JP7140952B2 - gas permeable structure - Google Patents

gas permeable structure Download PDF

Info

Publication number
JP7140952B2
JP7140952B2 JP2018109842A JP2018109842A JP7140952B2 JP 7140952 B2 JP7140952 B2 JP 7140952B2 JP 2018109842 A JP2018109842 A JP 2018109842A JP 2018109842 A JP2018109842 A JP 2018109842A JP 7140952 B2 JP7140952 B2 JP 7140952B2
Authority
JP
Japan
Prior art keywords
gas
holes
core element
hole
permeable structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018109842A
Other languages
Japanese (ja)
Other versions
JP2019202306A (en
JP2019202306A5 (en
Inventor
聖一 斎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mutsuki Electric KK
Original Assignee
Mutsuki Electric KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mutsuki Electric KK filed Critical Mutsuki Electric KK
Priority to JP2018109842A priority Critical patent/JP7140952B2/en
Publication of JP2019202306A publication Critical patent/JP2019202306A/en
Publication of JP2019202306A5 publication Critical patent/JP2019202306A5/ja
Application granted granted Critical
Publication of JP7140952B2 publication Critical patent/JP7140952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、水分を透過させにくくしてガス透過性をもたせるガス透過構造体に関する。TECHNICAL FIELD The present invention relates to a gas permeable structure that is difficult to permeate moisture and has gas permeability.

密閉容器の内部に発生したガスを外部に排出ができるように容器本体に形成したガス透過構造体において、水分を透過させにくくしてガス透過性をもたせるガス透過構造体が種々提案されている。In the gas permeable structure formed in the container body so as to allow the gas generated inside the closed container to be discharged to the outside, various gas permeable structures have been proposed which are difficult to permeate moisture and have gas permeability.

特許文献1にて、内容物を密閉構造に収容するケースの通気構造にもちいられるように、通気性を有し水蒸気の透過を防止しうる水蒸気透過防止多孔膜で、この多孔膜はポリオレフィン系樹脂と無機粉体と可塑剤を主体とする原料組成物を溶融混練して製膜した膜か可塑剤を除去することから得られる膜であり、可塑剤が抜けたことで形成される平均孔径が約0.1~0.2μmの孔と、無機粉体自体がもともと有する平均孔径が約0.01~0.05μmの孔との主に2種類の孔を有した構造となって、全体として、平均細孔径が0.05~0.2μmの孔構造で親水性多孔膜となって、膜全体に均一かつ微細で複雑に入り組んだ複雑な経路を有する無数の連通孔が形成されて、酸素等のガスを透過させ、また、細孔表面が親水性となっているので、水蒸気が膜を通過しようとすると、細孔内で水蒸気が凝縮を起こして液体である水に変化し、細孔を通過できないようにした多孔質構造の膜が提案されている。In Patent Document 1, a water vapor permeation preventing porous film that has air permeability and can prevent water vapor permeation, as used in the ventilation structure of a case that houses contents in a sealed structure, and this porous film is made of polyolefin resin. It is a film formed by melting and kneading a raw material composition mainly composed of inorganic powder and a plasticizer or a film obtained by removing the plasticizer, and the average pore diameter formed by removing the plasticizer is A structure having mainly two types of pores, that is, pores having a diameter of about 0.1 to 0.2 μm and pores having an average pore diameter of about 0.01 to 0.05 μm originally possessed by the inorganic powder itself, is obtained as a whole. , a hydrophilic porous membrane with a pore structure having an average pore diameter of 0.05 to 0.2 μm, and a myriad of uniform, fine, and intricately intricate channels with innumerable communicating pores are formed throughout the membrane, oxygen In addition, the surface of the pores is hydrophilic, so when water vapor tries to pass through the membrane, the water vapor condenses in the pores and changes to water, which is a liquid, and the pores A membrane with a porous structure has been proposed to prevent the passage of

しかし、特許文献1にて提案された多孔膜は、酸素等のガスは透過させ、水蒸気を透過させない選択透過性を有するガス透過構造体の提案であるが、内外表面が親水性となった多孔膜をもちいる必要がある。However, the porous membrane proposed in Patent Document 1 is a proposal of a gas permeable structure having selective permeability that allows gases such as oxygen to permeate but does not allow water vapor to permeate. It is necessary to use a membrane.

また、特許文献2にて、微孔を透設した有孔フイルムの片面に透過性樹脂膜を被着形成し、他面に、切り込みを施した不透過性フイルム被着して内側からの昇圧によって切り込みが開口し、内側からの気体が透過性樹脂膜から微孔を介して開口した切り込みから外に抜けて気体透過性となるプラスチックフイルムを容器のシール蓋等として用いられるガス透過構造体が提案されている。In addition, in Patent Document 2, a permeable resin film is formed on one side of a perforated film in which fine holes are provided, and an impermeable film with cuts is formed on the other side to increase pressure from the inside. The gas permeable structure is a plastic film that is used as a sealing lid for a container, etc. Proposed.

しかし、特許文献2にて提案された昇圧により気体透過性(ガス透過性)となるプラスチックフイルムにあっては、ガスを透過する微孔には透過性樹脂膜および切り込みを施した不透過性フイルムが必要であり、切り込みは各微孔毎に施す必要がある。However, in the plastic film that becomes gas permeable (gas permeable) by pressurization proposed in Patent Document 2, the micropores through which gas permeates are covered with a permeable resin film and an impermeable film with cuts. is required, and a cut must be made for each microhole.

また、特許文献3にて、水蒸気などの水分を遮断して密閉容器の内部にて発生したガスを密閉容器の外部に排出しやすくするガス透過部材として、密閉容器本体(容器本体)に貫通孔を形成してこの貫通孔は気体の透過性の差を利用したガス選択作用が発現するように水蒸気などの水分を遮断させる大きさの孔径に設定されて、水分を透過させにくくしてガスを透過させるガス透過構造体を本願の発明者らが提案している。In addition, in Patent Document 3, as a gas permeable member that blocks moisture such as water vapor and facilitates discharge of gas generated inside the sealed container to the outside of the sealed container, a through hole in the sealed container body (container body) This through hole is set to a size that blocks moisture such as water vapor so that a gas selection action utilizing the difference in gas permeability is expressed, making it difficult for moisture to permeate and gas The inventors of the present application have proposed a permeable gas permeable structure.

この特許文献3に提案するガス透過構造体は、気体の透過性の差を利用したガス選択作用が発現するように水蒸気などの水分を遮断させる大きさの孔径に設定して貫通孔をもちいる必要がある。The gas permeable structure proposed in Patent Document 3 uses through holes with a hole diameter set to a size that blocks moisture such as water vapor so that a gas selective action utilizing the difference in gas permeability is exhibited. There is a need.

特開2012-30184号公報JP 2012-30184 A 特開平11-301748号公報JP-A-11-301748 特開2016-103631号公報JP 2016-103631 A

本発明は、特許文献1のような内外表面が親水性の多孔膜としたり、特許文献2のような透過性樹脂膜および切り込みを施した不透過性フイルムをもちいたりせずに、また、特許文献3のような水蒸気などの水分を遮断させる大きさの孔径に設定する必要がなく、簡単な構成で水分を透過させにくくしてガス透過性をもたせるガス透過構造体を提供することを目的とする。The present invention does not use a porous membrane with hydrophilic inner and outer surfaces as in Patent Document 1, or uses a permeable resin membrane and a notched impermeable film as in Patent Document 2. To provide a gas-permeable structure which does not need to be set to a pore size large enough to block moisture such as water vapor as described in Document 3, and has gas permeability by making it difficult for moisture to permeate with a simple structure. do.

本発明の請求項1に記載のガス透過構造体は、密閉容器の内部に発生したガスを外部に排出させるように容器本体の基材に形成したガス透過構造体であって、前記基材にはガスが排出される方向に内外面に連通した多数の孔が形成されており、前記多数の孔には固形状のコア素子が配設されてあって、前記コア素子は前記多数の孔のそれぞれの孔の内表面と部分的に接触しており、前記密閉容器の内部のガス圧で前記コア素子が撓んで前記孔の内表面から離間して前記多数の孔のそれぞれが連通してガス透過路となるガス透過構造体において、前記コア素子は、フッ素樹脂またはシリコーンゴムでできており、前記多数の孔の隣接する孔に連接部で接続して配設されていることを特徴とするガス透過構造体。A gas permeable structure according to claim 1 of the present invention is a gas permeable structure formed in a base material of a container body so as to discharge gas generated inside a closed container to the outside, wherein the base material has is formed with a large number of holes communicating with the inner and outer surfaces in the direction in which gas is discharged. The core element is partially in contact with the inner surface of each hole, and the core element is bent by the gas pressure inside the closed container to separate from the inner surface of the hole, and each of the many holes communicates with the gas. In the gas permeable structure serving as a permeation path, the core element is made of fluororesin or silicone rubber, and is arranged so as to be connected to adjacent ones of the plurality of holes at connecting portions. Gas permeable structure.

本発明のガス透過構造体は、密閉容器の内部に発生したガスを外部に排出させるように容器本体の基材に形成したガス透過構造体であって、前記基材にはガスが排出される方向に内外面に連通した多数の孔が形成されており、前記多数の孔には固形状のコア素子が配設されてあって、前記コア素子は前記多数の孔のそれぞれの孔の内表面と部分的に接触しており、前記密閉容器の内部のガス圧で前記コア素子が撓んで前記孔の内表面から離間して前記多数の孔のそれぞれが連通してガス透過路となるガス透過構造体において、前記コア素子は、フッ素樹脂またはシリコーンゴムでできており、前記多数の孔の隣接する孔に連接部で接続して配設されているので、コア素子が基材の内外面に連通した孔の内表面に部分的に接触することにより水分を透過させにくくしてガス透過性をもたせ、密閉容器の内部のガス圧でコア素子が撓んで部分的に接触している部位が離間することによりガスが外部に排出される簡単な構成でガス透過構造体が得られる。The gas-permeable structure of the present invention is a gas-permeable structure formed in the base material of the container body so as to discharge the gas generated inside the closed container to the outside, and the gas is discharged to the base material. A large number of holes communicating with the inner and outer surfaces in the direction are formed, and a solid core element is disposed in the large number of holes, and the core element is formed on the inner surface of each hole of the large number of holes. and the core element is bent by the gas pressure inside the sealed container, and separated from the inner surface of the hole, and each of the holes communicates with each other to form a gas permeation path. In the structure, the core element is made of fluororesin or silicone rubber, and is arranged in such a manner that it is connected to adjacent holes of the plurality of holes at connecting portions, so that the core element is attached to the inner and outer surfaces of the base material. By partially contacting the inner surface of the communicating holes, it is difficult for moisture to permeate, and gas permeability is provided. By doing so, a gas permeable structure can be obtained with a simple structure in which the gas is discharged to the outside.

本発明の実施形態1で、容器本体の構成部材となる基材を有するガス透過構造体を示す部分断面拡大図である。1 is an enlarged partial cross-sectional view showing a gas permeable structure having a base material that is a constituent member of a container body in Embodiment 1 of the present invention. FIG. 本発明の実施形態1で、ガス透過構造体におけるガス透過路を示す部分断面図である。1 is a partial cross-sectional view showing a gas permeation path in a gas permeation structure in Embodiment 1 of the present invention. FIG. 本発明の実施形態1で、容器本体の構成部材となる基材を有するガス透過構造体を示す平面図である。1 is a plan view showing a gas permeable structure having a base material that is a constituent member of a container body in Embodiment 1 of the present invention. FIG. 本発明の実施形態1で、ガス透過構造体が形成された密閉容器を示す断面図である。1 is a cross-sectional view showing a closed container in which a gas permeable structure is formed in Embodiment 1 of the present invention; FIG. 本発明の実施形態2で、ガス透過構造体におけるガス透過路を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing gas permeation paths in a gas permeation structure in Embodiment 2 of the present invention. 図5のガス透過路におけるガス透過作用を示す部分断面図である。6 is a partial cross-sectional view showing gas permeation action in the gas permeation path of FIG. 5; FIG. 本発明の実施形態3で、ガス透過構造体の基材が容器本体内の圧力を受けていない状態を示す断面図であり、その要部を付記して拡大した断面図である。FIG. 10 is a cross-sectional view showing a state in which the base material of the gas permeable structure is not subjected to pressure inside the container body in Embodiment 3 of the present invention, and is an enlarged cross-sectional view with an additional note of the main part. 本発明の実施形態3で、図7に示す基材が容器本体内の圧力を受けて上方に撓んだ状態を示す断面図であり、その要部を付記して拡大した断面図である。FIG. 8 is a cross-sectional view showing a state in which the substrate shown in FIG. 7 is bent upward due to the pressure in the container body in Embodiment 3 of the present invention, and is an enlarged cross-sectional view with an additional note of the main part. 本発明の実施形態4で、ガス透過構造体の異なる実施形態の要部を示す平面図である。FIG. 10 is a plan view showing a main part of a different embodiment of the gas permeable structure in Embodiment 4 of the present invention;

以下、本発明の実施形態について図面を参照して説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1~図4は容器本体の構成部材となる基材を有するガス透過構造体を示し、以下説明する。
(Embodiment 1)
1 to 4 show a gas permeable structure having a base material that is a constituent member of the container body, and will be described below.

図4は、内部にガスが発生する密閉容器9として電気二重層キャパシタやリチウム電池などの密閉型電気化学デバイスの密閉容器を例示している。この密閉容器9を密閉させる容器本体は、ガス排出孔5Aを有する蓋体5と一端(図4においては上端)が開口した箱体6とからなり、箱体6の開口した前記一端は蓋体5にて閉塞されている。この蓋体5のガス排出孔5Aがガス透過構造体の基材1にて覆われるようにガス透過構造体の基材1が蓋体5に密着接合されることにより、蓋体5と箱体6と基材1とで容器本体が構成されている。この箱体6の内部の空間部6Aには電解質7が収容されている。また、蓋体5には電極端子8、8が形成されており、この電極端子8、8は箱体6内の電解質7に電気接続されている。このようにして、ガス透過構造体は容器本体に形成されているので、密閉型電気化学デバイスの密閉容器9においてその内部に発生したガスをガス排出孔5Aから外部に排出させることができる。FIG. 4 exemplifies a sealed container for a sealed electrochemical device such as an electric double layer capacitor or a lithium battery as the closed container 9 in which gas is generated. A container body for sealing the closed container 9 comprises a lid body 5 having a gas discharge hole 5A and a box body 6 having an open end (upper end in FIG. 4). 5 is blocked. The base material 1 of the gas permeable structure is closely joined to the lid body 5 so that the gas discharge holes 5A of the lid body 5 are covered with the base material 1 of the gas permeable structure. 6 and base material 1 constitute a container body. An electrolyte 7 is accommodated in a space 6A inside the box 6. As shown in FIG. Electrode terminals 8 , 8 are formed on the lid 5 and electrically connected to the electrolyte 7 in the box 6 . Since the gas permeable structure is formed in the container body in this way, the gas generated inside the closed container 9 of the closed electrochemical device can be discharged to the outside through the gas discharge holes 5A.

次に、図1~図3にて容器本体の構成部材となる基材1を有するガス透過構造体を説明する。Next, a gas permeable structure having a base material 1, which is a constituent member of the container body, will be described with reference to FIGS. 1 to 3. FIG.

図1~図3において、ガス排出孔5Aを覆う基材1には密閉容器9の内部(図1においては下部)に発生したガスがガス排出孔5Aから矢印方向に流れて外部(図1においては上部)に排出されるよう外部と連通した多数の孔2が形成されており、各孔2には固形状のコア素子3が配設されている。この基材1の素材は外部と連通した多数の孔2を形成できる素材であれば、金属材や非金属材などガス透過性を有しない任意の素材でよい。また、固形状のコア素子3の素材は、基材1の孔2に配設される素材であれば、金属材や非金属材など任意の固形状の素材であればよい。各孔2に配設されるコア素子3において、ガスが排出される方向に隣接する孔2のそれぞれに配設されるコア素子3は連接部31で接続されており、基材1の表面にはガスがガス透過路4から外部に排出されるように開口部4Aが形成されている。1 to 3, the gas generated inside the sealed container 9 (the lower part in FIG. 1) flows through the base material 1 covering the gas discharge hole 5A in the direction of the arrow from the gas discharge hole 5A to the outside (in FIG. 1). A large number of holes 2 communicating with the outside are formed so as to discharge to the upper part), and a solid core element 3 is arranged in each hole 2 . The material of the base material 1 may be any material that does not have gas permeability, such as a metallic material or a non-metallic material, as long as it can form a large number of holes 2 communicating with the outside. Moreover, the material of the solid core element 3 may be any solid material such as a metallic material or a non-metallic material as long as the material is disposed in the hole 2 of the substrate 1 . In the core elements 3 arranged in the respective holes 2 , the core elements 3 arranged in the holes 2 adjacent in the direction in which the gas is discharged are connected by the connecting portions 31 . An opening 4A is formed so that gas is discharged from the gas permeation path 4 to the outside.

各孔2に固形状のコア素子3がその外周と孔2の内表面2Aとが共有結合でない接触した状態で配設されているが、図1および図2に示すように、前記内部に発生したガスが矢印方向に流れて前記外部に排出されるようにコア素子3の外周と孔2の内表面2Aとが離間するように間隔が変化するガス透過路4を構成している。なお、このガス透過路4は、コア素子3の外周と孔2の内表面2Aとの接触状態から離間状態となる間隔は微小な間隙であり、その大きさは、ガス透過構造体としてもちいる用途に応じて、孔2とコア素子3の大きさとの関係で設定すればよい。また、基材1には外部と連通した多数の孔2が形成されているので、コア素子3の外周と孔2の内表面との間隔を各孔2において異なるように配設する構成にしてもよい。A solid core element 3 is disposed in each hole 2 with its outer periphery and the inner surface 2A of the hole 2 in non-covalent contact, but as shown in FIGS. A gas permeation path 4 is formed in which the gap changes so that the outer periphery of the core element 3 and the inner surface 2A of the hole 2 are separated from each other so that the discharged gas flows in the direction of the arrow and is discharged to the outside. In this gas permeation path 4, the distance from the contact state between the outer periphery of the core element 3 and the inner surface 2A of the hole 2 to the separation state is a minute gap, and the size of the gap is used as the gas permeation structure. It may be set according to the relationship between the size of the hole 2 and the core element 3 according to the application. In addition, since a large number of holes 2 communicating with the outside are formed in the base material 1 , the gap between the outer circumference of the core element 3 and the inner surface of the hole 2 is arranged differently for each hole 2. good too.

図1~図3における基材1の孔2にガス透過路4を備える方法について、図示しないが、連続気泡構造のスポンジ材をもちいた基材1において、連続気泡構造の部位を孔2とし、この連続気泡構造の部位(孔2)にコア素子3を配設する構成を説明する。連続気泡構造のスポンジ材としてポリウレタン、ポリオレフィンなどの気泡ポリマーをもちい、このスポンジ材をシリコーンオイル液に浸漬し、加硫して、スポンジ材にシリコーンを充填させて後、スポンジ材の内表面および外表面にあるシリコーン充填体を除去することにより、基材1の連続気泡でできた孔2にシリコーン充填体でできたコア素子3が配設されたガス透過構造体が得られる。このガス透過構造体には、接着性の小さい素材を利用するようにシリコーンゴムを主成分としてできたシリコーン充填体でできたコア素子3が基材1の連続気泡でできた孔2に配設されているので、コア素子3の外周と孔2の内表面とが離間しやすく、コア素子3の外周と孔2の内表面との間隔が変化するガス透過路4を備えることができる。Regarding the method of providing the gas permeation paths 4 in the holes 2 of the base material 1 in FIGS. A configuration for arranging the core element 3 in the portion (hole 2) of this open-cell structure will be described. A cellular polymer such as polyurethane or polyolefin is used as a sponge material having an open-cell structure, and this sponge material is immersed in a silicone oil liquid, vulcanized, and filled with silicone. By removing the silicone filling on the surface, a gas permeable structure is obtained in which the core elements 3 made of silicone filling are arranged in the open-cell pores 2 of the substrate 1 . In this gas permeable structure, a core element 3 made of a silicone filling made mainly of silicone rubber is arranged in a hole 2 made of open cells of a substrate 1 so as to use a material with low adhesiveness. As a result, the outer circumference of the core element 3 and the inner surface of the hole 2 are easily separated from each other, and the gas permeation path 4 in which the distance between the outer circumference of the core element 3 and the inner surface of the hole 2 changes can be provided.

このように、実施形態1に示すガス透過路4を備えたガス透過構造体は、密閉容器9の内部に発生したガスを外部に排出させるようにガス排出孔5Aを有する容器本体に形成したガス透過構造体であって、基材1と、基材1の内外面に連通した多数の孔2と、各孔2に配設した固形状のコア素子3と、コア素子3の外周と孔2の内表面との間隔が密閉容器9の内部に発生したガス圧で変化するガス透過路4を備えた構成であるので、簡単な構成で水分を透過させにくくしてガス透過性をもたせるガス透過構造体を提供することができる。なお、ガス透過構造体は、その基材1にて蓋体5のガス排出孔5Aを覆うようにした構成を説明しているが、ガス排出孔5Aをガス透過構造体の基材1の孔2とする構成にして蓋体5とガス透過構造体の基材1と同一部材としてもよい。Thus, the gas permeable structure provided with the gas permeation path 4 shown in Embodiment 1 is formed in the container body having the gas discharge holes 5A so as to discharge the gas generated inside the sealed container 9 to the outside. A transmission structure comprising a substrate 1, a large number of holes 2 communicating with the inner and outer surfaces of the substrate 1, a solid core element 3 disposed in each hole 2, and the outer circumference of the core element 3 and the hole 2 Since the structure includes the gas permeation path 4 whose distance from the inner surface of the closed container 9 changes with the gas pressure generated inside the closed container 9, the gas permeation that makes it difficult for moisture to permeate with a simple structure and provides gas permeability A structure can be provided. Incidentally, the gas permeable structure has been described as having the base material 1 covering the gas discharge holes 5A of the lid 5, but the gas discharge holes 5A are the holes of the base material 1 of the gas permeable structure. 2, the cover 5 and the base material 1 of the gas permeable structure may be the same member.

(実施形態2)
図5および図6は、実施形態1に示す容器本体の構成部材となる基材1を有するガス透過構造体において、基材1の孔2に可撓性のあるコア素子3が配設されたガス透過構造体を示す。
(Embodiment 2)
FIGS. 5 and 6 show a gas permeable structure having a base material 1 which is a constituent member of the container body shown in Embodiment 1, in which a flexible core element 3 is arranged in a hole 2 of the base material 1. 1 shows a gas permeable structure.

図5において、実施形態1と同様に基材1には外部と連通した多数の孔2が形成されており、この孔2のそれぞれには固形状のコア素子3が配設されている。各孔2においてコア素子3の外周と孔2の内表面2Aとは離間して微小な間隙を有するガス透過路4が配設されているが、このガス透過路4においては、部分的(図5においては、孔の内面の左右側)に接触させて、外圧で接離自在となる。また、基材1の素材は外部と連通した多数の孔2が形成できる素材であれば、実施形態1と同様に金属材や非金属材など任意の素材でよいが、コア素子3の素材は可撓性を有する素材で、フッ素樹脂やシリコーンゴムが例示できる。このように可撓性のあるコア素子3は各孔2に配設されており、ガスが排出される方向に隣接する孔2のそれぞれに配設されるコア素子3は実施形態1と同様に連接部31で接続されている。なお、コア素子3の素材として可撓性を有する素材をもちいているが、基材1の素材にも可撓性を有する素材をもちいて可撓性のある基材1の孔2に可撓性のあるコア素子3が配設されたガス透過構造体構成してもよい。また、基材1の素材と孔2の素材とを接着作用の小さな素材であれば、例えば、フッ素樹脂材をもちいてもよい。In FIG. 5, a substrate 1 is formed with a large number of holes 2 communicating with the outside, as in the first embodiment, and a solid core element 3 is provided in each of the holes 2 . In each hole 2, a gas permeation path 4 having a minute gap is provided between the outer periphery of the core element 3 and the inner surface 2A of the hole 2. 5, it is brought into contact with the left and right sides of the inner surface of the hole, and can be brought into contact and separated by external pressure. Further, the material of the base material 1 may be any material such as a metallic material or a non-metallic material as in the first embodiment as long as it is a material capable of forming a large number of holes 2 communicating with the outside. A material having flexibility can be exemplified by fluorine resin and silicone rubber. In this way, the flexible core element 3 is arranged in each hole 2, and the core element 3 arranged in each of the holes 2 adjacent in the direction in which the gas is discharged is the same as in the first embodiment. They are connected at a connecting portion 31 . A material having flexibility is used as the material of the core element 3, and a material having flexibility is also used for the material of the base material 1 so that the hole 2 of the flexible base material 1 is flexible. A gas permeable structure in which a flexible core element 3 is arranged may be constructed. Further, if the material of the base material 1 and the material of the holes 2 are made of a material having a small adhesive effect, for example, a fluororesin material may be used.

図6において、基材1は矢印方向すなわち下面から上面に向かって、ガス圧を受けて、このガス圧により、コア素子3が撓んで孔2の内面と部分的に接触していた部位(図6においては孔の内面の右側)が離間してコア素子3の外周と孔2の内面との間隔が変化するガス透過路4が得られ、ガス透過路4は水分を透過させにくくさせ、このガス透過路4からガスが流れて外部に排出される。このとき、基材1のガス圧を受ける部分の厚さが薄くなるとともに孔2が押し広がり、ガスの排出量が多くなるので、基材1が受ける圧力変化によりガス透過量が変化する。なお、この場合、基材1の素材にも可撓性を有する素材を構成すれば、孔2も広がり、ガス圧により間隔の変化がしやすくなり、ガスの排出が向上する。In FIG. 6, the substrate 1 receives gas pressure in the direction of the arrow, that is, from the bottom surface to the top surface. 6, the right side of the inner surface of the hole) is separated to obtain a gas permeation path 4 in which the distance between the outer periphery of the core element 3 and the inner surface of the hole 2 changes, and the gas permeation path 4 makes it difficult for moisture to permeate. Gas flows through the gas permeation path 4 and is discharged to the outside. At this time, the thickness of the portion of the substrate 1 that receives the gas pressure becomes thinner and the holes 2 expand, and the amount of gas discharged increases. In this case, if the material of the substrate 1 is also made of a material having flexibility, the holes 2 are widened, and the gap is easily changed by the gas pressure, thereby improving the discharge of the gas.

このように、実施形態2に示すガス透過路4を備えたガス透過構造体は、可撓性を有するコア素子3をもちいて孔2に配設した固形状のコア素子3の外周と孔2の内表面2Aとの間隔がガス圧により変化させたガス透過路4を構成して、簡単な構成で水分を透過させにくくしてガス透過性をもたせ、ガス透過量を変化させることができる。As described above, the gas permeable structure provided with the gas permeation path 4 shown in Embodiment 2 uses the core element 3 having flexibility and is arranged in the hole 2 with the outer circumference of the solid core element 3 and the hole 2 . The gas permeation path 4 is configured such that the distance between the inner surface 2A and the inner surface 2A is changed by the gas pressure, and the gas permeation amount can be changed by making it difficult for water to permeate with a simple structure.

(実施形態3)
図7および図8は、図4に例示した容器本体の蓋体5のガス排出孔5Aをガス透過構造体の基材1にて覆うように容器本体に形成したガス透過構造体において、基材1が可撓性のある素材でできたガス透過構造体を示す。
(Embodiment 3)
7 and 8 show the gas permeable structure formed in the container body such that the gas discharge hole 5A of the lid 5 of the container body illustrated in FIG. 1 indicates a gas permeable structure made of flexible material.

図7において、ガス透過構造体の基材1に形成された孔2は連接部31で接続された2つの孔2を図示するが、ガス透過構造体の基材1は実施形態1と同様に外部と連通した多数の孔2が形成されている。基材1は可撓性のある素材でできており、その素材としては、フッ素樹脂やシリコーンゴムが例示でき、内面から外面に連通した孔2が形成されている。コア素子3は無機質の球形状の粒子でその粒径は各コア素子3が基材1の各孔2の内表面に接触しない大きさで、各孔2に充填されて、各孔2にガス透過路4を備えている。このガス透過構造体の基材1は可撓性のある素材でできているが、密閉容器の内部(図8においては下部)からガス圧が発生していない状態では、基材1が変形しないので、基材1の孔2は変形しない。In FIG. 7, the hole 2 formed in the base material 1 of the gas permeable structure shows two holes 2 connected by a connecting part 31, but the base material 1 of the gas permeable structure is the same as that of the first embodiment. A large number of holes 2 communicating with the outside are formed. The substrate 1 is made of a flexible material such as fluororesin and silicone rubber, and has holes 2 communicating from the inner surface to the outer surface. The core elements 3 are inorganic spherical particles, and the particle size is such that each core element 3 does not come into contact with the inner surface of each hole 2 of the base material 1. Each hole 2 is filled with gas. A transmission path 4 is provided. The base material 1 of this gas permeable structure is made of a flexible material, but the base material 1 does not deform when no gas pressure is generated from the inside of the closed container (lower part in FIG. 8). Therefore, the holes 2 of the substrate 1 are not deformed.

図8において、密閉容器の内部(図8においては下部)からガス圧が発生して基材1を矢印方向のガス圧が発生すると、このガス圧を受けた基材1は変形して基材1の孔2も変形してコア素子3の外周と孔2の内表面2Aとの間隔が変化する。このとき、基材1のガス圧を受ける部分の厚さが薄くなるとともに孔2が押し広がり、ガスの排出量が多くなるので、基材1が受ける圧力変化によりガス透過量が変化する。In FIG. 8, when gas pressure is generated from the inside of the sealed container (lower part in FIG. 8) and the gas pressure is generated in the direction of the arrow on the base material 1, the base material 1 receiving this gas pressure is deformed and deformed. The hole 2 of 1 is also deformed, and the distance between the outer circumference of the core element 3 and the inner surface 2A of the hole 2 changes. At this time, the thickness of the portion of the substrate 1 that receives the gas pressure becomes thinner and the holes 2 expand, and the amount of gas discharged increases.

このように、実施形態3に示すガス透過路4を備えたガス透過構造体は、可撓性を有する基材1をもちいて固形状のコア素子3の外周と孔2の内表面2Aとの間隔がガス圧により異なるようにしているので、ガス圧によるガスの流れを変化させたガス透過路4を構成して、簡単な構成で水分を透過させにくくしてガス透過性をもたせることができ、さらに、ガス透過量を変化させることができる。As described above, the gas permeable structure provided with the gas permeation path 4 shown in Embodiment 3 uses the flexible base material 1 and the outer periphery of the solid core element 3 and the inner surface 2A of the hole 2 are separated from each other. Since the gap is made to vary depending on the gas pressure, the gas permeation path 4 can be configured to change the flow of the gas according to the gas pressure, making it difficult for moisture to permeate through a simple structure, thereby providing gas permeability. Furthermore, the amount of gas permeation can be varied.

(実施形態4)
図9は、図4に例示した密閉容器9を密閉させる容器本体の構成部材となる基材を有するガス透過構造体において、繊維間が内外面に連通するように繊維を絡ませた不織布材でできたガス透過構造体を示す。
(Embodiment 4)
FIG. 9 shows a gas-permeable structure having a base material that serves as a constituent member of the container body that seals the closed container 9 illustrated in FIG. 1 shows a gas permeable structure.

図9において、基材1は繊維間が内外面に連通するように繊維20を絡ませた不織布材でできており、この繊維間が外部と連通した多数の孔21となって、実施形態1から3に示す孔2と同様な構成であり、各孔21においてコア素子3の外周と孔21の内表面21Aとが接触や離間して分布するようにコア素子3の素材を孔21のそれぞれに入れて不織布材ででき基材1と、基材1の内外面に連通した孔21と、孔21に配設したコア素子3と、コア素子3の外周と孔21の内表面21Aとの間隔が密閉容器9の内部に発生したガス圧で変化するガス透過路4を備えたガス透過構造体が得られる。この場合、繊維20の素材は繊維間が内外面に連通するように繊維20を絡ませた不織布材であれば金属繊維やポリマー繊維など特定しないが、接着作用が少なく可撓性のある素材でできるように、例えば、繊維20の素材をフッ素樹脂材とし、コア素子3の素材をシリコーンゴムとすることにより、コア素子3の外周と孔21の内表面21Aとが接触してあっても離間しやすいので、コア素子3の外周と孔21の内表面21Aとが接離自在なガス透過路4が得られる。このように内外面に連通するように繊維20を絡ませた不織布材でできた基材1をもちいて孔21のそれぞれにはコア素子3を配設させているので、基材1が受ける圧力変化によりコア素子3の外周と孔21の内表面21Aとの間隔が密閉容器の内部に発生したガス圧で変化して簡単な構成で水分を透過させにくくしてガス透過性をもたせ、ガス透過量が変化するガス透過構造体が得られる。In FIG. 9, the base material 1 is made of a non-woven fabric material in which fibers 20 are entangled so that the fibers communicate with the inner and outer surfaces, and the spaces between the fibers become a large number of holes 21 communicating with the outside. 3, and the material of the core element 3 is applied to each of the holes 21 so that the outer periphery of the core element 3 and the inner surface 21A of the hole 21 are distributed in contact with each other or separated from each other in each hole 21. a base material 1 made of a non-woven fabric material, holes 21 communicating with the inner and outer surfaces of the base material 1, core elements 3 disposed in the holes 21, and a space between the outer periphery of the core element 3 and the inner surface 21A of the hole 21. A gas-permeable structure having a gas-permeable path 4 that changes with the gas pressure generated inside the sealed container 9 is obtained. In this case, the material of the fiber 20 is not specified, such as metal fiber or polymer fiber, as long as it is a non-woven fabric material in which the fiber 20 is entangled so that the interfiber communicates with the inner and outer surfaces, but it can be made of a flexible material with little adhesion. Thus, for example, by using a fluororesin material for the fiber 20 and silicone rubber for the core element 3, the outer periphery of the core element 3 and the inner surface 21A of the hole 21 are separated from each other even if they are in contact with each other. Therefore, the gas permeation path 4 in which the outer periphery of the core element 3 and the inner surface 21A of the hole 21 can be brought into contact with each other can be obtained. Since the core element 3 is arranged in each of the holes 21 using the base material 1 made of the non-woven fabric entangled with the fibers 20 so as to communicate with the inner and outer surfaces, the pressure change to which the base material 1 receives is reduced. , the gap between the outer periphery of the core element 3 and the inner surface 21A of the hole 21 is changed by the gas pressure generated inside the closed container, and the simple structure makes it difficult for moisture to permeate, giving gas permeability, and increasing the amount of gas permeation. A gas permeable structure is obtained in which .

本発明のガス透過構造体は、パッキンやフィルタや安全弁として利用できる。The gas permeable structure of the present invention can be used as a packing, a filter, or a safety valve.

1 基材
2、21 孔
3 コア素子
4 ガス透過路
1 base material 2, 21 hole 3 core element 4 gas permeation path

Claims (1)

密閉容器の内部に発生したガスを外部に排出させるように容器本体の基材に形成したガス透過構造体であって、前記基材にはガスが排出される方向に内外面に連通した多数の孔が形成されており、前記多数の孔には固形状のコア素子が配設されてあって、前記コア素子は前記多数の孔のそれぞれの孔の内表面と部分的に接触しており、前記密閉容器の内部のガス圧で前記コア素子が撓んで前記孔の内表面から離間して前記多数の孔のそれぞれが連通してガス透過路となるガス透過構造体において、前記コア素子は、フッ素樹脂またはシリコーンゴムでできており、前記多数の孔の隣接する孔に連接部で接続して配設されていることを特徴とするガス透過構造体。A gas permeable structure formed on a base material of a container body so as to discharge gas generated inside a closed container to the outside, wherein the base material has a large number of gas permeable structures communicating with the inner and outer surfaces in the direction in which the gas is discharged. holes formed therein, a solid core element disposed in said plurality of holes, said core element partially contacting an inner surface of each hole of said plurality of holes; In the gas permeable structure, in which the core element is bent by the gas pressure inside the closed container to separate from the inner surface of the hole and communicate with each of the plurality of holes to form a gas permeation path, the core element comprises: A gas permeable structure, characterized in that it is made of a fluororesin or a silicone rubber, and is arranged so as to be connected to adjacent holes of the plurality of holes by connecting portions .
JP2018109842A 2018-05-22 2018-05-22 gas permeable structure Active JP7140952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018109842A JP7140952B2 (en) 2018-05-22 2018-05-22 gas permeable structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018109842A JP7140952B2 (en) 2018-05-22 2018-05-22 gas permeable structure

Publications (3)

Publication Number Publication Date
JP2019202306A JP2019202306A (en) 2019-11-28
JP2019202306A5 JP2019202306A5 (en) 2021-06-10
JP7140952B2 true JP7140952B2 (en) 2022-09-22

Family

ID=68725713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018109842A Active JP7140952B2 (en) 2018-05-22 2018-05-22 gas permeable structure

Country Status (1)

Country Link
JP (1) JP7140952B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289172A (en) 2001-03-28 2002-10-04 Nec Tokin Corp Sealing plug and closed type storage device using it
US20140283839A1 (en) 2013-03-01 2014-09-25 Reaction Systems, Llc Advanced supported liquid membranes for carbon dioxide control in extravehicular activity applications
JP2016103631A (en) 2014-11-18 2016-06-02 睦月電機株式会社 Gas permeable member, sealed container body, and gas permeable member for sealed electrochemical device
JP2017220656A5 (en) 2016-06-06 2019-07-04

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144191B1 (en) * 1970-04-09 1976-11-26
JPS54109058U (en) * 1978-01-20 1979-08-01
JPS6231369U (en) * 1985-08-07 1987-02-25
JP6739027B2 (en) 2016-06-06 2020-08-12 睦月電機株式会社 Breathable packing blocks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289172A (en) 2001-03-28 2002-10-04 Nec Tokin Corp Sealing plug and closed type storage device using it
US20140283839A1 (en) 2013-03-01 2014-09-25 Reaction Systems, Llc Advanced supported liquid membranes for carbon dioxide control in extravehicular activity applications
JP2016103631A (en) 2014-11-18 2016-06-02 睦月電機株式会社 Gas permeable member, sealed container body, and gas permeable member for sealed electrochemical device
JP2017220656A5 (en) 2016-06-06 2019-07-04

Also Published As

Publication number Publication date
JP2019202306A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP6033819B2 (en) Vent liner and method for manufacturing vent liner
EP1970258A1 (en) Ventilating member and ventilating structure
US6368741B1 (en) Stopper plug for storage batteries
EP3767141A1 (en) Electronic atomizing device and ventilation valve thereof
JP5663789B2 (en) Oil and ozone separation and removal device for compressed air
JP2011514295A (en) Ventilation liner and method
JP3884039B2 (en) Gas vent valve
KR102282411B1 (en) Secondary battery and manufacturing method thereof
JP4797364B2 (en) Composite metal porous body and method for producing the same
WO2015133623A1 (en) Lid for air-permeable container, air-permeable container, and production method for lid for air-permeable container
KR20030088113A (en) Electrochemical gas sensor
JP7140952B2 (en) gas permeable structure
CN106061592A (en) Gas-permeable member and breathable container
JP6225499B2 (en) Explosion-proof device for sealed electrochemical devices
EP0350813A2 (en) Resin molded product, method of producing same, and air vent device using same
JP2004281061A (en) Explosion-proof valve for battery and the battery equipped with it
JP6784965B2 (en) Gas permeation member
JP2010279885A (en) Gas separator
JP2014232856A5 (en)
JP2016103631A5 (en)
JP6638881B2 (en) Gas-permeable filters for sealed electrochemical devices
KR20120060866A (en) Membrane element, gas separation device and internal combustion engine
JP6739027B2 (en) Breathable packing blocks
JP2016163875A5 (en)
JP2009082602A (en) Storage container

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220819

R150 Certificate of patent or registration of utility model

Ref document number: 7140952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150