JP7147952B2 - Chromatographic detector - Google Patents

Chromatographic detector Download PDF

Info

Publication number
JP7147952B2
JP7147952B2 JP2021501217A JP2021501217A JP7147952B2 JP 7147952 B2 JP7147952 B2 JP 7147952B2 JP 2021501217 A JP2021501217 A JP 2021501217A JP 2021501217 A JP2021501217 A JP 2021501217A JP 7147952 B2 JP7147952 B2 JP 7147952B2
Authority
JP
Japan
Prior art keywords
plane
flow cell
flow
cell
cell body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021501217A
Other languages
Japanese (ja)
Other versions
JPWO2020170377A1 (en
Inventor
悠佑 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2020170377A1 publication Critical patent/JPWO2020170377A1/en
Application granted granted Critical
Publication of JP7147952B2 publication Critical patent/JP7147952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Description

本発明は、液体クロマトグラフ(以下、LC)又は超臨界流体クロマトグラフ(以下、SFC)において使用されるクロマトグラフ用検出器に関する。 The present invention relates to a chromatographic detector used in a liquid chromatograph (hereafter LC) or a supercritical fluid chromatograph (hereafter SFC).

LCやSFCでは、分離カラムにおいて分離された試料成分を検出するための検出器として吸光度検出器がよく使用される。吸光度検出器は、試料液を内部で流通させるフローセルを有し、フローセルを透過させた光の強度を検出することによりフローセル内を流れる試料液の成分濃度の有無や濃度を光学的に検出・測定する。 In LC and SFC, an absorbance detector is often used as a detector for detecting sample components separated in a separation column. The absorbance detector has a flow cell through which the sample liquid flows. By detecting the intensity of light transmitted through the flow cell, the absorbance detector optically detects and measures the presence or absence of component concentrations in the sample liquid flowing through the flow cell. do.

試料成分の分取を行なう場合は、試料濃度が通常の分析の際の試料濃度の10倍以上にもなることが多い。そのため、分取において分析と同じ光路長(測定光が試料水を通過する距離)をもつフローセルを使用すると、フローセルを透過する光量が不足し、十分な検出感度が得られない。そのため、分取用途では、分析用途よりも大幅に短い光路長をもつフローセルが使用される。 When fractionating sample components, the sample concentration is often 10 times or more the sample concentration in normal analysis. Therefore, if a flow cell having the same optical path length (distance for measurement light to pass through sample water) as that used for analysis is used in preparative analysis, the amount of light that passes through the flow cell will be insufficient, and sufficient detection sensitivity will not be obtained. Therefore, preparative applications use flow cells with significantly shorter optical path lengths than analytical applications.

ここで、SFCは、液体と気体の中間的物性をもつ超臨界状態の流体を移動相として使用するクロマトグラフである。基本的なシステムはLCと同じであるが、超臨界状態を維持するために、検出器の後段に背圧調整装置(BPR)を追加して分析流路内を10MPa~40MPaの高圧にする必要がある。そのため、検出器で使用するフローセルにも高い圧力がかかる。 Here, SFC is a chromatograph that uses as a mobile phase a fluid in a supercritical state that has physical properties intermediate between those of a liquid and a gas. The basic system is the same as LC, but in order to maintain the supercritical state, it is necessary to add a back pressure regulator (BPR) after the detector to maintain a high pressure of 10 MPa to 40 MPa in the analysis channel. There is Therefore, high pressure is also applied to the flow cell used in the detector.

分析を目的としたLCシステムでは、ノイズ低減のために検出器の後段にBPRが設けられることがあるが、それでもフローセルにかかる圧力は高々3MPa程度である。一方で、分取を目的としたLCシステムでは、検出器の後段にバルブを取り付けるため、バルブの切替えの際に20MPa程度の圧力がフローセルにかかる場合がある。 In an LC system intended for analysis, a BPR may be provided after the detector for noise reduction, but the pressure applied to the flow cell is still at most about 3 MPa. On the other hand, in an LC system intended for preparative separation, since a valve is attached after the detector, a pressure of about 20 MPa may be applied to the flow cell when the valve is switched.

石英などからなる光透過性基板を複数積層し、それらの光透過性基板の内部接合面に溝を設けて短光路長のフローセルを実現することが提案されている(特許文献1参照。)。 It has been proposed to stack a plurality of light-transmitting substrates made of quartz or the like and form grooves on the inner bonding surfaces of the light-transmitting substrates to realize a flow cell with a short optical path length (see Patent Document 1).

特開2017-201259号公報JP 2017-201259 A 特開2008-216094号公報JP 2008-216094 A

特許文献1において提案されているような複数の基板の接合構造では、1mm以下といった短い光路長は実現できるものの、40MPa以上の高耐圧性を有するフローセルの実現は容易ではない。 Although a short optical path length of 1 mm or less can be realized in the joint structure of a plurality of substrates as proposed in Patent Document 1, it is not easy to realize a flow cell having a high pressure resistance of 40 MPa or more.

そこで、本発明は、40MPa以上の高耐圧を有しながら短い光路長を実現可能なフローセルを備えた検出器を提供することを目的とするものである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a detector having a flow cell capable of achieving a short optical path length while having a high withstand voltage of 40 MPa or more.

本発明に係るクロマトグラフ用検出器は、先端に第1平面をもつ突起が設けられている光透過性の一対の光学窓が、互いの前記第1平面が対向するようにセルボディに取り付けられ、互いの前記第1平面の間に試料液が流れるための隙間が形成されているフローセルと、前記フローセルの前記一対の光学窓を測定光が通過するように前記フローセルに対して測定光を照射する光源と、前記フローセルの前記一対の光学窓を通過した測定光を検出するための光検出器と、を備え、前記フローセルの前記セルボディは試料液が流れる流路を内部に有するとともに前記流路を挟んで互いに対向する位置に前記流路へ通じる開口を有し、前記セルボディの前記開口の周囲面が平面となっており、前記一対の光学窓のそれぞれは、前記セルボディの前記開口の前記周囲面と対向する第2平面を有するフランジ部を有し、前記セルボディの前記開口を介して前記流路内へ前記突起が挿入され、前記周囲面と前記第2平面との間に第2平面と接する平面を有する樹脂製のパッキンが挟み込まれた状態で前記第2平面が前記周囲面側へ押し付けられ、前記光学窓の前記第2平面の算術平均粗さが0.8a以下である。 In the chromatographic detector according to the present invention, a pair of light-transmissive optical windows having protrusions with first planes at their tips are attached to the cell body so that the first planes face each other, A flow cell in which a gap is formed between the first planes for allowing the sample liquid to flow, and the flow cell is irradiated with measurement light so that the measurement light passes through the pair of optical windows of the flow cell. A light source and a photodetector for detecting measurement light that has passed through the pair of optical windows of the flow cell, wherein the cell body of the flow cell has therein a channel through which a sample liquid flows, and the channel is formed in the cell body. An opening communicating with the flow path is provided at positions facing each other across the cell body. and the protrusion is inserted into the flow channel through the opening of the cell body, and the second plane and the second plane are formed between the peripheral surface and the second plane. The second plane is pressed against the peripheral surface in a state in which resin packing having contacting planes is sandwiched, and the arithmetic mean roughness of the second plane of the optical window is 0.8a or less.

特許文献2(特開2008-216094号公報)には、フランジ形状の光学窓をセル本体に取り付けて短光路長のフローセルを実現することが開示されている。しかしながら、この特許文献2では、0.4MPa程度の圧力がフローセルにかかることが想定されており、40MPaもの圧力がフローセルにかかることは想定されていない。 Patent Document 2 (Japanese Unexamined Patent Application Publication No. 2008-216094) discloses that a flow cell with a short optical path length is realized by attaching a flange-shaped optical window to a cell body. However, in Patent Document 2, it is assumed that a pressure of about 0.4 MPa is applied to the flow cell, and it is not assumed that a pressure of 40 MPa is applied to the flow cell.

本発明にかかるクロマトグラフ用検出器では、前記フローセルの前記セルボディは試料液が流れる流路を内部に有するとともに前記流路を挟んで互いに対向する位置に前記流路へ通じる開口を有し、前記セルボディの前記開口の周囲面が平面となっており、前記一対の光学窓のそれぞれは、前記セルボディの前記開口の前記周囲面と対向する第2平面を有するフランジ部を有し、前記セルボディの前記開口を介して前記流路内へ前記突起が挿入され、前記周囲面と前記第2平面との間に前記第2平面と接する平面を有する樹脂製のパッキンが挟み込まれた状態で前記第2平面が前記周囲面側へ押し付けられ、前記光学窓の前記第2平面の算術平均粗さが0.8a以下であるので、40MPa以上の高耐圧を有しながら短い光路長を実現可能なフローセルを備えた検出器が提供される。 In the chromatographic detector according to the present invention, the cell body of the flow cell has therein a channel through which a sample liquid flows, and has openings communicating with the channel at positions facing each other across the channel, A peripheral surface of the opening of the cell body is flat, and each of the pair of optical windows has a flange portion having a second flat surface facing the peripheral surface of the opening of the cell body. The protrusion is inserted into the flow path through the opening, and the resin packing having a plane contacting the second plane is sandwiched between the peripheral surface and the second plane. Since the plane is pressed against the peripheral surface side and the arithmetic average roughness of the second plane of the optical window is 0.8a or less, a flow cell capable of achieving a short optical path length while having a high withstand voltage of 40 MPa or more is provided. A detector is provided.

クロマトグラフ用検出器の一実施例の概略構成図である。1 is a schematic configuration diagram of an example of a chromatographic detector; FIG. 同実施例のフローセルの分解断面構成図である。FIG. 3 is an exploded cross-sectional configuration diagram of the flow cell of the same example. 同実施例のフローセルの断面構成図である。It is a cross-sectional block diagram of the flow cell of the same Example. フローセルの光学窓の変形例を示す断面図である。FIG. 4 is a cross-sectional view showing a modification of the optical window of the flow cell;

以下に、本発明に係るクロマトグラフ用検出器の一実施例について、図面を用いて説明する。 An embodiment of the chromatographic detector according to the present invention will be described below with reference to the drawings.

クロマトグラフ用検出器の一実施例の構成について、図1の概略構成図を用いて説明する。 The configuration of an embodiment of a chromatographic detector will be described with reference to the schematic configuration diagram of FIG.

この実施例のクロマトグラフ用検出器は、光源2、集光レンズ4、フローセル6、ミラー8、入口スリット10、分光器12及び光検出器14を備えている。光検出器14は、例えばフォトダイオードアレイである。 The chromatographic detector of this embodiment comprises a light source 2, a condenser lens 4, a flow cell 6, a mirror 8, an entrance slit 10, a spectroscope 12 and a photodetector . Photodetector 14 is, for example, a photodiode array.

光源2により発せられる測定光の光路上に、集光レンズ4及びフローセル6が配置されており、光源2からの測定光が集光レンズ4を介してフローセル6へ照射されるようになっている。フローセル6内を液体クロマトグラフ又は超臨界流体クロマトグラフの分離カラムからの溶出液が試料液として流れる。 A condenser lens 4 and a flow cell 6 are arranged on the optical path of the measurement light emitted by the light source 2, and the measurement light from the light source 2 is irradiated to the flow cell 6 via the condenser lens 4. . An eluate from a separation column of a liquid chromatograph or a supercritical fluid chromatograph flows through the flow cell 6 as a sample liquid.

ミラー8はフローセル6を透過した測定光を反射させて入口スリット10側へ導くように配置されており、入口スリット10を経た測定光が回折格子などの分光器12に導かれるようになっている。分光器12に導かれた光は各波長成分の光に分光されて光検出器14に入射するようになっている。 The mirror 8 is arranged to reflect the measurement light that has passed through the flow cell 6 and guide it to the entrance slit 10 side, so that the measurement light that has passed through the entrance slit 10 is guided to a spectroscope 12 such as a diffraction grating. . The light guided to the spectroscope 12 is split into light of each wavelength component and is incident on the photodetector 14 .

光検出器14は各波長成分の光の強度を検出するものであり、その強度に応じた検出信号を発生させる。図示は省略されているが、光検出器14には、専用のコンピュータや汎用のコンピュータによって実現される演算処理装置が接続されている。その演算処理装置は光検出器14で得られた検出信号強度に基づいて、フローセル6を流れる液の吸光度スペクトルを求め、試料成分の検出や定量を行なうようになっている。 The photodetector 14 detects the intensity of light of each wavelength component and generates a detection signal corresponding to the intensity. Although not shown, the photodetector 14 is connected to an arithmetic processing unit realized by a dedicated computer or a general-purpose computer. The arithmetic processing unit obtains the absorbance spectrum of the liquid flowing through the flow cell 6 based on the intensity of the detection signal obtained by the photodetector 14, and detects and quantifies the sample components.

フローセル6の構造について、図2及び図3を用いて説明する。 The structure of the flow cell 6 will be described with reference to FIGS. 2 and 3. FIG.

図2に示されているように、この実施例のクロマトグラフ用検出器に用いられているフローセル6は、ステンレスなどの金属からなるセルボディ16、一対の光学窓20,20、各光学窓20とセルボディ16との間にそれぞれ挟み込まれる2つのパッキン18,18、各光学窓20をセルボディ16に対して固定するための2つの固定板22,22を備えている。 As shown in FIG. 2, the flow cell 6 used in the chromatographic detector of this embodiment includes a cell body 16 made of metal such as stainless steel, a pair of optical windows 20, 20, and each optical window 20. Two packings 18, 18 sandwiched between the cell body 16 and two fixing plates 22, 22 for fixing each optical window 20 to the cell body 16 are provided.

セルボディ16は試料液が流れるための流路24を内部に有する。セルボディ16の互いに反対に位置する2つの面(図において上面と下面)のそれぞれに、光学窓20をはめ込むための窪み26が設けられており、その窪み26の底面に流路24に通じる開口28がそれぞれ設けられている。2つの開口28,28は互いに対向している。窪み26及び開口28の形状は円柱形状である。開口28の縁の周囲面である窪み26の底面30は平面となっている。 The cell body 16 has therein a channel 24 through which the sample liquid flows. A recess 26 for fitting the optical window 20 is provided on each of the two surfaces (the upper surface and the lower surface in the drawing) of the cell body 16 located opposite to each other, and an opening 28 communicating with the flow path 24 is provided on the bottom surface of the recess 26. are provided respectively. The two openings 28, 28 face each other. The recesses 26 and the openings 28 are cylindrical in shape. The bottom surface 30 of the depression 26, which is the peripheral surface of the edge of the opening 28, is flat.

光学窓20は、先端に第1平面38をもつ円柱状の突起34と、突起34の基端から周方向へ広がるフランジ部36と、を有する。光学窓20のフランジ部36は、窪み26の底面30と対向する第2平面40を有する。光学窓20の第1平面38及び第2平面40とは反対側の背面42は、第1平面38及び第2平面40と平行な平面となっている。光学窓20の突起34はセルボディ16の開口28の内径よりも僅かに小さい外径を有する。光学窓20は、石英など測定光に対して光透過性を有する材質で構成されている。 The optical window 20 has a cylindrical projection 34 with a first flat surface 38 at its tip, and a flange portion 36 extending circumferentially from the proximal end of the projection 34 . The flange portion 36 of the optical window 20 has a second flat surface 40 that faces the bottom surface 30 of the recess 26 . A rear surface 42 of the optical window 20 opposite to the first plane 38 and the second plane 40 is a plane parallel to the first plane 38 and the second plane 40 . The projection 34 of the optical window 20 has an outer diameter slightly smaller than the inner diameter of the opening 28 in the cell body 16. As shown in FIG. The optical window 20 is made of a material, such as quartz, which is optically transparent to the measurement light.

パッキン18は、中央部に光学窓20の突起34を貫通させるための貫通孔32を有する円盤状の部材であり、フッ素樹脂やケトン系樹脂などの弾性材料で構成されている。ケトン系樹脂としては、ポリエーテルエーテルケトン(PEEK)などが挙げられる。 The packing 18 is a disk-shaped member having a through hole 32 in the center for the projection 34 of the optical window 20 to pass through, and is made of an elastic material such as fluororesin or ketone resin. Examples of ketone-based resins include polyetheretherketone (PEEK).

固定板22は、窪み26に嵌め込まれた光学窓20の背面42をセルボディ16側へ押圧して固定するためにセルボディ16に、例えばネジ止めにより固定されるものである。固定板22はステンレスなどの金属材料により構成されている。固定板22の中央部には、測定光を通過させるための貫通孔44が設けられている。 The fixing plate 22 is fixed to the cell body 16 by screwing, for example, in order to press and fix the back surface 42 of the optical window 20 fitted in the recess 26 toward the cell body 16 side. The fixing plate 22 is made of a metal material such as stainless steel. A through hole 44 is provided in the central portion of the fixing plate 22 to allow the measurement light to pass therethrough.

窪み26の底面30と光学窓20の第2平面40との間にパッキン18を挟み込んだ状態で光学窓20をセルボディ16の窪み26に嵌め込んで固定板22により固定すると、図3に示されているように、一対の光学窓20,20のそれぞれの突起部34が流路24内に入り込み、互いの第1平面38,38の間に流路24よりも幅の狭い隙間が形成される。測定光は、第1平面38,38の間の隙間を通過するように、一対の光学窓20,20のうちの一方の光学窓20の背面42から入射し、他方の光学窓20の背面42から出射するように照射される。したがって、第1平面38,38の間の隙間の大きさが、測定光が試料液を通過する光路長となる。 The optical window 20 is fitted into the recess 26 of the cell body 16 with the packing 18 sandwiched between the bottom surface 30 of the recess 26 and the second plane 40 of the optical window 20 and fixed by the fixing plate 22, as shown in FIG. As shown, the projections 34 of each of the pair of optical windows 20, 20 enter the channel 24, forming a gap narrower than the channel 24 between the first planes 38, 38. . The measurement light is incident from the rear surface 42 of one of the pair of optical windows 20, 20 so as to pass through the gap between the first planes 38, 38, and is incident from the rear surface 42 of the other optical window 20. is illuminated to emit from Therefore, the size of the gap between the first planes 38, 38 is the optical path length for the measurement light to pass through the sample liquid.

このように、光学窓20の第1平面38と背面42との間の高さ寸法によりフローセル6の光路長となる第1平面38,38の間の隙間の大きさが決定される。したがって、窪み26に嵌め込む光学窓20を第1平面38と背面42との間の高さ寸法の異なるものに変更することで、フローセル6の光路長を変更することができる。この実施例の検出器が分取用途で用いられる場合、第1平面38,38の間の隙間の大きさが1.0mm以下となるように光学窓20の寸法が設計される。 Thus, the height dimension between the first plane 38 and the rear surface 42 of the optical window 20 determines the size of the gap between the first planes 38 , 38 that is the optical path length of the flow cell 6 . Therefore, the optical path length of the flow cell 6 can be changed by changing the optical window 20 fitted in the recess 26 to one having a different height dimension between the first plane 38 and the rear surface 42 . If the detector of this embodiment is used in preparative applications, the dimensions of the optical window 20 are designed such that the size of the gap between the first planes 38, 38 is 1.0 mm or less.

なお、この実施例では、一対の光学窓20,20が同一形状及び同一寸法となっているが、必ずしも同一形状及び同一寸法である必要はない。 In this embodiment, the pair of optical windows 20, 20 have the same shape and the same size, but they do not have to have the same shape and the same size.

ここで、光学窓20の第2平面40は、算術平均粗さが0.8a以下となるように表面処理が施されている。本発明者は、光学窓20の第2平面40の表面粗さと耐圧性能との関係性について、フローセル6に45MPaの圧力をかけたときに液漏れが発生するか否かによって検証した。検証の結果、第2平面40の算術平均粗さを25aとした場合は100%の確率、算術平均粗さを6.3aとした場合は約40%の確率、算術平均粗さを1.6aとした場合は約20%の確率でそれぞれ液漏れが発生したのに対し、算術平均粗さを0.8aとした場合は液漏れが発生しなかった。このことから、パッキン18と直接的に接触する光学窓20の第2平面40の算術平均粗さを0.8a以下とすることにより、40MPa以上の耐圧性能を具備させることができることがわかった。 Here, the second plane 40 of the optical window 20 is surface-treated so that the arithmetic mean roughness is 0.8a or less. The inventor verified the relationship between the surface roughness of the second plane 40 of the optical window 20 and the pressure resistance performance by checking whether or not liquid leakage occurs when a pressure of 45 MPa is applied to the flow cell 6 . As a result of verification, when the arithmetic mean roughness of the second plane 40 is 25a, the probability is 100%, when the arithmetic mean roughness is 6.3a, the probability is about 40%, and the arithmetic mean roughness is 1.6a. When the arithmetic average roughness was set to 0.8a, liquid leakage did not occur, whereas the liquid leakage occurred with a probability of about 20%. From this, it was found that by setting the arithmetic mean roughness of the second plane 40 of the optical window 20, which is in direct contact with the packing 18, to 0.8a or less, the pressure resistance performance of 40 MPa or more can be provided.

また、光学窓20の第2平面40の面精度を200μm以下とすることで、フローセル6の耐圧性能をさらに向上させることができる。さらには、光学窓20の第2平面40の平面度を測定光の波長の10倍以下とすることによっても、フローセル6の耐圧性能をさらに向上させることができる。また、光学窓20の第2平面40と背面42との間の平行度を1μm以下とすることで、フローセル6の耐圧性能をさらに向上させることができる。 Further, by setting the surface accuracy of the second plane 40 of the optical window 20 to 200 μm or less, the pressure resistance performance of the flow cell 6 can be further improved. Furthermore, the pressure resistance performance of the flow cell 6 can be further improved by setting the flatness of the second plane 40 of the optical window 20 to 10 times or less the wavelength of the measurement light. Further, by setting the parallelism between the second plane 40 and the rear surface 42 of the optical window 20 to 1 μm or less, the pressure resistance performance of the flow cell 6 can be further improved.

なお、光学窓20の突起34は、図4に示されているように、先端の第1平面34側へいくほど外径が小さくなるテーパ形状を有していてもよい。これにより、光学窓20の強度を高めることができる。 4, the protrusion 34 of the optical window 20 may have a tapered shape in which the outer diameter becomes smaller toward the first plane 34 side of the tip. Thereby, the strength of the optical window 20 can be increased.

上記実施例は、本発明に係るクロマトグラフ用検出器の実施形態を例示したに過ぎない。本発明に係るクロマトグラフ用検出器の実施形態は、以下のとおりである。 The above examples merely illustrate embodiments of the chromatographic detector according to the present invention. Embodiments of the chromatographic detector according to the invention are as follows.

本発明に係るクロマトグラフ用検出器の実施形態では、先端に第1平面(38)をもつ突起(34)が設けられている光透過性の一対の光学窓(20,20)が、互いの前記第1平面(38)が対向するようにセルボディ(16)に取り付けられ、互いの前記第1平面(38)の間に試料液が流れるための隙間が形成されているフローセル(6)と、前記フローセル(6)の前記一対の光学窓(20,20)を測定光が通過するように前記フローセル(6)に対して測定光を照射する光源(2)と、前記フローセル(6)の前記一対の光学窓(20,20)を通過した測定光を検出するための光検出器(14)と、を備え、前記フローセル(6)の前記セルボディ(16)は試料液が流れる流路(24)を内部に有するとともに前記流路(24)を挟んで互いに対向する位置に前記流路(24)へ通じる開口(28)を有し、前記セルボディ(16)の前記開口(28)の周囲面(30)が平面となっており、前記一対の光学窓(20,20)のそれぞれは、前記セルボディ(16)の前記開口(28)の前記周囲面(30)と対向する第2平面(40)を有するフランジ部(34)を有し、前記セルボディ(16)の前記開口(28)を介して前記流路(24)内へ前記突起(34)が挿入され、前記周囲面(30)と前記第2平面(40)との間に前記第2平面と接する平面を有する樹脂製のパッキン(18)が挟み込まれた状態で前記第2平面(40)が前記周囲面(30)側へ押し付けられ、前記光学窓(20)の前記第2平面(40)の算術平均粗さが0.8a以下である。 In an embodiment of the chromatographic detector according to the present invention, a pair of light transmissive optical windows (20, 20) terminating in a projection (34) having a first flat surface (38) are positioned between each other. a flow cell (6) attached to the cell body (16) so that the first planes (38) face each other, and a gap is formed between the first planes (38) for the sample liquid to flow; a light source (2) for irradiating the flow cell (6) with measurement light so that the measurement light passes through the pair of optical windows (20, 20) of the flow cell (6); a photodetector (14) for detecting measurement light that has passed through a pair of optical windows (20, 20), and the cell body (16) of the flow cell (6) has a flow path (24 ) inside and having openings (28) communicating with the flow path (24) at positions facing each other across the flow path (24), the cell body (16) having a peripheral surface of the opening (28) (30) is a plane, and each of said pair of optical windows (20, 20) is a second plane (40) facing said peripheral surface (30) of said opening (28) of said cell body (16). ), the protrusion (34) being inserted into the channel (24) through the opening (28) of the cell body (16), the peripheral surface (30) and the second plane (40) in a state in which a resin packing (18) having a plane in contact with the second plane is sandwiched between the second plane (40) and the second plane (40) toward the peripheral surface (30) The pressed second plane (40) of the optical window (20) has an arithmetic mean roughness of 0.8a or less.

上記実施形態の第1態様では、前記一対の光学窓(20,20)の互いの前記第1平面(38)の間の前記隙間は1.0mm以下である。このような態様により、本発明に係る検出器を、試料成分を高濃度に含む分取用途に使用することができる。 In a first aspect of the above embodiment, the gap between the first planes (38) of the pair of optical windows (20, 20) is 1.0 mm or less. With such an aspect, the detector according to the present invention can be used for preparative applications containing high-concentration sample components.

また、上記実施形態の第2態様では、前記光学窓(20)の前記第2平面(40)の面精度は200μm以下である。このような態様により、前記フローセル(6)の耐圧性能をさらに向上させることができる。 Further, in the second aspect of the above embodiment, the surface accuracy of the second plane (40) of the optical window (20) is 200 μm or less. With such an aspect, the pressure resistance performance of the flow cell (6) can be further improved.

また、上記実施形態の第3態様では、前記光学窓(20)の前記第2平面(40)の平面度は前記測定光の波長の10倍以下である。このような態様により、前記フローセル(6)の耐圧性能をさらに向上させることができる。 Further, in the third aspect of the above embodiment, the flatness of the second plane (40) of the optical window (20) is 10 times or less the wavelength of the measurement light. With such an aspect, the pressure resistance performance of the flow cell (6) can be further improved.

また、上記実施形態の第4態様では、前記光学窓(20)の前記第1平面(38)及び前記第2平面(40)とは反対側に位置する背面(42)が平面となっており、前記第2平面(40)と前記背面(42)との間の平行度は1μm以下である。このような態様により、前記フローセル(6)の耐圧性能をさらに向上させることができる。 Further, in the fourth aspect of the above embodiment, the rear surface (42) of the optical window (20) located on the side opposite to the first plane (38) and the second plane (40) is flat. , the parallelism between said second plane (40) and said rear surface (42) is less than 1 μm. With such an aspect, the pressure resistance performance of the flow cell (6) can be further improved.

上記第1態様から第4態様は互いに自在に組み合わせることができる。 The first to fourth aspects can be freely combined with each other.

2 光源
4 集光レンズ
6 フローセル
8 ミラー
10 入口スリット
12 分光器
14 光検出器
16 セルボディ
18 パッキン
20 光学窓
22 固定板
24 流路
26 窪み
28 開口
30 窪みの底面(周囲面)
32,44 貫通孔
34 突起
36 フランジ部
38 第1平面
40 第2平面
42 背面
2 light source 4 condenser lens 6 flow cell 8 mirror 10 entrance slit 12 spectrometer 14 photodetector 16 cell body 18 packing 20 optical window 22 fixing plate 24 flow path 26 depression 28 opening 30 depression bottom surface (peripheral surface)
32, 44 through hole 34 projection 36 flange 38 first plane 40 second plane 42 rear surface

Claims (4)

先端に第1平面をもつ突起が設けられている光透過性の一対の光学窓が、互いの前記第1平面が対向するようにセルボディに取り付けられ、互いの前記第1平面の間に試料液が流れるための隙間が形成されているフローセルと、
前記フローセルの前記一対の光学窓を測定光が通過するように前記フローセルに対して測定光を照射する光源と、
前記フローセルの前記一対の光学窓を通過した測定光を検出するための光検出器と、を備え、
前記フローセルの前記セルボディは試料液が流れる流路を内部に有するとともに前記流路を挟んで互いに対向する位置に前記流路へ通じる開口を有し、前記セルボディの前記開口の周囲面が平面となっており、
前記一対の光学窓のそれぞれは、前記セルボディの前記開口の前記周囲面と対向する第2平面を有するフランジ部を有し、前記セルボディの前記開口を介して前記流路内へ前記突起が挿入され、前記周囲面と前記第2平面との間に前記第2平面と接する樹脂製パッキンが挟み込まれた状態で前記第2平面が前記周囲面側へ押し付けられ、
前記光学窓の前記第2平面の算術平均粗さが0.8a以下である、クロマトグラフ用検出器。
A pair of light-transmitting optical windows having protrusions with first planes at their ends are attached to the cell body so that the first planes face each other, and the sample liquid is placed between the first planes. a flow cell in which a gap is formed for the flow of
a light source that irradiates the flow cell with measurement light so that the measurement light passes through the pair of optical windows of the flow cell;
a photodetector for detecting measurement light that has passed through the pair of optical windows of the flow cell;
The cell body of the flow cell has therein a flow path through which a sample liquid flows, and has openings at positions facing each other across the flow path, communicating with the flow path, and the peripheral surface of the opening of the cell body is flat. and
Each of the pair of optical windows has a flange portion having a second flat surface facing the peripheral surface of the opening of the cell body, and the projection is inserted into the flow channel through the opening of the cell body. , the second plane is pressed against the peripheral surface in a state in which a resin packing contacting the second plane is sandwiched between the peripheral surface and the second plane;
A chromatographic detector, wherein the arithmetic average roughness of the second plane of the optical window is 0.8a or less.
前記一対の光学窓の互いの前記第1平面の間の前記隙間は1.0mm以下である、請求項1に記載のクロマトグラフ用検出器。 2. The chromatographic detector of claim 1, wherein said gap between said first planes of said pair of optical windows is 1.0 mm or less. 前記光学窓の前記第2平面の面精度は200μm以下である、請求項1に記載のクロマトグラフ用検出器。 2. The chromatographic detector according to claim 1, wherein the surface accuracy of said second plane of said optical window is 200 [mu]m or less. 前記光学窓の前記第1平面及び前記第2平面とは反対側に位置する背面が平面となっており、前記第2平面と前記背面との間の平行度は1μm以下である、請求項1に記載のクロマトグラフ用検出器。 2. The rear surface of the optical window located on the side opposite to the first plane and the second plane is flat, and the parallelism between the second plane and the rear surface is 1 μm or less. chromatographic detector according to .
JP2021501217A 2019-02-21 2019-02-21 Chromatographic detector Active JP7147952B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006451 WO2020170377A1 (en) 2019-02-21 2019-02-21 Chromatograph detector

Publications (2)

Publication Number Publication Date
JPWO2020170377A1 JPWO2020170377A1 (en) 2021-12-02
JP7147952B2 true JP7147952B2 (en) 2022-10-05

Family

ID=72143366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021501217A Active JP7147952B2 (en) 2019-02-21 2019-02-21 Chromatographic detector

Country Status (2)

Country Link
JP (1) JP7147952B2 (en)
WO (1) WO2020170377A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071551A (en) 2000-08-30 2002-03-08 Japan Science & Technology Corp Flow type sample-holding device enabling measuring high- temperature/high-pressure state sample
JP2008216094A (en) 2007-03-06 2008-09-18 Kurabo Ind Ltd Flow cell for measuring transmission light
JP2011503562A (en) 2007-11-13 2011-01-27 エフ.ホフマン−ラ ロシュ アーゲー How to use cuvettes and cuvettes
JP2011257146A (en) 2010-06-04 2011-12-22 Horiba Ltd Cell for optical measurement
JP2016099311A (en) 2014-11-26 2016-05-30 横河電機株式会社 Sample measurement device
WO2018037536A1 (en) 2016-08-25 2018-03-01 株式会社島津製作所 Flow cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822166A (en) * 1985-12-12 1989-04-18 Rossiter Valentine J Flow-through cells for spectroscopy
DE3822445A1 (en) * 1988-07-02 1990-01-04 Bruker Analytische Messtechnik OPTICAL HIGH PRESSURE TRANSMISSION CELL
US5054919A (en) * 1989-02-07 1991-10-08 Linear Instruments Corporation Seal for high pressure and small volume sample cells
US5078493A (en) * 1990-06-29 1992-01-07 Conoco Inc. Flow cell resistant to corrosive environments for fiber optic spectroscopy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071551A (en) 2000-08-30 2002-03-08 Japan Science & Technology Corp Flow type sample-holding device enabling measuring high- temperature/high-pressure state sample
JP2008216094A (en) 2007-03-06 2008-09-18 Kurabo Ind Ltd Flow cell for measuring transmission light
JP2011503562A (en) 2007-11-13 2011-01-27 エフ.ホフマン−ラ ロシュ アーゲー How to use cuvettes and cuvettes
JP2011257146A (en) 2010-06-04 2011-12-22 Horiba Ltd Cell for optical measurement
JP2016099311A (en) 2014-11-26 2016-05-30 横河電機株式会社 Sample measurement device
WO2018037536A1 (en) 2016-08-25 2018-03-01 株式会社島津製作所 Flow cell

Also Published As

Publication number Publication date
JPWO2020170377A1 (en) 2021-12-02
WO2020170377A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
EP1994392B1 (en) Flow cell for optical detector and method of forming same
EP2529198B1 (en) A flow cell for optical measurement
EP2602611B1 (en) High-pressure fluorescence flow cell, flow cell assembly, fluorescence detector, and supercritical fluid chromatograph
Parriott A Practical guide to HPLC detection
US9222876B2 (en) Light scattering flow cell device
US9995673B2 (en) Flow cell
US4006990A (en) Convergent light illuminated flow cell for liquid chromatography
WO2012137750A1 (en) Flow cell with long light path length
EP3142765A1 (en) Low-power miniature led-based uv absorption detector with low detection limits for capillary liquid chromatography
JP5255837B2 (en) Apparatus and device for placing light and sample in light-emitting or light-absorbing device, and method of making and using the same
US7005090B2 (en) Method for manufacturing a flow cell
JP7147952B2 (en) Chromatographic detector
US10578544B2 (en) Flow cell
US3975104A (en) Convergent light illuminated flow cell for liquid chromatography
KR102488993B1 (en) Light Scattering Detectors and Methods for Light Scattering Detectors
US5054919A (en) Seal for high pressure and small volume sample cells
JP6658918B2 (en) Liquid chromatograph detector
WO2014021099A1 (en) Liquid chromatographic analyzer
JP7156423B2 (en) Flow cell unit
US11226287B2 (en) Light scattering detectors and sample cells for the same
WO2018193666A1 (en) Flow cell and detector equipped with flow cell
JP7180760B2 (en) Flow cells for chromatography detectors and chromatography detectors
US20180335408A1 (en) Combined fluorescence and absorption detector for on-column detection after capillary separation techniques
JP7180786B2 (en) Flow cells for chromatography detectors and chromatography detectors
JPH08129003A (en) Ultraviolet visible spectrophotometer detector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R151 Written notification of patent or utility model registration

Ref document number: 7147952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151