JP7146207B2 - Refrigeration equipment with gas-liquid separator and gas-liquid separator - Google Patents

Refrigeration equipment with gas-liquid separator and gas-liquid separator Download PDF

Info

Publication number
JP7146207B2
JP7146207B2 JP2018048569A JP2018048569A JP7146207B2 JP 7146207 B2 JP7146207 B2 JP 7146207B2 JP 2018048569 A JP2018048569 A JP 2018048569A JP 2018048569 A JP2018048569 A JP 2018048569A JP 7146207 B2 JP7146207 B2 JP 7146207B2
Authority
JP
Japan
Prior art keywords
gas
liquid
cylindrical portion
phase
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018048569A
Other languages
Japanese (ja)
Other versions
JP2018155485A (en
Inventor
剛 山本
陽子 山下
亮平 坂本
浩二 志田
博 岩田
直毅 鹿園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIREI INDUSTRIES CO., LTD.
University of Tokyo NUC
Original Assignee
NICHIREI INDUSTRIES CO., LTD.
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIREI INDUSTRIES CO., LTD., University of Tokyo NUC filed Critical NICHIREI INDUSTRIES CO., LTD.
Publication of JP2018155485A publication Critical patent/JP2018155485A/en
Application granted granted Critical
Publication of JP7146207B2 publication Critical patent/JP7146207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Description

本発明は冷凍サイクルや蒸気サイクルや気液二相流を扱う機械システムに使用される気相と液相を分離する気液分離装置およびこれらを用いた冷凍装置や蒸気サイクル装置や気液二相流を扱う機械装置に関し、詳細には、より一層の高性能化、小形化並びに低価格化を図る技術に関する。 The present invention relates to a gas-liquid separation device that separates a gas phase and a liquid phase used in a mechanical system that handles a refrigeration cycle, a vapor cycle, or a gas-liquid two-phase flow, and a refrigeration device, a vapor cycle device, or a gas-liquid two-phase flow using these devices. The present invention relates to a mechanical device for handling flow, and more particularly to technology for achieving higher performance, smaller size, and lower cost.

気相冷媒と液相冷媒を分離する気液分離装置、水蒸気と水あるいは空気と水を分離する気液分離装置、油と気体を分離するオイルセパレータ、および、気液二相流を扱う機械システム等の気体と液体とを分離する気液分離装置(以下これらを総称して気液分離装置と呼ぶ)は、二相流を旋回させ、旋回流の遠心力によって液体を壁面に付着させた後、重力によって液体を分離する気液分離装置が主に用いられている。 Gas-liquid separator that separates gas-phase refrigerant and liquid-phase refrigerant, gas-liquid separator that separates water vapor or air and water, oil separator that separates oil and gas, and mechanical systems that handle gas-liquid two-phase flow A gas-liquid separation device (hereinafter collectively referred to as a gas-liquid separation device) that separates gas and liquid such as , a gas-liquid separator that separates the liquid by gravity is mainly used.

例えば、気相冷媒と液相冷媒を分離する冷凍サイクルの気液分離装置では、容器の上端部に気相出口管を設け、容器の下部に液相出口管を設け、二相流入口管を容器上方に設け、入口管から容器に流入した二相流を容器内壁面に沿って旋回させ、遠心力の作用で気相と液相に分離し、気相は気相出口管から流出させ、液相は容器内壁面に付着させた後、重力の作用により一旦容器の下方に溜め、それを液相出口管から取り出している。 For example, in a gas-liquid separator for a refrigeration cycle that separates gas-phase refrigerant and liquid-phase refrigerant, a gas-phase outlet pipe is provided at the upper end of the container, a liquid-phase outlet pipe is provided at the bottom of the container, and a two-phase inlet pipe is provided. Provided above the container, the two-phase flow flowing into the container from the inlet pipe is swirled along the inner wall surface of the container, separated into a gas phase and a liquid phase by the action of centrifugal force, and the gas phase flows out from the gas phase outlet pipe, After the liquid phase adheres to the inner wall surface of the container, the liquid phase is once accumulated in the lower part of the container by the action of gravity, and is taken out from the liquid phase outlet pipe.

特開2005-265387号Japanese Patent Application Laid-Open No. 2005-265387 特開2002-061993号Japanese Patent Application Laid-Open No. 2002-061993 特開2007-107861号Japanese Patent Application Laid-Open No. 2007-107861 特開2001-99527号Japanese Patent Application Laid-Open No. 2001-99527

先に説明した特許文献1~4の気液分離装置も気液分離性能向上に関しては、種々の手段を講じているが、気相渦との関係で液相出口管の入口位置を決め、液相に混じって気相が吸い込まれ液相出口管より出てしまうのを防止した引用文献は少なかった。 The gas-liquid separation devices of Patent Documents 1 to 4 described above also take various measures to improve the gas-liquid separation performance. Few references were provided to prevent the vapor phase from being mixed with the phase and exiting the liquid phase exit tube.

即ち、引用文献1(図16)と2(図17)に開示された気液分離装置51は、共に底壁に円錐状の斜面部を設け、その最下端に液相出口管の入口位置を設けたもので、底壁を円錐状の斜面部にすることで液面を高くし、性能向上を図ったものである。
しかしながら、この種の気液分離装置にあっては、円錐状の斜面部に沿って旋回しながら流れる液相の旋回流は、遠心力が増す分、下方に行く程発達する。
旋回流が発達すると、底壁に溜められた液相は、図16の破線の如く円筒容器周壁側面に沿って押し上げられる。これに伴い、気相渦の最下端は下がり、液相出口管入口55aに接近し、気相は液相出口管55から流出してしまい、気液分離性能を低下させてしまっていた。
特許文献1、2には、このような旋回流と液相出口管55との関係に着目して、気液分離性能を向上させようとする記載はなかった。
That is, the gas-liquid separators 51 disclosed in Cited Documents 1 (Fig. 16) and 2 (Fig. 17) both have a conical slope portion on the bottom wall and the inlet position of the liquid phase outlet pipe at the lowest end. The bottom wall is made into a conical slope to increase the liquid level and improve performance.
However, in this type of gas-liquid separation device, the swirling flow of the liquid phase that flows while swirling along the conical slope portion develops further downward as the centrifugal force increases.
When the swirling flow develops, the liquid phase accumulated on the bottom wall is pushed up along the side surface of the peripheral wall of the cylindrical container as indicated by the dashed line in FIG. As a result, the lowermost end of the gas phase vortex descends and approaches the liquid phase outlet pipe inlet 55a, causing the gas phase to flow out from the liquid phase outlet pipe 55, degrading the gas-liquid separation performance.
Patent Literatures 1 and 2 do not describe any attempt to improve the gas-liquid separation performance by paying attention to the relationship between the swirling flow and the liquid phase outlet pipe 55 .

また、特許文献3(図18)は底壁中央部に突起を設け、突起の上端位置より下に液相出口管55を設けたものである。この突起57は、底壁52aに溜る液溜めの液面56を上昇させ液相出口管55から液相と一緒に気相が流れ出ることを防止する意味では大きな働きをしているが、大きな突起57を底壁52aに取付けるには費用がかかり、加工工数も増大するという課題があった。なお、この特許文献3には、旋回流についての記載がなく、突起57の役目として、旋回流にどのように貢献するかということは記載されていない。 Further, Patent Document 3 (FIG. 18) provides a protrusion in the central portion of the bottom wall, and a liquid phase outlet pipe 55 is provided below the upper end position of the protrusion. This projection 57 has a great function in that the liquid level 56 of the liquid reservoir on the bottom wall 52a is raised and the gas phase is prevented from flowing out from the liquid phase outlet pipe 55 together with the liquid phase. Attaching 57 to the bottom wall 52a is costly and has the problem of increasing the number of processing steps. Note that Patent Document 3 does not describe the swirl flow, and does not describe how the projection 57 contributes to the swirl flow.

また、特許文献4(図19)は、液相出口管55を、ほぼ平らな底壁52aの中心でなく、円筒側壁近くに設けたものである。この場合も底壁52aがほぼ平らな為、速度、圧力変動等で容器中心軸より気相渦がふらつきやすく、液相出口管入口55aに気相渦が接近しやすいので、液相出口管55から気相が液相と一緒に流れ出やすい。また、複雑な曲面形状を有す曲面に液相出口管55を設けなければならない為に、穴あけ作業が難しく、また、溶接作業も難しくなる等の課題があった。
また、特許文献1、3と同様に、旋回流について全く記載されておらず、旋回流の挙動に対する考察がなされていない。
以上の特許文献の事例を参考にして検証を行い、発明者は、気相が液相出口管に吸い込まれる現象を明らかにした。即ち、入口管より流入した二相流は、遠心力により液相と気相に分離され、気相は遠心力によって気相渦となり最終的に気相出口管に排出されるが、例えば、機器の運転条件により、二相流の速度、圧力等に変動があると、該気相渦の形状の違いや不安定さの程度により、該気相渦が液相出口管入口に接近し、液相出口管に吸い込まれることとなる。その結果、気液分離性能が悪化することが明らかになった。また、該気相渦の形状や安定さは、容器底部の形状や液相出口管入口の配設位置により変化することも判った。
Further, in Patent Document 4 (FIG. 19), the liquid phase outlet pipe 55 is provided near the cylindrical side wall rather than at the center of the substantially flat bottom wall 52a. In this case also, since the bottom wall 52a is substantially flat, the gas phase vortex tends to sway from the container center axis due to velocity, pressure fluctuations, etc., and the gas phase vortex tends to approach the liquid phase outlet pipe inlet 55a. The gas phase tends to flow out together with the liquid phase. In addition, since the liquid phase outlet pipe 55 must be provided on a curved surface having a complicated curved surface shape, there are problems such as difficulty in drilling and welding.
In addition, as in Patent Documents 1 and 3, there is no description of the swirl flow, and no consideration is given to the behavior of the swirl flow.
The inventor conducted verification with reference to the examples of the above patent documents, and clarified the phenomenon that the gas phase is sucked into the liquid phase outlet pipe. That is, the two-phase flow entering from the inlet pipe is separated into a liquid phase and a gas phase by centrifugal force, and the gas phase turns into a gas phase vortex due to the centrifugal force and is finally discharged to the gas phase outlet pipe. If there are fluctuations in the speed, pressure, etc. of the two-phase flow due to the operating conditions, the gas-phase vortex approaches the liquid-phase outlet pipe inlet and the liquid It will be sucked into the phase exit tube. As a result, it became clear that the gas-liquid separation performance deteriorated. It was also found that the shape and stability of the gas-phase vortex varies depending on the shape of the bottom of the container and the position of the inlet of the liquid-phase outlet pipe.

本発明は上記課題を解決するためになされたものであって、その目的とする所は、旋回流による遠心力で気液の分離を行う小形気液分離装置の性能向上および更なる小形化を図ると共に、更に、冷凍装置や蒸気サイクル装置や気液二相流を扱う流体機械装置などの各種の装置に組み込むことができ、装置の効率や信頼性を向上させることが可能な気液分離装置を提供することにある。 The present invention has been made to solve the above problems, and its object is to improve the performance and further reduce the size of a compact gas-liquid separation device that separates gas and liquid by the centrifugal force of swirling flow. In addition, the gas-liquid separation device can be incorporated into various devices such as refrigeration devices, steam cycle devices, and fluid mechanical devices that handle gas-liquid two-phase flow, and can improve the efficiency and reliability of the device. is to provide

課題を解決する為の手段Means to solve problems

本発明は小形のままで性能向上を図れる気液分離装置を提供するものである。
即ち、二相流入口管より円筒容器内に導入される二相流に旋回力を付与し、遠心力で気液を分離し、気相は気相出口管より、液相は液相出口管より、それぞれ流出させるようにした気液分離装置に於いて、円筒容器の円筒部下端に円筒部の中心軸を含む断面で頂角120度以下(好ましくは90~120度)であり、且つ、円筒部の略中心軸に斜面部外側最下点hを有する下向き円錐形状の斜面部を形成すると共に、該斜面部と円筒容器の円筒部との間に設けられる接続曲面を外した該斜面部の位置に液相出口管を設け、且つ、円筒部の中心軸を含む断面に於いて、円筒部内壁2bと接続曲面内壁13aとの稜線をXとし、稜線Xと円筒部の中心軸との距離をLとし、稜線Xと、液相出口管6の中心軸と該斜面部内側10bとの交点を含む円筒部の中心軸に平行な線分と、の距離をLとしたとき、L/L<0.6とした気液分離装置である。
SUMMARY OF THE INVENTION The present invention provides a gas-liquid separation device that can improve performance while maintaining a small size.
That is, a swirling force is applied to the two-phase flow introduced into the cylindrical container from the two-phase inlet pipe, and the gas-liquid is separated by centrifugal force. moreover, in the gas-liquid separation device configured to flow out respectively, the apex angle of the cross section including the central axis of the cylindrical portion at the lower end of the cylindrical portion of the cylindrical container is 120 degrees or less (preferably 90 to 120 degrees), and A downward conical inclined surface having a lowermost point h on the outside of the inclined surface is formed approximately on the central axis of the cylindrical portion, and the inclined surface is removed from the connection curved surface provided between the inclined surface and the cylindrical portion of the cylindrical container. In a cross section including the central axis of the cylindrical portion, the ridgeline between the cylindrical portion inner wall 2b and the connecting curved surface inner wall 13a is defined as X, and the ridgeline X and the central axis of the cylindrical portion When the distance is L0 and the distance between the ridge line X and the line segment parallel to the central axis of the cylindrical portion including the intersection of the central axis of the liquid phase outlet pipe 6 and the inner side of the slope portion 10b is L1, It is a gas-liquid separator with L 1 /L 0 <0.6.

また、二相流入口管より円筒容器内に導入される二相流に旋回力を付与し、遠心力で気液を分離し、気相は気相出口管より、液相は液相出口管より、それぞれ流出させるようにした気液分離装置に於いて、円筒容器の円筒部下端に円筒部の中心軸を含む断面で頂角120度以下(好ましくは90~120度)であり、且つ、円筒部の略中心軸以外に斜面部外側最下点hを有する下向き円錐形状の斜面部を形成すると共に、該斜面部と円筒容器の円筒部との間に設けられる接続曲面を外した該斜面部の位置で、且つ、円筒部の中心軸に対して斜面部外側最下点hと反対側の該斜面部の位置に液相出口管を設け、且つ、円筒部の中心軸を含む断面に於いて、円筒部内壁2bと接続曲面内壁13aとの稜線をXとし、稜線Xと円筒部の中心軸との距離をLとし、斜面部外側最下点hを含む円筒部の中心軸に平行な線分と円筒部の中心軸との距離をL、稜線Xと、液相出口管の中心軸と該斜面部内側10bとの交点を含む円筒部の中心軸に平行な線分と、の距離の短い側をLとしたとき、L/(L+L)<0.6とした気液分離装置である。 In addition, a swirling force is applied to the two-phase flow introduced into the cylindrical container from the two-phase inlet pipe, and the gas-liquid is separated by centrifugal force. moreover, in the gas-liquid separation device configured to flow out respectively, the apex angle of the cross section including the central axis of the cylindrical portion at the lower end of the cylindrical portion of the cylindrical container is 120 degrees or less (preferably 90 to 120 degrees), and A downward conical inclined surface having a lowermost point h outside the inclined surface outside the substantially central axis of the cylindrical portion is formed, and the inclined surface is removed from the connection curved surface provided between the inclined surface and the cylindrical portion of the cylindrical container. A liquid phase outlet pipe is provided at the position of the part and at the position of the slope part opposite to the lowest point h outside the slope part with respect to the central axis of the cylindrical part, and in a cross section including the central axis of the cylindrical part where X is the ridgeline between the inner wall 2b of the cylindrical portion and the inner wall 13a of the connecting curved surface, L0 is the distance between the ridgeline X and the central axis of the cylindrical portion, and L 2 is the distance between the parallel line segment and the central axis of the cylindrical portion; , L 1 /(L 0 +L 2 ) <0.6.

また、二相流入口管より円筒容器内に導入される二相流に旋回力を付与し、遠心力で気液を分離し、気相は気相出口管より、液相は液相出口管より、それぞれ流出させるようにした気液分離装置に於いて、円筒容器の円筒部下端に円筒部の中心軸を含む断面で頂角120度以下(好ましくは90~120度)の下向き円錐形状の斜面部を形成すると共に、該斜面部と円筒容器の円筒部との間に設けられる接続曲面を外した円筒部下端の位置に液相出口管を設け、且つ、円筒部の中心軸を含む断面に於いて、円筒部内壁2bと接続曲面内壁13aとの稜線をXとし、稜線Xと接続曲面を外した円筒部下端の位置に設けられる液相出口管の外径下端との距離をLとし、液相出口管の内径をdとした時、L/d<2.5とした気液分離装置である。 In addition, a swirling force is applied to the two-phase flow introduced into the cylindrical container from the two-phase inlet pipe, and the gas-liquid is separated by centrifugal force. Furthermore, in the gas-liquid separation device that is designed to flow out respectively, at the lower end of the cylindrical portion of the cylindrical container, a downward conical shape with a vertical angle of 120 degrees or less (preferably 90 to 120 degrees) in a cross section including the central axis of the cylindrical portion A slant surface is formed, and a liquid phase outlet pipe is provided at the lower end of the cylindrical portion excluding the connection curved surface provided between the slant surface and the cylindrical portion of the cylindrical container, and a cross section including the central axis of the cylindrical portion. , let X be the ridge line between the inner wall 2b of the cylindrical portion and the inner wall 13a of the connecting curved surface, and let L be the distance between the ridge line X and the lower end of the outer diameter of the liquid phase outlet pipe provided at the lower end of the cylindrical portion outside the connecting curved surface. , L/d<2.5, where d is the inner diameter of the liquid phase outlet tube.

また、円筒容器の円筒部下端の斜面部最下端内側に突起を設けた前記した気液分離装置である。 Further, the gas-liquid separator is the above-described gas-liquid separation device in which a projection is provided inside the lowermost end of the slant portion of the lower end of the cylindrical portion of the cylindrical container.

また、斜面部最下端内側に形成される突起は、円筒容器と一体に形成された前記した気液分離装置である。 Also, the projection formed inside the lowermost end of the slope portion is the gas-liquid separator described above that is formed integrally with the cylindrical container.

また、斜面部最下端内側に形成される突起は、円筒容器の斜面部先端を封止するろう材を斜面部最下端内側に***させて形成した前記した気液分離装置である。 The projection formed inside the lowermost end of the slant portion is the gas-liquid separation device described above, which is formed by protruding the brazing filler metal for sealing the tip of the slant portion of the cylindrical container on the inside of the lowermost end of the slant portion.

また、斜面部最下端内側に形成される突起は、円筒容器の円筒部の中心軸を含む断面に於いて、円筒部内壁2bと接続曲面内壁13aとの稜線をXとし、稜線Xを含む円筒部の中心軸に垂直な平面と円筒容器の円筒部下端の斜面部内側最下点hinとの距離をhとし、突起の頂点を含む円筒部の中心軸に垂直な平面と円筒容器の円筒部下端の斜面部内側最下点hinとの距離をhとした時、h/h>0.06とした前記した気液分離装置である。 The projection formed on the inside of the lowermost end of the slant portion is a cylinder including the ridgeline X, where X is the ridgeline between the inner wall 2b of the cylindrical portion and the inner wall 13a of the connecting curved surface in a cross section including the central axis of the cylindrical portion of the cylindrical container. The distance between the plane perpendicular to the central axis of the cylindrical container and the lowest point hin inside the inclined surface at the lower end of the cylindrical part of the cylindrical container is h 1 , and the plane perpendicular to the central axis of the cylindrical part including the apex of the protrusion and the cylindrical container In the gas-liquid separation device, h 0 /h 1 >0.06, where h 0 is the distance between the lower end of the cylindrical portion and the lowest point hin inside the slope portion.

また、本気液分離装置を冷凍サイクルの圧縮機吐出管と凝縮器の間に配設し、気液分離装置の二相流入口管に圧縮機吐出管を接続し、気液分離装置の液相出口管を流量調整絞りを介して圧縮機吸い込み管に接続し、一方気液分離装置の気相出口管を凝縮器に至る管路に接続した冷凍装置である。 In addition, the gas-liquid separation device is arranged between the compressor discharge pipe and the condenser of the refrigeration cycle, the compressor discharge pipe is connected to the two-phase inlet pipe of the gas-liquid separation device, and the liquid phase of the gas-liquid separation device is This is a refrigeration system in which an outlet pipe is connected to a compressor suction pipe via a flow control throttle, while a gas phase outlet pipe of a gas-liquid separator is connected to a conduit leading to a condenser.

また、本気液分離装置を冷凍サイクルの減圧器と蒸発器の間に配設し、減圧器出口管に気液分離装置の二相流入口管を接続し、液相出口管を蒸発器入口に接続し、気相出口管を蒸発器をバイパスさせた後に圧縮機吸い込み管に接続した冷凍装置である。 In addition, the gas-liquid separation device is arranged between the pressure reducer and the evaporator of the refrigeration cycle, the two-phase inlet pipe of the gas-liquid separation device is connected to the pressure reducer outlet pipe, and the liquid phase outlet pipe is connected to the evaporator inlet. A refrigeration system in which the gas phase outlet pipe is connected to the compressor suction pipe after bypassing the evaporator.

また、本気液分離装置を配設した、気液二相流を気相と液相に分離する流体機械装置である。 It is also a fluid mechanical device that separates a gas-liquid two-phase flow into a gas phase and a liquid phase, provided with a gas-liquid separation device.

本発明の気液分離装置は、斜面部を持ち、液相出口管を最適位置に規定したものであるから、小形で、気液分離性能がよい気液分離装置とすることができる。更には、本発明の気液分離装置は、量産性がよく安価な気液分離装置とすることもできる。更に、本気液分離装置を採用することにより、装置の効率や信頼性を向上させた冷凍装置や蒸気サイクル装置や気液二相流を扱う機械装置などの各種の装置とすることが出来る。 Since the gas-liquid separation device of the present invention has an inclined surface and the liquid phase outlet pipe is set at an optimum position, it can be a small-sized gas-liquid separation device with good gas-liquid separation performance. Furthermore, the gas-liquid separation device of the present invention can be used as an inexpensive gas-liquid separation device with good mass productivity. Furthermore, by adopting the gas-liquid separation device, various devices such as a refrigeration device, a vapor cycle device, and a mechanical device that handles a gas-liquid two-phase flow can be made with improved efficiency and reliability.

本発明を備えた実施形態1の気液分離装置を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the gas-liquid separation apparatus of Embodiment 1 provided with this invention. 図1とは異なる、本発明を備えた実施形態1の気液分離装置を示す断面図である。FIG. 2 is a cross-sectional view showing the gas-liquid separation device of Embodiment 1 provided with the present invention, which is different from FIG. 図1に示す気液分離装置の拡大A-A断面図である。FIG. 2 is an enlarged AA cross-sectional view of the gas-liquid separation device shown in FIG. 1; 図1-1の要部拡大説明図である。FIG. 1-2 is an enlarged explanatory view of a main part of FIG. 1-1; 図3で示す液相出口管の取付け位置(L/d)と液相出口側気相混入割合、およびL/dと距離Lとの関係の一実施例である。It is an example of the relationship between the installation position (L/d) of the liquid phase outlet pipe shown in FIG. 図1とは異なる液相出口管の取付け位置を説明する断面図である。1. It is sectional drawing explaining the attachment position of the liquid phase outlet pipe different from FIG. 図4の要部拡大説明図である。FIG. 5 is an enlarged explanatory view of a main part of FIG. 4; 図1、図4とは異なる液相出口管の取付け位置を説明する断面図の要部拡大説明図である。FIG. 5 is an enlarged explanatory view of a main part of a cross-sectional view for explaining an attachment position of a liquid phase outlet pipe different from FIGS. 1 and 4; 円筒容器下部絞り形状の異なる遠心式気液分離装置の液相出口側気相混入割合を比較検討した説明図である。FIG. 10 is an explanatory diagram for comparing and examining the mixture ratio of the gas phase on the liquid phase outlet side of the centrifugal gas-liquid separators having different narrowed shapes at the bottom of the cylindrical container. 図6に於ける検証結果のうち、本発明を備えた気液分離装置と従来構造の気液分離装置について、液相出口側気相混入割合と気相出口側液相混入割合との関係を検証した説明図である。Among the verification results in FIG. 6, for the gas-liquid separation device equipped with the present invention and the gas-liquid separation device with the conventional structure, the relationship between the ratio of gas phase mixture on the liquid phase outlet side and the ratio of liquid phase mixture on the gas phase outlet side is shown. It is an explanatory view verified. 図6に於ける検証結果のうち、上向きの突起の大小と液相出口側気相混入割合を検証した説明図である。FIG. 7 is an explanatory diagram for verifying the size of upward protrusions and the mixing ratio of gas phase on the liquid phase outlet side among the verification results in FIG. 6 ; 図5で示す液相出口管の取付け位置(L/L)を可変させた時の液相出口側気相混入割合を検証した説明図であるFIG. 6 is an explanatory diagram for verifying the liquid phase outlet side gas phase mixing ratio when the mounting position (L 1 /L 0 ) of the liquid phase outlet pipe shown in FIG. 5 is varied. 円錐形状頂角と液相出口側気相混入割合の関係を示す図である。It is a figure which shows the relationship between a conical-shaped apex angle and a liquid-phase outlet side gas-phase mixing ratio. 本発明を備えた気液分離装置の液相出口管部の液相と気相の動きを写真で説明した図である。FIG. 3 is a diagram illustrating movement of the liquid phase and the gas phase at the liquid phase outlet tube of the gas-liquid separation device provided with the present invention. 本発明を備えていない気液分離装置の液相出口管部の液相と気相の動きを写真で説明した図である。FIG. 3 is a diagram illustrating the movements of the liquid phase and the gas phase at the liquid phase outlet tube of the gas-liquid separation device not equipped with the present invention. 図4とは異なる気液分離装置の構造の要部を説明する断面図である。FIG. 5 is a cross-sectional view illustrating a main part of the structure of the gas-liquid separation device different from that in FIG. 4 ; 図11とは異なる液相出口管の取付け位置を説明する断面図である。FIG. 12 is a cross-sectional view for explaining an attachment position of a liquid phase outlet pipe different from that in FIG. 11; 図1-1と異なる上向きの突起を説明する断面図である。FIG. 1-2 is a cross-sectional view illustrating an upward protrusion different from FIG. 1-1; 本発明を備えた実施形態を示すもので、気液分離装置を冷凍サイクルに使用した場合の冷凍サイクル構成図である。It is a refrigerating-cycle block diagram at the time of using a gas-liquid separation apparatus for a refrigerating cycle, which shows embodiment provided with this invention. 図13とは異なる、本発明の気液分離装置を冷凍サイクルに使用した場合の他の冷凍サイクル構成図の一例である。FIG. 14 is an example of another refrigeration cycle configuration diagram when the gas-liquid separation device of the present invention is used in the refrigeration cycle, different from FIG. 13 ; 本発明を備えた他の実施形態を示すもので、気液分離装置を気液二相流を扱う流体機械装置に適用した系統図である。Fig. 10 is a system diagram showing another embodiment of the present invention, in which a gas-liquid separation device is applied to a fluid mechanical device that handles a gas-liquid two-phase flow. 従来の気液分離装置の構造と気液分離状態を説明する図である。It is a figure explaining the structure of the conventional gas-liquid separation apparatus, and a gas-liquid separation state. 図16とは異なる構造の従来の気液分離装置の構造と気液分離状態を説明する図である。FIG. 17 is a diagram for explaining the structure of a conventional gas-liquid separation device having a structure different from that of FIG. 16 and the state of gas-liquid separation; 図16、図17とは異なる構造の従来の気液分離装置の構造と気液分離状態を説明する図である。17A and 17B are diagrams for explaining the structure and the gas-liquid separation state of a conventional gas-liquid separation device having a structure different from that of FIGS. 16 and 17; 図16~図18とは異なる構造の従来の気液分離装置の構造と気液分離状態を説明する図である。FIG. 19 is a diagram for explaining the structure and the gas-liquid separation state of a conventional gas-liquid separation device having a structure different from that of FIGS. 16 to 18;

以下本発明の実施の形態について、図を参照しながら説明する。なお、この実施の形態によって、この発明が限定されるものではない。また、各実施の形態において、ある実施の形態において既に説明された内容について、別の実施の形態では説明を省略する場合がある。従って、発明の効果を阻害しない範囲において、各実施の形態で説明された構成を自由に組み合わせることができる。 BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited by this embodiment. Further, in each embodiment, the description of the contents already explained in one embodiment may be omitted in another embodiment. Therefore, the configurations described in the respective embodiments can be freely combined within a range that does not hinder the effects of the invention.

実施の形態1Embodiment 1

図1、図1-1、図2、図3で、本発明の第1の実施の形態を説明する。ここで、図1は、本発明を備えた気液分離装置1の構造および旋回流と液相出口管6との関係を説明する断面図であり、図1-1は、図1に於いて傾斜部下端の内側に上向き突起を追加した構造の断面図であり、図2は、図1、図1-1のA-A断面図であり、図3は、図1-1の要部拡大説明図である。
図1、図2に於いて、本発明の気液分離装置1は、円筒容器2を構成する円筒部2a、接続曲面13、それに、斜面部10等を有し、上記円筒容器2により外郭が形成されている。そして、この円筒容器2は、図2にも示す如く上部壁面横から中心線をずらして設けられた二相流入口管7を有している。また円筒容器2は、円筒容器2を中心軸方向に貫通した気相出口管9、円筒容器2の下部壁面横に液相出口管6を有している。なお円筒容器2の内径をDとし、液相出口管6の内径をdとした時、d/D≦0.3になるよう、液相出口管6の内径を設定している。なお、d/Dは、0.29以下、0.28以下、0.27以下、0.26以下等であってもよい。また、d/Dは、0.10以上、0.13以上、0.16以上、0.19以上等であってもよい。
3は上記円筒容器2内に形成される気液分離室であり、4は液溜めであり、5、5aは液溜め4の液面を示す。10は円筒部下部を形成する斜面部で下向き円錐形状をなしており、その頂角は円筒部の中心軸を含む断面で、90~120度である。なお、頂角の下限値は、50度、55度、60度、65度、70度、75度、80度、85度等であってもよい。
以下に、円錐形状の斜面部10についてその効果を述べる。
液面5aは本発明の、円筒部下部が円錐形状の斜面部10である場合の液面である。液面5は円筒部底部が、例えば平らな場合の液面であり,液面5aとの違いを説明するために表示している。
液面5、5aは、液相出口管6の入口6aより常に上方にあるように設計管理されており、該液相出口管6より気相が液相と一緒になって流れ出て、分離性能が低下するのを防止している。
円筒部下部が円錐形状の斜面部10であることにより、遠心力が増加するので液相の旋回流(液相渦)は、例えば、円筒部底部が平らな場合に比べ、液面5aは、液面5より、中央部は更に凹み、外周部は円筒部内壁2bに沿って更に立ち上がる。
円筒部下部が円錐形状の斜面部10の場合は、円筒部底面が平らな場合より、円筒部内壁2bに於ける液面5と液面5aとの高低差の分だけ、液相出口管6の入口6aから液面が離れるので、例えば運転条件により液面が変動しても入口6aが液面でふさがれやすくなり、液相出口管6への気相混入割合を抑えることができる。液面を上げるには、円筒容器を長くして液面5を高く設計管理することもできるが、この場合は、円筒容器の小型化に逆行することになる。本発明のように円筒部下部に円錐形状の斜面部10を設ければ、円筒容器を長くしないで、即ち、気液分離装置を大きくしないで、分離性能を高く維持できるものである。更に、上記斜面部10は気液分離室3内に流入する気相の旋回流(気相渦)を斜面部に沿って円錐形状の中心に誘導し集める働きを有しており、液相出口管6への気相混入割合を抑えるものである。
A first embodiment of the present invention will be described with reference to FIGS. 1, 1-1, 2 and 3. FIG. Here, FIG. 1 is a cross-sectional view for explaining the structure of the gas-liquid separation device 1 provided with the present invention and the relationship between the swirl flow and the liquid phase outlet pipe 6, and FIG. FIG. 2 is a cross-sectional view of a structure in which an upward projection is added inside the lower end of the inclined portion, FIG. 2 is a cross-sectional view along AA of FIGS. 1 and 1-1, and FIG. It is an explanatory diagram.
1 and 2, the gas-liquid separation device 1 of the present invention has a cylindrical portion 2a constituting a cylindrical container 2, a connection curved surface 13, a slope portion 10, and the like. formed. 2, the cylindrical container 2 has a two-phase inlet pipe 7 provided with its center line shifted from the lateral side of the upper wall surface. The cylindrical vessel 2 also has a vapor phase outlet pipe 9 penetrating the cylindrical vessel 2 in the central axis direction, and a liquid phase outlet pipe 6 beside the lower wall surface of the cylindrical vessel 2 . When the inner diameter of the cylindrical container 2 is D and the inner diameter of the liquid outlet pipe 6 is d, the inner diameter of the liquid outlet pipe 6 is set so that d/D≤0.3. Note that d/D may be 0.29 or less, 0.28 or less, 0.27 or less, or 0.26 or less. Also, d/D may be 0.10 or more, 0.13 or more, 0.16 or more, 0.19 or more, or the like.
3 is a gas-liquid separation chamber formed in the cylindrical container 2, 4 is a reservoir, and 5 and 5a indicate the liquid surface of the reservoir 4. FIG. Reference numeral 10 denotes a sloped portion forming the lower part of the cylindrical portion, which has a downward conical shape, and the apex angle of the cross section including the central axis of the cylindrical portion is 90 to 120 degrees. The lower limit of the vertical angle may be 50 degrees, 55 degrees, 60 degrees, 65 degrees, 70 degrees, 75 degrees, 80 degrees, 85 degrees, or the like.
The effect of the conical slope portion 10 will be described below.
The liquid level 5a is the liquid level in the case where the lower portion of the cylindrical portion is the conical slope portion 10 of the present invention. The liquid level 5 is the liquid level when the bottom of the cylindrical portion is flat, for example, and is shown to explain the difference from the liquid level 5a.
The liquid surfaces 5, 5a are designed and controlled so that they are always above the inlet 6a of the liquid phase outlet pipe 6, and the gas phase flows out together with the liquid phase from the liquid phase outlet pipe 6, improving the separation performance. prevents it from declining.
Since the lower portion of the cylindrical portion is the conical slope portion 10, the centrifugal force increases, so the swirling flow of the liquid phase (liquid phase vortex), for example, compared to the case where the bottom portion of the cylindrical portion is flat, the liquid surface 5a is The central portion is further recessed from the liquid surface 5, and the outer peripheral portion is further raised along the inner wall 2b of the cylindrical portion.
In the case where the lower portion of the cylindrical portion is a conical slope portion 10, the liquid phase outlet pipe 6 is increased by the height difference between the liquid surface 5 and the liquid surface 5a on the inner wall 2b of the cylindrical portion compared to the case where the bottom surface of the cylindrical portion is flat. Since the liquid level is separated from the inlet 6a of the liquid, the inlet 6a is easily blocked by the liquid even if the liquid level fluctuates due to, for example, operating conditions. In order to raise the liquid level, it is possible to design and manage the liquid level 5 to be high by lengthening the cylindrical container, but in this case, it goes against the downsizing of the cylindrical container. By providing the conical slope portion 10 at the lower portion of the cylindrical portion as in the present invention, high separation performance can be maintained without increasing the length of the cylindrical container, that is, without increasing the size of the gas-liquid separation device. Furthermore, the slope portion 10 has the function of guiding and collecting the gas phase swirling flow (gas phase vortex) flowing into the gas-liquid separation chamber 3 along the slope portion toward the center of the conical shape. It is intended to suppress the ratio of the gas phase mixed into the pipe 6 .

次に、円筒容器2への液相出口管6の取付け構造について図3を用いて説明する。なお、図3では液面を省略してある。
図3に於いて、1は気液分離装置であり、2は円筒容器、6は液相出口管、7は二相流入口管、9は気相出口管、10は斜面部で、この斜面部10は円筒部の中心軸を含む断面で頂角90~120度の下向き円錐形状を作る斜面部である。11は上向きの突起である。なお、図3に於いても、実施の形態2で後述するL/Lは実施の形態2と同様に定義でき、L/Lはゼロであり、L/L<0.6を満足している。即ち、実施の形態2と同様の考え方により、円筒容器の円筒部の中心軸を含む断面に於いて、Lは、円筒部内壁2bと接続曲面内壁13aとの稜線をXとしたとき、稜線Xと円筒部の中心軸との距離と定義される。また、Lは、稜線Xと、液相出口管6の中心軸と(実施の形態2では斜面部内側10bに相当する)該円筒部内壁2bとの交点を含む円筒部の中心軸に平行な線分との距離と定義されるが、該平行な線分は即ち円筒部内壁2bであり、したがってL=0である。これより、L/L=0である。なお、L/Lは、0.5未満、0.4未満、0.3未満、0.2未満等であってもよい。
Next, the mounting structure of the liquid phase outlet pipe 6 to the cylindrical container 2 will be described with reference to FIG. Note that the liquid surface is omitted in FIG.
In FIG. 3, 1 is a gas-liquid separation device, 2 is a cylindrical container, 6 is a liquid phase outlet pipe, 7 is a two-phase inlet pipe, 9 is a gas phase outlet pipe, and 10 is an inclined portion. A portion 10 is a slant portion forming a downward conical shape with an apex angle of 90 to 120 degrees in a cross section including the central axis of the cylindrical portion. 11 is an upward projection. Also in FIG. 3, L 1 /L 0 described later in Embodiment 2 can be defined in the same manner as in Embodiment 2, L 1 /L 0 is zero, and L 1 /L 0 <0. 6 is satisfied. That is, based on the same idea as in Embodiment 2, in a cross section including the central axis of the cylindrical portion of the cylindrical container, L0 is the ridgeline where X is the ridgeline between the cylindrical portion inner wall 2b and the connecting curved surface inner wall 13a. Defined as the distance between X and the central axis of the cylinder. In addition, L1 is parallel to the central axis of the cylindrical portion including the intersection of the ridge line X, the central axis of the liquid phase outlet pipe 6, and the inner wall 2b of the cylindrical portion (corresponding to the inner side 10b of the slope portion in Embodiment 2). , the parallel line segment is the inner wall 2b of the cylindrical portion, so L 1 =0. Hence, L 1 /L 0 =0. Note that L 1 /L 0 may be less than 0.5, less than 0.4, less than 0.3, less than 0.2, or the like.

本発明は、円筒部下部に下向き円錐形状を構成し、且つ、円筒容器2への液相出口管6の取付け位置を規定することにより、液相出口管6への気相混入割合を抑えると共に、小形化、液相出口管6の取付け作業性を向上させたものである。なお、液相出口側気相混入割合はゼロが理想であるが、実用上許容される液相出口側気相混入割合は0.03である。 According to the present invention, the lower portion of the cylindrical portion is formed in a downward conical shape, and the attachment position of the liquid phase outlet pipe 6 to the cylindrical container 2 is defined, thereby suppressing the mixing ratio of the gas phase to the liquid phase outlet pipe 6 and , miniaturization, and improved workability for installing the liquid phase outlet pipe 6. Although it is ideal that the liquid phase outlet side gas phase mixing ratio is zero, the practically allowable liquid phase outlet side gas phase mixing ratio is 0.03.

図3に於いて、液相出口管6は、接続曲面内壁13aを外した円筒部下端側に設けられている。また、図3に於いては、液相出口管6は、稜線Xよりも上側に設けられている。 In FIG. 3, the liquid phase outlet pipe 6 is provided on the lower end side of the cylindrical portion where the connection curved inner wall 13a is removed. 3, the liquid phase outlet pipe 6 is provided above the ridgeline X. As shown in FIG.

ここで、接続曲面内壁13aを外した円筒部下端側に設けられる液相出口管6の位置を、円筒容器の円筒部の中心軸を含む断面に於いて、円筒部内壁2bと接続曲面内壁13aとの稜線をXとし、稜線Xと液相出口管外径下端との距離をLとし、液相出口管内径をdとしたとき、L/d<2.5と管理することにより、液相出口側気相混入割合がより小さくなり、小形化が可能となり、一方、液相出口管取付けのための円筒容器加工性も優れる。またLが短くなり、貯液量を少なくできるので、滞在する液量を少なくでき、冷凍サイクルの省資源化に寄与できる気液分離装置を得ることができる。なお、ここで示す液相出口管外径下端とは、円筒容器と液相出口管6との接続部における、液相出口管の外径下端部を示す。 Here, the position of the liquid phase outlet pipe 6 provided on the lower end side of the cylindrical portion with the connecting curved surface inner wall 13a removed is set to the cylindrical portion inner wall 2b and the connecting curved surface inner wall 13a in a cross section including the central axis of the cylindrical portion of the cylindrical container. Let X be the ridgeline of the liquid phase outlet tube, L be the distance between the ridgeline X and the lower end of the outer diameter of the liquid phase outlet tube, and d be the inner diameter of the liquid phase outlet tube. The gas phase mixing ratio on the outlet side becomes smaller, making it possible to reduce the size of the container. In addition, since L is shortened and the amount of liquid stored can be reduced, the amount of liquid that stays can be reduced, and a gas-liquid separator that can contribute to resource saving of the refrigeration cycle can be obtained. The lower end of the outer diameter of the liquid phase outlet pipe shown here indicates the lower end of the outer diameter of the liquid phase outlet pipe at the connecting portion between the cylindrical container and the liquid phase outlet pipe 6 .

例えば、円筒容器の内径Dを35mm、液相出口管の内径dを6mm、液相出口管の外径下端と稜線Xとの距離Lを15mmとした時、L/d=2.5となる。
図3-1に、図3で示す液相出口管の取付け位置(L/d)と液相出口側気相混入割合および距離Lとの関係を実施例で示す。
図3-1から明らかなように、液相出口側気相混入割合が実用上許容される値0.03以下である為には、L/d<19であればよいが、この場合は、円筒容器の全長が長くなってしまう。更にLを短くしL/d<6.5になると、液相出口側気相混入割合が実用上許される0.03より小さい0.02以下の高性能が確保されるが、小形化、加工性、貯液性の点で最適でない。L/d<2.5、即ちL=15mm以下で、液相出口側気相混入割合を0.02に維持しつつ、小形化、加工性、貯液性が最適となる。
また、L/d<2.5とすることで、図7で後述するように、気相出口側液相混入割合を小さく維持しつつ液相出口側気相混入割合を大幅に改善することができる。
なお、L/dは、2.0未満、1.5未満、1.0未満、0.5未満等であってもよい。
なお、液相出口管を接続曲面13から外す理由は、下記のとおりである。
即ち、接続曲面内壁13aは、円筒部内壁2bと円錐状の斜面部内側10bとを、滑らかに接続した複雑な曲面であるので、曲面上に液相出口管6の取付け穴を形成し、また高精度でろう付けすることは加工難度が高い。したがって、接続曲面内壁13aを避けて液相出口管6を取付けることにより、穴あけ作業、溶接作業が容易となる。
For example, when the inner diameter D of the cylindrical container is 35 mm, the inner diameter d of the liquid phase outlet pipe is 6 mm, and the distance L between the lower end of the outer diameter of the liquid phase outlet pipe and the ridgeline X is 15 mm, L/d = 2.5. .
FIG. 3-1 shows an example of the relationship between the installation position (L/d) of the liquid phase outlet pipe shown in FIG.
As is clear from FIG. 3-1, L/d<19 is sufficient for the liquid phase outlet side gas phase mixing ratio to be a practically acceptable value of 0.03 or less, but in this case, The total length of the cylindrical container becomes long. If L is further shortened to L/d<6.5, a high performance of 0.02 or less, which is less than 0.03, which is smaller than the practically allowable ratio of gas phase mixture on the outlet side of the liquid phase, is ensured. It is not optimal in terms of durability and liquid storage. When L/d<2.5, that is, L=15 mm or less, miniaturization, workability, and liquid storage properties are optimized while maintaining the gas phase mixing ratio of the liquid phase outlet side at 0.02.
Further, by setting L/d<2.5, as will be described later with reference to FIG. 7, it is possible to greatly improve the mixing ratio of the gas phase at the outlet of the liquid phase while maintaining the mixing ratio of the liquid phase at the outlet of the gas phase at a low level. can.
In addition, L/d may be less than 2.0, less than 1.5, less than 1.0, less than 0.5, and the like.
The reason for removing the liquid phase outlet pipe from the connection curved surface 13 is as follows.
That is, since the connection curved inner wall 13a is a complicated curved surface that smoothly connects the cylindrical inner wall 2b and the conical slope inner wall 10b, a mounting hole for the liquid phase outlet pipe 6 is formed on the curved surface, and High-precision brazing is highly difficult to process. Therefore, by mounting the liquid phase outlet pipe 6 while avoiding the connecting curved surface inner wall 13a, drilling work and welding work are facilitated.

次に、図1、図9に於いて、円筒容器の円筒部の中心軸を含む断面で下向き円錐形状の頂角を90~120度と設定した理由を説明する。図9は、図1の形状で頂角を90~180度まで変化させた場合の液相出口側気相混入割合を示しており、横軸は下向き円錐形状の頂角、縦軸は液相出口側気相混入割合である。更に、太線は液相出口側気相混入割合の実測値であり、上下の細線は、液相出口側気相混入割合実測値に対するばらつきを示す。ここで、ばらつきを含めて実用上許容される液相出口側気相混入割合0.03に対応する頂角は120度となる。即ち、上記頂角90~120度は液相出口側気相混入割合を図9に示す如く0.03以下に維持できる角度である。
なお、液相出口側気相混入割合0.03は実用上許容される液相出口側気相混入割合であるが、後述する図8に於いて、L/L<0.6に対応する液相出口側気相混入割合0.03は曲率変化の開始点でもあるので、頂角の上限を0.03に対応する120度としている。頂角の下限については、頂角が小さくなるほど、液相出口側気相混入割合は改善される。実験値からの近似式により推定すると、例えば、頂角90度で0.019、頂角60度で0.011、図3に於いて液相出口管が最下端であるL=0の時、頂角は約50度で0.009となる。一方、頂角が小さくなると、気液分離器の全長が長くなってしまう。例えば、頂角が約50度では円錐部長さが37mmなってしまい、加工費、材料費も増大してしまう。気液分離性能を重視するか、全長を重視するかにより、頂角は選択が可能であるが、頂角の下限は構造上約50度である。分離性能と全長のバランスを考慮すれば、好ましくは頂角の下限は60度であり、より好ましくは頂角の下限は90度であり、この時円錐部長さは約18mmである。
Next, in FIGS. 1 and 9, the reason why the apex angle of the downward conical shape is set to 90 to 120 degrees in the cross section including the central axis of the cylindrical portion of the cylindrical container will be explained. FIG. 9 shows the mixing ratio of the liquid phase outlet side gas phase when the apex angle is changed from 90 to 180 degrees in the shape of FIG. It is the gas phase mixture ratio on the outlet side. Further, the thick line is the measured value of the gas phase mixing ratio on the liquid phase outlet side, and the upper and lower thin lines show the variation with respect to the measured value of the gas phase mixing ratio on the liquid phase outlet side. Here, the apex angle corresponding to the liquid phase outlet side gas phase mixing ratio of 0.03, which is practically permissible including variations, is 120 degrees. That is, the apex angle of 90 to 120 degrees is an angle that can maintain the mixing ratio of the gas phase on the liquid phase outlet side to 0.03 or less as shown in FIG.
Note that the liquid phase outlet side gas phase mixing ratio of 0.03 is a practically acceptable liquid phase outlet side gas phase mixing ratio, but in FIG. 8 described later, it corresponds to L 1 /L 0 <0.6 Since 0.03 of the gas phase mixture ratio on the liquid phase outlet side is also the starting point of the curvature change, the upper limit of the apex angle is set to 120 degrees corresponding to 0.03. Regarding the lower limit of the apex angle, the smaller the apex angle is, the more the liquid phase outlet side gas phase mixing ratio is improved. Estimated by an approximation formula from experimental values, for example, 0.019 at an apex angle of 90 degrees and 0.011 at an apex angle of 60 degrees. The apex angle is 0.009 at about 50 degrees. On the other hand, when the apex angle becomes small, the total length of the gas-liquid separator becomes long. For example, if the apex angle is about 50 degrees, the length of the cone is 37 mm, which increases processing and material costs. The apex angle can be selected depending on whether the gas-liquid separation performance is important or the overall length is important, but the lower limit of the apex angle is about 50 degrees due to the structure. Considering the balance between the separation performance and the overall length, the lower limit of the apex angle is preferably 60 degrees, more preferably 90 degrees, and the cone length is about 18 mm.

次に、図3に於いて、円筒容器の円筒部下部の斜面部最下端内側の円筒部の中心軸付近に上向きの突起を設けた気液分離装置の実施例を説明する。
即ち、円錐形状斜面部下端に上向きの突起があると、液相の旋回流(液相渦)は上向きの突起の周りを旋回しようとするため、液相渦は円錐形状斜面部の中心に保持される。
そのため、気相渦も液相渦の動きに伴い円錐形状中心部に、より一層安定的に保持される。
Next, with reference to FIG. 3, an embodiment of a gas-liquid separation device in which an upward projection is provided in the vicinity of the central axis of the cylindrical portion inside the lowermost end of the slant portion of the lower portion of the cylindrical portion of the cylindrical container will be described.
That is, if there is an upward projection at the lower end of the conical slope, the swirling flow of the liquid phase (liquid phase vortex) will swirl around the upward projection, so the liquid phase vortex will be held at the center of the conical slope. be done.
Therefore, the gas-phase vortex is also more stably held at the conical central portion along with the movement of the liquid-phase vortex.

また、二相流の流入速度が速く気相渦の下端が上向きの突起まで到達する場合もある。この場合には気相渦が上向きの突起の周りを旋回しようとするため、気相渦は円錐形状中心部に、より一層安定的に保持される。
即ち、上記構成にすることにより、後段で詳述する円錐形状斜面部の作用効果と上向きの突起の作用効果の両方の作用効果により、液相渦、気相渦は円錐形状中心部に、より一層安定的に保持される。
In addition, the inflow velocity of the two-phase flow is high, and the lower end of the gas-phase vortex may reach an upward projection. In this case, the gas-phase vortex tends to swirl around the upward protrusion, so that the gas-phase vortex is held in the conical central portion more stably.
That is, with the above configuration, the liquid-phase vortex and the gas-phase vortex are more concentrated in the central part of the cone shape due to both the operation effect of the conical slope portion and the effect of the upward projection, which will be described in detail later. It is held more stably.

次に、図3に於いて、円筒容器の斜面部先端を封止するろう材を斜面部最下端内側に***させて、上向きの突起を形成させた気液分離装置の実施例を説明する。
本発明の上向きの突起11は従来の如く気液分離装置1の製作段階で特別な別部品を使用して作るものでなく構成上必要な部材を使用して構成されるものである。従って、従来の気液分離装置の容器底面に別部品を使用して設けた突起に比べ、構成部品も工程も少なくて済み、量産に向いた構造である。例えば、スピニング加工やヘラ絞り加工によって製作する気液分離装置に於いて、工程の一部であるろう付け時に、ろう材を斜面部最下端内側に***するように充填するものである。
上記のろう付けによる突起形成を詳説すれば下記の通りである。即ち、斜面部10をスピニング加工、ヘラ絞り加工で形成すると、絞り加工の最終段階で斜面部10の先端部に穴ができる。通常、この穴はろう付けで塞ぐ。本発明の突起11はそのろう付けで使用するろう材11aで、上向きの突起11を形成するもので、ろう付けする時、傾斜部10の端部を上面にして、穴を塞ぐようにろう材11aを注ぎ、ろう材11aを自重で垂下させて上向きの突起11を形成するものである。
以上の如く、突起をろう材を使用して構成することにより、先に記した突起の作用効果が得られることは勿論である。
Next, with reference to FIG. 3, an embodiment of a gas-liquid separation device in which the brazing material for sealing the tip of the slant portion of the cylindrical container is protruded inside the lowermost end of the slant portion to form an upward projection will be described.
The upward protrusion 11 of the present invention is not made by using a special separate part in the manufacturing stage of the gas-liquid separator 1 as in the prior art, but is constructed by using structurally necessary members. Therefore, compared with the projections provided by using separate parts on the bottom of the container of the conventional gas-liquid separation device, the number of components and processes can be reduced, and the structure is suitable for mass production. For example, in a gas-liquid separation device manufactured by spinning or spatula drawing, during the brazing process, which is a part of the process, the brazing material is filled so as to protrude inside the lowermost end of the slant portion.
A detailed description of the formation of the protrusions by brazing is as follows. That is, if the slant portion 10 is formed by spinning or spatula drawing, a hole is formed at the tip of the slant portion 10 in the final stage of drawing. This hole is usually closed by brazing. The protrusion 11 of the present invention is a brazing filler metal 11a used in the brazing, which forms an upward protrusion 11. When brazing, the end of the inclined portion 10 faces upward and the brazing filler metal is placed so as to close the hole. 11a is poured, and the brazing material 11a hangs down by its own weight to form the upward projections 11. As shown in FIG.
As described above, by forming the projections using brazing material, it is of course possible to obtain the effects of the projections described above.

以上の実施の形態1をまとめて、本発明を備えた二相流入口管7より気液分離室3内に入る旋回流の動きと、上記した円錐形状の斜面部10、上向きの突起の旋回流との係り、更には、これらのものによる気液分離性能向上との係りについて説明する。
即ち、円筒容器2の気液分離室3内を二相流が旋回すると、遠心力の作用により、密度の高い液相成分は円筒内外周部に沿って旋回し、密度の小さな気相成分は旋回する液相成分の内側、即ち円筒内中心部付近を旋回する。この時、遠心力の作用により液相と気相の境界面である液相渦の液面は、実線液面5(図1に図示)のように、円筒容器の円筒部の中心を軸とした回転放物体状になる。即ち、液面の旋回中心部は液溜めの中まで入り込み、中心がくぼむ。
Summarizing the above Embodiment 1, the movement of the swirl flow entering the gas-liquid separation chamber 3 from the two-phase inlet pipe 7 equipped with the present invention, the conical slope portion 10 described above, and the swirl of the upward projection The relationship with the flow and further the relationship with the improvement of the gas-liquid separation performance due to these will be described.
That is, when the two-phase flow swirls in the gas-liquid separation chamber 3 of the cylindrical container 2, the high-density liquid phase component swirls along the inner and outer periphery of the cylinder due to the action of centrifugal force, and the low-density gas phase component swirls. It swirls inside the swirling liquid phase component, that is, near the center of the cylinder. At this time, due to the action of the centrifugal force, the liquid surface of the liquid phase vortex, which is the boundary surface between the liquid phase and the gas phase, is shifted with the center of the cylindrical portion of the cylindrical container as the axis, as shown by the solid line liquid surface 5 (shown in FIG. 1). It becomes a paraboloid of revolution. That is, the central part of the swirl of the liquid surface penetrates into the liquid reservoir, and the center becomes depressed.

円筒下部が円錐形状の斜面になっていると、円錐形状の斜面部10に沿って旋回半径が小さくなるので、遠心力が増す。その為、遠心力が増す分、液相渦は、破線液面5a(図1に図示)のように、より一層下方に向けて発達すると共に、円錐形状の中心下部に、より一層安定的に保持される。
一方、気相渦も液相渦の動きに伴い円錐形状の中心下部に誘導されるので、気相渦の下端は円錐形状中心部に安定的に保持される。
更に、先に記したように、円錐形状斜面部10下端に上向きの突起11があると、液相渦は突起の周りを旋回しようとするため、液相渦の中心は突起11の中心、即ち、円錐形状斜面部10の中心に保持される。そのため、気相渦も液相渦の動きに伴い円錐形状中心部に、より一層安定的に保持される。
If the lower part of the cylinder has a conical slope, the turning radius becomes small along the conical slope 10, so the centrifugal force increases. Therefore, as the centrifugal force increases, the liquid phase vortex develops further downward as shown by the dashed line liquid surface 5a (shown in FIG. 1), and is more stable at the lower center of the cone shape. retained.
On the other hand, since the gas-phase vortex is also guided to the lower central part of the conical shape with the movement of the liquid-phase vortex, the lower end of the gas-phase vortex is stably held at the central part of the conical shape.
Furthermore, as described above, if there is an upward projection 11 at the lower end of the conical slope portion 10, the liquid phase vortex tries to turn around the projection, so the center of the liquid phase vortex is the center of the projection 11, that is, , held in the center of the conical bevel 10 . Therefore, the gas-phase vortex is also more stably held at the conical central portion along with the movement of the liquid-phase vortex.

上述した円錐形状斜面部の作用効果と上向きの突起の作用効果との両方により、気相渦のふらつきは抑制され、気相が液相に混ざって液相出口管より流出するのを防止できる。従って、気液分離性能を大幅に向上させた気液分離装置が得られるものである。 Due to both the function and effect of the conical slope portion and the function and effect of the upward projection, the fluctuation of the gas phase vortex is suppressed, and the gas phase can be prevented from being mixed with the liquid phase and flowing out from the liquid phase outlet pipe. Therefore, it is possible to obtain a gas-liquid separation device with greatly improved gas-liquid separation performance.

一方、機器の運転条件により、気液分離装置内に流入する二相流の速度、圧力および気相液相の割合等が変動する場合がある。この時、本発明の形状でない場合、気相渦の下端旋回中心位置は円錐形状の中心部から外れふらつくことがあるが、本発明に於いては気相渦の下端旋回中心を円錐形状中心部付近に保持し、液相出口管6との距離を常に一定値以上確保しているので、気相渦のふらつきは抑えられ、気相が液相出口管6から流出することを抑えることができる。 On the other hand, depending on the operating conditions of the equipment, the velocity, pressure, ratio of the gas-liquid phase, etc. of the two-phase flow flowing into the gas-liquid separation device may vary. At this time, if the shape of the present invention is not used, the position of the lower end swirl center of the gas phase vortex may deviate from the center of the conical shape and fluctuate. Since it is held close to the liquid phase outlet pipe 6 and the distance from the liquid phase outlet pipe 6 is always kept at a certain value or more, the fluctuation of the gas phase vortex is suppressed, and the gas phase can be suppressed from flowing out from the liquid phase outlet pipe 6. .

以下に、図6、図7、図7-1を用いて、縷々説明してきた本発明の効果を従来例と比較しながら説明する。
まず、気液分離性能として、液相出口側気相混入割合と気相出口側液相混入割合を、以下のように定義する。
即ち、入口管から流入する二相流のうち、液相全流量をW、気相全流量をWとし、
液相出口管から吐出する二相流のうち、液相流量をWL(液相出口管)、気相流量をWg(液相出口管)とし
気相出口管から吐出する二相流のうち、液相流量をWL(気相出口管)、気相流量をWg(気相出口管)とし
液相出口側気相混入割合を、Wg(液相出口管)/Wと定義し、
気相出口側液相混入割合を、WL(気相出口管)/Wと定義する。
本定義によれば、液相出口側気相混入割合および気相出口側液相混入割合は、いずれも値が小さいほど、気液分離性能が良い。
また、気液分離装置の理想的機能としては、液相出口側気相混入割合は0が望ましいが、実用上、多くの場合、液相出口側気相混入割合は0.03程度まで許容される。
6, 7, and 7-1, the effect of the present invention, which has been explained in detail, will be explained in comparison with the conventional example.
First, as the gas-liquid separation performance, the liquid phase outlet side gas phase mixing ratio and the gas phase outlet side liquid phase mixing ratio are defined as follows.
That is, of the two-phase flow inflowing from the inlet pipe, let W L be the total flow rate of the liquid phase and W g be the total flow rate of the gas phase,
Of the two-phase flow discharged from the liquid-phase outlet pipe, let the liquid-phase flow rate be W L (liquid-phase outlet pipe) and the gas-phase flow rate be W g (liquid-phase outlet pipe) ,
Of the two-phase flow discharged from the gas phase outlet pipe, let the liquid phase flow rate be W L (gas phase outlet pipe) and the gas phase flow rate be W g (gas phase outlet pipe) ,
The liquid phase outlet side gas phase mixing ratio is defined as W g (liquid phase outlet tube) / W g ,
The liquid phase mixture ratio on the gas phase outlet side is defined as W L (gas phase outlet tube) /W L .
According to this definition, the gas-liquid separation performance is better as the values of both the liquid phase outlet side gas phase mixing ratio and the gas phase outlet side liquid phase mixing ratio are smaller.
Further, as an ideal function of the gas-liquid separation device, it is desirable that the gas phase mixing ratio on the liquid phase outlet side is 0, but practically in many cases, the liquid phase outlet side gas phase mixing ratio is allowed up to about 0.03. be.

図6は、円筒容器下部形状を変えた場合の、液相出口側気相混入割合を比較検証した結果を示す図である。なお、この時の試験条件は次の通りである。
1.流入する二相流流量を一定とする。
2.流入する気相と液相の割合を一定とする。
3.気相出口側液相混入割合を一定とする。
この試験結果からも明らかな如く、液相出口側気相混入割合が目標の0.03以下を達成しているものは、「C 本発明円錐形状」と「D 本発明円錐形状+突起形状低」と「E 本発明円錐形状+突起形状高」であり、従来形状の「A 従来円錐形状(液相出口管が円筒容器の円筒部と同心である)」、「B 鏡板形状」は本発明で目標とする0.03を達成できない。
これは、「C 本発明円錐形状」と「D 本発明円錐形状+突起形状低」と「E 本発明円錐形状+突起形状高」は、斜面部を有し、更に、液相出口管6の取付け位置をL/L=0、即ち、L/L<0.6として、気相渦のふらつきを抑え込み、ふらつきが液相出口管6に届かないようにした為である。
また、「C 本発明円錐形状」より「D 本発明円錐形状+突起形状低」と「E 本発明円錐形状+突起形状高」の方が良い結果となるのは、上向きの突起が、気相渦のふらつきを、より一層抑え込み、液相出口管より気相が流出するのを防止している為である。
FIG. 6 is a diagram showing the results of comparison and verification of the mixture ratio of the gas phase on the liquid phase outlet side when the shape of the lower portion of the cylindrical container is changed. The test conditions at this time are as follows.
1. Let the inflow two-phase flow rate be constant.
2. The ratio of the inflowing gas phase and liquid phase is kept constant.
3. The liquid phase mixture ratio on the gas phase outlet side is kept constant.
As is clear from this test result, the ratio of gas phase mixture on the liquid phase outlet side achieving the target of 0.03 or less is "C present invention conical shape" and "D present conical shape + protrusion shape low and "E present invention conical shape + projection shape height", the conventional shape "A conventional conical shape (liquid phase outlet pipe is concentric with the cylindrical portion of the cylindrical container)", "B end plate shape" of the present invention cannot achieve the target of 0.03.
This is because "C present conical shape", "D present conical shape + protrusion shape low", and "E present present conical shape + protrusion shape high" have slopes, and furthermore, the liquid phase outlet pipe 6 This is because the installation position is set to L 1 /L 0 =0, that is, L 1 /L 0 <0.6 to suppress the fluctuation of the gas phase vortex and prevent the fluctuation from reaching the liquid phase outlet pipe 6 .
In addition, the reason why "D present conical shape + projection shape low" and "E present conical shape + projection shape high" give better results than "C present conical shape" is that upward projections This is because the fluctuation of the vortex is further suppressed and the gas phase is prevented from flowing out from the liquid phase outlet pipe.

次に図7は、本発明を備えた気液分離装置(図1または、図6の「C 本発明円錐形状」)と従来構造の気液分離装置(図17または、図6の「A 従来円錐形状(液相出口管が円筒容器の円筒部と同心である)」)に於ける、液相出口側気相混入割合と気相出口側液相混入割合の関係を示し、横軸を液相出口側気相混入割合に、縦軸を気相出口側液相混入割合としたグラフである。なお、この時の試験条件は次の通りである。
1.流入する二相流流量を一定とする。
2.流入する気相と液相の割合を一定とする。
図7からわかるように、従来構造(図17または、図6の「A 従来円錐形状(液相出口管が円筒容器の円筒部と同心である)」)では、液相出口側気相混入割合を小さくしようとする(即ち、液相出口側の気液分離性能を向上させようとする)と、気相出口側液相混入割合が増加して気相側の気液分離性能が悪くなってしまうが、本発明を備えた気液分離装置(図1または、図6の「C 本発明円錐形状」)では、液相出口側気相混入割合を小さくして液相側の気液分離性能を向上させても、気相出口側液相混入割合が小さいまま維持でき、気相側の気液分離性能を良く維持できている。
即ち、本発明を備えた気液分離装置(図6の「C 本発明円錐形状」)であると気相出口側液相混入割合を小さく維持しつつ液相出口側気相混入割合を大幅に小さく改善できることが検証された。
Next, FIG. 7 shows a gas-liquid separation device equipped with the present invention (FIG. 1 or "C invention conical shape" in FIG. 6) and a gas-liquid separation device with a conventional structure (FIG. 17 or "A conventional shape" in FIG. In a conical shape (the liquid phase outlet pipe is concentric with the cylindrical part of the cylindrical container)”), the relationship between the liquid phase outlet side gas phase mixing ratio and the gas phase outlet side liquid phase mixing ratio is shown, and the horizontal axis is the liquid It is a graph in which the liquid phase mixing ratio on the gas phase outlet side is plotted on the vertical axis for the gas phase mixing ratio on the phase outlet side. The test conditions at this time are as follows.
1. Let the inflow two-phase flow rate be constant.
2. The ratio of the inflowing gas phase and liquid phase is kept constant.
As can be seen from FIG. 7, in the conventional structure (FIG. 17 or "A conventional conical shape (liquid phase outlet tube is concentric with the cylindrical portion of the cylindrical container)" in FIG. 6), the liquid phase outlet side gas phase mixing ratio (that is, trying to improve the gas-liquid separation performance on the liquid phase outlet side), the liquid phase mixing ratio on the gas phase outlet side increases and the gas-liquid separation performance on the gas phase side deteriorates. However, in the gas-liquid separation device equipped with the present invention (Fig. 1 or "C Conical shape of the present invention" in Fig. 6), the gas-liquid separation performance on the liquid phase side is reduced by reducing the gas phase mixture ratio on the liquid phase outlet side. is improved, the mixture ratio of the liquid phase on the gas phase outlet side can be kept small, and the gas-liquid separation performance on the gas phase side can be maintained well.
That is, in the gas-liquid separation device ("C present invention conical shape" in FIG. 6) equipped with the present invention, the ratio of gas phase mixture at the exit side of the gas phase is kept small while the mixture ratio of the gas phase at the exit side of the liquid phase is greatly increased. It was verified that small improvements can be made.

次に、先に記した、「C 本発明円錐形状」と「D 本発明円錐形状+突起形状低」と「E 本発明円錐形状+突起形状高」即ち、上向きの突起11の高さと液相出口側気相混入割合の関係を、図3、図7-1で説明する。
まず、図3に於いて、上向きの突起11の高さを、下記のように定義する。即ち、円筒容器の円筒部の中心軸を含む断面に於いて、円筒部内壁2bと接続曲面内壁13aとの稜線をXとし、Xを含む円筒容器中心軸に垂直な平面と円筒容器の円筒部下端の斜面部内側最下点hinとの距離をh、上向きの突起の頂点を含む円筒容器中心軸に垂直な平面と円筒容器の円筒部下端の斜面部内側最下点hinとの距離をhとする。この時、図7-1のように、h/hを横軸に、液相出口側気相混入割合を縦軸にとると、h/h>0.06とすることにより、液相出口管から気相が流出するのをより一層抑え込むことができる。上向きの突起がなくても、実用上許容される液相出口側気相混入割合0.03は確保できるが、h/h>0.06とすることにより、液相出口管から気相が流出するのをより一層抑え込むことができる。
なお、h/hは、0.07超、0.08超、0.09超、0.1超等であってもよい。また、h/hは、1未満、0.8未満、0.6未満、0.5未満、0.4未満、0.35未満等であってもよい。0.35>h/hの場合、突起なしに比べ液相出口側気相混入割合を約1/2に抑え込むことができる。
Next, "C present conical shape" and "D present conical shape + protrusion shape low" and "E present present conical shape + protrusion shape high", that is, the height of the upward protrusion 11 and the liquid phase The relationship of the outlet side gas phase mixing ratio will be explained with reference to FIGS. 3 and 7-1.
First, in FIG. 3, the height of the upward protrusion 11 is defined as follows. That is, in a cross section including the central axis of the cylindrical portion of the cylindrical container, the ridge between the inner wall 2b of the cylindrical portion and the connecting curved inner wall 13a is defined as X, and a plane perpendicular to the central axis of the cylindrical container including X and the cylindrical portion of the cylindrical container h 1 is the distance between the innermost point hin of the lower end of the slanted portion and the lowest point hin of the innermost slant portion of the lower end of the cylindrical portion of the cylindrical container and the plane perpendicular to the central axis of the cylindrical container including the apex of the upward projection Let the distance be h0 . At this time, as shown in FIG. 7-1, if h 0 /h 1 is taken on the horizontal axis and the liquid phase outlet side gas phase mixing ratio is taken on the vertical axis, h 0 /h 1 >0.06, It is possible to further suppress the outflow of the gas phase from the liquid phase outlet pipe. Even if there is no upward protrusion, the practically acceptable liquid phase outlet side gas phase mixture ratio of 0.03 can be secured, but by setting h 0 /h 1 > 0.06, the gas phase from the liquid phase outlet tube outflow can be further suppressed.
Note that h 0 /h 1 may be greater than 0.07, greater than 0.08, greater than 0.09, greater than 0.1, or the like. Also, h 0 /h 1 may be less than 1, less than 0.8, less than 0.6, less than 0.5, less than 0.4, less than 0.35, and the like. In the case of 0.35>h 0 /h 1 , it is possible to suppress the mixing ratio of the gas phase on the outlet side of the liquid phase to about 1/2 compared to the case without projections.

例えば、h/h>0.06を満たすように、斜面部の高さ寸法hを14.5mm、上向きの突起高さ寸法hを0.88mm(即ち、h/h>0.06)あるいは、5mm(即ち、h/h<0.35)とした気液分離装置であると、先に記した上向きの突起の効果が得られる。
換言すると、先に記したように、この上向きの突起(例えば、0.88mmあるいは、5mm)があることにより、液相渦は上向きの突起の周りを旋回する。これにより気相渦も液相渦にならって円錐形状中心部に安定的に保持される。従って、気相渦が、ふらつかず、液相出口管入口6aに近づかず、液相と一緒に流出しないので、気液分離性能を低下させることがなくなる。
For example, to satisfy h 0 /h 1 >0.06, the height dimension h 1 of the slope portion is 14.5 mm, and the height dimension h 0 of the upward projection is 0.88 mm (that is, h 0 /h 1 > 0.06) or 5 mm (that is, h 0 /h 1 <0.35), the effect of the above-described upward protrusions can be obtained.
In other words, as noted above, this upward protrusion (eg, 0.88 mm or 5 mm) causes the liquid phase vortex to swirl around the upward protrusion. As a result, the gas-phase vortex is also stably held at the center of the conical shape following the liquid-phase vortex. Therefore, the gas-phase vortex does not fluctuate, does not approach the liquid-phase outlet pipe inlet 6a, and does not flow out together with the liquid phase, so that the gas-liquid separation performance is not lowered.

実施の形態2Embodiment 2

次に、図4、図5、図5-1、図8、図10a、図10b、図11、図11-1で、本発明の第2の実施の形態を説明する。第2の実施の形態は、液相出口管6を円筒部下部の円錐形状斜面部10に設けた構造である。
図4は図1-1で液相出口管6を円筒部下部の円錐形状斜面部10に設け、円錐形状の中心軸が円筒部2aの中心軸と同心である場合の断面図であり、図5は図4の要部拡大説明図であり、図5-1は液相出口管6を斜面部10に略直角に取付けた断面図であり、図8は液相出口管6の位置と液相出口側気相混入割合の関係を示す図であり、図10aは本発明を備えた液相出口管部の液相と気相の動きを示した写真であり、図10bは本発明を備えていない液相出口管部の液相と気相の動きを示した写真であり、図11は円錐形状の中心軸が円筒部2aの中心軸と同心でなく、且つ、平行でない場合の断面図であり、図11-1は液相出口管6を斜面部10に略直角に取付けた断面図である。なお、図3と同様に、液面は省略してある。
まず、図4、図5に於いて、液相出口管6を接続曲面13を外した斜面部10に設け、且つ、円筒容器2の円筒部2aの中心軸と円錐形状の中心軸とが同心である場合、即ち、円筒部の略中心軸に斜面部10の外側最下点hを有する場合の実施例を説明する。円筒容器2の円筒部2aの中心軸を含む断面に於いて、液相出口管6を接続曲面内壁13aを外した斜面部10に円筒部2aの中心軸に略平行に設けると共に、先の稜線Xと円錐形状の中心軸即ち円筒部12の中心軸との距離をL0、先の稜線Xと液相出口管6の中心軸との距離をLとしたとき、L/L<0.6と管理し、液相出口管6の位置を気相渦の中心からずらすことにより、気相出口側液相混入割合を0.02以下と小さく維持しつつ、図8のように、液相出口側気相混入割合を小さくすることができる。
なお、上記では、円筒部の中心軸と円錐形状の中心軸とが同心であるとしたが、円錐形状の斜面部外側最下点hが円筒部の略中心軸にあれば同様の効果が得られる。また、円錐形状の斜面部の作用効果は、実施の形態1と同様である。
また、図5では、液相出口管6を円筒部の中心軸に略平行に設けているが、液相出口管6は、斜面部にあって、且つ、L/L<0.6であればよく、円筒部の中心軸に略平行でなくても良い。即ち、斜面部内側10bと液相出口管6の中心軸とのなす角度θが任意の角度であっても図5と同様な効果が得られる。ここで、液相出口管6が円筒部の中心軸に略平行でない場合、Lは、稜線Xと液相出口管6の中心軸と該斜面部内側10bとの交点を含む円筒部の中心軸に平行な線分との距離である。
図5-1は、液相出口管6を斜面部10に略直角に設けた場合であるが、図5と同様な効果が得られる。
図8は、図5と同一構造で、且つ、上向きの突起のない場合に、L/Lを変化させたときの、液相出口側気相混入割合の変化を示した図である。図8の試験条件は次の通りである。
1.流入する気相と液相の割合を一定とする。
2.気相側液相混入割合を一定とする。
本発明に於いて、液相出口側気相混入割合は0.03以下を目標値として設定しているが、図8から明らかなように、L/L<0.6と設定することにより、液相出口側気相混入割合を0.03以下にできる。
また、L/L<0.6であれば、液相出口管が、横取り出し(図3)でも、下取り出し(図5)でも、気相出口側液相混入割合を小さく維持しつつ、液相出口側気相混入割合を小さくすることができることを確認した。
上述のように、L/L<0.6とすることにより、従来の気液分離装置単体の性能を大幅に向上させることができることは勿論、小形軽量化が図れるので、製品等への組み込み性も向上する。
Next, a second embodiment of the present invention will be described with reference to FIGS. 4, 5, 5-1, 8, 10a, 10b, 11 and 11-1. The second embodiment has a structure in which the liquid phase outlet pipe 6 is provided on the conical slope portion 10 at the bottom of the cylindrical portion.
FIG. 4 is a cross-sectional view when the liquid phase outlet pipe 6 is provided on the conical slope portion 10 at the bottom of the cylindrical portion in FIG. 1-1, and the central axis of the conical shape is concentric with the central axis of the cylindrical portion 2a. 5 is an enlarged explanatory view of the main part of FIG. 4, FIG. 5-1 is a cross-sectional view of the liquid phase outlet pipe 6 attached to the inclined surface 10 at a substantially right angle, and FIG. FIG. 10A is a photograph showing the movement of the liquid phase and the gas phase in the liquid phase outlet tube part equipped with the present invention, and FIG. FIG. 11 is a photograph showing the movement of the liquid phase and the gas phase in the liquid phase outlet pipe part that is not in contact, and FIG. 11-1 is a cross-sectional view in which the liquid phase outlet pipe 6 is attached to the slope portion 10 at a substantially right angle. As in FIG. 3, the liquid surface is omitted.
First, in FIGS. 4 and 5, the liquid phase outlet pipe 6 is provided on the slope portion 10 away from the connection curved surface 13, and the central axis of the cylindrical portion 2a of the cylindrical container 2 and the central axis of the conical shape are concentric. , that is, an embodiment in which the outermost lowest point h of the slope portion 10 is located approximately at the central axis of the cylindrical portion will be described. In a cross section including the central axis of the cylindrical portion 2a of the cylindrical vessel 2, the liquid phase outlet pipe 6 is provided on the inclined surface portion 10 with the connecting curved inner wall 13a removed, substantially parallel to the central axis of the cylindrical portion 2a, and the ridge line When the distance between X and the central axis of the conical portion, that is, the central axis of the cylindrical portion 12 is L0 , and the distance between the ridge line X and the central axis of the liquid phase outlet pipe 6 is L1, then L1 / L0 < 0.6, and by shifting the position of the liquid phase outlet pipe 6 from the center of the gas phase vortex, while maintaining the gas phase outlet side liquid phase mixing ratio as small as 0.02 or less, as shown in FIG. It is possible to reduce the mixing ratio of the gas phase on the liquid phase outlet side.
In the above description, the central axis of the cylindrical portion and the central axis of the conical shape are assumed to be concentric, but the same effect can be obtained if the outermost point h of the inclined surface portion of the conical shape is substantially on the central axis of the cylindrical portion. be done. Further, the effects of the conical slope portion are the same as those of the first embodiment.
In addition, in FIG. 5, the liquid phase outlet pipe 6 is provided substantially parallel to the central axis of the cylindrical portion, but the liquid phase outlet pipe 6 is located on the slope portion and L 1 /L 0 <0.6. It is sufficient if it is not substantially parallel to the central axis of the cylindrical portion. That is, the same effect as in FIG. 5 can be obtained even if the angle .theta. Here, when the liquid phase outlet pipe 6 is not substantially parallel to the central axis of the cylindrical portion, L1 is the center of the cylindrical portion that includes the intersection of the ridgeline X, the central axis of the liquid phase outlet pipe 6, and the inner side 10b of the inclined portion. It is the distance to the line segment parallel to the axis.
FIG. 5-1 shows the case where the liquid phase outlet pipe 6 is provided at a substantially right angle to the slope portion 10, but the same effect as in FIG. 5 can be obtained.
FIG. 8 is a graph showing changes in the liquid phase outlet side gas phase mixing ratio when L 1 /L 0 is changed in the same structure as in FIG. 5 and without upward protrusions. The test conditions for FIG. 8 are as follows.
1. The ratio of the inflowing gas phase and liquid phase is kept constant.
2. The liquid phase mixing ratio on the gas phase side is kept constant.
In the present invention, the liquid phase exit side gas phase mixture ratio is set as a target value of 0.03 or less , but as is clear from FIG. Thus, the mixture ratio of gas phase on the liquid phase outlet side can be made 0.03 or less.
Further, if L 1 /L 0 <0.6, the liquid phase outlet pipe is taken out horizontally (FIG. 3) or taken out downward (FIG. 5), while maintaining the liquid phase mixing ratio at the gas phase outlet side small. , it was confirmed that the gas phase mixture ratio on the liquid phase outlet side can be reduced.
As described above, by setting L 1 /L 0 <0.6, the performance of the conventional gas-liquid separation device alone can be significantly improved, and the size and weight can be reduced. Incorporability is also improved.

図10aは、図5の構造の気液分離装置に於いて、本発明を備えた場合(L/L≒0.3、即ち、L/L<0.6)の、液溜め4付近の流れの状態を写真で示したもので、気相渦下端は円錐形状中心部付近に保持され、液相出口管6からは、液相のみが流出していることが確認できる。
図10bは、図5の構造の気液分離装置に於いて、本発明を備えていない場合(L/L≒0.7、即ち、L/L≧0.6)の液溜め4付近の流れの状態を写真で示したもので、気相渦下端が液相出口管6に近づいており、液相に混じり、気相が液相出口管6から流出していることが確認できる。
FIG. 10a shows a liquid reservoir in the gas - liquid separation device having the structure of FIG. 4 is a photograph showing the state of the flow near 4, and it can be confirmed that the lower end of the gas phase vortex is held near the center of the conical shape, and only the liquid phase is flowing out from the liquid phase outlet pipe 6.
FIG. 10b shows a liquid reservoir of the gas - liquid separation device having the structure of FIG. This is a photograph showing the state of the flow near 4. It was confirmed that the lower end of the gas phase vortex was approaching the liquid phase outlet pipe 6, mixed with the liquid phase, and the gas phase was flowing out from the liquid phase outlet pipe 6. can.

次に図11で、円錐形状の中心軸が円筒部の中心軸と同心でなく、且つ、平行でない場合であって、更に図5のように、液相出口管6を、接続曲面13を外した斜面部10に、円筒部の中心軸と平行に設けた場合の実施例を説明する。
本実施例は、円筒容器2の径が小さくなった時でも、図5で示したL/L<0.6の値を容易に得る手段であると共に、液相出口側気相混入割合を、より一層小さくできる手段である。
以下、図11で本発明を詳説する。即ち、図5に於いて円筒容器2の径が小さくなると、当然L/L<0.6を得ることが難しくなる。この時、例えば、偏心絞り加工あるいはプレス、鍛造等を用いて、図11の如く、斜面部10外側最下点hを液相出口管6から離れる方向にL移動すれば、図から明らかなように、円筒容器2の径が小さくL寸法が小さくても、L/L<0.6が容易になる。即ち、図11に於いて、L/L<0.6と同様に定義すれば、先の稜線Xと円筒部2aの中心軸との距離をL0、先の稜線Xと液相出口管6の中心軸との距離の短い側をL、円錐形状斜面部外側最下点hを含む円筒部の中心軸に平行な線分と円筒部2aの中心軸との距離をLとし、L/(L+L)<0.6と定義することができ、L/L<0.6と同様に、液相出口管6の位置を気相渦の中心から、より一層離すことができ、液相出口側気相混入割合を、より一層小さくでき、液相出口管への気相の流出を抑えることが出来る。
なお、円筒容器2の径が必ずしも小さくなくても、L/(L+L)<0.6であれば、上記の効果が得られることは明らかである。L/(L+L)は、0以上0.6未満であればよく、例えば、0.55未満、0.5未満、0.45未満、0.4未満等であってもよい。
また、上記説明に於いて、Lは、例えば、Lの1/5~1/2、Lの1/4~1/2であるが、実用上、Lの1/3~1/2となることが好ましい。
なお、上記では、円錐形状の中心軸が円筒部の中心軸と同心でなく、且つ、平行でない場合であるが、当然、円錐形状の中心軸は、円筒部の中心軸と平行であってもよい。
また、図11は、液相出口管6が円筒部の中心軸に略平行な場合の実施例であるが、図11-1のように、液相出口管6を斜面部10に略直角に設けてもよい。更に、液相出口管6は、斜面部にあって、且つ、L/(L+L)<0.6であればよく、円筒部の中心軸に略平行でなくても良い。即ち、斜面部内側10bと液相出口管6の中心軸とのなす角度θが任意の角度であっても図11と同様な効果が得られる。
図11、図11-1の実施形態は、円筒部の中心軸と円錐形状の中心軸とが同心でないこと以外は、前述(図5、図5-1)の円筒部の中心軸と円錐形状の中心軸とが同心である場合と同じ構造であり、作用効果も円筒部の中心軸と円錐形状の中心軸とが同心である場合と同様である。
Next, in FIG. 11, when the central axis of the conical shape is not concentric with and parallel to the central axis of the cylindrical portion, as shown in FIG. An embodiment in which the slant portion 10 is provided in parallel with the central axis of the cylindrical portion will be described.
This embodiment is a means for easily obtaining the value of L 1 /L 0 <0.6 shown in FIG. can be made even smaller.
The present invention will be described in detail below with reference to FIG. That is, in FIG. 5, when the diameter of the cylindrical container 2 becomes small, it naturally becomes difficult to obtain L 1 /L 0 <0.6. At this time, for example, by using eccentric drawing, pressing, forging, etc., as shown in FIG . Thus, even if the diameter of the cylindrical container 2 is small and the L 0 dimension is small, L 1 /L 0 <0.6 is easily satisfied. That is, in FIG. 11, if it is defined in the same way as L 1 /L 0 <0.6, the distance between the previous ridge line X and the central axis of the cylindrical part 2a is L 0, the previous ridge line X and the liquid phase outlet L 1 is the side with the shortest distance from the central axis of the pipe 6, and L 2 is the distance between the line segment parallel to the central axis of the cylindrical portion including the lowest point h on the outside of the conical slope portion and the central axis of the cylindrical portion 2a. , L 1 /(L 0 +L 2 )<0.6, and similarly to L 1 /L 0 <0.6, the position of the liquid-phase outlet pipe 6 is shifted from the center of the gas-phase vortex to It is possible to further separate the liquid phase outlet side gas phase mixing ratio can be further reduced, it is possible to suppress the outflow of the gas phase to the liquid phase outlet pipe.
Even if the diameter of the cylindrical container 2 is not necessarily small, it is clear that the above effects can be obtained if L 1 /(L 0 +L 2 )<0.6. L 1 /(L 0 +L 2 ) may be 0 or more and less than 0.6, and may be, for example, less than 0.55, less than 0.5, less than 0.45, less than 0.4.
In the above description, L 2 is, for example, 1/5 to 1/2 of L 0 and 1/4 to 1/2 of L 0 . /2 is preferable.
In the above description, the central axis of the conical shape is not concentric with and parallel to the central axis of the cylindrical portion. good.
FIG. 11 shows an embodiment in which the liquid phase outlet pipe 6 is substantially parallel to the central axis of the cylindrical portion. may be provided. Furthermore, the liquid phase outlet pipe 6 may be located on the slant portion, and L 1 /(L 0 +L 2 )<0.6, and may not be substantially parallel to the central axis of the cylindrical portion. 11 can be obtained even if the angle .theta.
11 and 11-1, the central axis of the cylindrical portion and the conical shape described above (FIGS. 5 and 5-1) are different from each other, except that the central axis of the cylindrical portion and the central axis of the conical shape are not concentric. The structure is the same as when the central axis of the cylindrical portion and the central axis of the conical portion are concentric, and the effects are the same as when the central axis of the cylindrical portion and the conical central axis are concentric.

実施の形態3Embodiment 3

次に実施の形態1(図1-1、図3)とは異なる形成方法で作られる突起形状を、図12を用いて説明する。
本実施例は、上向き突起を、円筒容器と一体に形成した気液分離装置であり、例えば、鍛造またはプレス加工で斜面部10を形成する時に、上向きの突起11を同時に一体で形成するものである。本実施例によれば、実施の形態1(図3)のようにろう付けをする必要がないので構成部品も加工工数も少なくてすみ、また、寸法精度もよいので、量産性に優れたものとなる。
上記構成は、加工方法が異なるのみで液溜め4側の形状および作用効果は実施の形態1(図3)と同じであり、図3と同様の斜面部10と上向きの突起11を設けることができるので、実施の形態1と同等の効果が得られるものである。
なお、突起形状は、図3、図6のD、E、図12の他に、山形の突起形状でも、銛状の突起形状でもよい。
Next, a protrusion shape formed by a forming method different from that of Embodiment 1 (FIGS. 1-1 and 3) will be described with reference to FIG.
This embodiment is a gas-liquid separation device in which upward projections are integrally formed with a cylindrical container. be. According to this embodiment, there is no need to perform brazing as in the first embodiment (FIG. 3), so the number of components and the number of processing steps can be reduced. becomes.
The above configuration is the same as the first embodiment (FIG. 3) except that the processing method is different. Therefore, an effect equivalent to that of the first embodiment can be obtained.
3, 6D, 6E, and 12, the projection shape may be a mountain-shaped projection shape or a harpoon-like projection shape.

実施の形態4Embodiment 4

図13は、上記した気液分離装置を冷凍サイクルに使用した場合の冷凍サイクル構成図である。図13に示した冷凍サイクル構成図には本実施形態を説明するために必要な基本的構成要素を示している。即ち、圧縮機18は第一のシリンダ19のみを有し、圧縮機で吸い込んだ低温低圧の気相冷媒は第一のシリンダ19で圧縮され高温高圧気相冷媒となり冷媒吐出管20を経て、凝縮器21で凝縮器用送風機22で送られる空気に放熱し、高圧液冷媒となる。その液冷媒は第一の減圧器23で減圧され二相流となり、二相流入口管7から気液分離装置1に流入し、液相冷媒は液相出口管6から蒸発器24に入り蒸発器用送風機25で送られる空気から熱を奪い低温低圧の気相冷媒となり、圧縮機18に吸い込まれる。一方、気液分離装置で分離された気相冷媒は気相出口管9から蒸発器バイパス管26を経て圧縮機18に吸い込まれる。 FIG. 13 is a configuration diagram of a refrigerating cycle when the gas-liquid separator described above is used in the refrigerating cycle. The refrigerating cycle block diagram shown in FIG. 13 shows basic constituent elements necessary for explaining this embodiment. That is, the compressor 18 has only the first cylinder 19, and the low-temperature, low-pressure vapor-phase refrigerant sucked by the compressor is compressed in the first cylinder 19 to become a high-temperature, high-pressure vapor-phase refrigerant. In the vessel 21, the heat is radiated to the air sent by the blower 22 for the condenser, and becomes a high-pressure liquid refrigerant. The liquid refrigerant is decompressed by the first pressure reducer 23 to become a two-phase flow, flows into the gas-liquid separation device 1 from the two-phase inlet pipe 7, and the liquid-phase refrigerant enters the evaporator 24 from the liquid-phase outlet pipe 6 and evaporates. It takes heat from the air sent by the device blower 25 and becomes a low-temperature, low-pressure vapor-phase refrigerant, which is sucked into the compressor 18 . On the other hand, the gas-phase refrigerant separated by the gas-liquid separation device is sucked into the compressor 18 through the gas-phase outlet pipe 9 and the evaporator bypass pipe 26 .

気液分離装置1を用いない場合には、減圧器23で減圧された二相流の気相冷媒も蒸発器に流入するため、蒸発器用送風機25で送られる空気温度が低い場合には蒸発圧力が低下し、気相冷媒の密度は小さくなり体積流量が大きくなるため、蒸発器24での圧力損失が大きく蒸発器24の出口圧力、即ち、圧縮機吸込み圧力が低下するため、圧縮動力が増大し、高効率な運転ができなくなる。
それに対して、本実施例で示したように気液分離装置1を設け、分離された気相冷媒を気相出口管9から蒸発器バイパス管26を経て圧縮機18に吸い込ませることにより、冷却に寄与が極めて少ない気相冷媒は蒸発器24に流入しないため蒸発器24での圧力損失を抑えることができ、圧縮動力が節減でき、高効率な運転を可能にできる。
When the gas-liquid separation device 1 is not used, the two-phase gas-phase refrigerant decompressed by the decompressor 23 also flows into the evaporator. decreases, the density of the vapor-phase refrigerant decreases, and the volumetric flow rate increases, resulting in a large pressure loss in the evaporator 24 and the outlet pressure of the evaporator 24, that is, the compressor suction pressure, decreases, increasing the compression power. and high-efficiency operation becomes impossible.
On the other hand, as shown in this embodiment, the gas-liquid separation device 1 is provided, and the separated gas-phase refrigerant is sucked from the gas-phase outlet pipe 9 through the evaporator bypass pipe 26 into the compressor 18, thereby cooling Since the vapor-phase refrigerant, which contributes very little to , does not flow into the evaporator 24, pressure loss in the evaporator 24 can be suppressed, compression power can be saved, and highly efficient operation can be achieved.

実施の形態5Embodiment 5

図14は気液分離装置を冷凍サイクルに使用した場合の図13とは異なる冷凍サイクル構成図である。図14はセパレート型エアコンの例であり、室外ユニット27と室内ユニット28より構成され、冷房運転時のサイクルを示している。圧縮機18で圧縮された高温高圧気相冷媒には冷凍機油が混入しており、圧縮機から吐出された気相冷媒に混入する冷凍機油量が多くなると、冷凍サイクル冷媒流路の圧力損失が増加し、また蒸発熱伝達率および凝縮熱伝達率が低下し、冷凍サイクル効率の低下の原因になる。更に、圧縮機起動時には圧縮機内に封入されている冷凍機油がフォーミングし、大量の冷凍機油が気相冷媒に混入し圧縮機から吐出され、冷凍サイクルに流出する。特にセパレート型エアコンの場合には、室内ユニットと室外ユニットを接続する接続配管が設けられており、この接続配管34が長い場合には、冷凍サイクルに流出した冷凍機油は長時間圧縮機に戻らず、運転条件によっては圧縮機内の冷凍機油が不足し、圧縮機の信頼性に支障をきたす問題があった。 FIG. 14 is a refrigerating cycle configuration diagram different from FIG. 13 when the gas-liquid separator is used in the refrigerating cycle. FIG. 14 shows an example of a separate type air conditioner, which is composed of an outdoor unit 27 and an indoor unit 28, and shows a cycle during cooling operation. The high-temperature, high-pressure vapor-phase refrigerant compressed by the compressor 18 contains refrigerating machine oil. When the amount of refrigerating machine oil mixed with the vapor-phase refrigerant discharged from the compressor increases, the pressure loss in the refrigerating cycle refrigerant flow path increases. increase, and the evaporative heat transfer rate and the condensation heat transfer rate are lowered, causing a decrease in refrigeration cycle efficiency. Furthermore, when the compressor is started, the refrigerating machine oil enclosed in the compressor foams, and a large amount of refrigerating machine oil is mixed with the gas-phase refrigerant, discharged from the compressor, and flowed out to the refrigerating cycle. Especially in the case of a separate type air conditioner, a connection pipe is provided to connect the indoor unit and the outdoor unit. However, depending on the operating conditions, there is a shortage of refrigerating machine oil in the compressor, causing problems with the reliability of the compressor.

そこで、図14は上記課題を解決するために、圧縮機18の冷媒吐出管にコンパクトな気液分離装置1を設け、冷凍サイクル効率の向上および圧縮機の信頼性確保を図るものである。即ち、圧縮機18で吸い込んだ低温低圧の気相冷媒は圧縮機18で圧縮され高温高圧気相冷媒となり圧縮機吐出管を経て、気液分離装置1の二相流入口管7から気液分離装置に流入する。圧縮機18で圧縮された高温高圧気相冷媒には冷凍機油が混入しており、気液分離装置1内で冷凍機油は液相として、気相冷媒は気相として分離され、それぞれ液相出口管6および気相出口管9から取り出される。液相出口管6を出た冷凍機油は液レシーバ30、流量調整絞り31をへて、圧縮機吸込み管32に吸い込まれ、冷凍機油は圧縮機に戻る。流量調整絞り31を設けている理由は、通常の運転条件では圧縮機18から吐出される高温高圧気相冷媒に混入している冷凍機油は気相冷媒に比べて少ないため、気液分離装置1で分離した冷凍機油を流量調整絞り31で徐々に圧縮機18に冷凍機油を戻すためである。また、液レシーバ30を設けている理由は、圧縮機起動時に圧縮機内に封入されている冷凍機油がフォーミングし、大量の冷凍機油が気相冷媒に混入し圧縮機から吐出されるが、これは一時的な現象であるため、気液分離装置1で分離した冷凍機油を一時的に溜め込み、流量調整絞り31で徐々に圧縮機18に冷凍機油を戻すためである。 Therefore, in order to solve the above problem, FIG. 14 provides a compact gas-liquid separator 1 in the refrigerant discharge pipe of the compressor 18 to improve the efficiency of the refrigerating cycle and ensure the reliability of the compressor. That is, the low-temperature, low-pressure vapor-phase refrigerant sucked by the compressor 18 is compressed by the compressor 18 to become a high-temperature, high-pressure vapor-phase refrigerant. flow into the device. The high-temperature, high-pressure gas-phase refrigerant compressed by the compressor 18 is mixed with refrigerating machine oil. It is withdrawn from the tube 6 and the gas phase outlet tube 9 . Refrigerating machine oil exiting the liquid phase outlet pipe 6 passes through a liquid receiver 30 and a flow control throttle 31, is sucked into a compressor suction pipe 32, and returns to the compressor. The reason why the flow rate adjustment throttle 31 is provided is that under normal operating conditions, the amount of refrigerating machine oil mixed in the high-temperature, high-pressure gas-phase refrigerant discharged from the compressor 18 is less than that in the gas-phase refrigerant. This is because the refrigerating machine oil separated in . The reason why the liquid receiver 30 is provided is that the refrigerating machine oil enclosed in the compressor foams when the compressor is started, and a large amount of refrigerating machine oil mixes with the gas-phase refrigerant and is discharged from the compressor. Since this is a temporary phenomenon, the refrigerating machine oil separated by the gas-liquid separator 1 is temporarily stored, and the refrigerating machine oil is gradually returned to the compressor 18 by the flow control throttle 31 .

一方、気液分離装置1内で分離された気相冷媒は気相出口管9から四方弁33を経て、凝縮器21で凝縮器用送風機22から送られる空気に放熱し、高圧液冷媒となる。その液冷媒は第一の減圧器23で減圧され低温低圧の二相流となり、蒸発器24に入り蒸発器用送風機25で送られる空気から熱を奪い低温低圧の気相冷媒となり、圧縮機18に吸い込まれる。したがって、気液分離装置1内で冷凍機油は液相として分離され、液相出口管6から液レシーバ30、流量調整絞り31を経て、圧縮機吸込み管32に吸い込まれ、冷凍機油は圧縮機に戻るため、冷凍機油が冷凍サイクルに流出するのを防止でき、高効率な冷凍サイクル運転が可能になり、また、起動時にも冷凍機油が冷凍サイクルに流出するのを防止でき、信頼性の高い運転が可能になる。 On the other hand, the gas-phase refrigerant separated in the gas-liquid separation device 1 passes through the gas-phase outlet pipe 9 and the four-way valve 33, radiates heat in the condenser 21 to the air sent from the condenser blower 22, and becomes high-pressure liquid refrigerant. The liquid refrigerant is decompressed by the first pressure reducer 23 and becomes a low-temperature, low-pressure two-phase flow. sucked in. Therefore, the refrigerating machine oil is separated as a liquid phase in the gas-liquid separation device 1, and is sucked into the compressor suction pipe 32 from the liquid phase outlet pipe 6 via the liquid receiver 30 and the flow rate adjusting throttle 31. Therefore, it is possible to prevent refrigerating machine oil from leaking into the refrigerating cycle, enabling highly efficient refrigerating cycle operation. becomes possible.

実施の形態6Embodiment 6

図15は気液分離装置を気液二相流を扱う機械装置に適用した一例を示す系統図である。
具体的には、図15は空気清浄装置であり、空気中に混入している臭い成分、微粒子成分等の汚れ成分を除去し、清浄な空気を得るものである。臭い成分、微粒子成分を含んだ汚れ空気35は送風機36で汚れ吸着室37に送られる。一方、ポンプ38から吸着水39がノズル40に送られ、ノズル40から汚れ吸着室37内に微細水滴41を噴霧する。微細水滴41は汚れ吸着室37に送られた汚れ空気の臭い成分、微粒子成分を吸着し、下方に落下しドレン管42から取り出される。一方、清浄化された空気は空気取り出し部43から取り出されるが、その空気中には多数の微細水滴41が含まれている。そこで、多数の微細水滴を含む清浄化された空気を気液分離装置1の二相流入口管7から気液分離装置1内に導入して、微細水滴41を分離し、その微細水滴は液相出口管6より取り出す。一方、微細水滴を除いた清浄化された空気は気相出口管9より取り出される。従って、本発明の気液分離装置を用いることにより、気相成分を効率的に取り出すことができる。
FIG. 15 is a system diagram showing an example in which the gas-liquid separator is applied to a mechanical device that handles a gas-liquid two-phase flow.
Specifically, FIG. 15 shows an air purifying device, which removes contaminant components such as odor components and fine particle components mixed in the air to obtain clean air. Dirty air 35 containing odor components and fine particle components is sent to a dirt adsorption chamber 37 by a blower 36 . On the other hand, the adsorbed water 39 is sent from the pump 38 to the nozzle 40 , and fine water droplets 41 are sprayed from the nozzle 40 into the dirt adsorption chamber 37 . The fine water droplets 41 adsorb odor components and fine particle components of the dirty air sent to the dirt adsorption chamber 37 , fall downward, and are taken out from the drain pipe 42 . On the other hand, the cleaned air is taken out from the air take-out portion 43, and contains a large number of fine water droplets 41 in the air. Therefore, purified air containing a large number of fine water droplets is introduced into the gas-liquid separation device 1 from the two-phase inlet pipe 7 of the gas-liquid separation device 1 to separate the fine water droplets 41, and the fine water droplets are liquid. It is taken out from the phase outlet tube 6 . On the other hand, the cleaned air from which fine water droplets have been removed is taken out from the gas phase outlet pipe 9 . Therefore, by using the gas-liquid separation device of the present invention, the gas phase component can be efficiently extracted.

以上に述べた実施の形態4及び実施の形態5の気液分離装置は、冷媒HFC-32と冷凍機油を用いた実験による知見に基づき考案されたものであるが、その基本的考え方は他のHFC系冷媒、HFO系冷媒、自然冷媒にも適用可能である。また、実施の形態6の気液分離装置は、空気―水の二相流の事例であるが、一般的な気相と液相からなる二相流にも適用可能である。 The gas-liquid separation devices of Embodiments 4 and 5 described above were devised based on knowledge obtained through experiments using refrigerant HFC-32 and refrigerating machine oil. It can also be applied to HFC-based refrigerants, HFO-based refrigerants, and natural refrigerants. Further, the gas-liquid separation device of Embodiment 6 is an example of air-water two-phase flow, but it can also be applied to a general two-phase flow consisting of a gas phase and a liquid phase.

空気調和機等の冷凍装置やガスインジェクションを備えた冷凍装置や蒸気サイクル装置や気液二相流を扱う機械装置に、本発明の気液分離装置を組み込むことにより、効率が良く、信頼性を向上させた、低価格の冷凍装置や蒸気サイクル装置や気液二相流を扱う機械装置が得られるものである。
なお、二相流を扱う機械装置には、実施の形態6の空気浄化装置の他に、燃料電池のように排気(窒素等)に混入している水を分離する装置、超臨界水による廃プラスチック油化装置のように生成ガスと油や水を分離する装置、超臨界水によるバイオガス生産装置のように生成ガス(メタン等)と水を分離する装置、電気化学によるオゾン水発生装置のようにカソードで生成する水素と水を分離する装置等が含まれる。
By incorporating the gas-liquid separation device of the present invention into a refrigeration device such as an air conditioner, a refrigeration device equipped with gas injection, a vapor cycle device, or a mechanical device that handles a gas-liquid two-phase flow, efficiency and reliability can be improved. Improved, low-cost refrigeration systems, vapor cycle systems, and mechanical systems that handle gas-liquid two-phase flow are obtained.
In addition to the air purifying device of Embodiment 6, mechanical devices that handle two-phase flow include a device such as a fuel cell that separates water mixed in the exhaust gas (nitrogen, etc.), a supercritical water Equipment that separates generated gas from oil or water, such as a plastic oil conversion equipment, equipment that separates generated gas (methane, etc.) from water, such as a biogas production equipment that uses supercritical water, and an electrochemical ozone water generator. It includes a device for separating hydrogen and water produced at the cathode.

1 気液分離装置
2 円筒容器 2a 円筒部 2b 円筒部内壁
3 気液分離室
4 液溜め
5 実線液面 5a破線液面
6 液相出口管 6a入口
7 二相流入口管
8 気相渦先端
9 気相出口管
10 斜面部 10b 斜面部内側
11 上向きの突起 11aろう材
12 円筒部下端
13 接続曲面 13a接続曲面内壁
18 圧縮機
19 第一のシリンダ
20 冷媒吐出管
21 凝縮器
22 凝縮器用送風機
23 第一の減圧器
24 蒸発器
25 蒸発器用送風機
26 蒸発器バイパス管
27 室外ユニット
28 室内ユニット
29 冷媒吐出管
30 液レシーバー
31 流量調整絞り
33 四方弁
34 接続配管
35 汚れ空気
36 送風機
37 汚れ吸着室
38 ポンプ
39 吸着水
40 ノズル
41 微細水滴
42 ドレン管
43 空気取り出し部
51 気液分離装置 51a内周壁
52 容器 52a底壁
53 二相流の入口
54 気相出口管
55 液相出口管 55a入口
56 液面
57 突起
1 gas-liquid separator
2 Cylindrical container 2a Cylindrical part 2b Cylindrical part inner wall
3 gas-liquid separation chamber 4 liquid reservoir
5 Solid line liquid level 5a Broken line liquid level 6 Liquid phase outlet pipe 6a Inlet 7 Two-phase inlet pipe 8 Gas phase vortex tip 9 Gas phase outlet pipe 10 Slope portion 10b Slope portion inner side 11 Upward protrusion 11a Brazing material 12 Cylindrical portion lower end 13 Connection curved surface 13a Connection curved surface inner wall 18 Compressor 19 First cylinder 20 Refrigerant discharge pipe 21 Condenser 22 Condenser blower 23 First pressure reducer 24 Evaporator 25 Evaporator blower 26 Evaporator bypass pipe 27 Outdoor unit 28 Indoor unit 29 Refrigerant discharge pipe 30 Liquid receiver 31 Flow rate adjustment throttle 33 Four-way valve 34 Connection pipe 35 Dirty air 36 Blower 37 Dirt adsorption chamber 38 Pump 39 Adsorbed water 40 Nozzle 41 Fine droplets 42 Drain pipe 43 Air extraction part 51 Gas-liquid separator 51a inner peripheral wall 52 container 52a bottom wall 53 two-phase flow inlet 54 gas phase outlet pipe 55 liquid phase outlet pipe 55a inlet 56 liquid surface 57 projection

Claims (10)

二相流入口管より円筒容器内に導入される二相流に旋回力を付与し、遠心力で気液を分離し、気相は気相出口管より、液相は液相出口管より、それぞれ流出させるようにした気液分離装置に於いて、
円筒容器の円筒部下端に円筒部の中心軸を含む断面で頂角120度以下であり、且つ、円筒部の略中心軸に斜面部外側最下点hを有する下向き円錐形状の斜面部を形成すると共に、該斜面部と円筒容器の円筒部との間に設けられる接続曲面を外した該斜面部の位置に液相出口管を設け、且つ、
円筒部の中心軸を含む断面に於いて、円筒部内壁と接続曲面内壁との稜線をXとし、稜線Xと円筒部の中心軸との距離をLとし、稜線Xと、液相出口管の中心軸と該斜面部内側との交点を含む円筒部の中心軸に平行な線分と、の距離をLとしたとき、L/L<0.6としたことを特徴とする気液分離装置。
A swirling force is applied to the two-phase flow introduced into the cylindrical container from the two-phase inlet pipe, and the gas-liquid is separated by centrifugal force. In the gas-liquid separation device that is made to flow out respectively,
At the lower end of the cylindrical portion of the cylindrical container, a slope portion of a downward cone shape having a vertical angle of 120 degrees or less in a cross section including the central axis of the cylindrical portion and having the lowest point h on the outer side of the slope portion at approximately the central axis of the cylindrical portion is formed. In addition, a liquid phase outlet pipe is provided at a position of the inclined surface portion away from the connecting curved surface provided between the inclined surface portion and the cylindrical portion of the cylindrical container, and
In the cross section including the central axis of the cylindrical portion, the ridgeline between the inner wall of the cylindrical portion and the inner wall of the connecting curved surface is X, the distance between the ridgeline X and the central axis of the cylindrical portion is L0 , and the ridgeline X and the liquid phase outlet pipe and a line segment parallel to the central axis of the cylindrical portion including the intersection point of the inner side of the slope portion and L 1 /L 0 < 0.6, where L 1 is the distance between Gas-liquid separator.
二相流入口管より円筒容器内に導入される二相流に旋回力を付与し、遠心力で気液を分離し、気相は気相出口管より、液相は液相出口管より、それぞれ流出させるようにした気液分離装置に於いて、
円筒容器の円筒部下端に円筒部の中心軸を含む断面で頂角120度以下であり、且つ、円筒部の略中心軸以外に斜面部外側最下点hを有する下向き円錐形状の斜面部を形成すると共に、該斜面部と円筒容器の円筒部との間に設けられる接続曲面を外した該斜面部の位置で、且つ、円筒部の中心軸に対して斜面部外側最下点hと反対側の該斜面部の位置に液相出口管を設け、且つ、
円筒部の中心軸を含む断面に於いて、円筒部内壁と接続曲面内壁との稜線をXとし、稜線Xと円筒部の中心軸との距離をLとし、斜面部外側最下点hを含む円筒部の中心軸に平行な線分と円筒部の中心軸との距離をLとし、稜線Xと、液相出口管の中心軸と該斜面部内側との交点を含む円筒部の中心軸に平行な線分と、の距離の短い側をLとしたとき、L/(L+L)<0.6としたことを特徴とする気液分離装置。
A swirling force is applied to the two-phase flow introduced into the cylindrical container from the two-phase inlet pipe, and the gas-liquid is separated by centrifugal force. In the gas-liquid separation device that is made to flow out respectively,
At the lower end of the cylindrical portion of the cylindrical container, a slope portion of a downward conical shape having an apex angle of 120 degrees or less in a cross section including the central axis of the cylindrical portion and having a lowest point h on the outer side of the slope portion other than approximately the central axis of the cylindrical portion is provided. at a position of the slope portion excluding the connection curved surface provided between the slope portion and the cylindrical portion of the cylindrical container, and opposite to the lowest point h on the outer side of the slope portion with respect to the central axis of the cylindrical portion A liquid phase outlet pipe is provided at the position of the slope on the side, and
In a cross section including the central axis of the cylindrical portion, let X be the ridgeline between the inner wall of the cylindrical portion and the inner wall of the connecting curved surface, L0 be the distance between the ridgeline X and the central axis of the cylindrical portion, and h be the lowest point on the outer side of the slanted portion. L2 is the distance between a line segment parallel to the central axis of the cylindrical portion including A gas-liquid separation device characterized in that L 1 /(L 0 +L 2 )<0.6, where L 1 is the side of a line segment parallel to the axis with the shortest distance.
二相流入口管より円筒容器内に導入される二相流に旋回力を付与し、遠心力で気液を分離し、気相は気相出口管より、液相は液相出口管より、それぞれ流出させるようにした気液分離装置に於いて、
円筒容器の円筒部下端に円筒部の中心軸を含む断面で頂角120度以下の下向き円錐形状の斜面部を形成すると共に、該斜面部と円筒容器の円筒部との間に設けられる接続曲面を外した円筒部下端の位置に液相出口管を設け、且つ、
円筒部の中心軸を含む断面に於いて、円筒部内壁と接続曲面内壁との稜線をXとし、稜線Xと接続曲面を外した円筒部下端の位置に設けられる液相出口管の外径下端との距離をLとし、液相出口管の内径をdとした時、L/d<2.5であることを特徴とする気液分離装置である。
A swirling force is applied to the two-phase flow introduced into the cylindrical container from the two-phase inlet pipe, and the gas-liquid is separated by centrifugal force. In the gas-liquid separation device that is made to flow out respectively,
At the lower end of the cylindrical portion of the cylindrical container, a downward conical inclined surface having a vertical angle of 120 degrees or less in a cross section including the central axis of the cylindrical portion is formed, and a connecting curved surface is provided between the inclined surface and the cylindrical portion of the cylindrical container. A liquid phase outlet pipe is provided at the position of the lower end of the cylindrical portion removed, and
In a cross section including the central axis of the cylindrical portion, the ridge line between the inner wall of the cylindrical portion and the inner wall of the connecting curved surface is defined as X, and the outer diameter lower end of the liquid phase outlet pipe provided at the position of the lower end of the cylindrical portion removed from the ridge line X and the connecting curved surface. and d is the inner diameter of the liquid phase outlet tube, L/d<2.5.
円筒容器の円筒部下端の斜面部最下端内側に突起を設けたことを特徴とする請求項1~3の記載の気液分離装置。 4. The gas-liquid separator according to claim 1, wherein a projection is provided inside the lowest end of the slant portion of the lower end of the cylindrical portion of the cylindrical container. 斜面部最下端内側に形成される突起は、円筒容器と一体に形成されたことを特徴とする請求項4記載の気液分離装置。 5. The gas-liquid separation device according to claim 4, wherein the protrusion formed inside the lowermost end of the slant portion is formed integrally with the cylindrical container. 斜面部最下端内側に形成される突起は、円筒容器の斜面部先端を封止するろう材を斜面部最下端内側に***させて形成したことを特徴とする請求項4記載の気液分離装置。 5. The gas-liquid separation device according to claim 4, wherein the projection formed inside the lowermost end of the slanted surface is formed by protruding a brazing material for sealing the front end of the slanted surface of the cylindrical container to the inside of the lowermost end of the slant surface. . 円筒容器の円筒部の中心軸を含む断面に於いて、円筒部内壁と接続曲面内壁との稜線をXとし、稜線Xを含む円筒部の中心軸に垂直な平面と円筒容器の円筒部下端の斜面部内側最下点hinとの距離をhとし、上向きの突起の頂点を含む円筒部の中心軸に垂直な平面と円筒容器の円筒部下端の斜面部内側最下点hinとの距離をhとした時、h/h>0.06としたことを特徴とする請求項4~6記載の気液分離装置。 In a cross section including the central axis of the cylindrical portion of the cylindrical container, let X be the ridgeline between the inner wall of the cylindrical portion and the inner wall of the connecting curved surface, and the plane perpendicular to the central axis of the cylindrical portion including the ridgeline X and the lower end of the cylindrical portion of the cylindrical container. The distance from the innermost point hin of the slope portion is defined as h 1 , and the plane perpendicular to the central axis of the cylindrical portion including the apex of the upward projection and the lowest point hin of the innermost slope portion at the lower end of the cylindrical portion of the cylindrical container. 7. The gas-liquid separator according to claim 4, wherein h 0 /h 1 >0.06, where h 0 is the distance. 請求項1から請求項7のいずれか一項記載の気液分離装置を冷凍サイクルの圧縮機吐出管と凝縮器の間に配設し、気液分離装置の二相流入口管に圧縮機吐出管を接続し、気液分離装置の液相出口管を流量調整絞りを介して圧縮機吸い込み管に接続し、気液分離装置の気相出口管を凝縮器に至る管路に接続したことを特徴とする冷凍装置。 The gas-liquid separation device according to any one of claims 1 to 7 is arranged between the compressor discharge pipe and the condenser of the refrigeration cycle, and the compressor is discharged to the two-phase inlet pipe of the gas-liquid separation device. The liquid phase outlet pipe of the gas-liquid separator was connected to the compressor suction pipe through the flow control throttle, and the gas phase outlet pipe of the gas-liquid separator was connected to the conduit leading to the condenser. A refrigeration device characterized by: 請求項1から請求項7のいずれか一項記載の気液分離装置を冷凍サイクルの減圧器と蒸発器の間に配設し、減圧器出口管を気液分離装置の二相流入口管に接続し、液相出口管を蒸発器入口に接続し、気相出口管を蒸発器をバイパスさせた後に圧縮機吸い込み管に接続したことを特徴とする冷凍装置。 The gas-liquid separation device according to any one of claims 1 to 7 is disposed between the pressure reducer and the evaporator of the refrigeration cycle, and the pressure reducer outlet pipe is connected to the two-phase inlet pipe of the gas-liquid separation device. , wherein the liquid phase outlet pipe is connected to the evaporator inlet, and the vapor phase outlet pipe is connected to the compressor suction pipe after bypassing the evaporator. 請求項1から請求項項7のいずれか一項記載の気液分離装置を配設し、気液二相流を気相と液相に分離することを特徴とする流体機械装置。 A fluid mechanical device comprising the gas-liquid separation device according to any one of claims 1 to 7 for separating a gas-liquid two-phase flow into a gas phase and a liquid phase.
JP2018048569A 2017-03-17 2018-03-15 Refrigeration equipment with gas-liquid separator and gas-liquid separator Active JP7146207B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017074781 2017-03-17
JP2017074781 2017-03-17

Publications (2)

Publication Number Publication Date
JP2018155485A JP2018155485A (en) 2018-10-04
JP7146207B2 true JP7146207B2 (en) 2022-10-04

Family

ID=63706341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018048569A Active JP7146207B2 (en) 2017-03-17 2018-03-15 Refrigeration equipment with gas-liquid separator and gas-liquid separator

Country Status (2)

Country Link
JP (1) JP7146207B2 (en)
CN (1) CN108619795B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062350A1 (en) * 2019-09-27 2021-04-01 Auburn University Electrospray vortical flow exchanger
CN114183950A (en) * 2020-09-15 2022-03-15 广东美芝制冷设备有限公司 Liquid storage device, compressor and refrigeration equipment
CN112791439A (en) * 2021-01-07 2021-05-14 中昊光明化工研究设计院有限公司 Supercritical fluid separator
CN114570152B (en) * 2022-03-28 2023-12-19 南京诺令生物科技有限公司 Integrated device for separating and purifying low-particulate gas and separation and purification method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028403A (en) 2000-07-18 2002-01-29 Max Co Ltd Gas-liquid separator in ozone water rpoducer
JP2004232880A (en) 2003-01-28 2004-08-19 Fujitsu General Ltd Refrigerator
JP2005265387A (en) 2004-03-22 2005-09-29 Denso Corp Gas-liquid separator
JP2007107861A (en) 2005-10-17 2007-04-26 Calsonic Kansei Corp Liquid tank
JP2016065677A (en) 2014-09-25 2016-04-28 アイシン精機株式会社 Refrigerant oil separator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192352U (en) * 1982-06-17 1983-12-21 三洋電機株式会社 Low temperature refrigerant circuit
JPS6033179U (en) * 1983-08-12 1985-03-06 ダイキン工業株式会社 Gas-liquid separator in refrigeration equipment
JPH0334570U (en) * 1989-08-10 1991-04-04
US6497114B1 (en) * 2001-09-18 2002-12-24 Visteon Global Technologies, Inc. Oil separator
JP2003200082A (en) * 2002-01-07 2003-07-15 Sharp Corp Cyclone separator
JP4268994B2 (en) * 2005-11-14 2009-05-27 日冷工業株式会社 Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
JP4854408B2 (en) * 2006-07-12 2012-01-18 財団法人 国際石油交流センター Gas-solid separator design method
CN201179364Y (en) * 2008-02-15 2009-01-14 天津瑞吉德科技有限公司 Vertical gas (steam) liquid cyclone separator with built-in helical commutating device
KR20110119553A (en) * 2010-04-26 2011-11-02 니찌레이 고오교오 가부시끼가이샤 Gas-liquid separator and refrigerating apparatus equipped therewith
CN105038888A (en) * 2015-08-15 2015-11-11 重庆联合机器制造有限公司 Natural gas second-stage gas-liquid separator
CN205886495U (en) * 2016-08-02 2017-01-18 北京中航泰达环保科技股份有限公司 Gas -liquid separating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028403A (en) 2000-07-18 2002-01-29 Max Co Ltd Gas-liquid separator in ozone water rpoducer
JP2004232880A (en) 2003-01-28 2004-08-19 Fujitsu General Ltd Refrigerator
JP2005265387A (en) 2004-03-22 2005-09-29 Denso Corp Gas-liquid separator
JP2007107861A (en) 2005-10-17 2007-04-26 Calsonic Kansei Corp Liquid tank
JP2016065677A (en) 2014-09-25 2016-04-28 アイシン精機株式会社 Refrigerant oil separator

Also Published As

Publication number Publication date
JP2018155485A (en) 2018-10-04
CN108619795A (en) 2018-10-09
CN108619795B (en) 2022-04-01

Similar Documents

Publication Publication Date Title
JP7146207B2 (en) Refrigeration equipment with gas-liquid separator and gas-liquid separator
KR100516577B1 (en) Oil separator and outdoor unit with the oil separator
CN102235783B (en) Gas-liquid separation device and possess the refrigerating plant of gas-liquid separation device
US7131292B2 (en) Gas-liquid separator
JP5143040B2 (en) Gas-liquid separator and refrigeration cycle apparatus equipped with the gas-liquid separator
CN106568246B (en) Oil separator and air conditioning unit
JP2006322701A (en) Oil separator and air conditioner having the same
EP1568955B1 (en) Oil separator and cooling-cycle apparatus using the same
CN107076487A (en) Oil eliminator
WO2013076971A1 (en) Gas-liquid separator and refrigeration cycle device
JP2008196721A (en) Gas-liquid separator
JP6055673B2 (en) Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
CN213811246U (en) Oil separator and air condensing units
JP2010048483A (en) Gas-liquid separator and air compression device and air conditioner equipped with the gas-liquid separator
CN103604257A (en) Dispenser
CN103615821A (en) Refrigeration system with liquid separator
JP2012057924A (en) Gas-liquid separator and refrigeration device including the same
JP3780834B2 (en) Air conditioner
CN204943987U (en) Reservoir and there is its compressor
CN203605513U (en) Refrigeration system with liquid separator
JP2005233470A (en) Gas-liquid separator
JP6827554B2 (en) Oil separator and air conditioner equipped with it
CN105115202A (en) Liquid storing device and compressor having same
WO2020174660A1 (en) Gas-liquid separation device and refrigeration cycle device
CN203605549U (en) Fluid dispenser

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220324

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20220328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7146207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150