JP7149782B2 - Method for controlling the growth of denitrifying bacteria - Google Patents

Method for controlling the growth of denitrifying bacteria Download PDF

Info

Publication number
JP7149782B2
JP7149782B2 JP2018172797A JP2018172797A JP7149782B2 JP 7149782 B2 JP7149782 B2 JP 7149782B2 JP 2018172797 A JP2018172797 A JP 2018172797A JP 2018172797 A JP2018172797 A JP 2018172797A JP 7149782 B2 JP7149782 B2 JP 7149782B2
Authority
JP
Japan
Prior art keywords
light
denitrifying bacteria
growth
irradiation
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018172797A
Other languages
Japanese (ja)
Other versions
JP2020043776A (en
Inventor
正行 増子
紗弥香 風見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2018172797A priority Critical patent/JP7149782B2/en
Publication of JP2020043776A publication Critical patent/JP2020043776A/en
Application granted granted Critical
Publication of JP7149782B2 publication Critical patent/JP7149782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、脱窒菌の増殖を制御する方法に関する。 The present invention relates to a method for controlling growth of denitrifying bacteria.

脱窒菌は、好気呼吸と、環境中の硝酸、亜酸化窒素等を利用した嫌気的呼吸との両方を行うことが可能な細菌である。脱窒菌の中には、病原性を有するもの、又は日和見感染の原因となるものがあり、これら脱窒菌の増殖を制御する技術が求められている。また、ある種の脱窒菌を水処理に利用することも期待されており、この点からも、脱窒菌の増殖を人為的に制御する技術には価値がある。 Denitrifying bacteria are bacteria capable of both aerobic respiration and anaerobic respiration using nitric acid, nitrous oxide, etc. in the environment. Some denitrifying bacteria are pathogenic or cause opportunistic infections, and a technique for controlling the growth of these denitrifying bacteria is desired. It is also expected to use certain denitrifying bacteria in water treatment, and from this point of view as well, the technology for artificially controlling the growth of denitrifying bacteria is valuable.

脱窒菌の増殖は光照射により影響を受けることが知られている。例えば、非特許文献1には、緑色光を主成分とする光を脱窒菌に照射することにより、脱窒菌の増殖が阻害されることが記載されている。 It is known that the growth of denitrifying bacteria is affected by light irradiation. For example, Non-Patent Document 1 describes that the growth of denitrifying bacteria is inhibited by irradiating denitrifying bacteria with light mainly composed of green light.

strain JR 12, Light-mediated accumulation durling denitrification by Pseudomonas sp .(Barak et al.,1998)strain JR 12, Light-mediated accumulation during denitrification by Pseudomonas sp. (Barak et al., 1998)

非特許文献1に記載される技術では、脱窒菌の増殖を制御するために100μmol/m/s~500μmol/m/s程度の光量を要しており、効率が悪い。また、光量が多いと、すなわち、照射光の光強度が高いと、細胞が有する種々の色素が光を吸収することによりラジカル又は過酸化物が生成し、脱窒菌の生育環境に悪影響を及ぼす。本発明は上記課題に鑑みてなされたものであり、少ない光量で脱窒菌の増殖を制御することを目的とする。 The technique described in Non-Patent Document 1 requires a light amount of about 100 μmol/m 2 /s to 500 μmol/m 2 / s to control the growth of denitrifying bacteria, which is inefficient. Also, when the amount of light is high, that is, when the light intensity of the irradiation light is high, radicals or peroxides are generated by absorption of light by various pigments in cells, which adversely affects the growth environment of denitrifying bacteria. The present invention has been made in view of the above problems, and an object of the present invention is to control the growth of denitrifying bacteria with a small amount of light.

合成培地にて嫌気的脱窒条件下で培養される脱窒菌の増殖を制御する本発明の方法は、脱窒菌に光を照射して脱窒菌の増殖を阻害する工程を含む。照射する光は、340nm~480nmのいずれかの波長の光を含み、培地表面での放射照度は30mW/cm以下である。 The method of the present invention for controlling the growth of denitrifying bacteria cultured in a synthetic medium under anaerobic denitrifying conditions comprises the step of irradiating the denitrifying bacteria with light to inhibit the growth of the denitrifying bacteria. The light to be irradiated includes light with a wavelength of 340 nm to 480 nm, and the irradiance on the medium surface is 30 mW/cm 2 or less.

照射する光は、400nm~420nmのいずれかの波長の光を含んでよく、400nm~410nmのいずれかの波長の光を含んでもよい。培地表面での放射照度は、2.5mW/cm以下であってよい。 The light for irradiation may include light with a wavelength of 400 nm to 420 nm, and may include light with a wavelength of 400 nm to 410 nm. The irradiance on the medium surface may be 2.5 mW/cm 2 or less.

本発明の方法によれば、少ない光量で脱窒菌の増殖を制御することができる。 According to the method of the present invention, the growth of denitrifying bacteria can be controlled with a small amount of light.

脱窒菌の培養装置の一例を示す模式図である。It is a schematic diagram which shows an example of the culture|cultivation apparatus of denitrifying bacteria. 脱窒菌を(A)硝酸呼吸、及び(B)亜酸化窒素呼吸により培養した際に、青色光及び赤色光が脱窒菌の増殖に及ぼす影響を示すグラフである。1 is a graph showing the effects of blue light and red light on the growth of denitrifying bacteria when denitrifying bacteria are cultured by (A) nitrate respiration and (B) nitrous oxide respiration. 酸素が光照射による脱窒菌の増殖阻害に及ぼす影響を示すグラフである。It is a graph which shows the influence which oxygen has on the growth inhibition of denitrifying bacteria by light irradiation. 照射光の強度が脱窒菌の増殖阻害に及ぼす影響を示すグラフである。It is a graph which shows the influence which the intensity|strength of irradiation light has on growth inhibition of denitrifying bacteria. 光照射による脱窒菌の増殖阻害の作用スペクトルを示すグラフである。4 is a graph showing the action spectrum of growth inhibition of denitrifying bacteria by light irradiation. 培地中のポリペプトンの濃度が、光照射による脱窒菌の増殖阻害に及ぼす影響を示すグラフである。1 is a graph showing the effect of polypeptone concentration in a medium on the growth inhibition of denitrifying bacteria by light irradiation. ポリペプトン及び酸素が、光照射による脱窒菌の増殖阻害に及ぼす影響を示すグラフである。4 is a graph showing the effect of polypeptone and oxygen on growth inhibition of denitrifying bacteria by light irradiation.

合成培地にて嫌気的脱窒条件下で培養される脱窒菌の増殖を制御する本発明の方法は、脱窒菌に光を照射する工程を含む。 The method of the present invention for controlling the growth of denitrifying bacteria cultured under anaerobic denitrifying conditions in a synthetic medium comprises the step of irradiating the denitrifying bacteria with light.

脱窒菌は、脱窒を行うことができる菌であれば限定されず、グラム陰性及びグラム陽性の細菌のいずれであってもよい。培養のしやすさの観点から、脱窒菌はグラム陰性細菌であることが好ましい。グラム陰性脱窒細菌としては、例えば、アクロモバクター・キシロソキシダンス、シュードモナス種、シュードモナス・エルギノーサ、パラコックス・デニトリフィカンス等が挙げられる。 Denitrifying bacteria are not limited as long as they are capable of denitrifying, and may be either Gram-negative or Gram-positive bacteria. The denitrifying bacteria are preferably Gram-negative bacteria from the viewpoint of ease of cultivation. Gram-negative denitrifying bacteria include, for example, Achromobacter xylosoxidans, Pseudomonas species, Pseudomonas aeruginosa, Paracox denitrificans, and the like.

合成培地は、脱窒菌の増殖に必要な炭素源及び窒素源を有する合成培地であれば限定されず、市販の合成培地を利用することもできる。脱窒菌に硝酸呼吸又は亜硝酸呼吸を行わせる場合、合成培地には、硝酸イオン又は亜硝酸イオンが含まれていてよい。合成培地には、ペプトン、酵母エキス、血清等の天然物が添加されていてもよいが、合成培地中の天然物の量は極微量である必要がある。合成培地中の天然物の量は、例えば、0.2質量%未満、0.15質量%以下、0.1質量%以下、又は0.05質量%以下である。合成培地は、天然物を含まない完全合成培地であることが好ましい。 The synthetic medium is not limited as long as it has a carbon source and a nitrogen source necessary for growth of denitrifying bacteria, and a commercially available synthetic medium can also be used. When denitrifying bacteria perform nitrate respiration or nitrite respiration, the synthetic medium may contain nitrate ions or nitrite ions. Natural products such as peptone, yeast extract, and serum may be added to the synthetic medium, but the amount of natural products in the synthetic medium should be extremely small. The amount of natural products in the synthetic medium is, for example, less than 0.2 wt%, 0.15 wt% or less, 0.1 wt% or less, or 0.05 wt% or less. The synthetic medium is preferably a completely synthetic medium containing no natural products.

嫌気的脱窒条件とは、脱窒菌が酸素呼吸を行わず、硝酸呼吸、亜硝酸呼吸、一酸化窒素呼吸又は亜酸化窒素呼吸を行うことを可能とする条件であれば限定されない。このような条件は、酸素を実質的に含まず、脱窒の原料となる硝酸イオン、亜硝酸イオン、一酸化窒素、又は亜酸化窒素を含む環境を指す。 The anaerobic denitrification conditions are not limited as long as denitrifying bacteria do not respire oxygen but allow nitrate respiration, nitrite respiration, nitric oxide respiration, or nitrous oxide respiration. Such conditions refer to an environment that is substantially free of oxygen and that contains nitrate ions, nitrite ions, nitric oxide, or nitrous oxide as sources of denitrification.

脱窒菌に照射する光(照射光)は、340nm~480nmのいずれかの波長の光を含む。340nm以上の波長を含む光によれば、脱窒菌の増殖を、脱窒菌を死滅させることなく制御することができる。より効率的に脱窒菌の増殖を制御する観点から、照射光は、好ましくは、350nm以上、360nm以上、370nm以上、380nm以上、390nm以上、又は400nm以上、かつ、470nm以下、460nm以下、450nm以下、440nm以下、430nm以下、420nm以下、410nm以下、又は400nm以下の領域にあるいずれかの波長の光を含む。人が視覚的に認識できるという安全上の観点から、照射光は、より好ましくは400nm~420nmのいずれかの波長の光を含み、さらに好ましくは400nm~410nmのいずれかの波長の光を含む。すなわち、本発明においては、UV-A(315nm~400nm)よりも、紫色光(400nm~435nm)又は青色光(435nm~480nm)が好ましく用いられる。 The light with which the denitrifying bacteria are irradiated (irradiation light) includes light with a wavelength of 340 nm to 480 nm. With light containing wavelengths of 340 nm and above, the growth of denitrifying bacteria can be controlled without killing the denitrifying bacteria. From the viewpoint of controlling the growth of denitrifying bacteria more efficiently, the irradiation light is preferably 350 nm or more, 360 nm or more, 370 nm or more, 380 nm or more, 390 nm or more, or 400 nm or more, and 470 nm or less, 460 nm or less, 450 nm or less. , 440 nm or less, 430 nm or less, 420 nm or less, 410 nm or less, or 400 nm or less. From the viewpoint of safety, which can be visually recognized by humans, the irradiation light more preferably contains light with a wavelength of 400 nm to 420 nm, and more preferably light with a wavelength of 400 nm to 410 nm. That is, in the present invention, violet light (400 nm to 435 nm) or blue light (435 nm to 480 nm) is preferably used rather than UV-A (315 nm to 400 nm).

照射光には、340nm~480nmの領域外の波長の光、すなわち340nm未満又は480nmより大きい波長の光が含まれてもよいが、より効率的に脱窒菌の増殖を制御する観点から、照射光のピーク波長は、上記好ましい波長領域中のいずれか波長であることが好ましい。 The irradiation light may include light with a wavelength outside the range of 340 nm to 480 nm, that is, light with a wavelength of less than 340 nm or more than 480 nm. The peak wavelength of is preferably any wavelength in the above preferred wavelength range.

光源は特に限定されず、例えば、青色発光ダイオード等の発光ダイオード(LED)及び波長可変光源など、所望の波長領域の光を選択的に照射可能な光源を使用することができる。また、タングステンランプ等、幅広い波長領域の光を照射可能な光源を、必要に応じてバンドパスフィルター又は分光器と組み合わせて、使用することもできる。 The light source is not particularly limited, and for example, a light source capable of selectively irradiating light in a desired wavelength range, such as a light emitting diode (LED) such as a blue light emitting diode, and a variable wavelength light source, can be used. A light source capable of irradiating light in a wide wavelength range, such as a tungsten lamp, can also be used in combination with a bandpass filter or a spectroscope as necessary.

培地表面での放射照度は30mW/cm以下である。本発明によれば、培地表面での放射照度が、25mW/cm以下、20mW/cm以下、15mW/cm以下、10mW/cm以下、5mW/cm以下、2.5mW/cm以下、又は1mW/cm以下であっても、脱窒菌の増殖を制御することができる。培地表面での放射照度は、0.5mW/cm以上、1mW/cm以上又は2mW/cm以上であってよい。 The irradiance on the medium surface is 30 mW/cm 2 or less. According to the present invention, the irradiance on the medium surface is 25 mW/cm 2 or less, 20 mW/cm 2 or less, 15 mW/cm 2 or less, 10 mW/cm 2 or less, 5 mW/cm 2 or less, 2.5 mW/cm 2 . or less, or even less than 1 mW/cm 2 , the growth of denitrifying bacteria can be controlled. The irradiance at the medium surface may be 0.5 mW/cm 2 or more, 1 mW/cm 2 or more, or 2 mW/cm 2 or more.

脱窒菌に光を照射する方法は、培地表面での放射照度が上記範囲内になる方法であれば特に限定されず、例えば、図1に示すように、脱窒菌を含む培養管に光を直接照射することができる。図1は、脱窒菌を嫌気的に培養するための装置10を示す模式図である。窒素ボンベ1、質量流量計2、水フィルター3、及び培養管6は、ガラス管9を介してこの順に接続されている。培養管6に直接接続されたガラス管9には綿栓4が詰められている。窒素ボンベ1から供給される窒素ガスは、ガラス管9の中を矢印Aの方向に流れ、ガラスボールフィルター5を通って培養管6の中の培養液8に導入される。培養管6の周りには少なくとも一つの青色LEDランプ7が配置されており、培養液8に向けて光を照射することができる。なお、光源は青色LEDランプ7に限定されず、任意の光源を用いることができる。光源は1つ又はそれ以上であってよい。光源が複数ある場合、光源は培養管6を取り囲むように配置されてもよい。窒素ボンベ1は、かわりに亜酸化窒素、一酸化窒素等、酸素以外の他のガスを供給するボンベであってもよい。培養管6は、かわりに培養槽であってもよい。 The method of irradiating the denitrifying bacteria with light is not particularly limited as long as the irradiance on the medium surface is within the above range. For example, as shown in FIG. Can be irradiated. FIG. 1 is a schematic diagram showing an apparatus 10 for anaerobically culturing denitrifying bacteria. A nitrogen cylinder 1, a mass flow meter 2, a water filter 3, and a culture tube 6 are connected through a glass tube 9 in this order. A glass tube 9 directly connected to the culture tube 6 is stuffed with a cotton plug 4 . Nitrogen gas supplied from the nitrogen cylinder 1 flows through the glass tube 9 in the direction of the arrow A, passes through the glass ball filter 5 and is introduced into the culture medium 8 in the culture tube 6 . At least one blue LED lamp 7 is arranged around the culture tube 6 and can irradiate the culture solution 8 with light. Note that the light source is not limited to the blue LED lamp 7, and any light source can be used. There may be one or more light sources. When there are multiple light sources, the light sources may be arranged so as to surround the culture tube 6 . The nitrogen cylinder 1 may alternatively be a cylinder that supplies other gases than oxygen, such as nitrous oxide and nitric oxide. The culture tube 6 may alternatively be a culture vessel.

本発明の方法によれば、脱窒菌に上記特定の波長で光を照射することで、少ない光量で、脱窒菌の増殖を阻害することができる。また、かかる方法によれば、脱窒菌は死滅せず、光照射をやめることで脱窒菌の増殖を再び開始させることができる。したがって、本発明によれば、脱窒菌の増殖を人為的に、簡便に制御することができる。 According to the method of the present invention, the growth of denitrifying bacteria can be inhibited with a small amount of light by irradiating the denitrifying bacteria with light of the specific wavelength. Moreover, according to such a method, the denitrifying bacteria are not killed, and the growth of the denitrifying bacteria can be restarted by stopping the light irradiation. Therefore, according to the present invention, the growth of denitrifying bacteria can be artificially and simply controlled.

<実施例1>
光が脱窒菌の増殖に及ぼす影響を調べた。図1に示す装置を用いて、嫌気的条件下、合成培地(pH約7)でアクロモバクター・キシロソキシダンス(NCIB11015)を培養した。ただし、窒素ボンベ1は、必要に応じて亜酸化窒素ボンベに置き換えた。合成培地は、980mLのA溶液と、10mLのB溶液と、10mLのC溶液と、を混合することにより調製した。A溶液、B溶液、及びC溶液の組成は表1に示すとおりである。培養開始から1時間毎に660nmにおける培養液の光学密度(OD660)を測定することにより、アクロモバクターの増殖度の変化を調べた。培養の途中で、アクロモバクター・キシロソキシダンスに、赤色光及び青色光を、別々に照射した。光照射時の培養容器表面の放射照度は、いずれも0.5mW/cm~1.0mW/cmであった。
<Example 1>
The effect of light on the growth of denitrifying bacteria was investigated. Achromobacter xylosoxydans (NCIB11015) was cultured in a synthetic medium (pH about 7) under anaerobic conditions using the apparatus shown in FIG. However, the nitrogen cylinder 1 was replaced with a nitrous oxide cylinder as necessary. A synthetic medium was prepared by mixing 980 mL of A solution, 10 mL of B solution, and 10 mL of C solution. The compositions of A solution, B solution, and C solution are shown in Table 1. Changes in growth rate of Achromobacter were examined by measuring the optical density (OD 660 ) of the culture medium at 660 nm every hour from the start of culture. In the middle of the culture, Achromobacter xylosoxidans was irradiated separately with red and blue light. The irradiance of the surface of the culture vessel during light irradiation was 0.5 mW/cm 2 to 1.0 mW/cm 2 in all cases.

Figure 0007149782000001
Figure 0007149782000001

アクロモバクターの増殖曲線を図2の(A)及び(B)に示す。図2の(A)は、窒素ガスを吹き込みながらアクロモバクターを培養した場合の結果である。図2の(B)は、硝酸イオンを除いた上記合成培地を用いて、亜酸化窒素ガスを吹き込みながらアクロモバクターを培養した場合の結果である。図2に示すように、赤色光はアクロモバクターの増殖に影響を与えなかった。これに対し、青色光はアクロモバクターの増殖を即座に阻害し、青色光を照射し続けることで、アクロモバクターのOD660が減少した。青色光を照射した後、アクロモバクターを暗黒下で培養し続けたところ、アクロモバクターは再び対数的に増殖するようになった。 Achromobacter growth curves are shown in FIGS. 2A and 2B. FIG. 2(A) shows the results of culturing Achromobacter while blowing nitrogen gas. FIG. 2(B) shows the results of culturing Achromobacter using the above synthetic medium from which nitrate ions were removed while blowing in nitrous oxide gas. As shown in Figure 2, red light did not affect the growth of Achromobacter. In contrast, blue light immediately inhibited the growth of Achromobacter, and continued blue light irradiation decreased the OD 660 of Achromobacter. After irradiation with blue light, Achromobacter continued to grow in the dark, and the Achromobacter began to grow logarithmically again.

<実施例2>
酸素が光照射による脱窒菌の増殖阻害に及ぼす影響を調べた。実施例1と同様に、窒素ガスを吹き込んだ嫌気的条件下、アクロモバクター・キシロソキシダンス(NCIB11015)を培養した。培養開始から3時間後に空気を注入し、好気的条件に切り替えた。その1時間後に467nm(半値幅455nm~480nm)の波長を有する青色光を照射した。青色光を1時間照射した後、照射をやめ、窒素ガスを吹き込むことにより嫌気的条件に戻した。嫌気的条件下で1時間培養した後、再び青色光を1時間照射した。光照射時の培養容器表面の放射照度は、いずれも0.5mW/cm~1.0mW/cmであった。
<Example 2>
The effect of oxygen on growth inhibition of denitrifying bacteria by light irradiation was investigated. In the same manner as in Example 1, Achromobacter xylosoxydans (NCIB11015) was cultured under anaerobic conditions in which nitrogen gas was blown. After 3 hours from the start of culture, air was injected to switch to aerobic conditions. One hour later, blue light having a wavelength of 467 nm (half width 455 nm to 480 nm) was irradiated. After irradiation with blue light for 1 hour, the irradiation was stopped and nitrogen gas was blown in to restore the anaerobic conditions. After culturing for 1 hour under anaerobic conditions, the cells were again irradiated with blue light for 1 hour. The irradiance of the surface of the culture vessel during light irradiation was 0.5 mW/cm 2 to 1.0 mW/cm 2 in all cases.

図3に、アクロモバクターの増殖曲線を示す。好気的条件下では、青色光を照射しても、アクロモバクターの増殖は阻害されなかった。好気的条件から再び嫌気的条件に切り替えたところ、青色光の照射により、アクロモバクターの増殖が阻害された。培地から硝酸イオンを除去し、窒素ガスのかわりに亜酸化窒素ガスを用いて同様の実験を行った場合も、同様の阻害パターンが観察された。 FIG. 3 shows the growth curve of Achromobacter. Under aerobic conditions, irradiation with blue light did not inhibit the growth of Achromobacter. When the aerobic condition was switched to the anaerobic condition again, the growth of Achromobacter was inhibited by irradiation with blue light. A similar pattern of inhibition was observed when a similar experiment was performed in which nitrate ions were removed from the medium and nitrous oxide gas was used instead of nitrogen gas.

<実施例3>
異なるグラム陰性脱窒菌を用いて、光照射が脱窒菌の増殖に及ぼす影響を調べた。実施例1の培地を用いて、表2に示すグラム陰性脱窒菌を30℃で培養した。培養は、空気、亜酸化窒素ガス、又は窒素ガスを吹き込みながら行った。また、窒素ガスを吹き込む場合、硝酸呼吸に必要な硝酸イオンを培地に添加した。実施例2と同じ照射条件を用いて青色光を照射し、脱窒菌のOD660を観察した。結果を表2に示す。
<Example 3>
Using different Gram-negative denitrifying bacteria, we investigated the effect of light irradiation on the growth of denitrifying bacteria. Using the medium of Example 1, Gram-negative denitrifying bacteria shown in Table 2 were cultured at 30°C. Cultivation was performed while blowing air, nitrous oxide gas, or nitrogen gas. When nitrogen gas was blown, nitrate ions necessary for nitrate respiration were added to the medium. Blue light was irradiated using the same irradiation conditions as in Example 2, and OD 660 of denitrifying bacteria was observed. Table 2 shows the results.

Figure 0007149782000002
Figure 0007149782000002

表2中、+は増殖が阻害されたことを示し、-は増殖が阻害されなかったことを示す。いずれの脱窒菌においても、硝酸呼吸又は亜酸化窒素呼吸時には光照射により増殖が阻害されたのに対し、酸素呼吸時には増殖が阻害されなかった。 In Table 2, + indicates that growth was inhibited, and - indicates that growth was not inhibited. In all denitrifying bacteria, growth was inhibited by light irradiation during nitrate respiration or nitrous oxide respiration, but not during oxygen respiration.

<実施例4>
照射光の強度が光照射による脱窒菌の増殖阻害に及ぼす影響を調べた。アクロモバクター・キシロソキシダンス(NCIB11015)を、実施例1と同様の培地を含むキュベット中で、嫌気脱窒条件下、培養した。キュベットは分光光度計(日立557)内に配置した。波長可変光源L12194(浜松ホトニクス株式会社製)を用いて、420nmの波長を有する光を、光ファイバーを介して分光光度計内のキュベットの側面に照射した。照射は、それぞれ異なる光強度で、2回行った。光照射時のキュベット表面の放射照度は、2.5mW/cm及び5mW/cmであった。図4に、アクロモバクターの増殖曲線を示す。キュベット表面の放射照度が5mW/cmのときはアクロモバクターの増殖が阻害されたのに対し、放射照度が2.5mW/cmのときは増殖が阻害されなかった。
<Example 4>
The effect of light intensity on the growth inhibition of denitrifying bacteria was investigated. Achromobacter xylosoxydans (NCIB11015) was cultured in cuvettes containing the same medium as in Example 1 under anaerobic denitrification conditions. The cuvette was placed in a spectrophotometer (Hitachi 557). Using a variable wavelength light source L12194 (manufactured by Hamamatsu Photonics Co., Ltd.), light having a wavelength of 420 nm was irradiated to the side of the cuvette in the spectrophotometer through an optical fiber. Irradiation was performed twice, each with a different light intensity. The irradiance of the cuvette surface during light irradiation was 2.5 mW/cm 2 and 5 mW/cm 2 . FIG. 4 shows the growth curve of Achromobacter. An irradiance of 5 mW/cm 2 on the cuvette surface inhibited growth of Achromobacter, whereas an irradiance of 2.5 mW/cm 2 did not.

<実施例5>
実施例4と同様の実験を、照射光の波長及び強度を変化させて行った。異なる波長の光をアクロモバクターに照射し、各波長の光について、増殖の阻害が観察される放射照度の閾値を求めた。各波長における放射照度の閾値を図5に示す。UV-A(340nm~400nm)、紫色光(400nm~435nm)、又は青色光(435nm~480nm)の照射によりアクロモバクターの増殖が阻害された。
<Example 5>
An experiment similar to that of Example 4 was performed by changing the wavelength and intensity of the irradiation light. Achromobacter was irradiated with different wavelengths of light, and the irradiance threshold at which growth inhibition was observed was determined for each wavelength of light. FIG. 5 shows the irradiance threshold for each wavelength. Irradiation with UV-A (340 nm-400 nm), violet light (400 nm-435 nm), or blue light (435 nm-480 nm) inhibited growth of Achromobacter.

<実施例6>
培地成分が光照射による脱窒菌の増殖阻害に及ぼす影響を調べた。異なる濃度でポリペプトンを添加した実施例1の培地を用いて、アクロモバクター・キシロソキシダンス(NCIB11015)を7時間培養した。468nmの波長を有する青色光を照射しながらさらに18時間培養した後、増殖量(OD660)を比較した。結果を図6に示す。青色光を照射しなかったサンプル(コントロール)は、OD660がポリペプトンの濃度によらず一定であった。青色光を照射したサンプルのOD660は、ポリペプトン濃度が高いほど高く、すなわち、ポリペプトンの濃度が高いほど光照射による増殖阻害作用が弱められた。
<Example 6>
The effects of medium components on growth inhibition of denitrifying bacteria by light irradiation were investigated. Achromobacter xylosoxydans (NCIB11015) was cultured for 7 hours using the medium of Example 1 supplemented with polypeptone at different concentrations. After culturing for an additional 18 hours while irradiating blue light with a wavelength of 468 nm, the amount of growth (OD 660 ) was compared. The results are shown in FIG. The OD 660 of the sample not irradiated with blue light (control) was constant regardless of the concentration of polypeptone. The higher the polypeptone concentration, the higher the OD 660 of the sample irradiated with blue light.

<実施例7>
ポリペプトン及び酸素が、光照射による脱窒菌の増殖阻害に及ぼす影響についてさらに調べた。実施例1の培地を用いて、アクロモバクター・キシロソキシダンス(NCIB11015)を30℃で培養した。405nmの波長を有する紫色光をアクロモバクターに照射した。照射開始から5分後に、0.02質量%のポリペプトンを添加するか、酸素を吹き込み、OD660の変化を観察した。結果を図7に示す。図中、ポリペプトンの添加及び酸素の導入は、矢印で示した。図7の(A)に示すように、ポリペプトンを培地に添加した場合、光照射によるOD660の低下が見られず、アクロモバクターは対数的に増殖を続けた。一方、図7の(B)に示すように、酸素を吹き込んだ場合、光照射による一時的なOD660の低下が見られ、その後、時間の経過とともに対数増殖が回復した。これらの結果から、光照射による脱窒菌の増殖阻害を弱める作用は、ポリペプトンの場合は即効的であり、酸素の場合は遅効的であるといえる。
<Example 7>
The effect of polypeptone and oxygen on growth inhibition of denitrifying bacteria by light irradiation was further investigated. Using the medium of Example 1, Achromobacter xylosoxydans (NCIB11015) was cultured at 30°C. Achromobacter was irradiated with violet light having a wavelength of 405 nm. Five minutes after the start of irradiation, 0.02% by mass of polypeptone was added or oxygen was blown in, and changes in OD 660 were observed. The results are shown in FIG. In the figure, addition of polypeptone and introduction of oxygen are indicated by arrows. As shown in FIG. 7(A), when polypeptone was added to the medium, the OD 660 did not decrease due to light irradiation, and Achromobacter continued to grow logarithmically. On the other hand, as shown in FIG. 7B, when oxygen was blown in, a temporary drop in OD 660 was observed due to light irradiation, and then logarithmic growth was recovered with the passage of time. From these results, it can be said that the action of weakening the growth inhibition of denitrifying bacteria by light irradiation is immediate in the case of polypeptone and slow in the case of oxygen.

1…窒素ボンベ、2…質量流量計、3…水フィルター、4…綿栓、5…ガラスボールフィルター、6…培養管、7…青色LEDランプ、8…培養液、9…ガラス管、10…培養装置、A…流れの方向。 DESCRIPTION OF SYMBOLS 1... Nitrogen cylinder, 2... Mass flowmeter, 3... Water filter, 4... Cotton plug, 5... Glass ball filter, 6... Culture tube, 7... Blue LED lamp, 8... Culture solution, 9... Glass tube, 10... Culture apparatus, A... direction of flow.

Claims (3)

合成培地にて嫌気的脱窒条件下で培養される脱窒菌の増殖を制御する方法であって、
脱窒菌に光を照射して脱窒菌の増殖を阻害する工程であって、照射する光は400nm~420nmのいずれかの波長の光を含み、培地表面での放射照度は30mW/cm以下である工程、を含む、方法。
A method for controlling the growth of denitrifying bacteria cultured under anaerobic denitrifying conditions in a synthetic medium, comprising:
A step of irradiating the denitrifying bacteria with light to inhibit the growth of the denitrifying bacteria, wherein the irradiated light includes light having a wavelength of 400 nm to 420 nm, and the irradiance on the medium surface is 30 mW/cm 2 . A method comprising the steps of:
照射する光が400nm~410nmのいずれかの波長の光を含む、請求項1に記載の方法。 2. The method of claim 1, wherein the irradiating light comprises light with a wavelength anywhere from 400 nm to 410 nm. 培地表面での放射照度が2.5mW/cm以下である、請求項に記載の方法。 3. The method according to claim 2 , wherein the irradiance on the medium surface is 2.5 mW/cm< 2 > or less.
JP2018172797A 2018-09-14 2018-09-14 Method for controlling the growth of denitrifying bacteria Active JP7149782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018172797A JP7149782B2 (en) 2018-09-14 2018-09-14 Method for controlling the growth of denitrifying bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018172797A JP7149782B2 (en) 2018-09-14 2018-09-14 Method for controlling the growth of denitrifying bacteria

Publications (2)

Publication Number Publication Date
JP2020043776A JP2020043776A (en) 2020-03-26
JP7149782B2 true JP7149782B2 (en) 2022-10-07

Family

ID=69900252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018172797A Active JP7149782B2 (en) 2018-09-14 2018-09-14 Method for controlling the growth of denitrifying bacteria

Country Status (1)

Country Link
JP (1) JP7149782B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100246169A1 (en) 2007-10-31 2010-09-30 John Anderson Lighting Device
JP2011031205A (en) 2009-08-04 2011-02-17 Sumitomo Heavy Ind Ltd Wastewater treatment method
JP2018027291A (en) 2016-08-10 2018-02-22 パナソニックIpマネジメント株式会社 Antibacterial method and antibacterial device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100246169A1 (en) 2007-10-31 2010-09-30 John Anderson Lighting Device
JP2011031205A (en) 2009-08-04 2011-02-17 Sumitomo Heavy Ind Ltd Wastewater treatment method
JP2018027291A (en) 2016-08-10 2018-02-22 パナソニックIpマネジメント株式会社 Antibacterial method and antibacterial device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Applied and Environmental Microbiology, 1998, Vol.64, No.3, pp.813-817

Also Published As

Publication number Publication date
JP2020043776A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
Nelson et al. Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches
Arnason et al. Oxygen requirement for near‐UV mediated cytoxicity of α‐Terthienyl to Escherichia coli and Saccharomyces cerevisiae
Harashima et al. Photochemical activities of bacteriochlorophyll in aerobically grown cells of aerobic heterotrophs, Erythrobacter species (OCh 114) and Erythrobacter longus (OCh 101)
Bertoloni et al. Biochemical and morphological changes in Escherichia coli irradiated by coherent and non-coherent 632.8 nm light
Dionisio et al. Blue light induction of carbonic anhydrase activity in Chlamydomonas reinhardtii
Ts et al. Photosynthesis and productivity of potato plants in the conditions of different spectral irradiation
Carpenter et al. Re-evaluation of nitrogenase oxygen-protective mechanisms in the planktonic marine cyanobacterium Trichodesmium
JP7149782B2 (en) Method for controlling the growth of denitrifying bacteria
Prabakaran et al. Effect of ozonation on pathogenic bacteria
CN111056615B (en) Method for treating algal bloom or red tide by intermittently combining ultraviolet rays and hydrogen peroxide
Johnston The effect of environmental variables on 13C discrimination by two marine phytoplankton
Soldatini et al. Photosynthesis of two poplar clones under long‐term exposure to ozone
Muela et al. Participation of oxygen and role of exogenous and endogenous sensitizers in the photoinactivation of Escherichia coli by photosynthetically active radiation, UV-A and UV-B
FURUKAWA et al. Effects of NO2, SO2 and O3 alone and in combinations on net photosynthesis in sunflower
Liu et al. Influence of light intensity on microalgal growth, nutrients removal and capture of carbon in the wastewater under intermittent supply of CO2
Bauer et al. Photooxidative production of carbon monoxide by phototrophic microorganisms
Zhang et al. Photodegradation of chromophoric dissolved organic matters in the water of Lake Dianchi, China
RU2683522C1 (en) Method for biological treatment of waste water
Kreslavsky et al. Effect of red radiation, kinetin and linuron on growth and ethylene production in Chlorella
Soreanu et al. Monitoring of CO2 uptake by microalgae in indoor environment
Nesterenko et al. Light dependence of slow chlorophyll fluorescence induction in the course of wheat leaf ontogeny
Hadiyanto et al. Pretreatment of Herbal, Tofu and Fertilizer Waste Using UV/Ozon Technique and Its Utilization for Spirulina sp Cultivation
Gongwala et al. Treatment of wastewater from a slaughterhouse by gliding arc humid air plasma: chlorophyll degradation
Gemmill et al. PHOTOASSIMILATION OF 14C‐ACETATE BY ULVA LACTUCA 1
Oh-hama et al. Role of light in 5-aminolevulinic acid formation in wild strain and mutant C-2A'cells of Scenedesmus obliquus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220927

R150 Certificate of patent or registration of utility model

Ref document number: 7149782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150