JP7148291B2 - Optical wavelength converter - Google Patents

Optical wavelength converter Download PDF

Info

Publication number
JP7148291B2
JP7148291B2 JP2018119828A JP2018119828A JP7148291B2 JP 7148291 B2 JP7148291 B2 JP 7148291B2 JP 2018119828 A JP2018119828 A JP 2018119828A JP 2018119828 A JP2018119828 A JP 2018119828A JP 7148291 B2 JP7148291 B2 JP 7148291B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
light
optical wavelength
light wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018119828A
Other languages
Japanese (ja)
Other versions
JP2020004497A (en
Inventor
彰大 千藤
洋介 八谷
竜一 荒川
智雄 田中
祐介 勝
翔平 ▲高▼久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018119828A priority Critical patent/JP7148291B2/en
Publication of JP2020004497A publication Critical patent/JP2020004497A/en
Application granted granted Critical
Publication of JP7148291B2 publication Critical patent/JP7148291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本開示は、光波長変換装置に関する。 The present disclosure relates to optical wavelength conversion devices.

ヘッドランプ、各種照明機器、レーザープロジェクター等では、発光ダイオード(LED、Light Emitting Diode)や半導体レーザー(LD、Laser Diode)等の青色光を光波長変換部材である蛍光体によって波長変換することにより白色を得ている。 In headlamps, lighting equipment, laser projectors, etc., blue light emitted from light-emitting diodes (LEDs, Light Emitting Diodes) and semiconductor lasers (LDs, Laser Diodes) is wavelength-converted by phosphors, which are light wavelength conversion members, to produce white light. is getting

この蛍光体としては、樹脂系やガラス系などが知られているが、レーザーを用いた光源の高出力化に対応するため、耐久性に優れたセラミックス蛍光体が光波長変換装置に使用されつつある。 Resin-based and glass-based phosphors are known as such phosphors, but ceramic phosphors, which are excellent in durability, are being used in optical wavelength conversion devices in order to cope with the increase in the output of light sources using lasers. be.

また、蛍光体は、光の照射によって発熱する。蛍光体が発熱し高温となると、蛍光体が発する光の強度(すなわち、発光強度:蛍光強度)等の蛍光機能が低下する温度消光が発生する。そのため、効率よく蛍光体を発光させるためには、蛍光体から外部への排熱が必要となる。 Also, the phosphor generates heat when irradiated with light. When the phosphor heats up to a high temperature, temperature quenching occurs in which the fluorescence function such as the intensity of light emitted by the phosphor (ie, emission intensity: fluorescence intensity) is reduced. Therefore, in order for the phosphor to emit light efficiently, it is necessary to exhaust heat from the phosphor to the outside.

そこで、はんだ等の接合部を用いて光波長変換部材の底面に放熱部材を接合した光波長変換装置が知られている(特許文献1参照)。 Therefore, an optical wavelength conversion device is known in which a heat dissipation member is joined to the bottom surface of an optical wavelength conversion member using a joint such as solder (see Patent Document 1).

国際公開第2014/065051号WO2014/065051

上記構成では、光波長変換部材の底面に接合された放熱部材を介して、光波長変換部材の排熱が行われる。しかしながら、さらなる光源の高出力化に対応するためには、排熱効率を向上させる必要がある。 In the above configuration, heat is discharged from the optical wavelength conversion member through the heat dissipation member joined to the bottom surface of the optical wavelength conversion member. However, in order to cope with further increase in the output of light sources, it is necessary to improve exhaust heat efficiency.

本開示の一局面は、光波長変換部材の排熱を効率的に行える光波長変換装置を提供することを目的とする。 An object of one aspect of the present disclosure is to provide an optical wavelength conversion device capable of efficiently exhausting heat from an optical wavelength conversion member.

本開示の一態様は、入射した光の波長を変換するセラミックス蛍光体を有する光波長変換部材と、光波長変換部材よりも放熱性に優れた放熱部材と、を備える光波長変換装置である。光波長変換部材は、光が入射する入射面と、入射面とは反対側の底面と、入射面と底面とをつなぐ側面と、を有する。放熱部材は、光波長変換部材の底面側に配置される基部と、基部から、光波長変換部材の側面の少なくとも一部を囲うように延伸する枠部と、を有する。基部及び枠部は、それぞれ、光波長変換部材に、直接接触するか、又は光波長変換部材よりも熱伝導性に優れた接合部を介して接合される。 One aspect of the present disclosure is a light wavelength conversion device that includes a light wavelength conversion member having a ceramic phosphor that converts the wavelength of incident light, and a heat dissipation member that is superior in heat dissipation to the light wavelength conversion member. The light wavelength conversion member has an incident surface on which light is incident, a bottom surface opposite to the incident surface, and side surfaces connecting the incident surface and the bottom surface. The heat dissipation member has a base arranged on the bottom side of the light wavelength conversion member, and a frame extending from the base so as to surround at least part of the side surface of the light wavelength conversion member. The base portion and the frame portion are each in direct contact with the light wavelength conversion member, or joined via a joint portion having higher thermal conductivity than the light wavelength conversion member.

このような構成によれば、放熱部材の枠部によって、光波長変換部材の底面以外の部分からも排熱が行われるため、光波長変換部材の排熱を効率的に行うことができる。その結果、セラミックス蛍光体の温度消光が抑制できる。 According to such a configuration, heat is exhausted from portions other than the bottom surface of the light wavelength conversion member by the frame portion of the heat radiation member, so heat from the light wavelength conversion member can be efficiently exhausted. As a result, temperature quenching of the ceramic phosphor can be suppressed.

本開示の一態様では、枠部は、光波長変換部材の入射面の一部を覆うと共に、入射面に、直接接触するか、又は接合部を介して接合されてもよい。このような構成によれば、光波長変換部材の中心部から放熱部材までの経路が短縮できるため、光波長変換部材の排熱がより効率よく行える。 In one aspect of the present disclosure, the frame part may cover part of the incident surface of the light wavelength conversion member, and may be in direct contact with the incident surface or joined via a joint. With such a configuration, the path from the central portion of the optical wavelength conversion member to the heat dissipation member can be shortened, so that the heat of the optical wavelength conversion member can be exhausted more efficiently.

本開示の一態様では、枠部は、入射面に直接接触してもよい。このような構成によれば、枠部と光波長変換部材の入射面との間に接合部が介在しないため、光波長変換部材の排熱がより効率よく行える。 In one aspect of the present disclosure, the frame may directly contact the incident surface. According to such a configuration, no joint portion is interposed between the frame portion and the incident surface of the light wavelength conversion member, so that the heat of the light wavelength conversion member can be exhausted more efficiently.

本開示の一態様では、枠部は、光波長変換部材の側面に、直接接触するか、又は接合部を介して接合されてもよい。このような構成によれば、光波長変換部材内において、底面からの距離に依存せずに放熱部材までの経路が短縮できるため、光波長変換部材の排熱がより効率よく行える。 In one aspect of the present disclosure, the frame may be in direct contact with the side surface of the light wavelength conversion member or may be bonded via a bonding portion. According to such a configuration, the path to the heat radiation member can be shortened without depending on the distance from the bottom surface inside the light wavelength conversion member, so heat can be exhausted from the light wavelength conversion member more efficiently.

本開示の一態様では、枠部は、側面に直接接触してもよい。このような構成によれば、枠部と光波長変換部材の側面との間に接合部が介在しないため、光波長変換部材の排熱がより効率よく行える。 In one aspect of the present disclosure, the frame may directly contact the sides. According to such a configuration, since no joining portion is interposed between the frame portion and the side surface of the optical wavelength conversion member, the heat of the optical wavelength conversion member can be exhausted more efficiently.

本開示の一態様では、枠部は、銅、銀、アルミニウム、ニッケル、及び鉄のうち少なくとも1種を含んでもよい。このような構成によれば、枠部の剛性と熱伝導性とを両立して高めることができる。 In one aspect of the present disclosure, the frame may include at least one of copper, silver, aluminum, nickel, and iron. According to such a configuration, both the rigidity and thermal conductivity of the frame can be enhanced.

本開示の一態様では、基部は、銅、銀、アルミニウム、ニッケル、及び鉄のうち少なくとも1種を含んでもよい。このような構成によれば、基部の熱伝導性が向上するので、光波長変換部材の排熱がより効率よく行える。 In one aspect of the disclosure, the base may include at least one of copper, silver, aluminum, nickel, and iron. With such a configuration, the thermal conductivity of the base is improved, so that the heat of the optical wavelength conversion member can be exhausted more efficiently.

本開示の一態様では、接合部は、金属を主成分としてもよい。このような構成によれば、接合部を用いて放熱部材を接合した場合における光波長変換部材の排熱効率を高めることができる。 In one aspect of the present disclosure, the joint may be made mainly of metal. According to such a configuration, it is possible to increase the efficiency of exhausting heat from the light wavelength conversion member when the heat radiating member is joined using the joining portion.

本開示の一態様では、接合部は、焼結組織を有してもよい。このような構成によれば、ナノ粒子の焼結によって、接合部を容易かつ確実に形成できる。さらに、接合部の熱伝導性を高めることができる。 In one aspect of the present disclosure, the joint may have a sintered texture. According to such a configuration, the joint can be easily and reliably formed by sintering the nanoparticles. Furthermore, the thermal conductivity of the joint can be enhanced.

実施形態の光波長変換装置の模式的な断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is typical sectional drawing of the optical wavelength conversion apparatus of embodiment. 図2A及び図2Bは、それぞれ、図1の光波長変換装置の模式的な平面図である。2A and 2B are schematic plan views of the optical wavelength conversion device of FIG. 1, respectively. 図1とは異なる実施形態の光波長変換装置の模式的な断面図である。FIG. 2 is a schematic cross-sectional view of an optical wavelength conversion device of an embodiment different from FIG. 1; 図1及び図3とは異なる実施形態の光波長変換装置の模式的な断面図である。FIG. 4 is a schematic cross-sectional view of an optical wavelength conversion device of an embodiment different from FIGS. 1 and 3;

以下、本開示が適用された実施形態について、図面を用いて説明する。
[1.第1実施形態]
[1-1.構成]
図1に示す光波長変換装置1は、光波長変換部材2と、放熱部材3と、接合部4とを備える。
Embodiments to which the present disclosure is applied will be described below with reference to the drawings.
[1. First Embodiment]
[1-1. Constitution]
An optical wavelength conversion device 1 shown in FIG. 1 includes an optical wavelength conversion member 2 , a heat dissipation member 3 and a joint 4 .

<光波長変換部材>
光波長変換部材2は、板状のセラミックス蛍光体21と、反射膜22と、反射防止膜23とを有する。また、光波長変換部材2は、光の入射する入射面2Aと、入射面2Aと対向すると共に入射面2Aとは反対側に配置された底面2Bと、入射面2Aと底面2Bとをつなぐ側面2Cとを有する。
<Light wavelength conversion member>
The light wavelength conversion member 2 has a plate-like ceramic phosphor 21 , a reflective film 22 and an antireflection film 23 . The light wavelength conversion member 2 includes an incident surface 2A on which light is incident, a bottom surface 2B facing the incident surface 2A and opposite to the incident surface 2A, and a side surface connecting the incident surface 2A and the bottom surface 2B. 2C.

(セラミックス蛍光体)
セラミックス蛍光体21は、入射した光の波長を変換する。セラミックス蛍光体21は、蛍光性を有する結晶粒子を主体とする蛍光相と、透光性を有する結晶粒子を主体とする透光相とを有するセラミックス焼結体である。
(Ceramic phosphor)
The ceramic phosphor 21 converts the wavelength of incident light. The ceramic phosphor 21 is a ceramic sintered body having a fluorescent phase mainly composed of crystal grains having fluorescent properties and a translucent phase mainly composed of crystal grains having translucency.

「蛍光相」とは、蛍光性を有する結晶粒子を主体とする相であり、「透光相」とは、透光性を有する結晶粒子、詳しくは蛍光相の結晶粒子とは異なる組成の結晶粒子を主体とする相である。 The term "fluorescent phase" refers to a phase mainly composed of crystal grains having fluorescence, and the term "light-transmitting phase" refers to crystal grains having light-transmitting properties, more specifically crystals having a composition different from that of the crystal grains of the fluorescent phase. It is a phase mainly composed of particles.

また、「主体」とは、各相において、最も多く存在する成分を意味する。例えば、蛍光相は、蛍光性を有する結晶粒子が50体積%以上、好ましくは90体積%以上含まれる。また、例えば、透光相には、透光性を有する結晶粒子が50体積%以上、好ましくは90体積%以上含まれる。 In addition, "main component" means the component that is present in the largest amount in each phase. For example, the fluorescent phase contains 50% by volume or more, preferably 90% by volume or more of crystal grains having fluorescence. Further, for example, the translucent phase contains 50% by volume or more, preferably 90% by volume or more of crystal grains having translucency.

セラミックス蛍光体21を構成するセラミックス焼結体の各結晶粒子やその粒界には、蛍光相及び透光相以外の不可避不純物が含まれていてもよい。セラミックス焼結体には、蛍光相及び透光相がセラミックス焼結体の50体積%以上、好ましくは90体積%以上含まれる。 Each crystal grain and grain boundary of the ceramic sintered body forming the ceramic phosphor 21 may contain unavoidable impurities other than the fluorescent phase and the translucent phase. The ceramic sintered body contains the fluorescent phase and the translucent phase in an amount of 50% by volume or more, preferably 90% by volume or more of the ceramic sintered body.

セラミックス蛍光体21の材質は特に限定されないが、例えば、透光相の結晶粒子が化学式(1)Alで表される組成を有し、蛍光相の結晶粒子が化学式(2)A12:Ceで表される組成(つまりガーネット構造)を有するとよい。 The material of the ceramic phosphor 21 is not particularly limited. It preferably has a composition represented by B 5 O 12 :Ce (that is, a garnet structure).

なお、「A12:Ce」とは、A12中にCeが固溶し、元素Aの一部がCeに置換されていることを示す。蛍光相の結晶粒子は、Ceの固溶により、蛍光特性を示す。 "A 3 B 5 O 12 :Ce" means that Ce is dissolved in A 3 B 5 O 12 and part of the element A is substituted with Ce. Crystal grains of the fluorescent phase exhibit fluorescent properties due to solid solution of Ce.

化学式(1)中の元素A及び化学式(2)中の元素Bは、それぞれ下記の元素群から選択される少なくとも1種の元素から構成されている。
A:Sc、Y、ランタノイド(但し、Ceは除く)
(但し、Aとして更にGdを含んでいてもよい)
B:Al(但し、Bとして更にGaを含んでいてもよい)
Element A in chemical formula (1) and element B in chemical formula (2) are each composed of at least one element selected from the following element group.
A: Sc, Y, lanthanoids (excluding Ce)
(However, A may further contain Gd)
B: Al (however, B may further contain Ga)

セラミックス蛍光体21として、上記セラミックス焼結体を使用することで、蛍光相と透光相との界面での光の散乱が起き、光の色の角度依存性を減らすことができる。その結果、色の均質性を向上できる。 By using the ceramic sintered body as the ceramic phosphor 21, light scattering occurs at the interface between the fluorescent phase and the translucent phase, and the angle dependence of the color of light can be reduced. As a result, color uniformity can be improved.

また、上記セラミックス焼結体は、熱伝導率が優れているため、レーザー光の照射によって発生した熱を放熱部材3に排しやすい。そのため、レーザーの高出力域でも蛍光機能を維持することができる。 Moreover, since the ceramic sintered body has excellent thermal conductivity, the heat generated by the irradiation of the laser light can be easily discharged to the heat radiating member 3 . Therefore, the fluorescence function can be maintained even in the high output range of the laser.

一方で、セラミックス蛍光体21が単一組成であると、光の散乱が起こらないため、光の色の角度依存性が大きくなり、光の色のムラが生じるおそれがある。また、蛍光体として樹脂を用いると、熱伝導率が低下し、放熱が十分にできずに温度消光が起きるおそれがある。 On the other hand, when the ceramic phosphor 21 has a single composition, light scattering does not occur, so the angle dependence of the color of light increases, and there is a risk of unevenness in the color of light. Also, if a resin is used as the phosphor, the thermal conductivity is lowered, and there is a possibility that temperature quenching may occur due to insufficient heat dissipation.

セラミックス蛍光体21は、光の入射する入射面と、入射面と対向すると共に放熱部材3と接合される側に配置された底面とを有する。
セラミックス蛍光体21の平均厚み(つまり、入射面から底面までの平均距離)としては、100μm以上500μm以下が好ましい。
The ceramic phosphor 21 has an incident surface on which light is incident, and a bottom surface facing the incident surface and arranged on the side joined to the heat dissipation member 3 .
The average thickness of the ceramic phosphor 21 (that is, the average distance from the incident surface to the bottom surface) is preferably 100 μm or more and 500 μm or less.

(反射膜)
反射膜22は、セラミックス蛍光体21の底面(つまり、放熱部材3側の面)に配置されている。
(reflective film)
The reflective film 22 is arranged on the bottom surface of the ceramic phosphor 21 (that is, the surface on the heat dissipation member 3 side).

反射膜22は、セラミックス蛍光体21内部で発生する光を反射することで、この光を光波長変換部材2の外部に効率よく放射させる。これにより、光波長変換部材2の発光強度が向上する。 The reflective film 22 reflects the light generated inside the ceramic phosphor 21 to efficiently radiate the light to the outside of the light wavelength conversion member 2 . Thereby, the light emission intensity of the light wavelength conversion member 2 is improved.

反射膜22の材質としては、例えば、酸化ニオブ、酸化チタン、酸化ランタン、酸化タンタル、酸化イットリウム、酸化ガドリニウム、酸化タングステン、酸化ハフニウム、酸化アルミニウム、窒化ケイ素等の酸化物が採用できる。 As the material of the reflective film 22, for example, oxides such as niobium oxide, titanium oxide, lanthanum oxide, tantalum oxide, yttrium oxide, gadolinium oxide, tungsten oxide, hafnium oxide, aluminum oxide, and silicon nitride can be used.

反射膜22の平均厚みとしては、0.1μm以上2μm以下が好ましい。また、反射膜22は、単一の層で構成されてもよいし、複数の層で構成されてもよい。
なお、後述する放熱部材3の取付面31Aが反射機能を奏する場合は、光波長変換部材2は、必ずしも反射膜22を有さなくてもよい。
The average thickness of the reflective film 22 is preferably 0.1 μm or more and 2 μm or less. Also, the reflective film 22 may be composed of a single layer, or may be composed of a plurality of layers.
Note that the light wavelength conversion member 2 does not necessarily have the reflective film 22 when the mounting surface 31A of the heat radiating member 3, which will be described later, has a reflecting function.

(反射防止膜)
反射防止膜23は、セラミックス蛍光体21の入射面(つまり、放熱部材3とは反対側の面)に配置されている。
(Anti-reflection film)
The antireflection film 23 is arranged on the incident surface of the ceramic phosphor 21 (that is, the surface opposite to the heat radiating member 3).

反射防止膜23は、セラミックス蛍光体21の表面での光の反射を抑制するための反射防止コーティング(ARコーティング)である。反射防止膜23により、セラミックス蛍光体21に光を効率よく吸収させることができる。また、セラミックス蛍光体21の内部で発生する光を効率よく外部に取り出すことができる。その結果、光波長変換部材2の発光強度が向上する。 The antireflection film 23 is an antireflection coating (AR coating) for suppressing reflection of light on the surface of the ceramic phosphor 21 . The antireflection film 23 allows the ceramic phosphor 21 to efficiently absorb light. In addition, the light generated inside the ceramic phosphor 21 can be efficiently extracted to the outside. As a result, the light emission intensity of the light wavelength conversion member 2 is improved.

反射防止膜23の材質としては、例えば、酸化ニオブ、酸化チタン、酸化タンタル、酸化アルミニウム、酸化ジルコニウム、酸化ケイ素、窒化アルミニウム、窒化ケイ素、フッ化マグネシウム等が採用できる。 Examples of materials that can be used for the antireflection film 23 include niobium oxide, titanium oxide, tantalum oxide, aluminum oxide, zirconium oxide, silicon oxide, aluminum nitride, silicon nitride, and magnesium fluoride.

反射防止膜23の平均厚みとしては、0.01μm以上1μm以下が好ましい。また、反射防止膜23は、単一の層で構成されてもよいし、複数の層で構成されてもよい。
なお、光波長変換部材2は、必ずしも反射防止膜23を有さなくてもよい。
The average thickness of the antireflection film 23 is preferably 0.01 μm or more and 1 μm or less. Also, the antireflection film 23 may be composed of a single layer, or may be composed of a plurality of layers.
Note that the light wavelength conversion member 2 does not necessarily have to have the antireflection film 23 .

<放熱部材>
放熱部材3は、光波長変換部材2よりも放熱性に優れた部材である。放熱部材3は、基部31と、枠部32とを有する。
<Heat dissipation material>
The heat dissipation member 3 is a member that is superior in heat dissipation to the light wavelength conversion member 2 . The heat dissipation member 3 has a base portion 31 and a frame portion 32 .

放熱部材3により、セラミックス蛍光体21においてレーザー光の照射によって生じた熱の排熱が促進される。これにより、高出力域でのセラミックス蛍光体21の蛍光機能が維持される。 The heat dissipation member 3 promotes heat dissipation of the heat generated by the irradiation of the laser light in the ceramic phosphor 21 . This maintains the fluorescence function of the ceramic phosphor 21 in the high output range.

(基部)
基部31は、光波長変換部材2の底面2B側に配置されている。本実施形態では、基部31は、接合部4を介して光波長変換部材2に接合されている。
(base)
The base portion 31 is arranged on the bottom surface 2B side of the light wavelength conversion member 2 . In this embodiment, the base portion 31 is joined to the light wavelength conversion member 2 via the joining portion 4 .

基部31は、光波長変換部材2の底面2Bと対向する平らな取付面31Aを有する板状の部位である。取付面31Aの面積は、光波長変換部材2の底面2Bの面積よりも大きい。後述する接合部4は、取付面31Aの中央部に固定されている。 The base portion 31 is a plate-like portion having a flat mounting surface 31A facing the bottom surface 2B of the light wavelength conversion member 2 . The area of the mounting surface 31A is larger than the area of the bottom surface 2B of the light wavelength conversion member 2 . A joint portion 4, which will be described later, is fixed to the central portion of the mounting surface 31A.

基部31の材質は、金属である。基部31は、銅、銀、アルミニウム、ニッケル、及び鉄のうち少なくとも1種を含むとよい。これらの金属を基部31が含むことで、基部31の熱伝導性が向上し、光波長変換部材2の排熱がより効率よく行える。 The material of the base 31 is metal. Base 31 preferably contains at least one of copper, silver, aluminum, nickel, and iron. By including these metals in the base portion 31, the heat conductivity of the base portion 31 is improved, and the heat of the light wavelength conversion member 2 can be exhausted more efficiently.

なお、基部31の取付面31A以外の面(例えば、取付面31Aとは反対側の面)に、基部31から突出する少なくとも1つの放熱フィンが取り付けられてもよい。放熱フィンと基部31との接合方法としては、摩擦撹拌接合(FSW)を用いるとよい。FSWは、被接合材を一体化させる接合法であり、接合界面での熱抵抗の上昇を抑えられる。そのため、接合界面での放熱効果の低減が抑制できる。 At least one radiation fin protruding from the base 31 may be attached to a surface of the base 31 other than the mounting surface 31A (for example, a surface opposite to the mounting surface 31A). Friction stir welding (FSW) is preferably used as a method of joining the heat radiating fins and the base portion 31 . FSW is a bonding method that integrates materials to be bonded, and can suppress an increase in thermal resistance at the bonding interface. Therefore, it is possible to suppress the reduction of the heat radiation effect at the bonding interface.

(枠部)
枠部32は、基部31の取付面31Aから、取付面31Aと垂直な方向(つまり、取付面31Aから光波長変換部材2における入射面2A側へ向かう方向)に延伸している。枠部32は、基部31と共に、光波長変換部材2を収納する空間を形成している。
(Frame part)
The frame portion 32 extends from the mounting surface 31A of the base portion 31 in a direction perpendicular to the mounting surface 31A (that is, a direction from the mounting surface 31A toward the incident surface 2A of the light wavelength conversion member 2). The frame portion 32 forms a space for accommodating the light wavelength conversion member 2 together with the base portion 31 .

枠部32は、光波長変換部材2の側面2C全体を囲っている。枠部32は、光波長変換部材2の側面2Cには当接しておらず、光波長変換部材2の側面2Cと枠部32との間には空隙が形成されている。 The frame portion 32 surrounds the entire side surface 2</b>C of the light wavelength conversion member 2 . The frame portion 32 is not in contact with the side surface 2C of the light wavelength conversion member 2, and a gap is formed between the side surface 2C of the light wavelength conversion member 2 and the frame portion 32. As shown in FIG.

枠部32と、光波長変換部材2の側面2Cとの距離は、光波長変換部材2の周方向に沿って一定である。したがって、平面視(つまり、光波長変換部材2の入射面2Aと垂直な方向から視て)、枠部32において光波長変換部材2の側面2Cと対向する内面32Aの形状は、光波長変換部材2の形状と相似である。 The distance between the frame portion 32 and the side surface 2</b>C of the light wavelength conversion member 2 is constant along the circumferential direction of the light wavelength conversion member 2 . Therefore, in plan view (that is, when viewed from a direction perpendicular to the incident surface 2A of the light wavelength conversion member 2), the shape of the inner surface 32A of the frame portion 32 facing the side surface 2C of the light wavelength conversion member 2 is similar to that of the light wavelength conversion member. It is similar to the shape of 2.

例えば、光波長変換部材2の平面視形状(つまり入射面2Aの形状)が四角形の場合(図2A参照)、枠部32の内面32Aの平面視形状も四角形である。また、例えば、光波長変換部材2の平面視形状が円形の場合(図2B参照)、枠部32の内面32Aの平面視形状も円形である。 For example, when the planar view shape of the light wavelength conversion member 2 (that is, the shape of the incident surface 2A) is quadrangular (see FIG. 2A), the planar view shape of the inner surface 32A of the frame portion 32 is also quadrangular. Further, for example, when the planar view shape of the light wavelength conversion member 2 is circular (see FIG. 2B), the planar view shape of the inner surface 32A of the frame portion 32 is also circular.

ただし、光波長変換部材2の平面視形状は四角形又は円形に限定されず、四角形以外の多角形のほか、楕円形等としてもよい。また、枠部32の内面32Aの平面視形状は、光波長変換部材2の平面視形状と必ずしも相似でなくてもよい。 However, the planar view shape of the light wavelength conversion member 2 is not limited to a square or a circle, and may be a polygon other than a square, an ellipse, or the like. In addition, the planar view shape of the inner surface 32A of the frame portion 32 does not necessarily have to be similar to the planar view shape of the light wavelength conversion member 2 .

また、枠部32は、光波長変換部材2の入射面2Aの一部を覆っている。具体的には、枠部32は、光波長変換部材2の入射面2Aのうち、入射面2Aの端部から一定距離の領域を入射面2Aの周方向全体(つまり、縁全体)にわたって覆っている。枠部32は、光波長変換部材2の入射面2Aに直接接触している。 Moreover, the frame portion 32 partially covers the incident surface 2A of the light wavelength conversion member 2 . Specifically, the frame portion 32 covers a region of the incident surface 2A of the light wavelength conversion member 2 at a constant distance from the end of the incident surface 2A over the entire circumferential direction (that is, the entire edge) of the incident surface 2A. there is The frame portion 32 is in direct contact with the incident surface 2A of the light wavelength conversion member 2 .

枠部32は、光波長変換部材2の入射面2Aの一部を露出させる開口32Bを有する。したがって、光波長変換部材2の入射面2Aの中央領域は枠部32によって被覆されていない。開口32Bの形状は、入射面2Aの形状と相似である。 The frame portion 32 has an opening 32B that exposes a portion of the incident surface 2A of the light wavelength conversion member 2 . Therefore, the central region of the incident surface 2A of the light wavelength conversion member 2 is not covered with the frame portion 32. As shown in FIG. The shape of the aperture 32B is similar to the shape of the incident surface 2A.

光波長変換部材2は、例えば、接合部4によって基部31に固定した後、枠部32を光波長変換部材2の周囲を囲むように配置することで、基部31と結合された枠部32の内部空間に挿入される。 The optical wavelength conversion member 2 is fixed to the base portion 31 by the joint portion 4, for example, and then the frame portion 32 is arranged so as to surround the optical wavelength conversion member 2, so that the frame portion 32 coupled to the base portion 31 is inserted into the inner space.

枠部32の材質は、金属である。枠部32は、銅、銀、アルミニウム、ニッケル、及び鉄のうち少なくとも1種を含むとよい。これらの金属を枠部32が含むことで、枠部32の剛性と熱伝導性とを両立して高めることができる。 The material of the frame portion 32 is metal. The frame portion 32 preferably contains at least one of copper, silver, aluminum, nickel, and iron. By including these metals in the frame portion 32, both the rigidity and thermal conductivity of the frame portion 32 can be enhanced.

枠部32と基部31とは、例えば、上述のFSW等によって接合される。また、例えば、枠部32及び基部31を貫通する複数のボルトによって、枠部32と基部31とが締結されてもよい。 The frame portion 32 and the base portion 31 are joined by, for example, the FSW described above. Further, for example, the frame portion 32 and the base portion 31 may be fastened together by a plurality of bolts passing through the frame portion 32 and the base portion 31 .

また、放熱部材3は、基部31と枠部32とが一体形成された単一の部材であってもよい。さらに、枠部32は、光波長変換部材2の側面2Cを囲う第1板部と、光波長変換部材2の入射面2Aを覆う第2板部とに分割されていてもよい。 Moreover, the heat radiating member 3 may be a single member in which the base portion 31 and the frame portion 32 are integrally formed. Furthermore, the frame portion 32 may be divided into a first plate portion that surrounds the side surface 2C of the light wavelength conversion member 2 and a second plate portion that covers the incident surface 2A of the light wavelength conversion member 2 .

なお、放熱部材3は、接合部4と接合される表面(本実施形態では基部31の取付面31A)上に形成された金属の酸化被膜を有していてもよい。この酸化被膜によって、接合部4との接合強度が高められる。 In addition, the heat radiating member 3 may have a metal oxide film formed on the surface (in this embodiment, the attachment surface 31A of the base portion 31) that is joined to the joint portion 4. As shown in FIG. This oxide film increases the bonding strength with the bonding portion 4 .

<接合部>
接合部4は、光波長変換部材2と放熱部材3とを接合するための部材であり、光波長変換部材2よりも熱伝導性に優れる。
<Junction>
The joint portion 4 is a member for joining the light wavelength conversion member 2 and the heat dissipation member 3 together, and is superior in thermal conductivity to the light wavelength conversion member 2 .

本実施形態では、接合部4は、光波長変換部材2の底面2Bと放熱部材3の基部31における取付面31Aとの間に配置され、これら2つの面を接合している。なお、接合部4は、光波長変換部材2の底面2Bよりも大きい範囲で配置されてもよく、例えば、基部31の取付面31A全体を覆うように配置されてもよい。 In this embodiment, the joint portion 4 is arranged between the bottom surface 2B of the light wavelength conversion member 2 and the attachment surface 31A of the base portion 31 of the heat dissipation member 3 to join these two surfaces. Note that the joint portion 4 may be arranged in a range larger than the bottom surface 2B of the light wavelength conversion member 2, and may be arranged so as to cover the entire attachment surface 31A of the base portion 31, for example.

接合部4は、熱伝導性の観点から、金属を主成分とすることが好ましい。ここで、「主成分」とは、90質量%以上含まれる成分を意味する。接合部4は、金、銀、及び銅のうち少なくとも1種を含むとよい。 From the viewpoint of thermal conductivity, the joint portion 4 preferably contains metal as a main component. Here, "main component" means a component contained in an amount of 90% by mass or more. The joint 4 preferably contains at least one of gold, silver, and copper.

接合部4は、例えば、上述した金属のナノ粒子を焼結することで容易に形成することができる。つまり、接合部4は、熱伝導性が高い金属のナノ粒子の焼結組織を有することが好ましい。この焼結組織では、焼結により互いに結合したナノ粒子間の空隙によって気孔が構成される。なお、ナノ粒子とは、ナノサイズオーダーの粒子を含む、平均粒径が数ナノメートルから数マイクロメートルの粒子群である。 The joint 4 can be easily formed by, for example, sintering the metal nanoparticles described above. In other words, the joint 4 preferably has a sintered texture of metal nanoparticles with high thermal conductivity. In this sintered structure, pores are formed by voids between nanoparticles bonded together by sintering. Note that nanoparticles are a group of particles having an average particle size of several nanometers to several micrometers, including particles of nanosize order.

また、接合部4は、錫-銀-銅はんだ、銀-錫はんだ等のはんだで構成されてもよい。さらに、接合部4は、導電性接着剤で構成されてもよい。つまり、光波長変換部材2は、はんだ又は導電性接着剤によって、放熱部材3に接合されていてもよい。 Also, the joint 4 may be made of solder such as tin-silver-copper solder or silver-tin solder. Furthermore, the joint 4 may be made of a conductive adhesive. That is, the light wavelength conversion member 2 may be joined to the heat dissipation member 3 with solder or a conductive adhesive.

[1-2.効果]
以上詳述した実施形態によれば、以下の効果が得られる。
(1a)放熱部材3の枠部32によって、光波長変換部材2の底面2B以外の部分からも排熱が行われるため、光波長変換部材2の排熱を効率的に行うことができる。その結果、セラミックス蛍光体21の温度消光が抑制できる。
[1-2. effect]
According to the embodiment detailed above, the following effects are obtained.
(1a) Since heat is discharged from portions other than the bottom surface 2B of the light wavelength conversion member 2 by the frame portion 32 of the heat dissipation member 3, the heat of the light wavelength conversion member 2 can be discharged efficiently. As a result, temperature quenching of the ceramic phosphor 21 can be suppressed.

(1b)枠部32が光波長変換部材2の入射面2Aの一部に接触しているため、光波長変換部材2の中心部から放熱部材3までの経路が短縮できる。その結果、光波長変換部材2の排熱がより効率よく行える。 (1b) Since the frame portion 32 is in contact with part of the incident surface 2A of the light wavelength conversion member 2, the path from the center of the light wavelength conversion member 2 to the heat dissipation member 3 can be shortened. As a result, heat can be discharged from the light wavelength conversion member 2 more efficiently.

(1c)枠部32が光波長変換部材2の入射面2Aに直接接触しており、枠部32と光波長変換部材2との間に接合部4が介在しないため、光波長変換部材2の排熱がより効率よく行える。 (1c) Since the frame portion 32 is in direct contact with the incident surface 2A of the light wavelength conversion member 2 and the joint portion 4 is not interposed between the frame portion 32 and the light wavelength conversion member 2, the light wavelength conversion member 2 is Dissipates heat more efficiently.

[2.第2実施形態]
[2-1.構成]
図3に示す光波長変換装置101は、光波長変換部材2と、放熱部材103と、接合部4とを備える。光波長変換部材2及び接合部4は、図1の光波長変換装置1と同様であるため、同一の符号を付して説明を省略する。
[2. Second Embodiment]
[2-1. Constitution]
The optical wavelength conversion device 101 shown in FIG. 3 includes an optical wavelength conversion member 2, a heat dissipation member 103, and a joint 4. Since the optical wavelength conversion member 2 and the joint 4 are the same as those of the optical wavelength conversion device 1 of FIG.

<放熱部材>
放熱部材103は、基部31と、枠部132とを有する。基部31は、図1の光波長変換装置1における放熱部材3の基部31と同じものである。
<Heat dissipation material>
The heat dissipation member 103 has a base portion 31 and a frame portion 132 . The base portion 31 is the same as the base portion 31 of the heat dissipation member 3 in the optical wavelength conversion device 1 of FIG.

枠部132は、光波長変換部材2の側面2Cに接触している点を除いて、図1の放熱部材3の枠部32と同じものである。具体的には、枠部132は、光波長変換部材2の側面2C全体に直接接触している。 The frame portion 132 is the same as the frame portion 32 of the heat dissipation member 3 of FIG. Specifically, the frame portion 132 is in direct contact with the entire side surface 2C of the light wavelength conversion member 2 .

[2-2.効果]
以上詳述した実施形態によれば、以下の効果が得られる。
(2a)光波長変換部材2内において、底面2Bからの距離に依存せずに放熱部材103までの経路が短縮できるため、光波長変換部材2の排熱がより効率よく行える。
[2-2. effect]
According to the embodiment detailed above, the following effects are obtained.
(2a) In the optical wavelength conversion member 2, the path to the heat dissipation member 103 can be shortened regardless of the distance from the bottom surface 2B, so that the heat of the optical wavelength conversion member 2 can be exhausted more efficiently.

[3.第3実施形態]
[3-1.構成]
図4に示す光波長変換装置201は、光波長変換部材2と、放熱部材203と、接合部204とを備える。光波長変換部材2は、図1の光波長変換装置1と同様であるため、同一の符号を付して説明を省略する。
[3. Third Embodiment]
[3-1. Constitution]
An optical wavelength conversion device 201 shown in FIG. 4 includes an optical wavelength conversion member 2 , a heat dissipation member 203 and a joint 204 . Since the optical wavelength conversion member 2 is the same as the optical wavelength conversion device 1 of FIG. 1, the same reference numerals are given and the explanation is omitted.

<放熱部材>
放熱部材203は、基部31と、枠部232とを有する。基部31は、図1の光波長変換装置1における放熱部材3の基部31と同じものである。枠部232は、図1の放熱部材3の枠部32と同じ材質である。
<Heat dissipation material>
The heat dissipation member 203 has a base portion 31 and a frame portion 232 . The base portion 31 is the same as the base portion 31 of the heat dissipation member 3 in the optical wavelength conversion device 1 of FIG. The frame portion 232 is made of the same material as the frame portion 32 of the heat radiating member 3 in FIG.

枠部232は、基部31の取付面31Aから、取付面31Aと垂直な方向に延伸している。枠部232は、光波長変換部材2の側面2C全体を囲っている。枠部232の内面232Aは、光波長変換部材2の側面2C全体に接合部204を介して接合されている。 The frame portion 232 extends from the mounting surface 31A of the base portion 31 in a direction perpendicular to the mounting surface 31A. The frame portion 232 surrounds the entire side surface 2</b>C of the light wavelength conversion member 2 . An inner surface 232A of the frame portion 232 is bonded to the entire side surface 2C of the optical wavelength conversion member 2 via a bonding portion 204 .

一方、枠部232は、光波長変換部材2の入射面2Aを覆っていない。つまり、枠部232は、光波長変換部材2の側面2Cのみに接合されている。ただし、枠部232は、基部31の取付面31Aに対し、光波長変換部材2の入射面2Aよりも遠い位置(つまり、入射面2Aよりも光源に近い位置)まで延伸してもよい。 On the other hand, the frame portion 232 does not cover the incident surface 2A of the light wavelength conversion member 2. As shown in FIG. That is, the frame portion 232 is joined only to the side surface 2C of the light wavelength conversion member 2. As shown in FIG. However, the frame portion 232 may extend from the mounting surface 31A of the base portion 31 to a position farther than the incident surface 2A of the light wavelength conversion member 2 (that is, a position closer to the light source than the incident surface 2A).

<接合部>
接合部204は、図1の接合部4と同じ材質であり、光波長変換部材2よりも熱伝導性に優れる。
<Junction>
The joint portion 204 is made of the same material as the joint portion 4 in FIG.

本実施形態では、接合部204は、光波長変換部材2の底面2Bと基部31の取付面31Aとの間、及び光波長変換部材2の側面2Cと枠部232の内面232Aとの間に配置されている。 In this embodiment, the joints 204 are arranged between the bottom surface 2B of the light wavelength conversion member 2 and the mounting surface 31A of the base portion 31, and between the side surface 2C of the light wavelength conversion member 2 and the inner surface 232A of the frame portion 232. It is

[3-2.効果]
以上詳述した実施形態によれば、以下の効果が得られる。
(3a)放熱部材203の枠部232が光波長変換部材2の側面2Cのみを覆っているので、比較的容易に光波長変換装置201を製造することができる。
[3-2. effect]
According to the embodiment detailed above, the following effects are obtained.
(3a) Since the frame portion 232 of the heat dissipation member 203 covers only the side surface 2C of the optical wavelength conversion member 2, the optical wavelength conversion device 201 can be manufactured relatively easily.

[4.他の実施形態]
以上、本開示の実施形態について説明したが、本開示は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
[4. Other embodiments]
Although the embodiments of the present disclosure have been described above, it is needless to say that the present disclosure is not limited to the above embodiments and can take various forms.

(4a)上記実施形態の光波長変換装置1,101,201において、基部31は、接合部を介さず光波長変換部材2の底面2Bに直接接触していてもよい。また、上記実施形態の光波長変換装置1,101において、枠部32,132は、接合部を介して光波長変換部材2に接合されていてもよい。さらに、上記実施形態の光波長変換装置201において、枠部232は、接合部を介さず光波長変換部材2の側面2Cに直接接触していてもよい。 (4a) In the optical wavelength conversion devices 1, 101, and 201 of the above embodiments, the base portion 31 may be in direct contact with the bottom surface 2B of the optical wavelength conversion member 2 without a joint. Further, in the optical wavelength conversion devices 1 and 101 of the above embodiments, the frame portions 32 and 132 may be joined to the optical wavelength conversion member 2 via joint portions. Furthermore, in the optical wavelength conversion device 201 of the above-described embodiment, the frame portion 232 may be in direct contact with the side surface 2C of the optical wavelength conversion member 2 without a joining portion.

例えば、図1の光波長変換装置1において枠部32と光波長変換部材2の入射面2Aとの間に接合部を設けた第1変形例、図1の光波長変換装置1又は上記第1変形例において接合部4をなくして光波長変換部材2と基部31とを直接接触させた第2変形例、図3の光波長変換装置101において枠部132と光波長変換部材2の入射面2A及び/又は側面2Cとの間に接合部を設けた第3変形例、図3の光波長変換装置101又は上記第3変形例において接合部4をなくして光波長変換部材2と基部31とを直接接触させた第4変形例、図4の光波長変換装置201において接合部204の一部をなくして放熱部材203と光波長変換部材2とを部分的に直接接触させた第5変形例も本開示の意図する構成である。 For example, in the optical wavelength conversion device 1 of FIG. 1, a first modification in which a joint is provided between the frame portion 32 and the incident surface 2A of the optical wavelength conversion member 2, the optical wavelength conversion device 1 of FIG. A second modified example in which the joint portion 4 is eliminated and the light wavelength conversion member 2 and the base portion 31 are brought into direct contact, the frame portion 132 and the incident surface 2A of the light wavelength conversion member 2 in the light wavelength conversion device 101 of FIG. and/or a third modified example in which a joint is provided between the side surface 2C, the optical wavelength conversion device 101 of FIG. There are also a fourth modified example in which direct contact is made, and a fifth modified example in which part of the joint portion 204 is eliminated in the optical wavelength conversion device 201 of FIG. This is the intended configuration of the present disclosure.

(4b)上記実施形態の光波長変換装置1,101,201において、枠部32,132,232は、必ずしも光波長変換部材2の側面2C全体を囲わなくてもよい。つまり、枠部32,132,232は、光波長変換部材2の厚み方向又は周方向において、光波長変換部材2の側面2Cの一部のみを囲っていてもよい。また、上記実施形態の光波長変換装置1,101において、枠部32,132は、必ずしも光波長変換部材2の入射面2Aを周方向全体にわたって被覆しなくてもよい。 (4b) In the optical wavelength conversion devices 1, 101, and 201 of the above embodiments, the frame portions 32, 132, and 232 do not necessarily surround the entire side surface 2C of the optical wavelength conversion member 2. That is, the frame portions 32 , 132 , 232 may surround only part of the side surface 2</b>C of the light wavelength conversion member 2 in the thickness direction or the circumferential direction of the light wavelength conversion member 2 . In addition, in the optical wavelength conversion devices 1 and 101 of the above-described embodiments, the frame portions 32 and 132 do not necessarily cover the incident surface 2A of the optical wavelength conversion member 2 over the entire circumferential direction.

(4c)上記実施形態の光波長変換装置1,101,201及び上述の変形例では、基部の一部及び枠部の一部が、光波長変換部材2の底面2B及び側面2Cに直接接触するか、光波長変換部材2の底面2B及び側面2Cに接合部を介して接合されていればよい。 (4c) In the optical wavelength conversion devices 1, 101, and 201 of the above embodiments and the modifications described above, part of the base portion and part of the frame portion directly contact the bottom surface 2B and side surface 2C of the optical wavelength conversion member 2. Alternatively, it may be bonded to the bottom surface 2B and the side surface 2C of the light wavelength conversion member 2 via bonding portions.

(4d)上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (4d) The function of one component in the above embodiments may be distributed as multiple components, or the functions of multiple components may be integrated into one component. Also, part of the configuration of the above embodiment may be omitted. Also, at least a part of the configuration of the above embodiment may be added, replaced, etc. with respect to the configuration of the other above embodiment. It should be noted that all aspects included in the technical idea specified by the wording in the claims are embodiments of the present disclosure.

[5.実施例]
以下に、本開示の効果を確認するために行った試験の内容とその評価とについて説明する。
[5. Example]
The following describes the details of the test conducted to confirm the effects of the present disclosure and the evaluation thereof.

<実施例1>
1mm角、平均厚み0.22mmのセラミックス蛍光体21を用いて、図1の光波長変換装置1を作製した。セラミックス蛍光体21は、YAG(YAl12)を30体積%含み、セラミックス蛍光体21のCe濃度は、YAG中のYに対して0.3mol%である。基部31及び枠部32の材質は銅とした。また、接合部4として、樹脂性接着剤を使用した。以上を用いて図1の光波長変換装置1を作製した。
<Example 1>
Using a ceramic phosphor 21 of 1 mm square and 0.22 mm in average thickness, the optical wavelength conversion device 1 of FIG. 1 was produced. The ceramic phosphor 21 contains 30% by volume of YAG (Y 3 Al 5 O 12 ), and the Ce concentration of the ceramic phosphor 21 is 0.3 mol % with respect to Y in YAG. The material of the base portion 31 and the frame portion 32 was copper. A resinous adhesive was used as the bonding portion 4 . Using the above, the optical wavelength conversion device 1 of FIG. 1 was produced.

<実施例2>
実施例1と同じセラミックス蛍光体21を用いて、図3の光波長変換装置101を作製した。基部31及び枠部132の材質は銅とした。また、接合部4として、樹脂性接着剤を使用した。
<Example 2>
Using the same ceramic phosphor 21 as in Example 1, the optical wavelength conversion device 101 of FIG. 3 was produced. The material of the base portion 31 and the frame portion 132 was copper. A resinous adhesive was used as the bonding portion 4 .

<実施例3>
接合部として、はんだを用いた点以外は、実施例2と同じ構成の光波長変換装置を作製した。
<Example 3>
An optical wavelength conversion device having the same configuration as that of Example 2 was fabricated, except that solder was used as the joint.

<実施例4>
接合部として、銀のナノ粒子を焼結したものを用いた点以外は、実施例2と同じ構成の光波長変換装置を作製した。
<Example 4>
A light wavelength conversion device having the same configuration as that of Example 2 was fabricated, except that sintered silver nanoparticles were used as the junction.

<比較例1>
実施例1の光波長変換装置から枠部を取り除いた(つまり、放熱部材3が基部31のみを有する)光波長変換装置を作製した。
<Comparative Example 1>
An optical wavelength conversion device was produced by removing the frame portion from the optical wavelength conversion device of Example 1 (that is, the heat dissipation member 3 has only the base portion 31).

<排熱性の評価>
実施例1-4及び比較例1の装置に対して、出力5W(照射面積0.2mm)のレーザー光を光波長変換部材の中心に60秒間照射した後の光波長変換部材の中心温度をサーモグラフィで測定した。その結果を表1に示す。表1中の評価において、中心温度が50℃未満をA、中心温度が50℃以上80℃未満をB、中心温度が80℃以上をCとした。
<Evaluation of heat exhaustion>
In the apparatus of Example 1-4 and Comparative Example 1, the center temperature of the light wavelength conversion member after irradiating the center of the light wavelength conversion member with a laser beam of output 5 W (irradiation area 0.2 mm 2 ) for 60 seconds was Measured by thermography. Table 1 shows the results. In the evaluation in Table 1, A indicates that the center temperature is less than 50°C, B indicates that the center temperature is 50°C or higher and less than 80°C, and C indicates that the center temperature is 80°C or higher.

Figure 0007148291000001
Figure 0007148291000001

<考察>
表1に示されるように、実施例1では、中心温度が80℃未満に抑えられており、枠体を有する放熱部材によって光波長変換部材の排熱が効率的に行なわれている。枠体を有しない比較例1では、中心温度が80℃を超えており、排熱が十分ではない。
<Discussion>
As shown in Table 1, in Example 1, the center temperature is suppressed to less than 80° C., and heat is efficiently discharged from the light wavelength conversion member by the heat dissipation member having the frame. In Comparative Example 1, which does not have a frame, the center temperature exceeds 80° C., and exhaust heat is not sufficient.

また、実施例2では、枠体を光波長変換部材の入射面及び側面の双方に接触させることで排熱性がより高まるため、中心温度が実施例1よりも低下している。さらに、接合部としてはんだを用いた実施例3では、実施例2よりも排熱性が促進されている。さらに、接合部が焼結組織を有する実施例4では、中心温度が50℃未満となり、排熱性がさらに高まっている。 In addition, in Example 2, since the frame is brought into contact with both the incident surface and the side surface of the light wavelength conversion member, the heat dissipation property is further improved, so the center temperature is lower than in Example 1. Furthermore, in Example 3, in which solder is used as the joint portion, heat dissipation is promoted more than in Example 2. Furthermore, in Example 4, in which the joint portion has a sintered structure, the center temperature is less than 50° C., and the heat exhaust property is further improved.

1…光波長変換装置、2…光波長変換部材、2A…入射面、2B…底面、2C…側面、
3…放熱部材、4…接合部、21…セラミックス蛍光体、22…反射膜、
23…反射防止膜、31…基部、31A…取付面、32…枠部、32A…内面、
32B…開口、101…光波長変換装置、103…放熱部材、132…枠部、
201…光波長変換装置、203…放熱部材、204…接合部、232…枠部、
232A…内面。
DESCRIPTION OF SYMBOLS 1... Optical wavelength conversion apparatus, 2... Optical wavelength conversion member, 2A... Entrance surface, 2B... Bottom surface, 2C... Side surface,
3... heat dissipation member, 4... junction, 21... ceramic phosphor, 22... reflective film,
23... antireflection film, 31... base, 31A... mounting surface, 32... frame, 32A... inner surface,
32B... Opening, 101... Optical wavelength conversion device, 103... Heat dissipation member, 132... Frame part,
DESCRIPTION OF SYMBOLS 201... Optical wavelength conversion apparatus, 203... Heat dissipation member, 204... Joining part, 232... Frame part,
232A... Inner surface.

Claims (4)

入射した光の波長を変換するセラミックス蛍光体を有する光波長変換部材と、
前記光波長変換部材よりも放熱性に優れた放熱部材と、
を備える光波長変換装置であって、
前記光波長変換部材は、
光が入射する入射面と、
前記入射面とは反対側の底面と、
前記入射面と前記底面とをつなぐ側面と、
を有し、
前記放熱部材は、
前記光波長変換部材の前記底面側に配置される基部と、
前記基部から、前記光波長変換部材の前記側面の少なくとも一部を囲うように延伸する枠部と、
を有し、
前記基部及び前記枠部は、それぞれ、前記光波長変換部材に、前記光波長変換部材よりも熱伝導性に優れると共に、金属を主成分とする接合部を介して接合される、光波長変換装置。
a light wavelength conversion member having a ceramic phosphor that converts the wavelength of incident light;
a heat dissipation member having a heat dissipation property superior to that of the light wavelength conversion member;
An optical wavelength conversion device comprising:
The light wavelength conversion member is
an incident surface on which light is incident;
a bottom surface opposite to the incident surface;
a side surface connecting the incident surface and the bottom surface;
has
The heat dissipation member is
a base disposed on the bottom surface side of the light wavelength conversion member;
a frame extending from the base so as to surround at least part of the side surface of the light wavelength conversion member;
has
The base portion and the frame portion are each bonded to the optical wavelength conversion member via a bonding portion having a metal as a main component and having a higher thermal conductivity than the optical wavelength conversion member. Device.
前記枠部は、銅、銀、アルミニウム、ニッケル、及び鉄のうち少なくとも1種を含む、請求項1に記載の光波長変換装置。 2. The optical wavelength conversion device according to claim 1 , wherein said frame contains at least one of copper, silver, aluminum, nickel, and iron. 前記基部は、銅、銀、アルミニウム、ニッケル、及び鉄のうち少なくとも1種を含む、請求項1又は請求項2に記載の光波長変換装置。 3. The optical wavelength conversion device according to claim 1, wherein the base contains at least one of copper, silver, aluminum, nickel, and iron. 前記接合部は、焼結組織を有する、請求項1から請求項のいずれか1項に記載の光波長変換装置。 4. The optical wavelength conversion device according to any one of claims 1 to 3 , wherein said joint has a sintered structure.
JP2018119828A 2018-06-25 2018-06-25 Optical wavelength converter Active JP7148291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018119828A JP7148291B2 (en) 2018-06-25 2018-06-25 Optical wavelength converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018119828A JP7148291B2 (en) 2018-06-25 2018-06-25 Optical wavelength converter

Publications (2)

Publication Number Publication Date
JP2020004497A JP2020004497A (en) 2020-01-09
JP7148291B2 true JP7148291B2 (en) 2022-10-05

Family

ID=69100855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018119828A Active JP7148291B2 (en) 2018-06-25 2018-06-25 Optical wavelength converter

Country Status (1)

Country Link
JP (1) JP7148291B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7518335B2 (en) 2020-02-28 2024-07-18 日亜化学工業株式会社 Wavelength conversion member and light emitting device
JP7502611B2 (en) 2020-04-15 2024-06-19 日亜化学工業株式会社 Resin impregnation method, wavelength conversion module manufacturing method, and wavelength conversion module
TWI802898B (en) * 2020-06-08 2023-05-21 日商日本特殊陶業股份有限公司 Phosphor plate, wavelength conversion member, and light source device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226986A (en) 2011-04-20 2012-11-15 Stanley Electric Co Ltd Light source device and lighting system
US20130094181A1 (en) 2010-06-22 2013-04-18 Matthias Bruemmer Phosphor Device and Lighting Apparatus Comprising the Same
JP2014194895A (en) 2013-03-29 2014-10-09 Ushio Inc Fluorescent light source device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130094181A1 (en) 2010-06-22 2013-04-18 Matthias Bruemmer Phosphor Device and Lighting Apparatus Comprising the Same
JP2012226986A (en) 2011-04-20 2012-11-15 Stanley Electric Co Ltd Light source device and lighting system
JP2014194895A (en) 2013-03-29 2014-10-09 Ushio Inc Fluorescent light source device

Also Published As

Publication number Publication date
JP2020004497A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6460162B2 (en) Method for manufacturing wavelength converter
KR102501831B1 (en) optical wavelength converter
JP5510646B2 (en) Vehicle lighting
US11480316B2 (en) Light conversion package
JP7148291B2 (en) Optical wavelength converter
JP2014137973A (en) Light source device
JP7120745B2 (en) Optical wavelength conversion device and optical composite device
JP2019036638A (en) Light-emitting device
US20190101276A1 (en) Wavelength conversion member and light source device having wavelength conversion member
US20200271282A1 (en) Light-emitting element and illumination device
JP2013187043A (en) Light source device and lighting device
JP2018002912A (en) Sintered body and light-emitting device
JP7068040B2 (en) Optical wavelength converter
JP7188893B2 (en) Optical wavelength conversion member and optical wavelength conversion device
JP7312829B2 (en) WAVELENGTH CONVERSION MEMBER FOR SOLDERING, WAVELENGTH CONVERTER, AND LIGHT SOURCE DEVICE
JP2019197143A (en) Optical wavelength conversion device
JP7244297B2 (en) Optical wavelength conversion parts
JP2019184644A (en) Light wavelength conversion member and light-emitting device
WO2021010272A1 (en) Wavelength conversion member, light source device and method for producing wavelength conversion member
JP2023167774A (en) Wavelength conversion member and light source device
JP2016066445A (en) Light source device
JP2023167773A (en) Wavelength conversion member and light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R150 Certificate of patent or registration of utility model

Ref document number: 7148291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150