JP7141853B2 - アクティブフィルタ装置、空調システム、リプル抑制方法及びプログラム - Google Patents

アクティブフィルタ装置、空調システム、リプル抑制方法及びプログラム Download PDF

Info

Publication number
JP7141853B2
JP7141853B2 JP2018100062A JP2018100062A JP7141853B2 JP 7141853 B2 JP7141853 B2 JP 7141853B2 JP 2018100062 A JP2018100062 A JP 2018100062A JP 2018100062 A JP2018100062 A JP 2018100062A JP 7141853 B2 JP7141853 B2 JP 7141853B2
Authority
JP
Japan
Prior art keywords
active filter
command
duty ratio
current
filter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018100062A
Other languages
English (en)
Other versions
JP2019205305A (ja
Inventor
敦之 角谷
賢三 大野
謙一 相場
健志 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2018100062A priority Critical patent/JP7141853B2/ja
Publication of JP2019205305A publication Critical patent/JP2019205305A/ja
Application granted granted Critical
Publication of JP7141853B2 publication Critical patent/JP7141853B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、アクティブフィルタ装置、空調システム、リプル抑制方法及びプログラムに関する。
空調システムでは、インバータを用いて、室外機の圧縮機用モータ等を所望に回転駆動させることが知られている。このような空調システムの室外機に流れる電流は、交流電力を直流に変換する整流回路の特性により、高調波が生じ易い。そのため、アクティブフィルタ装置を用いて、室外機に流れる電流の高調波を抑制する。
上述のアクティブフィルタに関連し、特許文献1には、室外電源装置及び室内電源装置へ入力される交流電流を検出する電流検出部と、電流検出部の電流検出結果に基づいて、交流電流の高調波成分を低減させる制御を行う高調波抑制部とを備えた空気調和装置が開示されている。
特開2004-364491号公報
アクティブフィルタ装置は、室外機の圧縮機用モータ等を駆動させるための電流(即ち、高調波を含む電流。以下、「コンバータ電流」とも記載する。)を検出し、その急峻な変化に追随して適切な電流を重畳することで、電力系統から供給される全電流(以下、「系統電流」とも記載する。)を正弦波に形成し、高調波を抑制する。以下、アクティブフィルタ装置が出力する電流を、「アクティブフィルタ出力電流」とも記載する。
アクティブフィルタ出力電流は、アクティブフィルタ回路のスイッチング素子(パワートランジスタ)のON/OFF制御によって制御される。アクティブフィルタ出力電流は、アクティブフィルタ装置が具備するリアクタによって平滑化される。このリアクタは、スイッチング素子のON/OFFの繰り返しに伴って生じるリプルを抑制する。リアクタのインダクタンス値が高いほど、リプルの抑制効果を高められる。
しかしながら、リアクタのインダクタンス値が高すぎると、アクティブフィルタ出力電流は、コンバータ電流の急峻な変化(高調波)に追随できなくなり、本来の目的である、高調波の抑制効果が低下する。そのため、リアクタは、一般に、室外機の定格出力運転時に流れる最大のコンバータ電流に対してその高調波を抑制可能(追随可能)とすべく、インダクタンス値の上限値が定められる。
このように、リアクタは、最大のコンバータ電流に合わせてインダクタンス値の上限値が規定されるため、コンバータ電流が低い場合には、相対的にリプルの抑制効果が不十分となる。したがって、リプルによる高調波成分が増加する。また、系統電流の振幅に対して相対的にリプル幅が大きくなると、ゼロクロス検知の誤差等も大きくなり、インバータによるモータ制御にも不具合が生じ易くなる。
本発明の目的は、高調波抑制性能を維持しつつもリプルを抑制可能なアクティブフィルタ装置、空調システム、リプル抑制方法及びプログラムを提供することにある。
本発明の第1の態様によれば、アクティブフィルタ装置は、室外機に流れるコンバータ電流に基づいて、アクティブフィルタ回路のスイッチング素子へのON/OFF指令を出力する指令出力部と、所定期間内において、前記ON/OFF指令のデューティ比が所定下限値を下回っているか否かを判定するデューティ比判定部と、前記ON/OFF指令のデューティ比が前記所定下限値を下回っている場合に、前記アクティブフィルタ回路から出力されるDC電圧を低下させるDC電圧調整部と、を備える。
また、本発明の第2の態様によれば、前記デューティ比判定部は、更に、前記ON/OFF指令のデューティ比が所定上限値に達しているか否かを判定し、前記DC電圧調整部は、前記ON/OFF指令のデューティ比が所定上限値に達している場合に、前記アクティブフィルタ回路から出力されるDC電圧を上昇させる。
また、本発明の第3の態様によれば、空調システムは、上述のアクティブフィルタ装置と、前記室外機と、を備える。
また、本発明の第4の態様によれば、上述の空調システムにおいて、前記アクティブフィルタ装置は、前記室外機の内部に組み込まれている。
また、本発明の第5の態様によれば、リプル抑制方法は、室外機に流れるコンバータ電流に基づいて、アクティブフィルタ回路のスイッチング素子へのON/OFF指令を出力するステップと、所定期間内において、前記ON/OFF指令のデューティ比が所定下限値を下回っているか否かを判定するステップと、前記ON/OFF指令のデューティ比が前記所定下限値を下回っている場合に、前記アクティブフィルタ回路から出力されるDC電圧を低下させるステップと、を有する。
また、本発明の第6の態様によれば、プログラムは、アクティブフィルタ装置のコンピュータに、室外機に流れるコンバータ電流に基づいて、アクティブフィルタ回路のスイッチング素子へのON/OFF指令を出力するステップと、所定期間内において、前記ON/OFF指令のデューティ比が所定下限値を下回っているか否かを判定するステップと、前記ON/OFF指令のデューティ比が前記所定下限値を下回っている場合に、前記アクティブフィルタ回路から出力されるDC電圧を低下させるステップと、を実行させる。
上記態様のうち少なくとも1つの態様によれば、高調波抑制性能を維持しつつもリプルを抑制できる。
第1の実施形態に係る空調システムの全体構成を示す図である。 第1の実施形態に係るアクティブフィルタ制御部の機能構成を示す図である。 第1の実施形態に係るアクティブフィルタ装置の機能を説明するための図である。 第1の実施形態に係るアクティブフィルタ制御部の動作を説明するための図である。 第1の実施形態に係るアクティブフィルタ制御部の処理フローを示す図である。 第1の実施形態に係るアクティブフィルタ制御部の処理に基づく作用、効果を説明するための図である。 第1の実施形態に係るアクティブフィルタ制御部の処理に基づく作用、効果を説明するための図である。 第2の実施形態に係る空調システムの全体構成を示す図である。
<第1の実施形態>
以下、第1の実施形態に係るアクティブフィルタ装置、及び、これを備える空調システムについて、図1~図7を参照しながら説明する。
(車載空調機制御装置の全体構成)
図1は、第1の実施形態に係る空調システムの全体構成を示す図である。
空調システム1は、室外機1Aと、アクティブフィルタ装置3とを有してなる空調システムである。なお、空調システム1は、室内機も具備しているが、図1では図示を省略している。
本実施形態に係る空調システム1の室外機1Aは、電源接続端子Tを介して、交流電源2に接続される。交流電源2は、三相交流電力を出力する通常の商用電力系統である。
なお、以下の説明では、室外機1A及びアクティブフィルタ装置3それぞれが具備する各構成において、交流電源2に近い側を「上流側」とも表記し、圧縮機用モータ13に近い側を「下流側」とも表記する。
室外機1Aの構成について説明する。
図1に示すように、室外機1Aは、ノイズフィルタ10と、整流回路11と、インバータ回路12と、圧縮機用モータ13と、電解コンデンサC1とを備えている。
ノイズフィルタ10は、交流電源2から供給される三相交流電力のノイズを除去する。
整流回路11は、ノイズフィルタ10によってノイズが除去された三相交流電力を整流する。整流回路11は、例えば、ダイオード素子を用いた三相整流回路等であってよい。整流回路11の出力線である高電位出力線αからは整流後の高電位が出力され、低電位出力線βからは整流後の低電位が出力される。
電解コンデンサC1は、整流回路11の高電位出力線αと低電位出力線βとの間に接続される。電解コンデンサC1は、整流回路11による整流後の電圧を平滑化し、直流電圧を生成する。
インバータ回路12は、整流回路11によって整流され、電解コンデンサC1によって平滑化されてなる直流電圧に基づいて、所望の交流電力を生成するための電力変換回路である。インバータ回路12は、圧縮機用モータ13を所望する回転数で回転駆動させるための交流電力を生成する。
圧縮機用モータ13は、室外機1A内に具備される圧縮機を回転駆動させるための三相交流モータである。圧縮機用モータ13は、インバータ回路12が生成する三相交流電力に基づいて回転駆動する。
コンバータ電流検出センサSEは、交流電源2から室外機1Aに流れる三相交流電流を検出する電流センサである。コンバータ電流検出センサSEは、例えば、クランプ式の電流センサ等であってよい。
次に、アクティブフィルタ装置3について説明する。
図1に示すように、アクティブフィルタ装置3は、室外機1Aの電源接続端子Tを介して交流電源2に接続される。アクティブフィルタ装置3は、アクティブフィルタ制御部30と、アクティブフィルタ回路31と、リアクタL3とを備えている。
アクティブフィルタ制御部30は、いわゆるマイコンであって、予め用意されたプログラムに従って動作する。アクティブフィルタ制御部30は、後述するコンバータ電流検出センサSEから取得するコンバータ電流I2の検出結果に基づいて、アクティブフィルタ回路31が具備するスイッチング素子SW3のON/OFFを制御する。アクティブフィルタ制御部30の具体的な機能、動作については後述する。
アクティブフィルタ回路31は、交流電源2から入力される三相交流電力に同期してON/OFFするスイッチング素子SW3を具備する。アクティブフィルタ回路31は、同期整流回路として機能し、これによって生成された整流後の電圧を電解コンデンサC3に出力する。電解コンデンサC3には所定のDC電圧Vdcが印加される。
スイッチング素子SW3が適切にON/OFF制御されることで、アクティブフィルタ回路31は、コンバータ電流I2の高調波を抑制するための電流(アクティブフィルタ出力電流I3)を出力する。コンバータ電流I2にアクティブフィルタ出力電流I3が重畳されることで、系統電流I1は、高調波が低減された正弦波に形成される。
リアクタL3は、アクティブフィルタ出力電流I3を平滑化するための素子であって、主に、スイッチング素子SW3のON/OFF制御に伴って発生するリプルを抑制する。
リアクタL3のインダクタンス値が高いほど、アクティブフィルタ出力電流I3のリプルの抑制効果を高められる。しかしながら、リアクタL3のインダクタンス値が高すぎると、アクティブフィルタ出力電流I3は、コンバータ電流I2の急峻な変化(高調波)に追随できなくなり、高調波の抑制効果が低下する。そのため、リアクタL3は、室外機1Aの定格出力運転時に流れる最大のコンバータ電流I2に対してその高調波を抑制可能(追随可能)となるように設計されている。
(アクティブフィルタ制御部の機能構成)
図2は、第1の実施形態に係るアクティブフィルタ制御部の機能構成を示す図である。
図2に示すように、アクティブフィルタ制御部30は、所定のプログラムに従って動作することで、指令出力部300、デューティ比判定部301、DC電圧調整部302としての機能を発揮する。
指令出力部300は、交流電源2から室外機1Aに流れるコンバータ電流I2に基づいて、アクティブフィルタ回路31のスイッチング素子SW3へのON/OFF指令を出力する。スイッチング素子SW3は、このON/OFF指令に従ってON/OFFする。
デューティ比判定部301は、所定期間内(例えば、交流電力の1周期内)において、ON/OFF指令のデューティ比を取得する。本実施形態に係るデューティ比判定部301は、ON/OFF指令のデューティ比が所定下限値(例えば、80%)を下回っているか否かを判定する。また、本実施形態に係るデューティ比判定部301は、所定期間内において、ON/OFF指令のデューティ比が所定上限値(例えば、100%)に達しているか否かを判定する。
DC電圧調整部302は、アクティブフィルタ回路31のスイッチング素子SW3を制御して、電解コンデンサC3に印加されているDC電圧Vdcを変更する。具体的には、DC電圧調整部302は、例えば、スイッチング素子SW3の同期整流回路としてのON/OFFパターンを変化させることでDC電圧Vdcを調整することができる。特に、本実施形態に係るDC電圧調整部302は、ON/OFF指令のデューティ比が所定下限値を下回っている場合に、アクティブフィルタ回路31から電解コンデンサC3に出力されるDC電圧Vdcを低下させる。また、本実施形態に係るDC電圧調整部302は、ON/OFF指令のデューティ比が所定上限値に達している場合に、アクティブフィルタ回路31から電解コンデンサC3に出力されるDC電圧Vdcを上昇させる。
(アクティブフィルタ装置の機能)
図3は、第1の実施形態に係るアクティブフィルタ装置の機能を説明するための図である。
具体的には、図3は、系統電流I1と、コンバータ電流I2と、アクティブフィルタ出力電流I3との電流波形の例を示している。
室外機1Aに流れるコンバータ電流I2は、例えば図3の○印に示す箇所のごとく、1周期内で急峻に変化するタイミングが存在する。即ち、コンバータ電流I2には高調波成分が含まれる。
アクティブフィルタ装置3が出力するアクティブフィルタ出力電流I3は、コンバータ電流I2に対応して変化する。特に、図3の○印に示す箇所では、アクティブフィルタ出力電流I3は、コンバータ電流I2の急峻な変化に追随して変化している。上述したように、アクティブフィルタ出力電流I3は、図3の○印に示すようなコンバータ電流I2の急峻な変化に追随して変化する必要があり、そのため、リアクタL3のインダクタンス値を無制限に高めることはできない。
系統電流I1は、コンバータ電流I2にアクティブフィルタ出力電流I3が重畳されてなる電流である。図3に示すように、アクティブフィルタ出力電流I3がコンバータ電流I2の急峻な変化を補償するように変化するため、系統電流I1は、正弦波に近い電流波形に形成されている。
(アクティブフィルタ制御部の動作)
図4は、第1の実施形態に係るアクティブフィルタ制御部の動作を説明するための図である。
以下、図4を参照しながら、アクティブフィルタ制御部30の指令出力部300の具体的な処理について詳しく説明する。
まず、指令出力部300は、コンバータ電流検出センサSEを通じてコンバータ電流I2を取得すると、当該コンバータ電流I2の高調波を抑制するために出力すべき電流を示す電流指令を演算する。
続いて、指令出力部300は、演算した電流指令を、予め規定された三角波である比較キャリアに重ねる(図4参照)。そして、指令出力部300は、三角波のうち電流指令を下回る期間をON期間とするON/OFF指令(PWM信号)を出力する。以下、1キャリア周期に対する、ON/OFF指令が“ON”となっている期間(ON期間)の割合を「デューティ比」(%)とも表記する。なお、比較キャリアのキャリア周期は、例えば、20kHz等とされる。
指令出力部300は、上記のようにして求めたON/OFF指令をアクティブフィルタ回路31のスイッチング素子SW3に出力する。スイッチング素子SW3は、このON/OFF指令に基づいてON状態、OFF状態に推移する。
図4に示すように、電流指令及び比較キャリアによって特定されるデューティ比に基づいてスイッチング素子SW3をON/OFF制御することで、アクティブフィルタ出力電流I3は、瞬時的にはスイッチング素子SW3のON/OFFに応じた上昇/下降を繰り返しながらも、平均的には電流指令に応じたアクティブフィルタ出力電流I3が出力される。
なお、図3の○印に示すように、アクティブフィルタ出力電流I3を急峻に変化させようとする場合、指令出力部300は、スイッチング素子SW3へのON/OFF指令のデューティ比を上昇させる。例えば、デューティ比を上限(100%)まで上昇させれば、指令出力部300は、最大の上昇率(変化率ΔI)でアクティブフィルタ出力電流I3を上昇させることができる。ここで、変化率ΔIは、スイッチング素子SW3のON期間中におけるアクティブフィルタ出力電流I3の単位時間当たりの変化率であって、式(1)によって決定される。
Figure 0007141853000001
式(1)において、「Vdc」は電解コンデンサC3に印加されるDC電圧Vdcである。また、「L」はリアクタL3のインダクタンス値である。また、「dI/dt」はアクティブフィルタ出力電流I3の変化率ΔIである。
式(1)によれば、リアクタL3のインダクタンス値が小さいほど、又は、電解コンデンサC3に印加されるDC電圧Vdcが大きいほど、変化率ΔIは上昇するので、アクティブフィルタ出力電流I3を急峻に変化させることができる。
他方、スイッチング素子SW3のON/OFFに応じたアクティブフィルタ出力電流I3の細やかな上昇/下降の幅であるリプル幅Rは、アクティブフィルタ出力電流I3の変化率ΔIが大きいほど大きくなる。即ち、リプル幅Rは、リアクタL3のインダクタンス値が小さいほど、又は、DC電圧Vdcが大きいほど、大きくなる。
ここで、アクティブフィルタ出力電流I3の変化率ΔIを小さくすることでリプル幅Rを低減できる。しかしながら、変化率ΔIが小さすぎると、特に、図3の○印に示すタイミングにおいて、ON/OFF指令のデューティ比を最大値(100%)としても、コンバータ電流I2の変化に追随できなくなる。
そこで、第1の実施形態に係るアクティブフィルタ制御部30は、ON/OFF指令のデューティ比が十分に低い場合には、動的に変化率ΔIを低減してリプル抑制を図るとともに、デューティ比の頭打ち(100%)が検出された場合には、動的に変化率ΔIを上昇させて、コンバータ電流I2の変化に追随できるようする。
なお、リアクタL3のインダクタンス値は、固定値であって動的に変化させることができない。そこで、本実施形態に係るアクティブフィルタ制御部30は、電解コンデンサC3に印加されるDC電圧Vdcを動的に変化させることで、アクティブフィルタ出力電流I3の変化率ΔIを変化させる。
(アクティブフィルタ制御部の処理フロー)
図5は、第1の実施形態に係るアクティブフィルタ制御部の処理フローを示す図である。
図5に示す処理フローは、空調システム1の運転中において継続的に繰り返し実行される。
まず、アクティブフィルタ制御部30のデューティ比判定部301は、ON/OFF指令の1キャリア周期(20kHz)ごとのデューティ比を、交流電力の電源周期(50Hz又は60Hz)の1周期分だけ取得する(ステップS01)。この処理において、例えば、デューティ比判定部301は、電源周期1周期分に対応する、予め規定されたサンプリング数だけデューティ比を取得するようにしてもよい。
続いて、デューティ比判定部301は、電源周期1周期全体でデューティ比80%以下となっているか否かを判定する(ステップS02)。電源周期1周期全体でデューティ比80%以下であるということは、例えば、図3の○印に示すような、コンバータ電流I2が急峻に変化するタイミングにおいても十分に(最大でもデューティ比80%で)追随できていると考えられる。即ち、デューティ比をまだ高める余地があるので、現状よりも変化率ΔIを低減したとしても、アクティブフィルタ出力電流I3はコンバータ電流I2に追随可能である。そこで、電源周期1周期全体でデューティ比80%以下となっていた場合(ステップS02:YES)、アクティブフィルタ制御部30のDC電圧調整部302は、DC電圧Vdcを低下させる処理を行う(ステップS03)。このようにすることで、式(1)に示す通り、DC電圧Vdcの低下に伴って変化率ΔIが低下するので、リプル幅Rが抑制される。
他方、電源周期1周期全体でデューティ比80%以下となっていなかった場合(ステップS02:NO)、続いて、デューティ比判定部301は、電源周期1周期の一部でデューティ比が頭打ち(100%)となっているか否かを判定する(ステップS04)。ここで、電源周期1周期の一部でデューティ比が頭打ちとなっているということは、特に、図3の○印に示すような、コンバータ電流I2が急峻に変化するタイミングにおいて十分に追随できていない可能性がある。即ち、現状より変化率ΔIを増加させて、アクティブフィルタ出力電流I3をコンバータ電流I2に十分に追随できるようにすべきである。そこで、電源周期1周期の一部でデューティ比が頭打ちとなっている場合には(ステップS04:YES)、DC電圧調整部302は、DC電圧Vdcを上昇させる処理を行う(ステップS05)。このようにすることで、DC電圧Vdcの上昇に伴って変化率ΔIが上昇するので、コンバータ電流I2への追随性が高まり、デューティ比が頭打ちしなくなる。
なお、電源周期1周期の一部でデューティ比が頭打ちとなっていない場合には(ステップS04:NO)、DC電圧調整部302は、DC電圧Vdcを変更しないで処理を終了する。
(作用、効果)
図6、図7は、第1の実施形態に係るアクティブフィルタ制御部の処理に基づく作用、効果を説明するための図である。
以下、図6及び図7を参照しながら、上述した処理フローの結果として得られる作用及び効果について説明する。
まず、空調システム1は、図6に示す状態にあったとする。即ち、図6に示すように、空調システム1は、圧縮機用モータ13の負荷が高く、系統電流I1の振幅Wが相対的に高い振幅“W1”で推移している。なお、このときのDC電圧Vdcは“Vdc1”であり、リプル幅Rは“R1”であったとする。
次に、空調システム1は、図6に示す状態から、図7に示す状態に推移したとする。即ち、図7に示すように、空調システム1は、圧縮機用モータ13の負荷が低くなり、系統電流I1の振幅Wが“W2”(W2<W1)に推移したとする。負荷(振幅)が減少することで、コンバータ電流I2の急峻な変化の度合いも小さくなるため、指令出力部300が演算するON/OFF指令のデューティ比が全体的に減少する。
ON/OFF指令のデューティ比が全体的に減少することで、アクティブフィルタ制御部30は、図5に示すステップS02~ステップS03の処理に進み、DC電圧Vdcを低下させる。この結果、DC電圧Vdcは“Vdc1”から“Vdc2”(Vdc2<Vdc1)に低下する。これにより、リプル幅Rは、“R1”から“R2”(R2<R1)に抑制される。
DC電圧Vdcが“Vdc2”に低減された後、再び、負荷(振幅)が上昇したとする。この場合、DC電圧Vdcが“Vdc2”の状態(即ち、リプル幅Rを“R2”に抑制している状態)のままでは、コンバータ電流I2の急峻な変化に追随できなくなり、ON/OFF指令のデューティ比が100%で頭打ちとなる期間が発生する。
ON/OFF指令のデューティ比が100%で頭打ちになると、アクティブフィルタ制御部30は、図5に示すステップS04~ステップS05の処理に進み、DC電圧Vdcを上昇させる。この結果、DC電圧Vdcは“Vdc2”から“Vdc1”に上昇する。これにより、リプル幅Rは“R2”から“R1”に増加するものの、コンバータ電流I2の急峻な変化に十分に追随できるようになり、系統電流I1を正弦波に成形することができる。
以上、第1の実施形態に係るアクティブフィルタ装置3によれば、高調波抑制性能を維持しつつもリプルを抑制できる。
<第2の実施形態>
次に、第2の実施形態に係るアクティブフィルタ装置、及び、これを備える空調システムについて、図8を参照しながら説明する。
(車載空調機制御装置の全体構成)
図8は、第2の実施形態に係る空調システムの全体構成を示す図である。
図8に示すように、第2の実施形態に係るアクティブフィルタ装置3は、空調システム1の室外機1Aの内部に組み込まれる態様となっている。
具体的には、第2の実施形態に係るアクティブフィルタ装置3のアクティブフィルタ回路31は、室外機1Aの整流回路11とインバータ回路12との間に設けられる。アクティブフィルタ回路31は、スイッチング素子SW3と、リアクタL3と、ダイオードD3と、電解コンデンサC3と、コンバータ電流検出センサSEとを備えてなる。
アクティブフィルタ回路31の電解コンデンサC3は、整流回路11の高電位出力線αと低電位出力線βとの間に接続され、整流回路11によって整流された電圧を平滑化し、DC電圧Vdcを生成する。
アクティブフィルタ回路31のスイッチング素子SW3は、ON状態となった場合に、整流回路11の高電位出力線αと低電位出力線βとの間を接続(短絡)する。スイッチング素子SW3がON状態になると、瞬時的に高電位出力線αから低電位出力線βに電流が流れようとするが、リアクタL3によって当該電流の変化が抑制される。アクティブフィルタ制御部30によってスイッチング素子SW3が適切にスイッチングされることで、整流回路11の出力側(下流側)に流れる電流が全体として正弦波に形成される。ダイオードD3は、スイッチング素子SW3がONした際に、下流側からの電流の逆流を防止する。
コンバータ電流検出センサSEは、低電位出力線βのうちスイッチング素子SW3よりも上流側に設置される抵抗素子(シャント抵抗)である。この抵抗素子に発生する降下電圧は、整流回路11の出力側(アクティブフィルタ回路31、インバータ回路12、圧縮機用モータ13等)に流れる電流を示す。
第2の実施形態に係るアクティブフィルタ装置3のアクティブフィルタ制御部30の具体的な動作は、第1の実施形態(図5に示す処理フロー)と同様であるため、詳細な説明を省略する。
なお、上述の各実施形態についての説明では、アクティブフィルタ制御部30の処理フロー(図5)に係るデューティ比の判定閾値を、100%、80%等と一意に特定して説明したが、当該判定閾値の具体的な値はこれらに限定されることなく、実施の態様に合わせて適宜変更可能である。
以上のとおり、本発明に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。上述の実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。上述の実施形態及びその変形例は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 空調システム
1A 室外機
10 ノイズフィルタ
11 整流回路
12 インバータ回路
13 圧縮機用モータ
2 交流電源
3 アクティブフィルタ装置
30 アクティブフィルタ制御部
31 アクティブフィルタ回路
T 電源接続端子
SW3 スイッチング素子
D3 ダイオード
L3 リアクタ
C1、C3 電解コンデンサ
SE コンバータ電流検出センサ

Claims (6)

  1. 室外機に流れるコンバータ電流に基づいて、アクティブフィルタ回路のスイッチング素子へのON/OFF指令を出力する指令出力部と、
    所定期間内における前記ON/OFF指令のデューティ比の最大値が所定下限値を下回っているか否かを判定するデューティ比判定部と、
    前記ON/OFF指令のデューティ比が前記所定下限値を下回っている場合に、前記アクティブフィルタ回路から出力されるDC電圧を低下させるDC電圧調整部と、
    を備えるアクティブフィルタ装置。
  2. 前記デューティ比判定部は、更に、前記ON/OFF指令のデューティ比が所定上限値に達しているか否かを判定し、
    前記DC電圧調整部は、前記ON/OFF指令のデューティ比が所定上限値に達している場合に、前記アクティブフィルタ回路から出力されるDC電圧を上昇させる
    請求項1に記載のアクティブフィルタ装置。
  3. 請求項1又は請求項2に記載のアクティブフィルタ装置と、
    前記室外機と、
    を備える空調システム。
  4. 前記アクティブフィルタ装置は、
    前記室外機の内部に組み込まれている
    請求項3に記載の空調システム。
  5. 室外機に流れるコンバータ電流に基づいて、アクティブフィルタ回路のスイッチング素子へのON/OFF指令を出力するステップと、
    所定期間内における前記ON/OFF指令のデューティ比の最大値が所定下限値を下回っているか否かを判定するステップと、
    前記ON/OFF指令のデューティ比が前記所定下限値を下回っている場合に、前記アクティブフィルタ回路から出力されるDC電圧を低下させるステップと、
    を有するリプル抑制方法。
  6. アクティブフィルタ装置のコンピュータに、
    室外機に流れるコンバータ電流に基づいて、アクティブフィルタ回路のスイッチング素子へのON/OFF指令を出力するステップと、
    所定期間内における前記ON/OFF指令のデューティ比の最大値が所定下限値を下回っているか否かを判定するステップと、
    前記ON/OFF指令のデューティ比が前記所定下限値を下回っている場合に、前記アクティブフィルタ回路から出力されるDC電圧を低下させるステップと、
    を実行させるプログラム。
JP2018100062A 2018-05-24 2018-05-24 アクティブフィルタ装置、空調システム、リプル抑制方法及びプログラム Active JP7141853B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018100062A JP7141853B2 (ja) 2018-05-24 2018-05-24 アクティブフィルタ装置、空調システム、リプル抑制方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018100062A JP7141853B2 (ja) 2018-05-24 2018-05-24 アクティブフィルタ装置、空調システム、リプル抑制方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2019205305A JP2019205305A (ja) 2019-11-28
JP7141853B2 true JP7141853B2 (ja) 2022-09-26

Family

ID=68727528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018100062A Active JP7141853B2 (ja) 2018-05-24 2018-05-24 アクティブフィルタ装置、空調システム、リプル抑制方法及びプログラム

Country Status (1)

Country Link
JP (1) JP7141853B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130176753A1 (en) 2012-01-10 2013-07-11 Mahesh M. Swamy Three Phase Active Rectifier System
JP2016025680A (ja) 2014-07-16 2016-02-08 株式会社神戸製鋼所 不平衡補償装置
JP2016163406A (ja) 2015-02-27 2016-09-05 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド アクティブフィルタ、及びそれを用いたモータ駆動装置、並びに冷凍装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3304202B2 (ja) * 1994-07-19 2002-07-22 シャープ株式会社 空気調和機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130176753A1 (en) 2012-01-10 2013-07-11 Mahesh M. Swamy Three Phase Active Rectifier System
JP2016025680A (ja) 2014-07-16 2016-02-08 株式会社神戸製鋼所 不平衡補償装置
JP2016163406A (ja) 2015-02-27 2016-09-05 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド アクティブフィルタ、及びそれを用いたモータ駆動装置、並びに冷凍装置

Also Published As

Publication number Publication date
JP2019205305A (ja) 2019-11-28

Similar Documents

Publication Publication Date Title
KR100823922B1 (ko) 직류 전원 공급 장치 및 그 방법
JP3955286B2 (ja) モータ駆動用インバータ制御装置および空気調和機
JP5997677B2 (ja) 電力変換装置及び空気調和装置
JP6095788B2 (ja) 電力変換装置及びこれを用いた空気調和装置
JP2009232681A (ja) マルチレベルインバータ
JP6712104B2 (ja) 直流電源装置および空気調和機
JP6642317B2 (ja) 電力変換装置、及び電力変換装置の制御方法
JP6333029B2 (ja) 電源装置
WO2013094261A1 (ja) 電力変換装置
JP6651919B2 (ja) 電源装置
JP6911677B2 (ja) 交流−直流変換装置
JP7141853B2 (ja) アクティブフィルタ装置、空調システム、リプル抑制方法及びプログラム
JP5527638B2 (ja) 電源回生コンバータ、モータ駆動システム
JP4885603B2 (ja) 直流電源装置
JP4572595B2 (ja) コンバータ制御方法及びコンバータ制御装置並びに空調機及びその制御方法及び制御装置
JP5166112B2 (ja) モータ駆動用インバータ制御装置
JP2020096527A (ja) 直流電源装置および空気調和機
JP2011050137A (ja) 電力変換回路
JP2010124585A (ja) モータ駆動用インバータ制御装置およびそれを備えた空気調和機
JP6098629B2 (ja) 電力変換装置
JP7304471B2 (ja) 直流電源装置および空気調和機
JP7152578B2 (ja) 直流電源装置および空気調和機
CN112019033B (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
JP4455121B2 (ja) 電源回路
JP6641501B2 (ja) コンバータ制御装置およびコンバータ制御方法

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7141853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150