合、高温であって低ガス圧力の放電空間部位52を実現することによって、酸素ラジカル(O)からオゾン(O)への変換時間τ(sec)を長くすることが可能となる。
酸素ラジカル(O)がオゾン(O)に変換される変換時間τよりもガスの放電空間部位52に滞在する時間τg(sec)の方が短い場合、放電空間部位52内で酸素ラジカルと反応した酸素ガスは、放電空間部位52から外部となる拡大部位53、拡大部位53よりも下流でオゾンに変換される。本実施の形態に係るオゾン発生装置10は、オゾンに変換される拡大部位53には放電プラズマを意図的に発生させる機構を有しておらず、拡大部位53よりも下流にも放電プラズマを意図的に発生させる機構を有していない。また、電子衝突を引き起こす放電空間部位52を構成するための高圧側誘電体4と接地側誘電体5とについて、ガス導入方向54の長さLdがガス導入方向54に直角な延出方向の長さLwよりも小さくなるように構成してある。このような構成により、ガス導入方向54の長さLdがガス導入方向54に直角な延出方向の長さLwよりも大きい構成と比較し、同じ放電面積を確保しつつも、ガスが放電空間部位52に留まることになる時間が短くなる。そのため、生成したオゾンが電子衝突によって分解される影響を抑制することが可能になる。供給するガス量をQ(m/s)、放電空間部位52の体積をV(m)で表した場合、ガスが放電空間部位52に滞在する時間τg(sec)はV/Qとなる。また、ガス流方向の放電長Ld、ガス流に直角方向の放電空間部位52の放電空間長Lw、放電ギャップ長となる離隔距離dを用い、放電空間のガス流速をvgとした場合、ガスが放電空間部位52に滞在する時間τg(sec)は、以下の(3)式のように表される。
τg=Ld×Lw×d/Q=Ld/vg ・・・(3)
本実施の形態に係るオゾン発生装置10は、ガスが放電空間部位52に滞在する時間(τg)<酸素ラジカル(O)からオゾン(O)への変換の変換時間(τ)となるよう構成してある。τg<τとなるよう構成することによって、オゾン発生装置10は、放電空間部位52でOラジカルを生成し、放電空間部位52内でOラジカルとの反応を開始するが、反応を開始した酸素ガスが放電空間部位52の外でオゾン(O)に変換される反応が促進されることになる。そのため、本実施の形態に係るオゾン発生装置10は、生成したオゾンに対し、放電空間部位52内での電子衝突によるオゾン分解を抑制し、比較的簡単な構成でオゾンの生成効率が高い装置となり得る。
本実施の形態のオゾン発生装置10においては、高圧側誘電体4および接地側誘電体5が構成する放電空間部位52の電極面のガス流方向の長さLdをガス流方向に対して直角方向の長さLwよりも短く構成してあり、好ましくは、1/10以下の長さで構成(Ld/Lw<0.1)してある。また、本実施の形態のオゾン発生装置10においては、Ld×Lwで構成してある放電面におけるより長いLwの辺側からより短いLdの辺の方向に沿ってガスを流すことによって、(3)式のLdが小さくなり、(3)式のLd/vgが小さくなり、放電空間部位52滞在時間を小さく設定することが可能となる。また、本実施の形態のオゾン発生装置10においては、放電ギャップ長となる離隔距離dを0.2mm以下にしてガス流速を高速化することによって、さらには縮小部位51および拡大部位53を備えることによりガス流速を高速化することによって、(3)式のvgが大きくなり、(3)式のLd/vgが小さくなり、放電空間部位52滞在時間を小さく設定することが可能となる。そのため、本実施の形態に係るオゾン発生装置10は、生成したオゾンに対し、放電空間部位52内での電子衝突によるオゾン分解を抑制し、比較的簡単な構成でオゾンの生成効率が高い装置となり得る。つまり、縮小部位51、放電空間部位52、および拡大部位53を備える上述した構成は、発生したオゾンが電子衝突によって分解される分解反応を抑制する本願の分解反応抑制機構の一例として機能する。
本実施の形態のオゾン発生装置10においては、酸素ガスが導入される放電空間部位52として、Ld×Lw×dの寸法となる開放空間が確保してある。当開放空間には、導入される酸素ガスの流れを抑制するような流れ抑制物質を意図的には配置していない。そのため、当オゾン発生装置は、放電面におけるより長いLwの辺側から導入された酸素ガスを可及的速やかに放電面におけるより短いLd分移動させることが可能となり、比較的簡単な構成でオゾンの生成効率が高いオゾン発生装置および方法を提供することが可能になる。言い換えると、当オゾン発生装置は、放電面におけるより長いLwの辺側から導入された酸素ガスを可及的速やかに放電面におけるより短いLd分移動させることによって、酸素ラジカルがオゾンに変換される前に放電空間部位52から排出されて放電空間部位52の外部でオゾンが生成されることになり、生成されたオゾンに対する放電空間部位52内での電子衝突を抑制することができ、比較的簡単な構成でオゾンの生成効率が高いオゾン発生装置および方法を提供することが可能になる。
本実施の形態に係るオゾン発生装置10の動作について説明する。当オゾン発生装置は、オゾン発生の原材料となる酸素ガスを含んだガスを図1の紙面に向かって左から右へ、つまり図1の矢印で示されるガス導入方向54で導入する。当オゾン発生装置は、離隔距離が流れ方向に向かって狭まる縮小部位51により、導入されたガスを加速する。当オゾン発生装置は、加速によるガスの速度増加を用い、放電空間部位52におけるガス圧力を低下させる。放電空間部位52におけるガス圧力が低下した場合、図2に示すように、酸素ラジカル(O)からオゾン(O)への変換時間τ(sec)が長くなる。当オゾン発生装置は、離隔距離が流れ方向に向かって拡大する拡大部位53により、放電空間部位52を通過したガスを減速する。当オゾン発生装置は、減速によるガスの速度減少を用い、静圧を回復したガスを下流方向に導出する。このような構成によって、本実施の形態に係るオゾン発生装置10は、放電空間部位52でのオゾンへの変換時間τを長くしつつも、放電空間部位52のガス流速が速くなり、ガスの放電空間部位52に滞在する時間τgを短くすることが可能となる。つまり、放電空間部位52を用いて放電を行う工程がガスに対し放電で電子衝突を生じさせる放電工程の一例として機能し、拡大部位53からガスを導出する工程がオゾンを導出部から導出する導出工程の一例として機能し、縮小部位51、放電空間部位52、および拡大部位53を用いて実行される上述した工程が、発生したオゾンが電子衝突によって分解される分解反応を抑制する本願の分解反応抑制工程の一例として機能する。
実施の形態2.
図3は、実施の形態2に係るオゾン発生装置の構成を示す模式図である。本実施の形態のオゾン発生装置は、1つの高周波電源に対して複数のオゾン発生ユニットが並列に接続されている。
図3に示すように、本実施の形態のオゾン発生装置10の高周波電源1は、単相インバータ回路12と周波数制御回路13とで構成されている。周波数制御回路13は、単相インバータ回路12の駆動回路を含んでおり、単相インバータ回路12から出力される電源周波数を制御している。単相インバータ回路12の出力端子には複数のオゾン発生ユニット11が並列に接続されている。それぞれのオゾン発生ユニット11の高圧電極2と単相インバータ回路12の出力端子との間にはリアクトル14がそれぞれ接続されている。それぞれのオゾン発生ユニット11の接地電極3の電位は、すべて接地電位に設定されている。本実施の形態においては、これ以降、5つのオゾン発生ユニットが並列に接続されたオゾン発生装置について説明する。
それぞれのオゾン発生ユニット11においては、高圧側誘電体4および接地側誘電体5を介して高圧電極2と接地電極3との間に交流放電(バリア放電)が発生する。なお、接地側誘電体5は必ずしも必要ではなく、接地電極3のみでもよい。各オゾン発生ユニット11においては、高圧電極2と接地電極3との間の容量成分(C)とリアクトル14のインダクタンス成分(L)との共振によって放電空間部位にパルス状のエネルギーが注入される。なお、高圧電極2と接地電極3との間の容量成分は、主に高圧側誘電体4の容量成分と接地側誘電体5の容量成分とで決まる。
すなわち、高周波電源1の電源周波数fが以下の(4)式を満足するときに、放電空間部位にパルス状のエネルギーが注入される。
f=1/2π√(L×C) ・・・(4)
本実施の形態のオゾン発生装置10においては、5つのオゾン発生ユニット11にそれぞれ接続されるリアクトル14のインダクタンスをそれぞれL1、L2、L3、L4、L5とすると、L1>L2>L3>L4>L5となるように設定されている。5つのオゾン発生ユニット11における高圧電極2と接地電極3との間の容量成分(C)はほぼ同じに設定されている。
このように構成されたオゾン発生装置10においては、インダクタンスがL1、L2、L3、L4、L5のリアクトル14にそれぞれ接続されたオゾン発生ユニット11の共振周波数をそれぞれf1、f2、f3、f4、f5とすると、f1<f2<f3<f4<f5となる。
図4は、本実施の形態における高周波電源1の電源出力の波形と5つのオゾン発生ユニット11にそれぞれに注入される放電電力との関係を示した説明図である。図4の上部に示した波形15は、高周波電源の電源出力の波形である。図4の下部に示した図は、5つのオゾン発生ユニットにそれぞれ注入される放電電力の波形である。ここで、波形15で示す電源出力の1周期の時間は、並列に接続されたオゾン発生ユニット11の数をnとすると、nに各オゾン発生ユニット11でパルス状に発生する放電の時間τdを乗算した時間n×τdに設定されている。この時間τdは、ガスが放電空間部位に滞在する時間τgよりも短く、(2)式で示した酸素ラジカル(O)からオゾン(O)への変換の変換時間τと同程度に設定されている。また、電源出力の1周期の時間n×τdは、τgと同程度に設定されている。τd≒τおよびn×τd≒τgを満足するように、電源出力の1周期の時間および1周期の間の電源周波数の変化量が設定されている。
高周波電源の電源出力は、図4の波形15に示すように、周波数制御回路13によって1周期の間に周波数が変化するように制御される。電源周波数が変化するにしたがって、5つのオゾン発生ユニット11の内、電源周波数と共振周波数とが一致したオゾン発生ユニット11に電源出力の電力が集中して注入される。電源出力は、図4の波形15に示すように、1周期の間に周波数が増加するように制御される。そうすると共振周波数が低いオゾン発生ユニットから順に電源周波数と共振周波数とが一致することになる。ここで、5つのオゾン発生ユニット11において、共振周波数が低いオゾン発生ユニットから順にユニット1、ユニット2、ユニット3、ユニット4およびユニット5と称する。図4に示すように、電源出力の波形15の1周期の間において、最初に共振周波数が低いユニット1に電力が注入されて時間τdの間だけこのユニット1で放電が発生する。電源周波数が増加するにしたがって、ユニット2、ユニット3、ユニット4、ユニット5の順に放電が発生する。電源出力の1周期が終了すると、次の周期において再びユニット1、ユニット2、ユニット3、ユニット4、ユニット5の順に放電が発生する。このようにして、5つのオゾン発生ユニット11の順次放電が周期的に発生する。
1つのオゾン発生ユニット11においては、電源周波数と共振周波数とが一致したときに放電が時間τdの間発生し、その間に酸素分子の解離による酸素ラジカルの生成が起こる。その後、放電が停止している間に酸素ラジカルからオゾンが生成され、同時にガス流によって放電空間部位の外にガスが排出される。図4に示すように、1つのオゾン発生ユニット11においては、5×τd時間経過後に次の放電が発生する。
このように構成されたオゾン発生装置においては、1つの高周波電源に対して複数のオゾン発生ユニットが並列に接続されており、それぞれのオゾン発生ユニットにはパルス状に電力が供給されている。そのため、電源自体は休止する期間が存在しないので電源容量を常時使い切ることができ、安価な電源システムでオゾン発生装置を構成することができる。
なお、本実施の形態のオゾン発生装置においては、5つのオゾン発生ユニット11にインダクタンスが異なる5つのリアクトルをそれぞれ接続している。別の構成として、単相インバータ回路12の出力端子に最も小さいインダクタンスL5のリアクトルを直列に接続し、L5との差分がそれぞれ異なるインダクタンスをもつリアクトルをそれぞれのオゾン発生ユニット11に接続してもよい。このように構成することで、それぞれのリアクトルのインダクタンスを小さくすることができるので、オゾン発生装置を小型にすることができる。
本実施の形態のオゾン発生装置においては、オゾン発生ユニットが5つ並列に接続されている。並列に接続されるオゾン発生ユニットの数は2以上であればよい。並列に接続されるオゾン発生ユニットの数をnとした場合、高周波電源の電源出力の1周期の時間は、n×τdに設定される。
本実施の形態のオゾン発生装置においては、電源出力は1周期の間に周波数が増加するように制御されている。電源出力は1周期の間に周波数が減少するように制御されてもよい。電源出力が1周期の間に周波数が減少するように制御された場合、電源周波数と共振周波数とが一致するオゾン発生ユニットの順番が逆になるだけである。
本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
したがって、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 高周波電源、2 高圧電極、3 接地電極、4 高圧側誘電体、5 接地側誘電体、10 オゾン発生装置、11 オゾン発生ユニット、12 単相インバータ回路、13 周波数制御回路、14 リアクトル、15 波形、51 縮小部位、52 放電空間部位、53 拡大部位、54 ガス導入方向、55 ガス導出方向。

Claims (3)

  1. 一対の放電電極を備えた複数のオゾン発生ユニットと、電源周波数が周期的に変化する電源とを備えたオゾン発生装置であって、
    複数の前記オゾン発生ユニットは前記電源の1つの出力端子に対して並列に接続されており、複数の前記オゾン発生ユニットと前記電源の前記1つの出力端子との間にはそれぞれインダクタンスが異なるリアクトルが直列に接続されていることを特徴とするオゾン発生装置。
  2. 前記放電電極は、誘電体とこの誘電体の一方の面の一部に設けられた金属電極とを有し、一対の前記放電電極が前記誘電体の他方の面同士を対向させて配置されており、前記一対の放電電極の間が酸素を含んだガスが流れるガス流路であり、前記誘電体の前記他方の面同士の間隔が、前記金属電極が設けられた部位が最も狭く、前記ガス流路の上流側および下流側に向かって広くなっていることを特徴とする請求項1に記載のオゾン発生装置。
  3. 複数の前記オゾン発生ユニットは前記電源の1つの出力端子に対してn個並列に接続されており、それぞれの前記オゾン発生ユニットでパルス状に発生する放電時間をτdとしたときに、前記電源周波数の1周期の時間がn×τdに設定されていることを特徴とする請求項1または2に記載のオゾン発生装置。
JP2021167175A 2021-02-15 2021-10-12 オゾン発生装置 Active JP7154363B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021167175A JP7154363B2 (ja) 2021-02-15 2021-10-12 オゾン発生装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/005421 WO2022172426A1 (ja) 2021-02-15 2021-02-15 オゾン発生装置およびオゾン発生方法
JP2021531711A JP7019872B1 (ja) 2021-02-15 2021-02-15 オゾン発生装置
JP2021167175A JP7154363B2 (ja) 2021-02-15 2021-10-12 オゾン発生装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021531711A Division JP7019872B1 (ja) 2021-02-15 2021-02-15 オゾン発生装置

Publications (2)

Publication Number Publication Date
JP2022124451A JP2022124451A (ja) 2022-08-25
JP7154363B2 true JP7154363B2 (ja) 2022-10-17

Family

ID=87884896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021167175A Active JP7154363B2 (ja) 2021-02-15 2021-10-12 オゾン発生装置

Country Status (1)

Country Link
JP (1) JP7154363B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154809A (ja) 2000-09-29 2002-05-28 Smartultoms Co Ltd オゾン発生器
WO2006035506A1 (ja) 2004-09-29 2006-04-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation n相オゾン発生装置
WO2008053940A1 (fr) 2006-10-31 2008-05-08 Kyocera Corporation Corps de génération de plasma et appareil et procédé permettant de fabriquer un corps de génération de plasma

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064966A (ja) * 2013-09-24 2015-04-09 日本碍子株式会社 構造体及び電極構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154809A (ja) 2000-09-29 2002-05-28 Smartultoms Co Ltd オゾン発生器
WO2006035506A1 (ja) 2004-09-29 2006-04-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation n相オゾン発生装置
WO2008053940A1 (fr) 2006-10-31 2008-05-08 Kyocera Corporation Corps de génération de plasma et appareil et procédé permettant de fabriquer un corps de génération de plasma

Also Published As

Publication number Publication date
JP2022124451A (ja) 2022-08-25

Similar Documents

Publication Publication Date Title
US8221689B2 (en) Decomposition of natural gas or methane using cold arc discharge
Fridman et al. Non-thermal atmospheric pressure discharges
Kogelschatz Filamentary, patterned, and diffuse barrier discharges
JP4817407B2 (ja) プラズマ発生装置及びプラズマ発生方法
US20080056934A1 (en) Diffusive plasma air treatment and material processing
WO2007024134A1 (en) Method and arrangement for generating and controlling a discharge plasma
RU2687422C1 (ru) Способ и устройство для плазмохимической конверсии газа/газовой смеси
JP4378592B2 (ja) 放電発生装置の制御方法
Yagi et al. Streamer propagation of nanosecond pulse discharge with various rise times
US4105952A (en) High repetition rate pulsed laser discharge system
JP7154363B2 (ja) オゾン発生装置
WO2022172426A1 (ja) オゾン発生装置およびオゾン発生方法
Avtaeva About Formation of Secondary Current Pulses in Dielectric Barrier Discharges in Xe-${\rm Cl} _ {2} $ Mixtures
KR102118740B1 (ko) 흡착 가능한 기체 형태의 물질을 제거하기 위한 고효율 평행 유전체 장벽 플라즈마 발생장치
WO2015147703A2 (ru) Способ получения тепловой и электрической энергии и устройство для его реализации
Starikovskiy et al. Periodic pulse discharge self-focusing and streamer-to-spark transition in under-critical electric field
Nakai et al. Comparison of ozone generation characteristics by filamentary discharge mode and townsend discharge mode of dielectric barrier discharge in oxygen
Gasparik et al. Effect of CO2 and water vapors on NOx removal efficiency under conditions of DC corona discharge in cylindrical discharge reactor
CN116782994A (zh) 等离子体反应器和等离子体化学反应
Huang et al. A comparative study of ozone generation using pulsed and continuous AC dielectric barrier discharges
Bisht et al. Plasma applications for environmental protection
Liu et al. Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure
Eslami et al. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge
Liu Electrical modeling and unipolar pulsed energization of dielectric barrier discharges
RU2555659C2 (ru) Устройство для озонирования воздуха

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221004

R151 Written notification of patent or utility model registration

Ref document number: 7154363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151