JP7144669B2 - Ultrasonic thickness gauge - Google Patents

Ultrasonic thickness gauge Download PDF

Info

Publication number
JP7144669B2
JP7144669B2 JP2017127436A JP2017127436A JP7144669B2 JP 7144669 B2 JP7144669 B2 JP 7144669B2 JP 2017127436 A JP2017127436 A JP 2017127436A JP 2017127436 A JP2017127436 A JP 2017127436A JP 7144669 B2 JP7144669 B2 JP 7144669B2
Authority
JP
Japan
Prior art keywords
ultrasonic probe
measured
ultrasonic
deformation
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017127436A
Other languages
Japanese (ja)
Other versions
JP2019011979A (en
Inventor
雅美 岡本
遵 林
健介 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2017127436A priority Critical patent/JP7144669B2/en
Priority to PCT/JP2018/024542 priority patent/WO2019004341A1/en
Publication of JP2019011979A publication Critical patent/JP2019011979A/en
Application granted granted Critical
Publication of JP7144669B2 publication Critical patent/JP7144669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、超音波厚さ測定装置に関する。 The present invention relates to an ultrasonic thickness measuring device.

従来、この種の超音波厚さ測定装置としては、円筒形の超音波探触子と、超音波探触子の周囲を取り囲むように超音波探触子に固定されるリング状部材と、リング状部材の外周側面に接するようにケースに固定されるリング状弾性体と、を備えるものが提案されている(例えば、特許文献1参照)。この超音波厚さ測定装置では、超音波探触子の測定面が被測定物の被測定面に押し付けられる際に、リング状弾性体の弾性力により、超音波探触子の測定面と被測定物の被測定面とが平行になりながら押し付けられる。これにより、被測定物の被測定面が超音波探触子の測定面に対して傾斜していても(両者が平行でなくても)、超音波探触子の測定面を被測定物の被測定面に密着させることができる。そして、超音波探触子の測定面から超音波を発射すると共に被測定物からの反射波を利用して被測定物の厚さを測定する。 Conventionally, this type of ultrasonic thickness measuring device includes a cylindrical ultrasonic probe, a ring-shaped member fixed to the ultrasonic probe so as to surround the ultrasonic probe, and a ring and a ring-shaped elastic body fixed to the case so as to be in contact with the outer peripheral side surface of the shaped member (see, for example, Patent Document 1). In this ultrasonic thickness measuring apparatus, when the measurement surface of the ultrasonic probe is pressed against the measurement surface of the object, the elastic force of the ring-shaped elastic body causes the measurement surface of the ultrasonic probe to contact the object. The object to be measured is pressed while being parallel to the surface to be measured. As a result, even if the measurement surface of the object to be measured is inclined with respect to the measurement surface of the ultrasonic probe (even if the two are not parallel), the measurement surface of the ultrasonic probe can be placed on the object to be measured. It can be brought into close contact with the surface to be measured. Then, ultrasonic waves are emitted from the measurement surface of the ultrasonic probe and reflected waves from the object are used to measure the thickness of the object.

特開2014-206476号公報JP 2014-206476 A

上述の超音波厚さ測定装置では、超音波探触子の外周側にリング状部材やリング状弾性体、ケースが位置するから、超音波探触子の外周側に必要な大きさ(スペース)が大きくなりやすい。超音波探触子の外周側に必要な大きさが大きいと、超音波探触子の測定面が被測定物の被測定面(被押付位置)に押し付けられる前にケースなどの部材が被測定物に当接するなどして邪魔になりやすい。 In the ultrasonic thickness measuring device described above, since the ring-shaped member, the ring-shaped elastic body, and the case are positioned on the outer peripheral side of the ultrasonic probe, the required size (space) on the outer peripheral side of the ultrasonic probe tends to grow. If the size required for the outer circumference of the ultrasonic probe is large, the case and other members of the object to be measured must be removed before the measurement surface of the ultrasonic probe is pressed against the surface to be measured (position to be pressed) of the object to be measured. It is easy to get in the way by contacting objects.

本発明の超音波厚さ測定装置は、超音波探触子の外周側に必要な大きさ(スペース)を小さくすることを主目的とする。 A main object of the ultrasonic thickness measuring apparatus of the present invention is to reduce the required size (space) on the outer peripheral side of the ultrasonic probe.

本発明の超音波厚さ測定装置は、上述の主目的を達成するために以下の手段を採った。 The ultrasonic thickness measuring apparatus of the present invention employs the following means to achieve the above-mentioned main object.

本発明の超音波厚さ測定装置は、
超音波探触子の測定面が被測定部の被測定面に押し付けられ、前記超音波探触子によって前記被測定部に対して超音波を送受信することにより、前記被測定部の厚さを測定する超音波厚さ測定装置であって、
前記超音波探触子の前記測定面側とは反対側に配置される支持部と、
前記支持部と前記超音波探触子とを接続すると共に少なくとも一部が弾性変形可能な接続変形部と、
前記超音波探触子の初期位置への位置決めに用いられると共に前記超音波探触子の径方向における前記超音波探触子の移動量を制限するガイド部と、
を備えることを要旨とする。
The ultrasonic thickness measuring device of the present invention is
The measurement surface of the ultrasonic probe is pressed against the surface to be measured of the part to be measured, and by transmitting and receiving ultrasonic waves to and from the part to be measured by the ultrasonic probe, the thickness of the part to be measured is measured. An ultrasonic thickness measuring device for measuring,
a support portion arranged on the side opposite to the measurement surface side of the ultrasonic probe;
a connection deformation portion that connects the support portion and the ultrasonic probe and is at least partially elastically deformable;
a guide part that is used for positioning the ultrasonic probe to an initial position and limits the amount of movement of the ultrasonic probe in the radial direction of the ultrasonic probe;
The gist is to provide

この本発明の超音波厚さ測定装置では、超音波探触子の測定面側とは反対側に配置される支持部と、支持部と超音波探触子とを接続すると共に少なくとも一部が弾性変形可能な接続変形部と、超音波探触子の初期位置への位置決めに用いられると共に超音波探触子の径方向における超音波探触子の移動量を制限するガイド部と、を備える。したがって、接続変形部が、超音波探触子と支持部材との間すなわち超音波探触子の測定面側とは反対側に位置するから、超音波探触子の外周側に位置するものに比して、超音波探触子の外周側に必要な大きさ(スペース)を小さくすることができる。そして、被測定部の厚さを測定する際には、支持部と接続変形部と超音波探触子とが被測定部側に移動し、接続変形部の少なくとも一部の弾性変形(圧縮や座屈)を伴って超音波探触子の測定面が被測定部の被測定面(被押付位置)に平行になりながら押し付けられ、超音波探触子によって被測定部に対して超音波を送受信することにより、被測定部の厚さを測定する。この超音波厚さ測定装置では、超音波探触子の外周側に必要な大きさを小さくすることができるから、超音波探触子の測定面が被測定物の被測定面に押し付けられる前に何らかの部材が被測定物に当接するなどして邪魔になるのを抑制することができる。また、超音波探触子の測定面が被測定物の被測定面に押し付けられる際に、ガイド部によって超音波探触子のその径方向における移動量を制限することができ、超音波探触子の測定面が被測定部の被測定面(所望の被押付位置)からずれた位置に押し付けられるのを抑制することができる。さらに、被測定部の厚さの測定後に超音波探触子の測定面が被測定部の被測定面から離間したときに、ガイド部によって超音波探触子を初期位置に位置決めすることができる。 In the ultrasonic thickness measuring apparatus of the present invention, the supporting portion arranged on the side opposite to the measurement surface side of the ultrasonic probe; An elastically deformable connection deformation part, and a guide part used for positioning the ultrasonic probe to the initial position and limiting the amount of movement of the ultrasonic probe in the radial direction of the ultrasonic probe . Therefore, since the connection deformation portion is positioned between the ultrasonic probe and the support member, that is, on the side opposite to the measurement surface side of the ultrasonic probe, it is positioned on the outer peripheral side of the ultrasonic probe. In comparison, the size (space) required for the outer peripheral side of the ultrasonic probe can be reduced. Then, when measuring the thickness of the part to be measured, the supporting part, the connecting deformation part, and the ultrasonic probe move toward the part to be measured, and at least a part of the connecting deformation part elastically deforms (compresses, buckling), the measurement surface of the ultrasonic probe is pressed while becoming parallel to the surface to be measured (pressing position) of the part to be measured, and the ultrasonic probe emits ultrasonic waves to the part to be measured. By transmitting and receiving, the thickness of the part to be measured is measured. In this ultrasonic thickness measuring device, since the size required for the outer peripheral side of the ultrasonic probe can be made small, the ultrasonic probe can be measured before the measurement surface of the ultrasonic probe is pressed against the measurement surface of the object to be measured. In addition, it is possible to prevent any member from contacting the object to be measured and becoming an obstacle. Further, when the measurement surface of the ultrasonic probe is pressed against the surface to be measured of the object to be measured, the amount of movement of the ultrasonic probe in the radial direction can be limited by the guide section. It is possible to prevent the measuring surface of the element from being pressed to a position deviated from the surface to be measured (desired position to be pressed) of the part to be measured. Furthermore, when the measurement surface of the ultrasonic probe separates from the surface to be measured of the part to be measured after the thickness of the part to be measured is measured, the ultrasonic probe can be positioned at the initial position by the guide part. .

本発明の超音波厚さ測定装置において、前記接続変形部は、前記支持部と前記超音波探触子とに接続されると共に弾性変形可能な変形部材であるものとしてもよい。ここで、変形部材としては、コイルばねやゴムなどを用いることができる。 In the ultrasonic thickness measuring apparatus of the present invention, the connection deformation section may be a deformation member connected to the support section and the ultrasonic probe and elastically deformable. Here, a coil spring, rubber, or the like can be used as the deformation member.

本発明の超音波厚さ測定装置において、前記接続変形部は、前記超音波探触子に接続されると共に弾性変形可能な変形部材と、前記変形部材と前記支持部とに接続される球面ベアリングと、を有するものとしてもよい。こうすれば、変形部材がよりスムーズに弾性変形することができる。ここで、変形部材としては、コイルばねやゴムなどを用いることができる。 In the ultrasonic thickness measuring apparatus of the present invention, the connection deformation section includes a deformation member that is connected to the ultrasonic probe and is elastically deformable, and a spherical bearing that is connected to the deformation member and the support section. and may have In this way, the deformation member can elastically deform more smoothly. Here, a coil spring, rubber, or the like can be used as the deformation member.

本発明の超音波厚さ測定装置において、前記接続変形部は、前記支持部に接続されると共に弾性変形可能な第1変形部材と、前記超音波探触子に接続されると共に弾性変形可能な第2変形部材と、前記第1変形部材と前記第2変形部材とに接続される中間支持部材と、を有し、前記中間支持部材の初期位置への位置決めに用いられると共に前記中間支持部材の径方向における前記中間支持部材の移動量を制限する第2ガイド部を更に備えるものとしてもよい。こうすれば、超音波探触子の測定面が被測定物の被測定面に押し付けられる際に、第2ガイド部によって中間支持部材のその径方向における移動量を制限することができ、接続変形部全体としての変形量(支持部と超音波探触子との間での湾曲量)が大きくなるのを抑制することができる。また、被測定部の厚さの測定後に超音波探触子の測定面が被測定部の被測定面から離間したときに、第2ガイド部によって中間支持部材を初期位置に位置決めすることができる。ここで、第1変形部材や第2変形部材としては、コイルばねやゴムなどを用いることができる。 In the ultrasonic thickness measuring apparatus of the present invention, the connection deformation section includes a first deformation member connected to the support section and elastically deformable, and an elastically deformable first deformation member connected to the ultrasonic probe and elastically deformable. Having a second deformation member and an intermediate support member connected to the first deformation member and the second deformation member, used for positioning the intermediate support member to the initial position and the intermediate support member A second guide portion may be further provided for limiting the amount of movement of the intermediate support member in the radial direction. With this configuration, when the measurement surface of the ultrasonic probe is pressed against the measurement surface of the object to be measured, the second guide portion can limit the amount of movement of the intermediate support member in its radial direction. It is possible to suppress an increase in the amount of deformation of the entire portion (amount of bending between the support portion and the ultrasonic probe). Further, when the measurement surface of the ultrasonic probe is separated from the surface to be measured of the portion to be measured after the thickness of the portion to be measured is measured, the intermediate support member can be positioned at the initial position by the second guide portion. . Here, a coil spring, rubber, or the like can be used as the first deformation member and the second deformation member.

この場合、前記第1変形部材は、前記第2変形部材よりも低剛性であるものとしてもよい。こうすれば、第1変形部材が第2変形部材よりも縮みやすく、中間支持部材が第1変形部材側に移動しやすくなり、第2変形部材の弾性変形量を小さくすることができる。 In this case, the first deformation member may have lower rigidity than the second deformation member. In this way, the first deformable member contracts more easily than the second deformable member, the intermediate support member can easily move toward the first deformable member, and the elastic deformation amount of the second deformable member can be reduced.

また、この場合、前記接続変形部は、前記第1変形部材と前記支持部とに接続される球面ベアリングを更に有するものとしてもよい。こうすれば、第1変形部材がよりスムーズに弾性変形することができる。 Moreover, in this case, the connection deformation portion may further include a spherical bearing connected to the first deformation member and the support portion. In this way, the first deformation member can elastically deform more smoothly.

第1実施例の超音波厚さ測定装置20の構成の概略を示す構成図である。1 is a configuration diagram showing a schematic configuration of an ultrasonic thickness measuring device 20 of a first embodiment; FIG. 超音波厚さ測定装置20の超音波探触子30の測定面が被測定部11の被測定面に押し付けられる際の様子を示す説明図である。FIG. 3 is an explanatory diagram showing a state when a measurement surface of an ultrasonic probe 30 of an ultrasonic thickness measuring device 20 is pressed against a measurement surface of a measurement target portion 11; 変形例の超音波厚さ測定装置20Bの構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of the configuration of an ultrasonic thickness measuring device 20B of a modified example; 超音波厚さ測定装置20Bの超音波探触子30の測定面が被測定部11の被測定面に押し付けられる際の様子を示す説明図である。FIG. 3 is an explanatory view showing a state when a measurement surface of an ultrasonic probe 30 of an ultrasonic thickness measuring device 20B is pressed against a measurement surface of a measurement target portion 11; 第2実施例の超音波厚さ測定装置120の構成の概略を示す構成図である。FIG. 3 is a configuration diagram showing the outline of the configuration of an ultrasonic thickness measuring device 120 of a second embodiment; 超音波厚さ測定装置120の超音波探触子30の測定面が被測定部11の被測定面に押し付けられる際の様子を示す説明図である。FIG. 3 is an explanatory view showing a state when the measurement surface of the ultrasonic probe 30 of the ultrasonic thickness measuring device 120 is pressed against the measurement surface of the measurement target portion 11; 変形例の超音波厚さ測定装置120Bの構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of the configuration of an ultrasonic thickness measuring device 120B of a modified example; 超音波厚さ測定装置120Bの超音波探触子30の測定面が被測定部11の被測定面に押し付けられる際の様子を示す説明図である。FIG. 4 is an explanatory view showing a state when the measurement surface of the ultrasonic probe 30 of the ultrasonic thickness measurement device 120B is pressed against the measurement surface of the measurement target portion 11;

次に、本発明を実施するための形態を実施例を用いて説明する。 Next, a mode for carrying out the present invention will be described using examples.

図1は、本発明の第1実施例の超音波厚さ測定装置20の構成の概略を示す構成図である。なお、第1実施例において、超音波厚さ測定装置20の上下方向は、図1に示した通りである。また、超音波厚さ測定装置20の水平方向は、上下方向に直交する方向である。 FIG. 1 is a schematic diagram showing the configuration of an ultrasonic thickness measuring device 20 according to a first embodiment of the present invention. In the first embodiment, the vertical direction of the ultrasonic thickness measuring device 20 is as shown in FIG. Moreover, the horizontal direction of the ultrasonic thickness measuring device 20 is a direction perpendicular to the vertical direction.

図示するように、超音波厚さ測定装置20は、超音波を用いて被測定物10における被測定部11の厚さDを測定するのに用いられ、枠部22と、枠部22に固定される支持部29と、支持部29の下側に配置される超音波探触子30と、超音波探触子30を保持する探触子ホルダ32と、超音波探触子30に取り付けられるガイドパイプ34と、支持部29と超音波探触子30(探触子ホルダ32)とに接続されると共に弾性変形可能なコイルばね(変形部材)40と、を備える。 As shown in the figure, the ultrasonic thickness measuring device 20 is used to measure the thickness D of the measured portion 11 of the measured object 10 using ultrasonic waves. , the ultrasonic probe 30 arranged on the lower side of the supporting portion 29, the probe holder 32 holding the ultrasonic probe 30, and the ultrasonic probe 30 attached to the It includes a guide pipe 34 and a coil spring (deformable member) 40 that is connected to the support portion 29 and the ultrasound probe 30 (probe holder 32) and that is elastically deformable.

枠部22は、円板状の第1円板部23と、第1円板部23よりも下側で且つ第1円板部23と同軸に配置される第2円板部24と、第1円板部23と第2円板部24とを周方向に間隔をおいて接続する複数の連結部27と、を備える。第1円板部23および第2円板部24は、それぞれ中央に円形の穴23h,24hを有する。支持部29は、円柱状に形成されており、第1円板部23の穴23hに挿通されて固定されている。 The frame portion 22 includes a disc-shaped first disc portion 23 , a second disc portion 24 arranged below the first disc portion 23 and coaxially with the first disc portion 23 , and a second disc portion 24 . A plurality of connecting portions 27 that connect the first disk portion 23 and the second disk portion 24 at intervals in the circumferential direction are provided. The first disc portion 23 and the second disc portion 24 respectively have circular holes 23h and 24h in the center. The support portion 29 is formed in a cylindrical shape, and is inserted through the hole 23h of the first disk portion 23 and fixed.

超音波探触子30は、測定面(下端面)側で超音波を送受信する直接接触型の垂直探触子として構成されている。この超音波探触子30は、第2円板部24の穴24hの径よりも小さい外径を有する円柱状に形成されおり、超音波探触子30の上端部付近の側面(図1の右側)には、図示しない探触子側コネクタが設けられている。探触子ホルダ32は、第2円板部24の穴24hの径よりも大きい外径を有すると共に下端面側および図1の右側で開口する凹部を有する円柱状に形成されており、この凹部に、超音波探触子30が、探触子側コネクタが図1の右側となるように挿入されて固定されている。超音波探触子30および探触子ホルダ32は、一体にされ(或いは一体の市販品が用いられ)、第2円板部24よりも第1円板部23側(上側)から超音波探触子30が第2円板部24の穴24hに挿通される。また、超音波探触子30の探触子側コネクタには、表示部36に接続されたケーブル37の端部に設けられた表示部側コネクタ38が接続されている。表示部36は、超音波探触子30からの信号に基づいて、測定結果としての被測定部11の厚さDの検出値を表示する。表示部側コネクタ38としては、直角タイプのものが用いられ、ケーブル37は、表示部側コネクタ38から枠部22の連結部27に沿って第1円板部23側(上側)に延びている。 The ultrasonic probe 30 is configured as a direct contact vertical probe that transmits and receives ultrasonic waves on the measurement surface (lower end surface) side. The ultrasonic probe 30 is formed in a columnar shape having an outer diameter smaller than the diameter of the hole 24h of the second disk portion 24, and the side surface near the upper end of the ultrasonic probe 30 (see FIG. 1). right side) is provided with a probe-side connector (not shown). The probe holder 32 has an outer diameter larger than the diameter of the hole 24h of the second disk portion 24, and is formed in a cylindrical shape having a recess opening on the lower end surface side and the right side of FIG. 1, the ultrasonic probe 30 is inserted and fixed so that the probe-side connector is on the right side in FIG. The ultrasonic probe 30 and the probe holder 32 are integrated (or an integrated commercial product is used), and the ultrasonic probe is detected from the first disc portion 23 side (upper side) than the second disc portion 24 . The probe 30 is inserted through the hole 24h of the second disk portion 24. As shown in FIG. A probe-side connector of the ultrasound probe 30 is connected to a display-side connector 38 provided at the end of a cable 37 connected to the display 36 . The display unit 36 displays the detected value of the thickness D of the measured part 11 as the measurement result based on the signal from the ultrasonic probe 30 . A right-angle type connector is used as the display section side connector 38, and the cable 37 extends from the display section side connector 38 along the connecting section 27 of the frame section 22 toward the first disk section 23 side (upper side). .

ガイドパイプ34は、樹脂などによって外周面が滑らかな円筒状に形成されており、超音波探触子30の延在方向(図1の上下方向)における中央部付近を包囲するように超音波探触子30に取り付けられている。上述の第2円板部24の穴24hの径は、このガイドパイプ34の外径よりも若干大きい値に定められている。なお、この第2円板部24の穴24hの径(穴24hとガイドパイプ34との隙間)は、超音波探触子30の測定面と被測定部11の被測定面との傾斜の許容角度(例えば、4度や5度、6度)に基づいて定められる。 The guide pipe 34 is formed of resin or the like in a cylindrical shape with a smooth outer peripheral surface, and surrounds the vicinity of the central portion in the extension direction of the ultrasonic probe 30 (the vertical direction in FIG. 1). It is attached to the contactor 30 . The diameter of the hole 24h of the second disk portion 24 is set to be slightly larger than the outer diameter of the guide pipe 34. As shown in FIG. The diameter of the hole 24h of the second disk portion 24 (the gap between the hole 24h and the guide pipe 34) is determined by the tolerance of the inclination between the measurement surface of the ultrasonic probe 30 and the measurement surface of the measurement target portion 11. It is defined based on an angle (eg, 4 degrees, 5 degrees, 6 degrees).

コイルばね40としては、その全長が平均径の4倍よりも長いものが用いられる。ここで、コイルばね40の平均径は、コイルばね40の外径と内径との和を値2で除した値に相当する。このコイルばね40は、弾性力により、探触子ホルダ32を第2円板部24側(下側)に付勢する。これにより、超音波探触子30が第2円板部24の穴24hに挿通している状態で探触子ホルダ32の下端面が第2円板部24の上端面に当接し、超音波探触子30が初期位置(枠部22に対する相対的な初期位置)に位置決めされる。 As the coil spring 40, one having a total length longer than four times the average diameter is used. Here, the average diameter of the coil spring 40 corresponds to a value obtained by dividing the sum of the outer diameter and the inner diameter of the coil spring 40 by two. The coil spring 40 urges the probe holder 32 toward the second disc portion 24 (lower side) with its elastic force. As a result, the lower end surface of the probe holder 32 comes into contact with the upper end surface of the second disk portion 24 while the ultrasonic probe 30 is inserted through the hole 24h of the second disk portion 24, and the ultrasonic wave is transmitted. The probe 30 is positioned at the initial position (initial position relative to the frame 22).

この超音波厚さ測定装置20では、コイルばね40が、超音波探触子30の測定面側とは反対側(超音波厚さ測定装置20における上側)に位置するから、超音波探触子30の外周側に位置するものに比して、超音波探触子30の外周側に必要な大きさ(スペース)を小さくすることができる。例えば、第2円板部24の外径などを小さくすることができる。 In this ultrasonic thickness measuring device 20, the coil spring 40 is located on the side opposite to the measurement surface side of the ultrasonic probe 30 (upper side in the ultrasonic thickness measuring device 20). The required size (space) on the outer peripheral side of the ultrasonic probe 30 can be made smaller than that positioned on the outer peripheral side of the ultrasonic probe 30 . For example, the outer diameter of the second disc portion 24 can be reduced.

次に、こうして構成された超音波厚さ測定装置20の動作、具体的には、超音波厚さ測定装置20を用いて被測定物10における被測定部11の厚さDを測定する際の動作について説明する。第1実施例では、超音波探触子30が初期位置のとき(図1のとき)に超音波探触子30の測定面と被測定部11の被測定面とが平行でない場合について説明する。なお、支持部29は、ロボットアームなどの図示しない移動装置に取り付けられる。また、被測定部11の厚さDを測定する前に、準備処理として、被測定部11の被測定面に水やグリセリンなどの粘性を有する媒質(粘性流体)が供給されると共に移動装置により支持部29の水平方向における位置が調節される。被測定部11の被測定面に媒質を供給するのは、超音波探触子30からの超音波を被測定部11に効率よく伝達させるためである。 Next, the operation of the ultrasonic thickness measuring device 20 configured as described above, specifically, the operation of measuring the thickness D of the portion to be measured 11 of the object to be measured 10 using the ultrasonic thickness measuring device 20 Operation will be explained. In the first embodiment, the case where the measurement surface of the ultrasonic probe 30 and the surface to be measured of the part to be measured 11 are not parallel when the ultrasonic probe 30 is at the initial position (in FIG. 1) will be described. . The support portion 29 is attached to a moving device (not shown) such as a robot arm. Before measuring the thickness D of the part 11 to be measured, as a preparatory process, a viscous medium (viscous fluid) such as water or glycerin is supplied to the surface to be measured of the part 11 to be measured, and the movement device The horizontal position of the support portion 29 is adjusted. The reason why the medium is supplied to the surface to be measured of the part to be measured 11 is to efficiently transmit the ultrasonic waves from the ultrasonic probe 30 to the part to be measured 11 .

被測定部11の厚さDを測定する際には、移動装置により、支持部29や枠部22、コイルばね40、超音波探触子30が一体に被測定部11側(下側)に移動する。すると、超音波探触子30の測定面の一部が被測定部11の被測定面に当接し、被測定部11の被測定面からの力により、図2に示すように、枠部22に対する相対的な超音波探触子30の傾斜や上側(斜め上側を含む)への移動(図2では反時計回りに傾斜しながら上側への移動)、コイルばね40の弾性変形(圧縮や座屈)を伴って、超音波探触子30の測定面が被測定部11の被測定面に平行になりながら押し付けられる。これにより、超音波探触子30の測定面と被測定部11の被測定面とを(媒質を介して)密着させることができる。第1実施例では、上述したように、超音波探触子30の外周側に必要な大きさ(スペース)を小さくすることができるから、超音波探触子30の測定面が被測定部11の被測定面に押し付けられる前に第2円板部24などが被測定物10に当接するなどして邪魔になるのを抑制することができる。また、第2円板部24の穴24hの内周面や上端縁によって、超音波探触子30のその径方向の移動量を制限することができ、超音波探触子30の測定面が被測定部11の被測定面(所望の被押付位置)からずれた位置に押し付けられるのを抑制することができる。図2のように左右方向で被測定物10の厚さDが異なる場合、超音波探触子30の測定面が押し付けられる位置がずれると、被測定部11の厚さDを正確に測定できない可能性がある。このため、超音波探触子30のその径方向の移動量を制限する意義は大きい。さらに、コイルばね40として全長が平均径の4倍よりも長いものを用いるから、コイルばね40がよりスムーズに座屈することができる。加えて、表示部側コネクタ38として直角タイプのものを用いると共にケーブル37を表示部側コネクタ38から枠部22の連結部27に沿って第1円板部23側(上側)に延びるように配線するから、超音波探触子30の測定面が被測定部11の被測定面に平行になる際にケーブル37が邪魔になるのを抑制することができる。また、超音波探触子30にガイドパイプ34を取り付けるから、超音波探触子30(およびガイドパイプ34)が第2円板部24の穴24hの内周面に対してスムーズに移動することができる。 When measuring the thickness D of the portion to be measured 11, the support portion 29, the frame portion 22, the coil spring 40, and the ultrasonic probe 30 are integrally moved to the side of the portion to be measured 11 (lower side) by the moving device. Moving. Then, part of the measurement surface of the ultrasonic probe 30 abuts against the surface to be measured of the part 11 to be measured, and the force from the surface to be measured of the part 11 to be measured causes the frame portion 22 to move toward the frame portion 22 as shown in FIG. tilting of the ultrasonic probe 30 relative to or moving upward (including diagonally upward) (moving upward while tilting counterclockwise in FIG. 2), elastic deformation of the coil spring 40 (compression or seat With bending, the measurement surface of the ultrasonic probe 30 is pressed against the measurement surface of the measurement target part 11 while becoming parallel. As a result, the measurement surface of the ultrasonic probe 30 and the measurement surface of the measurement target portion 11 can be brought into close contact (via the medium). In the first embodiment, as described above, the required size (space) on the outer peripheral side of the ultrasonic probe 30 can be reduced. It is possible to prevent the second disk portion 24 and the like from contacting the object 10 to be measured before being pressed against the surface to be measured. In addition, the inner peripheral surface and the upper edge of the hole 24h of the second disk portion 24 can limit the amount of movement of the ultrasonic probe 30 in the radial direction, and the measurement surface of the ultrasonic probe 30 can be It is possible to suppress pressing to a position deviated from the surface to be measured (desired position to be pressed) of the part to be measured 11 . When the thickness D of the object to be measured 10 is different in the left-right direction as shown in FIG. there is a possibility. Therefore, it is of great significance to limit the amount of movement of the ultrasonic probe 30 in its radial direction. Furthermore, since the coil spring 40 has a total length longer than four times the average diameter, the coil spring 40 can be buckled more smoothly. In addition, a right-angle type connector 38 is used as the display section side connector 38, and the cable 37 is wired so as to extend from the display section side connector 38 along the connecting section 27 of the frame section 22 toward the first disk section 23 side (upper side). Therefore, it is possible to prevent the cable 37 from becoming an obstacle when the measurement surface of the ultrasonic probe 30 becomes parallel to the measurement surface of the part 11 to be measured. Also, since the guide pipe 34 is attached to the ultrasonic probe 30, the ultrasonic probe 30 (and the guide pipe 34) can move smoothly with respect to the inner peripheral surface of the hole 24h of the second disk portion 24. can be done.

そして、超音波探触子30により被測定部11に対して超音波を送受信すると(被測定部11に超音波を送信して被測定部11の裏面からの反射波を受信すると)、その受信結果に基づく信号を超音波探触子30から表示部36に出力し、表示部36で被測定部11の厚さDの検出値として表示する。このようにして被測定部11の厚さDを測定することができる。 Then, when the ultrasonic probe 30 transmits/receives an ultrasonic wave to/from the part under test 11 (when the ultrasonic wave is transmitted to the part under test 11 and receives a reflected wave from the rear surface of the part under test 11), the reception A signal based on the result is output from the ultrasonic probe 30 to the display unit 36 and displayed as a detected value of the thickness D of the measured portion 11 on the display unit 36 . Thus, the thickness D of the measured portion 11 can be measured.

被測定部11の厚さDを計測すると、移動装置により、支持部29や枠部22、コイルばね40、超音波探触子30を被測定部11から離間する側(上側)に移動する。そして、超音波探触子30の測定面が被測定部11の被測定面から離間すると、コイルばね40の弾性力や超音波探触子30などの重力によって、超音波探触子30が第2円板部24の穴24hに沿って枠部22に対して相対的に下側に移動し、探触子ホルダ32の下端面が第2円板部24の上端面に当接し、超音波探触子30が初期位置に戻る(再度、位置決めされる)。 When the thickness D of the measured portion 11 is measured, the moving device moves the supporting portion 29, the frame portion 22, the coil spring 40, and the ultrasonic probe 30 away from the measured portion 11 (upper side). When the measurement surface of the ultrasonic probe 30 separates from the measurement surface of the part 11 to be measured, the elastic force of the coil spring 40 and the gravity of the ultrasonic probe 30 cause the ultrasonic probe 30 to move to the first position. 2 moves downward relative to the frame portion 22 along the hole 24h of the disk portion 24, the lower end surface of the probe holder 32 comes into contact with the upper end surface of the second disk portion 24, and the ultrasonic wave is The probe 30 returns to the initial position (positioned again).

なお、被測定物10における異なる複数の被測定部11の厚さDを測定する際には、移動装置により支持部29を水平方向に移動させて超音波探触子30と被測定物10との相対位置を変更して、それぞれの被測定部11の厚さDを測定すればよい。また、被測定物10における或る特定の被測定部11の厚さDを複数回に亘って測定する際には、移動装置により支持部29を所定角度(例えば90度など)ずつ回転させて、同一の被測定部11の厚さDを測定することが考えられる。後者は、被測定物10の傾斜方向の高い側と超音波探触子30に対する表示部側コネクタ38側との相対関係により、表示部側コネクタ38の邪魔になりやすさが異なる場合があるためである。 When measuring the thickness D of a plurality of different parts to be measured 11 of the object to be measured 10, the support part 29 is horizontally moved by the moving device, and the ultrasonic probe 30 and the object to be measured 10 are moved. , the thickness D of each measured portion 11 may be measured by changing the relative position of . Further, when measuring the thickness D of a specific portion 11 of the object 10 to be measured a plurality of times, the support portion 29 is rotated by a predetermined angle (for example, 90 degrees) by a moving device. , to measure the thickness D of the same portion 11 to be measured. The latter is because the degree of obstruction of the display-side connector 38 may differ depending on the relative relationship between the higher side of the object 10 in the tilt direction and the display-side connector 38 side with respect to the ultrasonic probe 30. is.

以上説明した第1実施例の超音波厚さ測定装置20によれば、コイルばね40が超音波探触子30の測定面側とは反対側(超音波厚さ測定装置20における上側)に位置するから、超音波探触子30の外周側に位置するものに比して、超音波探触子30の外周側に必要な大きさ(スペース)を小さくすることができる。この結果、超音波探触子30の測定面が被測定部11の被測定面(被押付位置)に押し付けられる前に第2円板部24などが被測定物10に当接するなどして邪魔になるのを抑制することができる。また、超音波探触子30の測定面が被測定部11の被測定面に押し付けられる際に、第2円板部24の穴24hによって、超音波探触子30のその径方向における移動量を制限することができ、超音波探触子30の測定面が被測定部11の被測定面(所望の被押付位置)からずれた位置に押し付けられるのを抑制することができる。さらに、超音波探触子30の測定面が被測定部11の被測定面から離間したときに、探触子ホルダ32や第2円板部24の穴24hや上端面によって、超音波探触子30を初期位置に位置決めすることができる。 According to the ultrasonic thickness measuring device 20 of the first embodiment described above, the coil spring 40 is positioned on the side opposite to the measurement surface side of the ultrasonic probe 30 (upper side in the ultrasonic thickness measuring device 20). Therefore, the size (space) required for the outer peripheral side of the ultrasonic probe 30 can be reduced compared to the one located on the outer peripheral side of the ultrasonic probe 30 . As a result, before the measurement surface of the ultrasonic probe 30 is pressed against the surface to be measured (position to be pressed) of the part 11 to be measured, the second disk portion 24 and the like come into contact with the object 10 to be measured, causing interference. can be prevented from becoming Further, when the measurement surface of the ultrasonic probe 30 is pressed against the measurement surface of the measurement target portion 11, the hole 24h of the second disk portion 24 moves the ultrasonic probe 30 in its radial direction. can be restricted, and it is possible to prevent the measurement surface of the ultrasonic probe 30 from being pressed to a position deviated from the measurement surface (desired pressed position) of the measurement target portion 11 . Further, when the measurement surface of the ultrasonic probe 30 is separated from the measurement surface of the measurement target portion 11, the probe holder 32, the hole 24h of the second disk portion 24, and the upper end surface of the ultrasonic probe are moved. Child 30 can be positioned in the initial position.

第1実施例の超音波厚さ測定装置20では、図1に示したように、支持部29と超音波探触子30(探触子ホルダ32)とを接続すると共に少なくとも一部が弾性変形可能な接続変形部として、コイルばね40を用いるものとした。しかし、図3の超音波厚さ測定装置20Bに示すように、接続変形部として、探触子ホルダ32に接続されるコイルばね40と、支持部29とコイルばね40とに接続される球面ベアリング52と、を備えるものとしてもよい。この場合、枠部22や支持部29、接続変形部(球面ベアリング52、コイルばね40)、超音波探触子30が被測定部11側(下側)に移動して超音波探触子30の測定面が被測定部11の被測定面に押し付けられる際に、図4に示すように、コイルばね40がよりスムーズに弾性変形することができる。 In the ultrasonic thickness measuring device 20 of the first embodiment, as shown in FIG. 1, the supporting portion 29 and the ultrasonic probe 30 (probe holder 32) are connected, and at least a portion thereof is elastically deformed. A coil spring 40 is used as a possible connection deformation part. However, as shown in the ultrasonic thickness measuring device 20B of FIG. 52 and . In this case, the frame portion 22, the support portion 29, the connection deforming portion (the spherical bearing 52, the coil spring 40), and the ultrasonic probe 30 move toward the portion to be measured 11 (lower side). is pressed against the measured surface of the measured portion 11, the coil spring 40 can elastically deform more smoothly as shown in FIG.

第1実施例の超音波厚さ測定装置20では、変形部材として、コイルばね40を用いるものとしたが、コイルばね40に代えて、弾性変形可能な柱状のゴムなどを用いるものとしてもよい。 In the ultrasonic thickness measuring device 20 of the first embodiment, the coil spring 40 is used as the deformable member, but instead of the coil spring 40, an elastically deformable columnar rubber or the like may be used.

次に、本発明の第2実施例の超音波厚さ測定装置120について説明する。図5は、第2実施例の超音波厚さ測定装置120の構成の概略を示す構成図である。図5の第2実施例の超音波厚さ測定装置120は、枠部22を枠部122に変更した点や、支持部29と超音波探触子30(探触子ホルダ32)とを接続すると共に少なくとも一部が弾性変形可能な接続変形部としてのコイルばね40を接続変形部140に変更した点を除いて、図1に示した第1実施例の超音波厚さ測定装置20と同一の構成をしている。したがって、重複した説明を回避するために、第2実施例の超音波厚さ測定装置120のうち第1実施例の超音波厚さ測定装置20と同一の構成については、同一の符号を付し、その詳細な説明は省略する。なお、第2実施例において、超音波厚さ測定装置120の上下方向は、図5に示した通りである。また、超音波厚さ測定装置120の水平方向は、上下方向に直交する方向である。 Next, an ultrasonic thickness measuring device 120 according to a second embodiment of the present invention will be described. FIG. 5 is a configuration diagram showing the outline of the configuration of the ultrasonic thickness measuring device 120 of the second embodiment. The ultrasonic thickness measuring apparatus 120 of the second embodiment in FIG. 5 has a frame portion 122 instead of the frame portion 22, and a connection between the support portion 29 and the ultrasonic probe 30 (probe holder 32). The ultrasonic thickness measuring apparatus 20 of the first embodiment shown in FIG. configuration. Therefore, in order to avoid duplication of explanation, the same components of the ultrasonic thickness measuring apparatus 120 of the second embodiment as those of the ultrasonic thickness measuring apparatus 20 of the first embodiment are denoted by the same reference numerals. , the detailed description of which is omitted. In the second embodiment, the vertical direction of the ultrasonic thickness measuring device 120 is as shown in FIG. Moreover, the horizontal direction of the ultrasonic thickness measuring device 120 is a direction perpendicular to the vertical direction.

超音波厚さ測定装置120の枠部122は、超音波厚さ測定装置20の枠部22と同様の第1円板部23や第2円板部24、連結部27に加えて、円板状の第3円板部125および第4円板部126を備える。第3円板部125および第4円板部126は、第1円板部23と第2円板部24との間に第1円板部23側から第3円板部125、第4円板部126の順に且つ第1円板部23や第2円板部24と同軸に配置されており、第1円板部23や第2円板部24と共に複数の連結部27により連結されている。また、第3円板部125および第4円板部126は、それぞれ、中央に円形の穴125h,126hを有する。第3円板部125の穴125hの径は、第4円板部126の穴126hの径よりも大きい値に定められている。 The frame portion 122 of the ultrasonic thickness measurement device 120 includes a first disc portion 23, a second disc portion 24, and a connecting portion 27 similar to the frame portion 22 of the ultrasonic thickness measurement device 20. A third disk portion 125 and a fourth disk portion 126 are provided. The third disc portion 125 and the fourth disc portion 126 are arranged between the first disc portion 23 and the second disc portion 24 from the first disc portion 23 side. The plate portions 126 are arranged in order and coaxial with the first disk portion 23 and the second disk portion 24 , and are connected together with the first disk portion 23 and the second disk portion 24 by a plurality of connection portions 27 . there is Also, the third disc portion 125 and the fourth disc portion 126 respectively have circular holes 125h and 126h in the center. The diameter of the hole 125h of the third disc portion 125 is set to be larger than the diameter of the hole 126h of the fourth disc portion 126. As shown in FIG.

接続変形部140は、支持部29に接続されると共に弾性変形可能な第1コイルばね(第1変形部材)142と、超音波探触子30に接続されると共に弾性変形可能な第2コイルばね(第2変形部材)150と、第1コイルばね142と第2コイルばね150とに接続される中間支持部材144と、を備える。以下、第1コイルばね142、中間支持部材144、第2コイルばね150の順に説明する。 The connection deformation portion 140 includes a first coil spring (first deformation member) 142 that is connected to the support portion 29 and is elastically deformable, and a second coil spring that is connected to the ultrasonic probe 30 and is elastically deformable. (Second deformation member) 150 and intermediate support member 144 connected to first coil spring 142 and second coil spring 150 . Hereinafter, the first coil spring 142, the intermediate support member 144, and the second coil spring 150 will be described in this order.

第1コイルばね142としては、第2コイルばね150よりも全長が短く且つばね定数が小さい(柔らかい)ものが用いられる。この第1コイルばね142は、弾性力により、中間支持部材144を第2コイルばね150側(下側)に付勢する。 As the first coil spring 142, one having a shorter overall length and a smaller (softer) spring constant than the second coil spring 150 is used. The first coil spring 142 urges the intermediate support member 144 toward the second coil spring 150 (downward) with its elastic force.

中間支持部材144は、円柱状の柱状部145と、柱状部145から第1コイルばね142側(上側)に延出する円錐台状の第1円錐台部146と、柱状部145から第2コイルばね150側(下側)に延出すると共に柱状部145よりも大きい外径を有するフランジ部147と、フランジ部147から第2コイルばね150側(下側)に延出する円錐台状の第2円錐台部148と、を備える。第1円錐台部146は、柱状部145側から第1コイルばね142側に向かうにつれて、外径が、柱状部145と同一の値から第3円板部125の穴125hの径よりも大きい値まで徐々に大きくなるように形成されている。フランジ部147の外径は、第3円板部125の穴125hよりも小さく且つ第4円板部126の穴126hよりも大きい値に定められている。第2円錐台部148は、フランジ部147側から第2コイルばね150側に向かうにつれて、外径が、第4円板部126の穴126hよりも小さい値から徐々に小さくなるように形成されている。この中間支持部材144は、第3円板部125よりも第1円板部23側(上側)から第3円板部125の穴125hに挿通され、第2円錐台部148やフランジ部147、柱状部145が第3円板部125の穴125hを通過して配置される。この中間支持部材144は、第1コイルばね142の弾性力により、第1円錐台部146の傾斜面が第3円板部125の穴125hの上端縁に当接すると共にフランジ部147の下端面が第4円板部126の上端面に当接し、中間支持部材144が初期位置(枠部122に対する相対的な初期位置)に位置決めされる。 The intermediate support member 144 includes a columnar portion 145, a first truncated cone portion 146 extending from the columnar portion 145 toward the first coil spring 142 (upper side), and a second coil from the columnar portion 145. A flange portion 147 extending to the spring 150 side (lower side) and having an outer diameter larger than that of the columnar portion 145, and a truncated cone-shaped second coil spring extending from the flange portion 147 to the second coil spring 150 side (lower side). 2 frusto-conical portions 148 . The first truncated cone portion 146 has an outer diameter that increases from the same value as the columnar portion 145 to a larger value than the diameter of the hole 125h of the third disk portion 125 as it goes from the columnar portion 145 side toward the first coil spring 142 side. It is formed to gradually increase to The outer diameter of the flange portion 147 is set to be smaller than the hole 125h of the third disc portion 125 and larger than the hole 126h of the fourth disc portion 126. As shown in FIG. The second truncated cone portion 148 is formed such that the outer diameter gradually decreases from a value smaller than the hole 126h of the fourth disk portion 126 toward the second coil spring 150 side from the flange portion 147 side. there is The intermediate support member 144 is inserted through the hole 125h of the third disc portion 125 from the first disc portion 23 side (upper side) of the third disc portion 125, and is provided with the second truncated cone portion 148, the flange portion 147, A columnar portion 145 is arranged to pass through the hole 125h of the third disc portion 125 . In this intermediate support member 144, the elastic force of the first coil spring 142 causes the inclined surface of the first truncated cone portion 146 to contact the upper edge of the hole 125h of the third disk portion 125, and the lower end surface of the flange portion 147 to Abutting on the upper end surface of the fourth disk portion 126, the intermediate support member 144 is positioned at the initial position (the initial position relative to the frame portion 122).

第2コイルばね150としては、コイルばね40と同様に、その全長が平均径の4倍よりも長いものが用いられる。この第2コイルばね150は、弾性力により、探触子ホルダ32を第2円板部24側(下側)に付勢する。これにより、超音波探触子30が第2円板部24の穴24hに挿通している状態で探触子ホルダ32の下端面が第2円板部24の上端面に当接し、超音波探触子30が初期位置(枠部122に対する相対的な初期位置)に位置決めされる。 Like the coil spring 40, the second coil spring 150 has a total length longer than four times the average diameter. The second coil spring 150 urges the probe holder 32 toward the second disk portion 24 (lower side) with an elastic force. As a result, the lower end surface of the probe holder 32 comes into contact with the upper end surface of the second disk portion 24 while the ultrasonic probe 30 is inserted through the hole 24h of the second disk portion 24, and the ultrasonic wave is transmitted. The probe 30 is positioned at the initial position (the initial position relative to the frame 122).

この超音波厚さ測定装置120では、接続変形部140(第1コイルばね142や中間支持部材144、第2コイルばね150)が、超音波探触子30の測定面側とは反対側(超音波厚さ測定装置120における上側)に位置するから、超音波探触子30の外周側に位置するものに比して、超音波探触子30の外周側に必要な大きさ(スペース)を小さくすることができる。例えば、第2円板部24の外径などを小さくすることができる。 In this ultrasonic thickness measuring device 120, the connection deforming portion 140 (the first coil spring 142, the intermediate support member 144, the second coil spring 150) is located on the side opposite to the measurement surface side of the ultrasonic probe 30 (ultrasonic Since it is located on the upper side of the ultrasonic thickness measuring device 120, the required size (space) is required on the outer peripheral side of the ultrasonic probe 30 compared to the one located on the outer peripheral side of the ultrasonic probe 30. can be made smaller. For example, the outer diameter of the second disc portion 24 can be reduced.

次に、こうして構成された超音波厚さ測定装置120の動作、具体的には、超音波厚さ測定装置120を用いて被測定物10における被測定部11の厚さDを測定する際の動作について説明する。第2実施例では、超音波探触子30や中間支持部材144が初期位置のとき(図5のとき)に超音波探触子30の測定面と被測定部11の被測定面とが平行でない場合について説明する。なお、第1実施例と同様に、支持部29は図示しない移動装置に取り付けられており、被測定部11の厚さDを測定する前に、準備処理として、被測定部11の被測定面に水やグリセリンなどの粘性を有する媒質(粘性流体)が供給されると共に移動装置により支持部29の水平方向における位置が調節される。 Next, the operation of the ultrasonic thickness measuring device 120 configured in this manner, specifically, the operation of measuring the thickness D of the portion 11 of the object 10 to be measured using the ultrasonic thickness measuring device 120. Operation will be explained. In the second embodiment, when the ultrasonic probe 30 and the intermediate support member 144 are at their initial positions (in FIG. 5), the measurement surface of the ultrasonic probe 30 and the measurement surface of the measured portion 11 are parallel. I will explain the case where it is not. As in the first embodiment, the supporting portion 29 is attached to a moving device (not shown). is supplied with a viscous medium (viscous fluid) such as water or glycerin, and the position of the support portion 29 in the horizontal direction is adjusted by the moving device.

被測定部11の厚さDを測定する際には、移動装置により、支持部29や枠部122、接続変形部140(第1コイルばね142、中間支持部材144、第2コイルばね150)、超音波探触子30が一体に被測定部11側(下側)に移動する。すると、超音波探触子30の測定面の一部が被測定部11の被測定面に当接し、被測定部11の被測定面からの力により、図6に示すように、枠部122に対する相対的な超音波探触子30の傾斜や上側(斜め上側を含む)への移動(図6では反時計回りに傾斜しながら上側への移動)、第2コイルばね150の弾性変形(圧縮や座屈)、枠部122に対する相対的な中間支持部材144の傾斜や上側(斜め上側を含む)への移動(図6では時計回りに傾斜しながら上側への移動)、第1コイルばね142の弾性変形(圧縮や座屈)を伴って、超音波探触子30の測定面が被測定部11の被測定面に平行になりながら押し付けられる。これにより、超音波探触子30の測定面と被測定部11の被測定面とを(媒質を介して)密着させることができる。第2実施例では、第1実施例と同様に以下の効果などを奏する。超音波探触子30の外周側に必要な大きさ(スペース)を小さくすることができるから、超音波探触子30の測定面が被測定部11の被測定面に押し付けられる前に第2円板部24などが被測定物10に当接するなどして邪魔になるのを抑制することができる。また、第2円板部24の穴24hの内周面や上端縁によって、超音波探触子30のその径方向の移動量を制限することができ、超音波探触子30の測定面が被測定部11の被測定面(所望の被押付位置)からずれた位置に押し付けられるのを抑制することができる。さらに、第2コイルばね150として全長が平均径の4倍よりも長いものを用いるから、第2コイルばね150がよりスムーズに座屈することができる。また、第2実施例では、第1実施例とは異なり、以下の効果も奏する。第3円板部125の穴125hの内周面や上端縁、第4円板部126の穴126hの内周面や上端縁によって、中間支持部材144のその径方向の移動量を制限することができ、接続変形部140の全体としての変形量(支持部29と探触子ホルダ32との間での湾曲量)が大きくなるのを抑制することができる。また、第1コイルばね142として第2コイルばね150よりもばね定数が小さい(柔らかい)ものを用いるから、第1コイルばね142が第2コイルばね150よりも縮みやすく、中間支持部材144の傾斜や上側への移動がより容易になり、第1コイルばね142の弾性変形量を小さくすることができる。 When measuring the thickness D of the portion to be measured 11, the moving device moves the supporting portion 29, the frame portion 122, the connecting deformation portion 140 (the first coil spring 142, the intermediate supporting member 144, the second coil spring 150), The ultrasonic probe 30 moves integrally to the measured portion 11 side (lower side). Then, part of the measurement surface of the ultrasonic probe 30 abuts against the surface to be measured of the part 11 to be measured, and the force from the surface to be measured of the part 11 to be measured causes the frame portion 122 to move toward the frame portion 122 as shown in FIG. tilting of the ultrasonic probe 30 relative to or moving upward (including diagonally upward) (moving upward while tilting counterclockwise in FIG. 6), elastic deformation of the second coil spring 150 (compression or buckling), inclination of the intermediate support member 144 relative to the frame 122 or movement upward (including oblique upward movement) (movement upward while tilting clockwise in FIG. 6), first coil spring 142 With elastic deformation (compression or buckling), the measurement surface of the ultrasonic probe 30 is pressed against the measurement surface of the measurement target part 11 while becoming parallel. As a result, the measurement surface of the ultrasonic probe 30 and the measurement surface of the measurement target portion 11 can be brought into close contact (via the medium). Similar to the first embodiment, the second embodiment has the following effects. Since the required size (space) on the outer peripheral side of the ultrasonic probe 30 can be reduced, before the measurement surface of the ultrasonic probe 30 is pressed against the surface to be measured of the part 11 to be measured, the second It is possible to prevent the disk portion 24 and the like from becoming an obstacle such as contacting the object 10 to be measured. In addition, the inner peripheral surface and the upper edge of the hole 24h of the second disk portion 24 can limit the amount of movement of the ultrasonic probe 30 in the radial direction, and the measurement surface of the ultrasonic probe 30 can be It is possible to suppress pressing to a position deviated from the surface to be measured (desired position to be pressed) of the part to be measured 11 . Furthermore, since the second coil spring 150 has a total length longer than four times the average diameter, the second coil spring 150 can be buckled more smoothly. Moreover, unlike the first embodiment, the second embodiment has the following effects. The amount of radial movement of the intermediate support member 144 is limited by the inner peripheral surface and upper edge of the hole 125h of the third disk portion 125 and the inner peripheral surface and upper edge of the hole 126h of the fourth disk portion 126. , and an increase in the amount of deformation of the connection deformation portion 140 as a whole (the amount of bending between the support portion 29 and the probe holder 32) can be suppressed. In addition, since a spring constant smaller (softer) than the second coil spring 150 is used as the first coil spring 142, the first coil spring 142 is more likely to contract than the second coil spring 150. The upward movement becomes easier, and the amount of elastic deformation of the first coil spring 142 can be reduced.

そして、超音波探触子30により被測定部11に対して超音波を送受信すると(被測定部11に超音波を送信して被測定部11の裏面からの反射波を受信すると)、その受信結果に基づく信号を超音波探触子30から表示部36に出力し、表示部36で被測定部11の厚さDの検出値として表示する。このようにして被測定部11の厚さDを測定することができる。 Then, when the ultrasonic probe 30 transmits/receives an ultrasonic wave to/from the part under test 11 (when the ultrasonic wave is transmitted to the part under test 11 and receives a reflected wave from the rear surface of the part under test 11), the reception A signal based on the result is output from the ultrasonic probe 30 to the display unit 36 and displayed as a detected value of the thickness D of the measured portion 11 on the display unit 36 . Thus, the thickness D of the measured portion 11 can be measured.

被測定部11の厚さDを計測すると、移動装置により、支持部29や枠部122、接続変形部140(第1コイルばね142、中間支持部材144、第2コイルばね150)、超音波探触子30が被測定部11から離間する側(上側)に移動する。そして、超音波探触子30の測定面が被測定部11の被測定面から離間すると、第1コイルばね142の弾性力や超音波探触子30などの重力によって、中間支持部材144が第3円板部125の穴125hや第4円板部126の穴126hに沿って枠部122に対して相対的に下側に移動し、第1円錐台部146の傾斜面が第3円板部125の穴125hの上端縁に当接すると共にフランジ部147の下端面が第4円板部126の上端面に当接し、中間支持部材144が初期位置に戻る(再度、位置決めされる)。また、これと並行して、第2コイルばね150の弾性力や超音波探触子30などの重力によって、超音波探触子30が第2円板部24の穴24hに沿って枠部122に対して相対的に下側に移動し、探触子ホルダ32の下端面が第2円板部24の上端面に当接し、超音波探触子30が初期位置に戻る(再度、位置決めされる)。 When the thickness D of the portion to be measured 11 is measured, the moving device moves the supporting portion 29, the frame portion 122, the connection deforming portion 140 (the first coil spring 142, the intermediate supporting member 144, the second coil spring 150), the ultrasonic probe, and the like. The probe 30 moves to the side (upper side) away from the part to be measured 11 . Then, when the measurement surface of the ultrasonic probe 30 separates from the measurement surface of the part 11 to be measured, the elastic force of the first coil spring 142 and the gravity of the ultrasonic probe 30 cause the intermediate support member 144 to move to the second position. It moves downward relative to the frame portion 122 along the hole 125h of the third disk portion 125 and the hole 126h of the fourth disk portion 126, and the inclined surface of the first truncated cone portion 146 moves toward the third disk. The lower end surface of the flange portion 147 abuts against the upper end surface of the fourth disc portion 126 while the upper edge of the hole 125h of the portion 125 abuts, and the intermediate support member 144 returns to the initial position (positioned again). In parallel with this, the elastic force of the second coil spring 150 and the gravity of the ultrasonic probe 30 cause the ultrasonic probe 30 to move along the hole 24h of the second disc portion 24 to the frame portion 122. , the lower end surface of the probe holder 32 comes into contact with the upper end surface of the second disk portion 24, and the ultrasonic probe 30 returns to the initial position (repositioned). ).

以上説明した第2実施例の超音波厚さ測定装置120によれば、接続変形部140(第1コイルばね142、中間支持部材144、第2コイルばね150)が超音波探触子30の測定面側とは反対側(超音波厚さ測定装置120における上側)に位置するから、超音波探触子30の外周側に位置するものに比して、超音波探触子30の外周側に必要な大きさ(スペース)を小さくすることができる。この結果、超音波探触子30の測定面が被測定部11の被測定面(被押付位置)に押し付けられる前に第2円板部24などが被測定物10に当接するなどして邪魔になるのを抑制することができる。また、超音波探触子30の測定面が被測定部11の被測定面に押し付けられる際に、第2円板部24の穴24hによって、超音波探触子30のその径方向における移動量を制限することができ、超音波探触子30の測定面が被測定部11の被測定面(所望の被押付位置)からずれた位置に押し付けられるのを抑制することができる。さらに、この際に、第3円板部125の穴125hや第4円板部126の穴126hによって、中間支持部材144のその径方向の移動量を制限することができ、接続変形部140の全体としての変形量(支持部29と探触子ホルダ32との間での湾曲量)が大きくなるのを抑制することができる。加えて、超音波探触子30の測定面が被測定部11の被測定面から離間したときに、探触子ホルダ32や第2円板部24の穴24hや上端面によって、超音波探触子30を初期位置に位置決めすることができる。また、このときに、第3円板部125の穴125hや第4円板部126の穴126hや上端面によって、中間支持部材144を初期位置に位置決めすることができる。 According to the ultrasonic thickness measuring device 120 of the second embodiment described above, the connection deforming portion 140 (the first coil spring 142, the intermediate support member 144, the second coil spring 150) measures the ultrasonic probe 30. Since it is located on the side opposite to the surface side (upper side in the ultrasonic thickness measuring device 120), it is located on the outer peripheral side of the ultrasonic probe 30 compared to the one located on the outer peripheral side of the ultrasonic probe 30. The required size (space) can be reduced. As a result, before the measurement surface of the ultrasonic probe 30 is pressed against the surface to be measured (position to be pressed) of the part 11 to be measured, the second disk portion 24 and the like come into contact with the object 10 to be measured, causing interference. can be prevented from becoming Further, when the measurement surface of the ultrasonic probe 30 is pressed against the measurement surface of the measurement target portion 11, the hole 24h of the second disk portion 24 moves the ultrasonic probe 30 in its radial direction. can be restricted, and it is possible to prevent the measurement surface of the ultrasonic probe 30 from being pressed to a position deviated from the measurement surface (desired pressed position) of the measurement target portion 11 . Furthermore, at this time, the amount of radial movement of the intermediate support member 144 can be restricted by the hole 125h of the third disc portion 125 and the hole 126h of the fourth disc portion 126, so that the connection deformation portion 140 can be moved. It is possible to suppress an increase in the amount of deformation as a whole (the amount of bending between the support portion 29 and the probe holder 32). In addition, when the measurement surface of the ultrasonic probe 30 is separated from the measurement target surface of the measurement target portion 11, the ultrasonic probe is moved by the probe holder 32, the hole 24h of the second disk portion 24, and the upper end surface. The feeler 30 can be positioned at the initial position. At this time, the intermediate support member 144 can be positioned at the initial position by the hole 125h of the third disk portion 125, the hole 126h of the fourth disk portion 126, and the upper end surface.

第2実施例の超音波厚さ測定装置120では、図5に示したように、支持部29と超音波探触子30(探触子ホルダ32)とを接続すると共に少なくとも一部が弾性変形可能な接続変形部140として、第1コイルばね142と中間支持部材144と第2コイルばね150とを備えるものとした。しかし、図7の超音波厚さ測定装置120Bに示すように、接続変形部140Bとして、第1コイルばね142と中間支持部材144と第2コイルばね150とに加えて、支持部29と第1コイルばね142とに接続される球面ベアリング152を更に備えるものとしてもよい。この場合、枠部122や支持部29、接続変形部140(球面ベアリング152、第1コイルばね142、中間支持部材144、第2コイルばね150)、超音波探触子30が被測定部11側(下側)に移動して超音波探触子30の測定面が被測定部11の被測定面に押し付けられる際に、図8に示すように、第1コイルばね142がよりスムーズに弾性変形することができる。 In the ultrasonic thickness measuring device 120 of the second embodiment, as shown in FIG. 5, the supporting portion 29 and the ultrasonic probe 30 (probe holder 32) are connected, and at least a portion thereof is elastically deformed. A possible connection deformation portion 140 is provided with a first coil spring 142 , an intermediate support member 144 and a second coil spring 150 . However, as shown in the ultrasonic thickness measuring device 120B of FIG. 7, the connection deformation portion 140B includes the support portion 29 and the first coil spring 150 in addition to the first coil spring 142, the intermediate support member 144, and the second coil spring 150. A spherical bearing 152 connected to the coil spring 142 may also be provided. In this case, the frame portion 122, the support portion 29, the connection deforming portion 140 (the spherical bearing 152, the first coil spring 142, the intermediate support member 144, the second coil spring 150), and the ultrasonic probe 30 are on the side of the measured portion 11. When the ultrasonic probe 30 moves downward and the measurement surface of the ultrasonic probe 30 is pressed against the measurement surface of the part 11 to be measured, the first coil spring 142 is elastically deformed more smoothly as shown in FIG. can do.

第2実施例の超音波厚さ測定装置120では、中間支持部材144が初期位置に位置決めされる際に、第1円錐台部146の傾斜面が第3円板部125の穴125hの上端縁に当接すると共にフランジ部147の下端面が第4円板部126の上端面に当接するものとした。しかし、この際に、第1円錐台部146の傾斜面が第3円板部125の穴125hの上端縁に当接するがフランジ部147の下端面が第4円板部126の上端面に当接しないものとしてもよいし、フランジ部147の下端面が第4円板部126の上端面に当接するが第1円錐台部146の傾斜面が第3円板部125の穴125hの上端縁に当接しないものとしてもよい。 In the ultrasonic thickness measuring device 120 of the second embodiment, when the intermediate support member 144 is positioned at the initial position, the inclined surface of the first truncated cone portion 146 is aligned with the upper edge of the hole 125h of the third disk portion 125. , and the lower end surface of the flange portion 147 abuts on the upper end surface of the fourth disc portion 126 . However, at this time, the inclined surface of the first truncated cone portion 146 contacts the upper edge of the hole 125h of the third disc portion 125, but the lower end surface of the flange portion 147 contacts the upper end surface of the fourth disc portion 126. Alternatively, the lower end surface of the flange portion 147 may contact the upper end surface of the fourth disc portion 126, but the inclined surface of the first truncated cone portion 146 may contact the upper end edge of the hole 125h of the third disc portion 125. may not be in contact with the

第2実施例の超音波厚さ測定装置120では、接続変形部140の中間支持部材144は、柱状部145と第1円錐台部146とフランジ部147と第2円錐台部148とを備えるものとしたが、この形状に限定されるものではない。例えば、第1円錐台部146を備えずに柱状部145とフランジ部147と第2円錐台部148とを備えるものとしたり、フランジ部147や第2円錐台部148を備えずに柱状部145と第1円錐台部146とを備えるものとしたり、フランジ部147を備えずに柱状部145と第1円錐台部146と第2円錐台部148とを備えるものとしたり、柱状部145とフランジ部147と第2円錐台部148とを備えずに第1円錐台部146だけを備えるものとしたりしてもよい。なお、これらの場合、各部の寸法(円錐台部やフランジ部の外径、円錐台部の傾斜角度など)を適宜調整する必要がある。 In the ultrasonic thickness measuring device 120 of the second embodiment, the intermediate support member 144 of the connection deforming portion 140 includes a columnar portion 145, a first truncated cone portion 146, a flange portion 147, and a second truncated cone portion 148. However, it is not limited to this shape. For example, the columnar portion 145, the flange portion 147, and the second truncated cone portion 148 are provided without the first truncated cone portion 146, or the columnar portion 145 is provided without the flange portion 147 or the second truncated cone portion 148. and the first truncated cone portion 146, or the columnar portion 145, the first truncated cone portion 146, and the second truncated cone portion 148 without the flange portion 147, or the columnar portion 145 and the flange Only the first truncated cone portion 146 may be provided without the portion 147 and the second truncated cone portion 148 . In these cases, it is necessary to appropriately adjust the dimensions of each portion (the outer diameter of the truncated cone portion and the flange portion, the inclination angle of the truncated cone portion, etc.).

第2実施例の超音波厚さ測定装置120では、第1コイルばね142として、第2コイルばね150よりも全長が短く且つばね定数が小さい(柔らかい)ものを用いるものとしたが、第2コイルばね150と全長が同一のものや、第2コイルばね150とばね定数が同一のものを用いるものとしてもよい。 In the ultrasonic thickness measuring device 120 of the second embodiment, the first coil spring 142 has a shorter overall length and a smaller spring constant (softer) than the second coil spring 150, but the second coil A spring having the same overall length as the spring 150 or a spring having the same spring constant as the second coil spring 150 may be used.

第2実施例の超音波厚さ測定装置120では、第1変形部材や第2変形部材として、第1コイルばね142と第2コイルばね150とを用いるものとしたが、第1コイルばね142や第2コイルばね150に代えて、弾性変形可能な柱状の第1ゴムや第2ゴムなどを用いるものとしてもよい。 In the ultrasonic thickness measuring device 120 of the second embodiment, the first coil spring 142 and the second coil spring 150 are used as the first deformation member and the second deformation member. Instead of the second coil spring 150, an elastically deformable columnar first rubber or second rubber may be used.

実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。第1実施例では、超音波探触子30が「超音波探触子」に相当し、支持部29が「支持部」に相当し、コイルばね40が「接続変形部」に相当し、探触子ホルダ32と第2円板部24とが「ガイド部」に相当する。第2実施例では、超音波探触子30が「超音波探触子」に相当し、支持部29が「支持部」に相当し、接続変形部140(第1コイルばね142、第2コイルばね150、中間支持部材144)が「接続変形部」に相当し、探触子ホルダ32と第2円板部24とが「ガイド部」に相当する。また、第2実施例では、第3円板部125と第4円板部126とが「第2ガイド部」に相当する。 The correspondence relationship between the main elements of the embodiments and the main elements of the invention described in the column of Means for Solving the Problems will be described. In the first embodiment, the ultrasonic probe 30 corresponds to the "ultrasonic probe", the support portion 29 corresponds to the "support portion", the coil spring 40 corresponds to the "connection deformation portion", and the The contactor holder 32 and the second disc portion 24 correspond to the "guide portion". In the second embodiment, the ultrasonic probe 30 corresponds to the "ultrasonic probe", the support portion 29 corresponds to the "support portion", and the connection deformation portion 140 (the first coil spring 142, the second coil The spring 150 and the intermediate support member 144) correspond to the "connection deformation portion", and the probe holder 32 and the second disc portion 24 correspond to the "guide portion". Further, in the second embodiment, the third disk portion 125 and the fourth disk portion 126 correspond to the "second guide portion".

なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。 Note that the correspondence relationship between the main elements of the examples and the main elements of the invention described in the column of Means for Solving the Problems is the Since it is an example for specifically explaining the mode for solving the problem, it does not limit the elements of the invention described in the column of the means for solving the problem. That is, the interpretation of the invention described in the column of Means to Solve the Problem should be made based on the description in that column, and the Examples are based on the description of the invention described in the column of Means to Solve the Problem. This is only a specific example.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 Although the embodiments for carrying out the present invention have been described above, the present invention is not limited to such embodiments at all, and can be modified in various forms without departing from the scope of the present invention. Of course, it can be implemented.

本発明は、超音波厚さ測定装置の製造産業などに利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used in the manufacturing industry of ultrasonic thickness measuring devices.

10 被測定物、11 被測定部、20,20B,120,120B 超音波厚さ測定装置、22,122 枠部、23 第1円板部、23h,24h,125h,126h 穴、24 第2円板部、27 連結部、29 支持部、30 超音波探触子、32 探触子ホルダ、34 ガイドパイプ、36 表示部、37 ケーブル、38 表示部側コネクタ、40 コイルばね、52,152 球面ベアリング、125 第3円板部、126 第4円板部、140 接続変形部、142 第1コイルばね、144 中間支持部材、145 柱状部、146 第1円錐台部、147 フランジ部、148 第2円錐台部、150 第2コイルばね。 Reference Signs List 10 Object to be measured 11 Part to be measured 20, 20B, 120, 120B Ultrasonic thickness measuring device 22, 122 Frame 23 First disc 23h, 24h, 125h, 126h Hole 24 Second circle Plate portion 27 Connecting portion 29 Supporting portion 30 Ultrasonic probe 32 Probe holder 34 Guide pipe 36 Display portion 37 Cable 38 Display portion side connector 40 Coil spring 52, 152 Spherical bearing , 125 third disk portion, 126 fourth disk portion, 140 connection deformation portion, 142 first coil spring, 144 intermediate support member, 145 columnar portion, 146 first truncated cone portion, 147 flange portion, 148 second cone base, 150 second coil spring;

Claims (4)

超音波探触子の測定面が被測定部の被測定面に押し付けられ、前記超音波探触子によって前記被測定部に対して超音波を送受信することにより、前記被測定部の厚さを測定する超音波厚さ測定装置であって、
前記超音波探触子の前記測定面側とは反対側で且つ前記超音波探触子から離間して配置される支持部と、
前記支持部と前記超音波探触子とを接続すると共に少なくとも一部が圧縮および座屈の弾性変形可能な接続変形部と、
前記超音波探触子の初期位置への位置決めに用いられると共に前記超音波探触子の径方向における前記超音波探触子の移動量を制限するガイド部と、
を備え
前記接続変形部は、前記超音波探触子に接続されると共に弾性変形可能な変形部材と、前記変形部材と前記支持部とに接続される球面ベアリングと、を有する、
超音波厚さ測定装置。
The measurement surface of the ultrasonic probe is pressed against the surface to be measured of the part to be measured, and by transmitting and receiving ultrasonic waves to and from the part to be measured by the ultrasonic probe, the thickness of the part to be measured is measured. An ultrasonic thickness measuring device for measuring,
a support portion arranged on the side opposite to the measurement surface side of the ultrasonic probe and spaced apart from the ultrasonic probe;
a connection deformation portion that connects the support portion and the ultrasonic probe and is at least partially elastically deformable in compression and buckling;
a guide part that is used for positioning the ultrasonic probe to an initial position and limits the amount of movement of the ultrasonic probe in the radial direction of the ultrasonic probe;
with
The connection deformation section has a deformation member that is connected to the ultrasonic probe and is elastically deformable, and a spherical bearing that is connected to the deformation member and the support section.
Ultrasonic thickness measurement device.
超音波探触子の測定面が被測定部の被測定面に押し付けられ、前記超音波探触子によって前記被測定部に対して超音波を送受信することにより、前記被測定部の厚さを測定する超音波厚さ測定装置であって、
前記超音波探触子の前記測定面側とは反対側で且つ前記超音波探触子から離間して配置される支持部と、
前記支持部と前記超音波探触子とを接続すると共に少なくとも一部が圧縮および座屈の弾性変形可能な接続変形部と、
前記超音波探触子の初期位置への位置決めに用いられると共に前記超音波探触子の径方向における前記超音波探触子の移動量を制限するガイド部と、
を備え
前記接続変形部は、前記支持部に接続されると共に弾性変形可能な第1変形部材と、前記超音波探触子に接続されると共に弾性変形可能な第2変形部材と、前記第1変形部材と前記第2変形部材とに接続される中間支持部材と、を有し、
前記中間支持部材の初期位置への位置決めに用いられると共に前記中間支持部材の径方向における前記中間支持部材の移動量を制限する第2ガイド部を更に備える、
超音波厚さ測定装置。
The measurement surface of the ultrasonic probe is pressed against the surface to be measured of the part to be measured, and by transmitting and receiving ultrasonic waves to and from the part to be measured by the ultrasonic probe, the thickness of the part to be measured is measured. An ultrasonic thickness measuring device for measuring,
a support portion arranged on the side opposite to the measurement surface side of the ultrasonic probe and spaced apart from the ultrasonic probe;
a connection deformation portion that connects the support portion and the ultrasonic probe and is at least partially elastically deformable in compression and buckling;
a guide part that is used for positioning the ultrasonic probe to an initial position and limits the amount of movement of the ultrasonic probe in the radial direction of the ultrasonic probe;
with
The connection deformation section includes a first deformation member connected to the support section and elastically deformable, a second deformation member connected to the ultrasonic probe and elastically deformable, and the first deformation member. and an intermediate support member connected to the second deformable member,
Further comprising a second guide portion that is used for positioning the intermediate support member to the initial position and limits the amount of movement of the intermediate support member in the radial direction of the intermediate support member,
Ultrasonic thickness measurement device.
請求項記載の超音波厚さ測定装置であって、
前記第1変形部材は、前記第2変形部材よりも低剛性である、
超音波厚さ測定装置。
The ultrasonic thickness measurement device according to claim 2 ,
The first deformation member has a lower rigidity than the second deformation member,
Ultrasonic thickness measurement device.
請求項3記載の超音波厚さ測定装置であって、
前記接続変形部は、前記第1変形部材と前記支持部とに接続される球面ベアリングを更に有する、
超音波厚さ測定装置。
The ultrasonic thickness measurement device according to claim 3,
The connection deformation part further has a spherical bearing connected to the first deformation member and the support part,
Ultrasonic thickness measurement device.
JP2017127436A 2017-06-29 2017-06-29 Ultrasonic thickness gauge Active JP7144669B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017127436A JP7144669B2 (en) 2017-06-29 2017-06-29 Ultrasonic thickness gauge
PCT/JP2018/024542 WO2019004341A1 (en) 2017-06-29 2018-06-28 Ultrasonic thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017127436A JP7144669B2 (en) 2017-06-29 2017-06-29 Ultrasonic thickness gauge

Publications (2)

Publication Number Publication Date
JP2019011979A JP2019011979A (en) 2019-01-24
JP7144669B2 true JP7144669B2 (en) 2022-09-30

Family

ID=64743031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017127436A Active JP7144669B2 (en) 2017-06-29 2017-06-29 Ultrasonic thickness gauge

Country Status (2)

Country Link
JP (1) JP7144669B2 (en)
WO (1) WO2019004341A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900002335A1 (en) 2019-02-18 2020-08-18 Tiberina Solutions S R L System for checking the presence of thickness restrictions on at least one mechanical component and related verification method
CN112617901B (en) * 2020-12-22 2022-09-30 居天智慧(深圳)有限公司 Fat thickness automatic measuring ultrasonic instrument

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017255A (en) 2003-04-30 2005-01-20 Seamless Liner Kk Regenerated pipe inspection device and regenerated pipe inspection method using this device
US20130074601A1 (en) 2011-09-23 2013-03-28 Ascent Ventures, Llc Apparatus for ultrasonic transducer or other contact sensor placement against a test material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161567U (en) * 1980-05-06 1981-12-01
JPS5917856U (en) * 1982-07-26 1984-02-03 株式会社東芝 Automatic flaw detection equipment for nuclear reactor equipment
JP2706801B2 (en) * 1989-02-15 1998-01-28 興亜石油株式会社 Thickness measuring device
JPH04278429A (en) * 1991-03-07 1992-10-05 Tonichi Seisakusho:Kk Holding device of sensor for measuring axial force of bolt by ultrasonic wave
JP2812819B2 (en) * 1991-07-19 1998-10-22 中部電力株式会社 Ultrasonic plate thickness measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017255A (en) 2003-04-30 2005-01-20 Seamless Liner Kk Regenerated pipe inspection device and regenerated pipe inspection method using this device
US20130074601A1 (en) 2011-09-23 2013-03-28 Ascent Ventures, Llc Apparatus for ultrasonic transducer or other contact sensor placement against a test material

Also Published As

Publication number Publication date
JP2019011979A (en) 2019-01-24
WO2019004341A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
US10393495B2 (en) Measuring probe
EP3211361B1 (en) Measuring probe
JP7144669B2 (en) Ultrasonic thickness gauge
TWI719119B (en) Scanning probe microscope and probe contact detection method thereof
JPS62501234A (en) Touch-sensing probe
JP4663378B2 (en) Shape measuring apparatus and method
CN104781662A (en) Two-dimensional tr probe array
JP5470038B2 (en) Contact detector
JP2008530559A (en) Ultrasonic beam forming device
WO2017133582A1 (en) Weigh module
JP5775619B2 (en) Parallelism measuring device
JP7190203B2 (en) Scanning probe microscope and its probe contact detection method
JP2018077193A (en) Length measuring instrument, and length measuring system
JP2001004323A (en) Support adjusting device for reflecting optical system
CN217110761U (en) Outer diameter measuring tool for volute end face and annular step
JP5409562B2 (en) Lens pressing device and method
JP2016090307A (en) Ultrasonic beam focus position correction method in ultrasonic measurement and ultrasonic measuring device
JP2001153622A (en) Inner diameter size measuring apparatus and inner diameter size measuring method for molded article
US11965796B2 (en) Ultrasonic wave propagation member
JP2024078405A (en) MEASUREMENT SYSTEM, ITS OPERATING METHOD, AND STYLUS MOVEMENT MECHANISM
JP6434341B2 (en) Pipe nozzle inspection device
KR20140138191A (en) Level
JPH10132839A (en) Probe of ultrasonic anemometer
JP2023014818A (en) Processing system, robot system, control unit, teaching method, program, and storage medium
JP2012083290A (en) Balancing measuring device and balancing measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7144669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150