JP7143751B2 - Steam generating heat pump device - Google Patents

Steam generating heat pump device Download PDF

Info

Publication number
JP7143751B2
JP7143751B2 JP2018235294A JP2018235294A JP7143751B2 JP 7143751 B2 JP7143751 B2 JP 7143751B2 JP 2018235294 A JP2018235294 A JP 2018235294A JP 2018235294 A JP2018235294 A JP 2018235294A JP 7143751 B2 JP7143751 B2 JP 7143751B2
Authority
JP
Japan
Prior art keywords
pressure refrigerant
positive displacement
refrigerant
heat pump
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018235294A
Other languages
Japanese (ja)
Other versions
JP2020098040A (en
Inventor
康弘 横山
賢哲 安嶋
祐輔 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018235294A priority Critical patent/JP7143751B2/en
Publication of JP2020098040A publication Critical patent/JP2020098040A/en
Application granted granted Critical
Publication of JP7143751B2 publication Critical patent/JP7143751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、1つの圧縮機に対して複数の凝縮器が並列接続される場合であっても、簡易な構成で、各凝縮器に流れる冷媒の質量流量を均等に配分することができる蒸気生成ヒートポンプ装置に関する。 Even if a plurality of condensers are connected in parallel to one compressor, the present invention is capable of evenly distributing the mass flow rate of refrigerant flowing to each condenser with a simple structure. It relates to a heat pump device.

蒸気生成装置の一つとして、工場排水や使用済冷却水等の排温水から熱を回収して蒸気を発生する蒸気生成ヒートポンプ装置がある。蒸気生成ヒートポンプ装置は、ヒートポンプ部の蒸発器を排熱回収器として機能させ、ここで熱源温水から熱を冷媒に回収し、回収した熱を利用して凝縮器で被加熱水を加熱して水蒸気を生成するため、ボイラ設備等を利用して水蒸気を発生させる燃焼系蒸気生成装置に比べてランニングコストやCOの排出量を低減できるメリットがある。 As one type of steam generating device, there is a steam generating heat pump device that generates steam by recovering heat from waste hot water such as factory waste water and used cooling water. In the steam generation heat pump device, the evaporator in the heat pump section functions as an exhaust heat recovery device, where heat is recovered from the heat source hot water to the refrigerant, and the recovered heat is used to heat the water to be heated in the condenser to generate steam. , it has the advantage of reducing running costs and CO 2 emissions compared to combustion-type steam generators that generate steam using boiler equipment or the like.

ここで、特許文献1には、水を貯留する気液分離器と、冷媒が流通するヒートポンプの凝縮器(蒸発器)とを備え、前記気液分離器と前記蒸発器の上部及び下部をそれぞれ上部配管と下部配管で連通することにより、気液分離器内の水を前記下部配管を介して蒸発器に供給すると共に前記冷媒との熱交換によって蒸発させ、該蒸発器で生成した水蒸気を前記上部配管を介して気液分離器に供給すると共に、該気液分離器から送り出すサーモサイフォン回路を形成した蒸気生成装置が記載されている。また、前記サーモサイフォン回路には水を供給するための給水配管が接続されている。 Here, in Patent Document 1, a gas-liquid separator that stores water and a condenser (evaporator) of a heat pump through which a refrigerant flows are provided, and the upper and lower parts of the gas-liquid separator and the evaporator are respectively By communicating with the upper pipe and the lower pipe, the water in the gas-liquid separator is supplied to the evaporator through the lower pipe and evaporated by heat exchange with the refrigerant, and the water vapor generated in the evaporator is A steam generator is described in which a thermosiphon circuit is formed to supply steam to a gas-liquid separator through an upper pipe and send steam out from the gas-liquid separator. A water supply pipe for supplying water is connected to the thermosiphon circuit.

また、特許文献2には、加熱された気相作動媒体を膨張室に吸入し、吸入した作動媒体の圧力により、膨張室の容積変化に応じて回転力を得る容積型膨張機が記載されている。 Further, Patent Document 2 describes a positive displacement expander that sucks a heated vapor-phase working medium into an expansion chamber and obtains rotational force according to the change in volume of the expansion chamber due to the pressure of the sucked working medium. there is

特許第5967315号公報Japanese Patent No. 5967315 特開2016-180322号公報JP 2016-180322 A

ところで、蒸気生成ヒートポンプ装置の大容量化を行うには、安全性や信頼性の観点から、加熱源である凝縮器と、蒸気を生成する水蒸気分離器とをそれぞれ並列接続した複数台とすることが好ましい。この場合、1つの圧縮機から導出された冷媒は分岐され、並列接続された複数の凝縮器に導入される。 By the way, in order to increase the capacity of the steam generation heat pump device, from the viewpoint of safety and reliability, a plurality of condensers, which are heating sources, and steam separators, which generate steam, are connected in parallel. is preferred. In this case, the refrigerant drawn out from one compressor is branched and introduced into a plurality of condensers connected in parallel.

しかしながら、1つの圧縮機から導出された冷媒を、並列接続された各凝縮器に導入すると、各凝縮器に対する冷媒の質量流量が不均等になる可能性が高く、この場合、凝縮器内の熱交換量が設計の最適点から外れて運転効率が悪化してしまう。 However, introducing refrigerant drawn from a single compressor into each condenser connected in parallel is likely to result in unequal mass flow rates of refrigerant to each condenser, in which case the heat in the condenser The replacement amount deviates from the optimum design point, and the operating efficiency deteriorates.

なお、各凝縮器の下流側に配置される各膨張弁によって各凝縮器の冷媒の質量流量を均等に配分しようとすると、分岐された各流路にそれぞれ冷媒状態を測定するための温度センサや圧力センサが必要となってしまう。 If the mass flow rate of the refrigerant in each condenser is to be evenly distributed by the expansion valves arranged downstream of each condenser, temperature sensors or A pressure sensor is required.

本発明は、上記に鑑みてなされたものであって、1つの圧縮機に対して複数の凝縮器が並列接続される場合であっても、簡易な構成で、各凝縮器に流れる冷媒の質量流量を均等に配分することができる蒸気生成ヒートポンプ装置を提供することを目的とする。 The present invention has been made in view of the above, and even when a plurality of condensers are connected in parallel to one compressor, the mass An object of the present invention is to provide a steam generation heat pump device capable of evenly distributing a flow rate.

上述した課題を解決し、目的を達成するために、本発明にかかる蒸気生成ヒートポンプ装置は、熱源水から回収した熱で低圧冷媒を蒸発させる蒸発器と、低圧冷媒を高圧冷媒に圧縮する圧縮機と、被加熱水との熱交換により高圧冷媒を凝縮させる並列接続された複数の凝縮器と、各凝縮器で凝縮した高圧冷媒を低圧冷媒に減圧膨張して前記蒸発器に供給する並列接続された複数の容積型膨張機とを有したヒートポンプ部と、前記複数の凝縮器それぞれに対して前記被加熱水を供給し、前記高圧冷媒との熱交換により生成された水蒸気を外部に送出する蒸気生成部と、前記複数の容積型膨張機の回転数を制御する制御部と、を備え、前記制御部は、前記複数の容積型膨張機に導入される冷媒の質量流量が同一になるよう前記複数の容積型膨張機の回転数を制御することを特徴とする。 In order to solve the above-described problems and achieve the object, the vapor generation heat pump device according to the present invention includes an evaporator that evaporates a low-pressure refrigerant with heat recovered from heat source water, and a compressor that compresses the low-pressure refrigerant into a high-pressure refrigerant. a plurality of condensers connected in parallel for condensing the high-pressure refrigerant by heat exchange with the water to be heated; a heat pump unit having a plurality of positive displacement expanders; and a steam that supplies the water to be heated to each of the plurality of condensers and sends out the water vapor generated by heat exchange with the high-pressure refrigerant to the outside. and a control unit that controls the rotation speeds of the plurality of positive displacement expanders, wherein the control unit adjusts the mass flow rate of the refrigerant introduced to the plurality of positive displacement expanders to be the same. It is characterized by controlling the rotational speeds of a plurality of positive displacement expanders.

また、本発明にかかる蒸気生成ヒートポンプ装置は、熱源水から回収した熱で低圧冷媒を蒸発させる蒸発器と、低圧冷媒を高圧冷媒に圧縮する圧縮機と、被加熱水との熱交換により高圧冷媒を凝縮させる並列接続された複数の凝縮器と、各凝縮器で凝縮した高圧冷媒を低圧冷媒に減圧膨張して前記蒸発器に供給する並列接続された複数の容積型膨張機とを有したヒートポンプ部と、前記複数の凝縮器それぞれに対して前記被加熱水を供給し、前記高圧冷媒との熱交換により生成された水蒸気を外部に送出する蒸気生成部と、を備え、前記複数の容積型膨張機は、同一の回転軸によって連結されることを特徴とする。 In addition, the vapor generating heat pump device according to the present invention includes an evaporator that evaporates a low-pressure refrigerant with heat recovered from heat source water, a compressor that compresses the low-pressure refrigerant into a high-pressure refrigerant, and a high-pressure refrigerant by heat exchange with the water to be heated. and a plurality of positive displacement expanders connected in parallel for decompressing and expanding the high-pressure refrigerant condensed in each condenser to a low-pressure refrigerant and supplying it to the evaporator. and a steam generation unit that supplies the water to be heated to each of the plurality of condensers and sends out the steam generated by heat exchange with the high-pressure refrigerant to the outside, wherein the plurality of positive displacement type The expanders are characterized in that they are connected by the same rotating shaft.

また、本発明にかかる蒸気生成ヒートポンプ装置は、上記の発明において、前記回転軸は、電気制動機に接続されることを特徴とする。 Further, the steam generation heat pump device according to the present invention is characterized in that, in the above invention, the rotating shaft is connected to an electric brake.

本発明によれば、1つの圧縮機に対して複数の凝縮器が並列接続される場合であっても、簡易な構成で、各凝縮器に流れる冷媒の質量流量を均等に配分することができる。 According to the present invention, even when a plurality of condensers are connected in parallel to one compressor, the mass flow rate of refrigerant flowing to each condenser can be equally distributed with a simple configuration. .

図1は、本発明の実施の形態である蒸気生成ヒートポンプ装置の構成を示す回路図である。FIG. 1 is a circuit diagram showing the configuration of a steam generation heat pump device according to an embodiment of the present invention.

以下、添付図面を参照してこの発明を実施するための形態について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

<装置構成>
図1は、本発明の実施の形態である蒸気生成ヒートポンプ装置100の構成を示す回路図である。図1に示すように蒸気生成ヒートポンプ装置100は、ヒートポンプ部10及び蒸気生成部20有する。
<Device configuration>
FIG. 1 is a circuit diagram showing the configuration of a steam generation heat pump device 100 that is an embodiment of the present invention. As shown in FIG. 1 , the steam generation heat pump device 100 has a heat pump section 10 and a steam generation section 20 .

ヒートポンプ部10は、工場排水等の排温水(熱源水)HWから回収した熱で低圧冷媒を蒸発させる蒸発器3と、蒸発器3から導入される低圧冷媒を高圧冷媒に圧縮する圧縮機1と、圧縮機1によって圧縮された高圧冷媒を凝縮させ、被加熱水Wを加熱して沸騰させる並列接続された凝縮器2a,2bと、凝縮器2a,2bによって凝縮された冷媒をそれぞれ減圧膨張し、蒸発器3に導出する容積型膨張機4a,4bとを有し、冷媒循環経路順次接続されるヒートポンプサイクルを構成している。ここで、圧縮機1から吐出された高圧冷媒は、分岐されて各凝縮器2a,2bに導入される。また、容積型膨張機4a,4bから導出された冷媒は、合流して蒸発器3に導入される。 The heat pump unit 10 includes an evaporator 3 that evaporates a low-pressure refrigerant with heat recovered from waste water (heat source water) HW such as factory wastewater, and a compressor 1 that compresses the low-pressure refrigerant introduced from the evaporator 3 into a high-pressure refrigerant. , condensers 2a and 2b connected in parallel for condensing the high-pressure refrigerant compressed by the compressor 1 and heating and boiling the water W to be heated; , and positive displacement expanders 4a and 4b leading to the evaporator 3, and constitute a heat pump cycle that is sequentially connected to the refrigerant circulation path. Here, the high-pressure refrigerant discharged from the compressor 1 is branched and introduced into the respective condensers 2a and 2b. Refrigerant discharged from the positive displacement expanders 4 a and 4 b joins together and is introduced into the evaporator 3 .

容積型膨張機4a,4bは、同一の回転軸15によって連結される。回転軸15の一端には、電気制動機14が連結される。したがって、各容積型膨張機4a,4bの回転数は、電気制動機14による電気制動によって制御され、かつ、同一の回転をすることになる。容積型膨張機4a,4bは、各凝縮器2a,2bから導入される冷媒を吸入し、回転軸15の回転力によって膨張室の容積変化が調整される。各容積型膨張機4a,4bは、同一の回転数となるため、膨張室の容積変化も同じとなり、各凝縮器2a,2bに流れる冷媒の質量流量を均等に配分することができる。 The positive displacement expanders 4 a and 4 b are connected by the same rotating shaft 15 . An electric brake 14 is connected to one end of the rotating shaft 15 . Therefore, the rotation speeds of the positive displacement expanders 4a and 4b are controlled by electric braking by the electric brake 14, and they rotate at the same speed. The positive displacement expanders 4a and 4b suck the refrigerant introduced from the respective condensers 2a and 2b, and the rotational force of the rotary shaft 15 adjusts the volume change of the expansion chambers. Since the positive displacement expanders 4a and 4b have the same number of revolutions, the expansion chambers have the same volume change, and the mass flow rate of the refrigerant flowing through the condensers 2a and 2b can be evenly distributed.

なお、電気制動機14が電気制動を行う場合、容積型膨張機4a,4bの容積変化に応じた回転力を得ることができる。この回転力を発電機などエネルギー変換機によって電気エネルギー(回収エネルギー)に変換して出力することができるため、装置全体のエネルギー効率を高めることができる。 In addition, when the electric brake 14 performs electric braking, it is possible to obtain a rotational force according to the volume change of the positive displacement expanders 4a and 4b. Since this rotational force can be converted into electrical energy (recovered energy) by an energy converter such as a generator and output, the energy efficiency of the entire apparatus can be enhanced.

蒸気生成部20は、複数の給水ポンプ5a,5b、複数のサーモサイフォン回路A,B、複数の圧力調整弁7a,7bを有する。導入された被加熱水Wは、複数の給水ポンプ5a,5bに分岐し、各給水ポンプ5a、5bは、それぞれサーモサイフォン回路A,Bに被加熱水を導出する。 The steam generator 20 has a plurality of water supply pumps 5a and 5b, a plurality of thermosiphon circuits A and B, and a plurality of pressure regulating valves 7a and 7b. The introduced water to be heated W is branched to a plurality of water supply pumps 5a and 5b, and the water supply pumps 5a and 5b lead the water to be heated to thermosiphon circuits A and B, respectively.

各サーモサイフォン回路A,Bは、各凝縮器2a,2bに対応して複数の水蒸気分離器6a,6bを有する。各水蒸気分離器6a,6bは、各凝縮器2a,2bで沸騰した被加熱水Wを水蒸気と水とに分離する。各凝縮器2a,2bと各水蒸気分離器6a,6bとの上部及び下部は、それぞれ上部配管21a,21bと、下部配管22a,22bとで連通される。各水蒸気分離器6a,6b内の水は、それぞれ下部配管22a,22bを介してそれぞれ凝縮器2a,2bに導出されるとともに、各凝縮器2a,2bで沸騰した水蒸気は、それぞれ上部配管21a,21bを介してそれぞれ水蒸気分離器6a,6bに導出して、それぞれ圧力調整弁7a,7b側に出力される。圧力調整弁に出力される。すなわち、下部配管22a、凝縮器2a、上部配管21a、水蒸気分離器6aからなるサーモサイフォン回路Aと、下部配管22b、凝縮器2b、上部配管21b、水蒸気分離器6bからなるサーモサイフォン回路Bという2系統のサーモサイフォン回路A,Bが形成されている。なお、各給水ポンプ5a,5bから導出された被加熱水Wは、それぞれ下部配管22a,22bに導入されることによって、各サーモサイフォン回路A,Bに導入される。 Each thermosiphon circuit A, B has a plurality of steam separators 6a, 6b corresponding to each condenser 2a, 2b. Each steam separator 6a, 6b separates the heated water W boiled in each condenser 2a, 2b into steam and water. The upper and lower portions of the condensers 2a, 2b and the steam separators 6a, 6b are communicated with upper pipes 21a, 21b and lower pipes 22a, 22b, respectively. The water in each steam separator 6a, 6b is led out to condensers 2a, 2b through lower pipes 22a, 22b, respectively. 21b to the steam separators 6a and 6b, respectively, and output to the pressure control valves 7a and 7b, respectively. Output to the pressure control valve. That is, a thermosiphon circuit A consisting of a lower pipe 22a, a condenser 2a, an upper pipe 21a, and a water vapor separator 6a, and a thermosiphon circuit B consisting of a lower pipe 22b, a condenser 2b, an upper pipe 21b, and a water vapor separator 6b. System thermosiphon circuits A and B are formed. The water to be heated W drawn from the water supply pumps 5a and 5b is introduced into the thermosiphon circuits A and B by being introduced into the lower pipes 22a and 22b, respectively.

各水蒸気分離器6a,6bから導出された水蒸気は、それぞれ圧力調整弁7a,7b側に出力され、圧力調整弁7a,7bを介した水蒸気は合流され、蒸気Sとして外部の蒸気利用設備側に供給される。 The steam derived from each of the steam separators 6a and 6b is output to the pressure regulating valves 7a and 7b, respectively, and the steam passing through the pressure regulating valves 7a and 7b is combined and sent as steam S to the external steam utilization facility. supplied.

ヒートポンプ部10は、圧力検出センサ13、温度検出センサ12、及び制御部Cを有する。圧力検出センサ13は、圧縮機1から吐出される高圧冷媒の圧力を検出する。温度検出センサ12は、圧縮機1から吐出される高圧冷媒の温度を検出する。制御部Cは、圧力検出センサ13及び温度検出センサ12が検出する圧力及び温度をもとに、吐出過熱度を算出し、吐出過熱度が目標吐出過熱度となるように、電気制動機14による回転軸15の回転数を制御し、容積型膨張機4a,4bに導入される冷媒の質量流量を調整する。 The heat pump section 10 has a pressure detection sensor 13, a temperature detection sensor 12, and a control section C. As shown in FIG. A pressure detection sensor 13 detects the pressure of the high-pressure refrigerant discharged from the compressor 1 . A temperature detection sensor 12 detects the temperature of the high-pressure refrigerant discharged from the compressor 1 . The controller C calculates the degree of discharge superheat based on the pressure and temperature detected by the pressure detection sensor 13 and the temperature detection sensor 12, and controls the electric brake 14 so that the degree of discharge superheat becomes the target degree of discharge superheat. The rotation speed of the rotating shaft 15 is controlled to adjust the mass flow rate of the refrigerant introduced to the positive displacement expanders 4a and 4b.

本実施の形態では、複数の膨張機構に替えて、同一の回転軸15によって連結される複数の容積型膨張機4a,4bによって冷媒を減圧膨張させているので、各凝縮器2a,2bに流れる冷媒の質量流量を均等に配分することができる。これにより、各凝縮器2a,2bでの熱交換量が同時に最適化され、凝縮器2a,2bを並列接続させる場合であっても、簡易な構成で運転効率の悪化を抑えることができる。 In the present embodiment, instead of a plurality of expansion mechanisms, the refrigerant is decompressed and expanded by a plurality of positive displacement expanders 4a and 4b connected by the same rotating shaft 15, so that the refrigerant flows into the condensers 2a and 2b. The refrigerant mass flow rate can be evenly distributed. As a result, the amount of heat exchanged in each condenser 2a, 2b is optimized at the same time, and even when the condensers 2a, 2b are connected in parallel, deterioration in operating efficiency can be suppressed with a simple configuration.

なお、上記の実施の形態では、凝縮器2a,2b及び容積型膨張機4a,4bなどの2系統の並列接続としているが、大容量化に対応して、3系統以上の並列接続であってもよい。 In the above embodiment, two systems, such as the condensers 2a and 2b and the positive displacement expanders 4a and 4b, are connected in parallel. good too.

また、上記の実施の形態では、容積型膨張機4a,4bが同一の回転軸15によって連結されていたが、これに限らず、各容積型膨張機4a,4bの回転数が同一となるように、各別に制御するようにしてもよい。 Further, in the above-described embodiment, the positive displacement expanders 4a and 4b are connected by the same rotating shaft 15, but this is not limiting, and the rotation speeds of the positive displacement expanders 4a and 4b may be the same. Alternatively, each may be controlled separately.

さらに、上記の実施の形態では、容積型膨張機4a,4bを連結する同一の回転軸15の回転数を、電気制動機14を介して制御するようにしていたが、電気制動機14に限らず、回転軸15の回転を制御できる機器であればよい。 Furthermore, in the above embodiment, the rotation speed of the same rotary shaft 15 that connects the positive displacement expanders 4a and 4b is controlled via the electric brake 14, but the electric brake 14 is Any device that can control the rotation of the rotating shaft 15 may be used.

また、上記の実施の形態で図示した各構成は機能概略的なものであり、必ずしも物理的に図示の構成をされていることを要しない。すなわち、各装置及び構成要素の分散・統合の形態は図示のものに限られず、その全部又は一部を各種の使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。 In addition, each configuration illustrated in the above embodiment is a functional schematic, and does not necessarily need to be physically configured as illustrated. In other words, the form of dispersion/integration of each device and component is not limited to the illustrated one, and all or part of them can be functionally or physically distributed/integrated in arbitrary units according to various usage conditions. can be configured

1 圧縮機
2a,2b 凝縮器
3 蒸発器
4a,4b 容積型膨張機
5a,5b 給水ポンプ
6a,6b 水蒸気分離器
7a,7b 圧力調整弁
10 ヒートポンプ部
12 温度検出センサ
13 圧力検出センサ
14 電気制動機
15 回転軸
20 蒸気生成部
21a,21b 上部配管
22a,22b 下部配管
100 蒸気生成ヒートポンプ装置
A,B サーモサイフォン回路
C 制御部
HW 熱源水
S 蒸気
W 被加熱水
1 compressor 2a, 2b condenser 3 evaporator 4a, 4b positive displacement expander 5a, 5b water supply pump 6a, 6b water vapor separator 7a, 7b pressure control valve 10 heat pump section 12 temperature detection sensor 13 pressure detection sensor 14 electric brake 15 Rotating shaft 20 Steam generation unit 21a, 21b Upper pipe 22a, 22b Lower pipe 100 Steam generation heat pump device A, B Thermosiphon circuit C Control unit HW Heat source water S Steam W Water to be heated

Claims (3)

熱源水から回収した熱で低圧冷媒を蒸発させる蒸発器と、低圧冷媒を高圧冷媒に圧縮する圧縮機と、被加熱水との熱交換により高圧冷媒を凝縮させる並列接続された複数の凝縮器と、各凝縮器で凝縮した高圧冷媒を低圧冷媒に減圧膨張して前記蒸発器に供給する並列接続された複数の容積型膨張機とを有したヒートポンプ部と、
前記複数の凝縮器それぞれに対して前記被加熱水を供給し、前記高圧冷媒との熱交換により生成された水蒸気を外部に送出する蒸気生成部と、
前記複数の容積型膨張機の回転数を制御する制御部と、
を備え、
前記制御部は、前記複数の容積型膨張機に導入される冷媒の質量流量が同一になるよう前記複数の容積型膨張機の回転数を制御することを特徴とする蒸気生成ヒートポンプ装置。
An evaporator that evaporates the low-pressure refrigerant with the heat recovered from the heat source water, a compressor that compresses the low-pressure refrigerant into a high-pressure refrigerant, and a plurality of parallel-connected condensers that condense the high-pressure refrigerant through heat exchange with the heated water. a heat pump unit having a plurality of positive displacement expanders connected in parallel for decompressing and expanding the high-pressure refrigerant condensed in each condenser to a low-pressure refrigerant and supplying the refrigerant to the evaporator;
a steam generation unit that supplies the water to be heated to each of the plurality of condensers, and outputs steam generated by heat exchange with the high-pressure refrigerant to the outside;
a control unit that controls the rotation speeds of the plurality of positive displacement expanders;
with
The vapor generating heat pump device, wherein the control unit controls the rotational speeds of the plurality of positive displacement expanders so that the mass flow rate of the refrigerant introduced to the plurality of positive displacement expanders becomes the same.
熱源水から回収した熱で低圧冷媒を蒸発させる蒸発器と、低圧冷媒を高圧冷媒に圧縮する圧縮機と、被加熱水との熱交換により高圧冷媒を凝縮させる並列接続された複数の凝縮器と、各凝縮器で凝縮した高圧冷媒を低圧冷媒に減圧膨張して前記蒸発器に供給する並列接続された複数の容積型膨張機とを有したヒートポンプ部と、
前記複数の凝縮器それぞれに対して前記被加熱水を供給し、前記高圧冷媒との熱交換により生成された水蒸気を外部に送出する蒸気生成部と、
を備え、
前記複数の容積型膨張機は、同一の回転軸によって連結されることを特徴とする蒸気生成ヒートポンプ装置。
An evaporator that evaporates the low-pressure refrigerant with the heat recovered from the heat source water, a compressor that compresses the low-pressure refrigerant into a high-pressure refrigerant, and a plurality of parallel-connected condensers that condense the high-pressure refrigerant through heat exchange with the heated water. a heat pump unit having a plurality of positive displacement expanders connected in parallel for decompressing and expanding the high-pressure refrigerant condensed in each condenser to a low-pressure refrigerant and supplying the refrigerant to the evaporator;
a steam generation unit that supplies the water to be heated to each of the plurality of condensers, and outputs steam generated by heat exchange with the high-pressure refrigerant to the outside;
with
The steam generation heat pump device, wherein the plurality of positive displacement expanders are connected by the same rotating shaft.
前記回転軸は、電気制動機に接続されることを特徴とする請求項2に記載の蒸気生成ヒートポンプ装置。 3. The steam generating heat pump device of claim 2, wherein the rotating shaft is connected to an electric brake.
JP2018235294A 2018-12-17 2018-12-17 Steam generating heat pump device Active JP7143751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018235294A JP7143751B2 (en) 2018-12-17 2018-12-17 Steam generating heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018235294A JP7143751B2 (en) 2018-12-17 2018-12-17 Steam generating heat pump device

Publications (2)

Publication Number Publication Date
JP2020098040A JP2020098040A (en) 2020-06-25
JP7143751B2 true JP7143751B2 (en) 2022-09-29

Family

ID=71106824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018235294A Active JP7143751B2 (en) 2018-12-17 2018-12-17 Steam generating heat pump device

Country Status (1)

Country Link
JP (1) JP7143751B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7263862B2 (en) * 2019-03-18 2023-04-25 富士電機株式会社 Heat pump steam generator
JP7230604B2 (en) * 2019-03-18 2023-03-01 富士電機株式会社 Heat pump steam generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003322A (en) 2003-06-13 2005-01-06 Daikin Ind Ltd Refrigeration unit
JP2006138631A (en) 2006-02-17 2006-06-01 Mitsubishi Electric Corp Refrigeration air conditioner
JP2008039237A (en) 2006-08-03 2008-02-21 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2010185663A (en) 2010-06-03 2010-08-26 Mitsubishi Electric Corp Refrigerating cycle device
JP2016203677A (en) 2015-04-16 2016-12-08 日立オートモティブシステムズ株式会社 Brake control device or brake control method
US20170241679A1 (en) 2014-09-02 2017-08-24 Cyclect Electrical Engineering Pte Ltd Heat recovery system and method
JP2018105596A (en) 2016-12-28 2018-07-05 富士電機株式会社 Steam generation system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399140A (en) * 1989-09-12 1991-04-24 Mitsui Constr Co Ltd Supercooling type ice heat storage system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003322A (en) 2003-06-13 2005-01-06 Daikin Ind Ltd Refrigeration unit
JP2006138631A (en) 2006-02-17 2006-06-01 Mitsubishi Electric Corp Refrigeration air conditioner
JP2008039237A (en) 2006-08-03 2008-02-21 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2010185663A (en) 2010-06-03 2010-08-26 Mitsubishi Electric Corp Refrigerating cycle device
US20170241679A1 (en) 2014-09-02 2017-08-24 Cyclect Electrical Engineering Pte Ltd Heat recovery system and method
JP2016203677A (en) 2015-04-16 2016-12-08 日立オートモティブシステムズ株式会社 Brake control device or brake control method
JP2018105596A (en) 2016-12-28 2018-07-05 富士電機株式会社 Steam generation system

Also Published As

Publication number Publication date
JP2020098040A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
EP2998524B1 (en) Energy recovery device and compression device, and energy recovery method
JP5605991B2 (en) Steam generator
JP6086726B2 (en) Power generation system and power generation method
KR101428418B1 (en) Power generation apparatus and control method thereof
JP5596631B2 (en) Binary power generator
WO2011122295A1 (en) Waste heat regeneration system
WO2011122292A1 (en) Waste heat regeneration system
JP5691844B2 (en) Heat pump steam generator
JP2007127060A (en) Drive system
JP7143751B2 (en) Steam generating heat pump device
JP5017201B2 (en) Power generation equipment
JP6680300B2 (en) Exhaust heat recovery heat pump device
JP6394472B2 (en) Heat pump type steam generator and operation method of heat pump type steam generator
JP2014118908A (en) Power generation device
JP6465218B2 (en) Waste heat recovery heat pump device
US20150052895A1 (en) Heat exchanger, heat engine system and control method using the same
JP6844256B2 (en) Steam generation system
JP6345102B2 (en) Binary power generation system
JP2019019797A (en) Cogeneration system and operation method of the same
JP6844254B2 (en) Steam generation system and control method of steam generation system
JP6321568B2 (en) Power generator
JP5950064B1 (en) Heat pump steam generator
JP5943126B1 (en) Heat pump steam generator
JP2019056348A (en) Rankine cycle device
JP2020153545A (en) Heat pump-type steam generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7143751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150