JP7136245B2 - Insulated copper wire and electrical coils - Google Patents

Insulated copper wire and electrical coils Download PDF

Info

Publication number
JP7136245B2
JP7136245B2 JP2021025623A JP2021025623A JP7136245B2 JP 7136245 B2 JP7136245 B2 JP 7136245B2 JP 2021025623 A JP2021025623 A JP 2021025623A JP 2021025623 A JP2021025623 A JP 2021025623A JP 7136245 B2 JP7136245 B2 JP 7136245B2
Authority
JP
Japan
Prior art keywords
copper wire
insulated copper
insulated
oxygen
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021025623A
Other languages
Japanese (ja)
Other versions
JP2021082836A (en
Inventor
誠 漆原
英章 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2021025623A priority Critical patent/JP7136245B2/en
Publication of JP2021082836A publication Critical patent/JP2021082836A/en
Application granted granted Critical
Publication of JP7136245B2 publication Critical patent/JP7136245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、絶縁銅線およびこの絶縁銅線を巻回して形成した電気コイルに関する。 The present invention relates to an insulated copper wire and an electrical coil formed by winding the insulated copper wire.

絶縁銅線は、銅線と、この銅線の表面を被覆する絶縁皮膜とを有する。この絶縁銅線を巻回して形成した電気コイルは、モータや変圧器などの各種電気機器用の電気コイルとして用いられている。電気コイルの材料として用いる絶縁銅線では、コイル状に巻回する際に、銅線と絶縁皮膜とが剥離して、絶縁皮膜に浮きやシワが発生し、絶縁不良となることがある。このため、絶縁銅線は、銅線と絶縁皮膜との密着性が高いことが要求される。 The insulated copper wire has a copper wire and an insulating film covering the surface of the copper wire. Electric coils formed by winding this insulated copper wire are used as electric coils for various electric devices such as motors and transformers. When the insulated copper wire used as a material for an electric coil is wound into a coil shape, the copper wire and the insulating coating may separate, causing the insulating coating to float or wrinkle, resulting in poor insulation. Therefore, the insulated copper wire is required to have high adhesion between the copper wire and the insulating film.

銅線と絶縁皮膜との密着性が向上した絶縁銅線として、特許文献1には、絶縁皮膜の材料として、融点または軟化点が220℃以上のエンジニアリングプラスチックを用い、銅線は表面に厚さ5nm以上300nm以下の酸化皮膜を有する絶縁銅線が記載されている。また、特許文献2には、絶縁皮膜の材料としてポリオレフィンスルフィド樹脂およびポリエーテルエーテルケトン樹脂などの熱可塑性樹脂を用い、銅線の絶縁層と接触する部分をSEM-EDXにより加速電圧20kVで組成分析したときの酸素の原子数aと銅の原子数bとの原子数比a/bを0.25以下とした絶縁銅線が記載されている。 As an insulated copper wire with improved adhesion between the copper wire and the insulating film, Patent Document 1 discloses that an engineering plastic having a melting point or softening point of 220 ° C. or higher is used as a material for the insulating film, and the copper wire has a thickness on the surface. An insulated copper wire having an oxide film of 5 nm or more and 300 nm or less is described. Further, in Patent Document 2, thermoplastic resins such as polyolefin sulfide resin and polyether ether ketone resin are used as the material of the insulating film, and the composition of the part in contact with the insulating layer of the copper wire is analyzed by SEM-EDX at an acceleration voltage of 20 kV. It describes an insulated copper wire in which the atomic number ratio a/b of the atomic number a of oxygen and the atomic number b of copper is set to 0.25 or less.

特許文献3には、絶縁皮膜が、銅線の主成分と同一の金属又はその金属を含む化合物からなる無機粒子を含有し、絶縁皮膜における銅線周面から厚み800nmの内側層での無機粒子の含有率が0.78面積%以上0.89面積%以下であり、その内側層が、ポリエステルイミド系樹脂、フェノキシ樹脂およびチオール系化合物を含む絶縁銅線が記載されている。 In Patent Document 3, the insulating coating contains inorganic particles made of the same metal as the main component of the copper wire or a compound containing the metal, and the inorganic particles in the inner layer having a thickness of 800 nm from the copper wire peripheral surface in the insulating coating. content is 0.78 area % or more and 0.89 area % or less, and the inner layer contains a polyesterimide resin, a phenoxy resin and a thiol compound.

特開2014-154511号公報JP 2014-154511 A 特開2017-10613号公報JP 2017-10613 A 特許第6368241号公報Japanese Patent No. 6368241

ところで、近年の電気機器の小型、軽量化にともなって、電気コイルの小型化や高密度化が要求されている。しかしながら、電気コイルの小型化や高密度化のために絶縁銅線を小径でコイル状に巻回する場合、あるいは幅の広い平角銅線をエッジワイズ曲げ加工する場合には、銅線と絶縁皮膜とが剥離しやすくなり、得られる電気コイルに絶縁皮膜の浮きやシワが発生しやくなる。従来の絶縁銅線では、小径でコイル状に巻回した場合や幅の広い平角銅線をエッジワイズ曲げ加工した場合では、銅線と絶縁皮膜との密着性が不十分となる場合があった。 By the way, with the recent miniaturization and weight reduction of electrical equipment, there is a demand for miniaturization and high density of electrical coils. However, when winding small-diameter insulated copper wire into a coil shape for miniaturization and high-density electric coils, or when edgewise bending wide rectangular copper wire, the copper wire and the insulating film must be It becomes easy for the film to peel off, and the resulting electrical coil tends to have floating or wrinkled insulating films. With conventional insulated copper wire, when a small-diameter coil is wound, or when a wide rectangular copper wire is edgewise bent, the adhesion between the copper wire and the insulation film may be insufficient. .

本発明は、前述した事情に鑑みてなされたものであって、その目的は、銅線と絶縁皮膜との密着性が高く、コイル状に巻回する際に銅線と絶縁皮膜とが剥離しにくい絶縁銅線、および絶縁皮膜の浮きやシワの発生が抑制された電気コイルを提供することにある。 The present invention has been made in view of the circumstances described above, and an object of the present invention is to improve the adhesion between the copper wire and the insulating film so that the copper wire and the insulating film do not separate when wound into a coil. To provide an insulated copper wire which is resistant to corrosion, and an electric coil in which the occurrence of floating and wrinkles of an insulating film is suppressed.

上記の課題を解決するために、本発明の絶縁銅線は、平角銅線と、前記平角銅線の表面を被覆する絶縁皮膜とを有する絶縁銅線であって、前記絶縁皮膜は、アミド結合を有する高分子材料を含み、前記絶縁皮膜を引き剥すことによって前記絶縁銅線の表面に形成された剥離面において、窒素原子または炭素原子と結合した銅原子が、酸素原子と結合した銅原子よりも多く存在し、かつ剥離面から深さ方向に酸素を10原子%以上含有する酸素含有層が形成されていて、前記剥離面は、飛行時間型二次イオン質量分析法によって測定されるCuC イオンの二次イオン強度とCuO イオンとCu イオンの合計二次イオン強度との比が10以上12以下の範囲内にあり、前記絶縁銅線をエッジワイズ曲げ加工にて、90度に折り曲げて作製した直線部とL字状折り曲げ部を持つコイルの前記L字状折り曲げ部の前記絶縁皮膜の表面を、光学顕微鏡を用いて20倍の倍率で観察したときに、凹凸が確認されないことを特徴としている。 In order to solve the above problems, the insulated copper wire of the present invention is an insulated copper wire having a rectangular copper wire and an insulating coating covering the surface of the rectangular copper wire, wherein the insulating coating is composed of amide bonds In the peeled surface formed on the surface of the insulated copper wire by peeling off the insulating film, the copper atoms bonded to nitrogen atoms or carbon atoms are more likely than the copper atoms bonded to oxygen atoms and an oxygen-containing layer containing 10 atomic % or more of oxygen is formed in the depth direction from the peeled surface, and the peeled surface is measured by time-of-flight secondary ion mass spectrometry CuC 2 The ratio of the secondary ion strength of N 2 - ions to the total secondary ion strength of CuO - ions and Cu 2 O - ions is in the range of 10 or more and 12 or less, and the insulated copper wire is subjected to edgewise bending. , When the surface of the insulating coating of the L-shaped bent portion of the coil having the straight portion and the L-shaped bent portion prepared by bending at 90 degrees is observed with an optical microscope at a magnification of 20 times, unevenness is not confirmed.

このような構成とされている本発明の絶縁銅線は、絶縁皮膜を引き剥すことによって前記絶縁銅線の表面に形成された剥離面において、窒素原子または炭素原子と結合した銅原子が、酸素原子と結合した銅原子よりも多く存在するので、銅線と絶縁皮膜との密着性が高くなる。 In the insulated copper wire of the present invention having such a structure, the copper atoms bonded to nitrogen atoms or carbon atoms are separated from oxygen atoms on the peeled surface formed on the surface of the insulated copper wire by peeling off the insulating film. Since there are more copper atoms than atoms bonded to each other, the adhesion between the copper wire and the insulating film increases.

剥離面において検出される、窒素原子または炭素原子と結合した銅原子は、銅線から絶縁皮膜に拡散して、絶縁高分子材料のアミド結合(-NH-CO-)を構成する窒素原子または炭素原子と結合した銅原子であり、高分子材料との親和性が高い銅原子であると考えられる。 Copper atoms bonded to nitrogen atoms or carbon atoms detected on the peeled surface diffuse from the copper wire into the insulating coating to form amide bonds (—NH—CO—) of the insulating polymer material. Nitrogen atoms or carbon atoms These are copper atoms bonded to atoms, and are considered to be copper atoms that have a high affinity with polymer materials.

一方、剥離面において検出される、酸素原子と結合した銅原子は、銅線から絶縁皮膜に拡散した酸化銅に由来する銅原子であり、高分子材料との親和性が低い銅原子であると考えられる。また、絶縁皮膜を引き剥すことによって形成された剥離面は、絶縁銅線の中で最も銅線と絶縁皮膜との密着性が弱く、剥離しやすい部分である。 On the other hand, the copper atoms bonded to oxygen atoms detected on the peeled surface are copper atoms derived from copper oxide that has diffused from the copper wire to the insulating film, and are copper atoms that have a low affinity with the polymer material. Conceivable. In addition, the peeled surface formed by peeling off the insulating film is a portion of the insulated copper wire where the adhesion between the copper wire and the insulating film is the weakest and where peeling is likely to occur.

すなわち、本発明の絶縁銅線は、剥離面に、高分子材料との親和性が高い銅原子(窒素原子または炭素原子と結合した銅原子)が、高分子材料との親和性が低い銅原子(酸素原子と結合した銅原子)よりも多く存在するのであるから、剥離面が生成しにくく、コイル状に巻回する際に銅線と絶縁皮膜とが剥離しにくくなる。 That is, the insulated copper wire of the present invention has copper atoms (copper atoms bonded to nitrogen atoms or carbon atoms) having a high affinity with polymeric materials and copper atoms having a low affinity with polymeric materials on the peeled surface. (copper atoms bonded to oxygen atoms), a peeled surface is less likely to form, and the copper wire and insulating film are less likely to peel off when wound into a coil.

ここで、本発明の絶縁銅線においては、酸素含有層の酸素含有量の最大値が、剥離面から1nm以上10nm以下の位置にあることが好ましい。 Here, in the insulated copper wire of the present invention, it is preferable that the maximum oxygen content of the oxygen-containing layer is located at a position of 1 nm or more and 10 nm or less from the peeled surface.

本発明の電気コイルは、上述の絶縁銅線を巻回して形成したものである。
このような構成されている本発明の電気コイルは、上述の絶縁銅線を巻回して形成したものであり、コイル状に巻回する際に、銅線と絶縁皮膜とが剥離しにくいので、絶縁皮膜の浮きやシワが発生しにくい。
The electric coil of the present invention is formed by winding the insulated copper wire described above.
The electric coil of the present invention having such a structure is formed by winding the above-mentioned insulated copper wire. The insulating film is less likely to float or wrinkle.

本発明によれば、その目的は、銅線と絶縁皮膜との密着性が高く、コイル状に巻回する際に銅線と絶縁皮膜とが剥離しにくい絶縁銅線、および、絶縁皮膜の浮きやシワの発生が抑制された電気コイルを提供することが可能となる。 According to the present invention, the purpose is to provide an insulated copper wire that has high adhesion between the copper wire and the insulating film and that is difficult to peel off between the copper wire and the insulating film when wound into a coil, and the floating of the insulating film. It is possible to provide an electric coil in which the occurrence of wrinkles is suppressed.

本発明の一実施形態である絶縁銅線の横断面図である。1 is a cross-sectional view of an insulated copper wire that is an embodiment of the present invention; FIG. 図1に示す絶縁銅線の絶縁皮膜を引き剥した状態を示す横断面図である。FIG. 2 is a cross-sectional view showing a state in which the insulating film of the insulated copper wire shown in FIG. 1 is peeled off; 本発明例1で得られた絶縁銅線を、剥離面から深さ方向にオージェ電子分光法により元素分析した組成分布図である。1 is a composition distribution diagram obtained by elemental analysis of the insulated copper wire obtained in Example 1 of the present invention by Auger electron spectroscopy in the depth direction from the peeled surface. FIG.

以下に、本発明の一実施形態である絶縁銅線について、添付した図面を参照して説明する。
図1は、本発明の一実施形態である絶縁銅線の横断面図である。図2は、図1に示す絶縁銅線の絶縁皮膜を引き剥した状態を示す横断面図である。
An insulated copper wire according to one embodiment of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view of an insulated copper wire that is one embodiment of the present invention. FIG. 2 is a cross-sectional view showing a state in which the insulating film of the insulated copper wire shown in FIG. 1 is peeled off.

図1に示すように、絶縁銅線10は、平角銅線11と、平角銅線11の表面を被覆する絶縁皮膜12とを有する。
平角銅線11は、断面が矩形であって、短辺で形成されたエッジ面と長辺で形成されたフラット面とを有する。平角銅線11の材料としては、銅および銅合金を用いることができる。銅および銅合金としては特に制限はなく、従来の絶縁銅線で用いられているものを使用することができる。平角銅線11の表面には、酸素を10原子%以上含有する酸素含有層13が形成されている。酸素含有層13の酸素は、主としてCuOあるいはCuOとして含有されている。
As shown in FIG. 1 , the insulated copper wire 10 has a rectangular copper wire 11 and an insulating film 12 covering the surface of the rectangular copper wire 11 .
The rectangular copper wire 11 has a rectangular cross section and has an edge surface formed by short sides and a flat surface formed by long sides. Copper and copper alloys can be used as the material of the rectangular copper wire 11 . Copper and copper alloys are not particularly limited, and those used in conventional insulated copper wires can be used. An oxygen-containing layer 13 containing 10 atomic % or more of oxygen is formed on the surface of the rectangular copper wire 11 . Oxygen in the oxygen - containing layer 13 is mainly contained as CuO or Cu2O.

絶縁皮膜12は、ポリアミドイミドから形成されている。絶縁皮膜12の膜厚は、10μm以上50μm以下の範囲内にあることが好ましい。 The insulating coating 12 is made of polyamide-imide. The film thickness of the insulating coating 12 is preferably in the range of 10 μm or more and 50 μm or less.

図2に示すように、絶縁銅線10は、絶縁皮膜12を引き剥すことによって剥離面14が形成される。剥離面14は、絶縁銅線10において平角銅線11と絶縁皮膜12とが最も剥離しやすい部分である。絶縁皮膜12を引き剥す方法としては、JIS C 5012:1993(プリント配線板試験方法)の機械的性能試験(導体の引き剥がし強さ)に記載されている方法を用いることができる。なお、剥離面14のサイズは、JIS C 5012:1993の記載されているサイズである必要はなく、飛行時間型二次イオン質量分析法(TOF-SIMS)およびオージェ電子分光法(AES)によって分析できるサイズであればよく、例えば5mm程度であればよい。 As shown in FIG. 2, the insulated copper wire 10 has a stripped surface 14 formed by peeling off the insulating film 12 . The peeling surface 14 is a portion of the insulated copper wire 10 where the rectangular copper wire 11 and the insulating film 12 are most easily peeled off. As a method for peeling off the insulating film 12, the method described in the mechanical performance test (conductor peeling strength) of JIS C 5012:1993 (testing method for printed wiring boards) can be used. The size of the peeled surface 14 does not have to be the size described in JIS C 5012: 1993, and can be analyzed by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and Auger electron spectroscopy (AES). Any size can be used, for example, about 5 mm.

剥離面14は、窒素原子または炭素原子と結合した銅原子が、酸素原子と結合した銅原子よりも多く存在する。窒素原子または炭素原子と結合した銅原子は、平角銅線11から絶縁皮膜12に拡散した銅原子が、絶縁皮膜12に含まれているポリアミドイミドのアミド結合(-NH-CO-)あるいはイミド結合(-CONHCO-)を構成する窒素原子または炭素原子と結合したものであると考えられる。よって、窒素原子または炭素原子と結合した銅原子は、絶縁皮膜との親和性が高い。酸素原子と結合した銅原子は、平角銅線11の表面に生成した酸化銅が、絶縁皮膜12に拡散したものであると考えられる、よって酸素原子と結合した銅原子は、絶縁皮膜12との親和性が低い。すなわち、剥離面14には、ポリアミドイミドと結合した銅原子が酸化銅を形成している銅原子よりも多く存在している。剥離面14は、絶縁銅線10の中で最も平角銅線11と絶縁皮膜12との密着性が弱く、剥離しやすい部分である。すなわち、本実施形態の絶縁銅線10は、剥離面14に、ポリアミドイミドとの親和性が高い銅原子(窒素原子または炭素原子と結合した銅原子)が、ポリアミドイミドとの親和性が低い銅原子(酸素原子と結合した銅原子)よりも多く存在するのであるから、剥離面14自体が生成しにくく、コイル状に巻回する際に平角銅線11と絶縁皮膜12とが剥離しにくくなる。 The peeled surface 14 has more copper atoms bonded to nitrogen atoms or carbon atoms than copper atoms bonded to oxygen atoms. Copper atoms bonded to nitrogen atoms or carbon atoms are amide bonds (—NH—CO—) or imide bonds of polyamide-imide contained in the insulating film 12. It is considered to be bonded to a nitrogen atom or a carbon atom constituting (--CONHCO--). Therefore, copper atoms bonded to nitrogen atoms or carbon atoms have a high affinity with the insulating film. It is believed that the copper atoms bonded to the oxygen atoms are the result of copper oxide generated on the surface of the rectangular copper wire 11 diffusing into the insulating film 12. Low affinity. That is, the peeling surface 14 has more copper atoms bonded to polyamide-imide than copper atoms forming copper oxide. The peeling surface 14 is a portion of the insulated copper wire 10 where adhesion between the rectangular copper wire 11 and the insulating film 12 is the weakest and where peeling is likely to occur. That is, in the insulated copper wire 10 of the present embodiment, the peeled surface 14 includes copper atoms (copper atoms bonded to nitrogen atoms or carbon atoms) that have a high affinity with polyamideimide, and copper atoms that have a low affinity with polyamideimide. Since there are more atoms than atoms (copper atoms bonded to oxygen atoms), the peeled surface 14 itself is less likely to form, and the rectangular copper wire 11 and the insulating coating 12 are less likely to peel off when wound into a coil. .

窒素原子または炭素原子と結合した銅原子と、酸素原子と結合した銅原子の量は、飛行時間型二次イオン質量分析法により測定することができる。本実施形態では、飛行時間型二次イオン質量分析法によって測定されるCuC イオンの二次イオン強度とCuOイオンとCuイオンの合計二次イオン強度との比(CuC /Cu比)が2以上50以下の範囲内とされている。CuC イオンは、窒素原子または炭素原子と結合した銅原子を含むイオンである。CuOイオンおよびCuイオンは酸素原子と結合した銅原子を含むイオンである。本実施形態の絶縁銅線10は、剥離面14を形成するために要する引き剥がし強さが高くなる。CuC /Cu比は、4以上20以下の範囲内にあることが好ましい。 The amount of copper atoms bonded to nitrogen atoms or carbon atoms and the amount of copper atoms bonded to oxygen atoms can be measured by time-of-flight secondary ion mass spectrometry. In the present embodiment, the ratio of the secondary ion intensity of CuC 2 N 2 - ions measured by time-of-flight secondary ion mass spectrometry to the total secondary ion intensity of CuO - ions and Cu 2 O - ions (CuC 2 N 2 /Cu x O ratio) is in the range of 2 or more and 50 or less. A CuC 2 N 2 -ion is an ion containing a copper atom bonded to a nitrogen or carbon atom. CuO - ions and Cu 2 O - ions are ions containing copper atoms bonded to oxygen atoms. The insulated copper wire 10 of this embodiment has a high peeling strength required to form the peeling surface 14 . The CuC 2 N 2 /Cu x O ratio is preferably in the range of 4 or more and 20 or less.

また、剥離面14から深さ方向(平角銅線11に向かう方向)にオージェ電子分光法により元素分析することによって測定される酸素を10原子%以上含有する酸素含有層13の膜厚(図2のd)は2nm以上30nm以下の範囲内とされている。酸素含有層13の酸素は、主として銅と結合して、CuOまたはCuOを形成している。酸素含有層13の膜厚が薄くなりすぎると、平角銅線11と絶縁皮膜12との密着性が低下するおそれがある。一方、酸素含有層13の膜厚が厚くなりすぎると、コイル状に巻回する際に酸素含有層13に亀裂が生じて、平角銅線11と絶縁皮膜12とが剥離するおそれがある。酸素含有層13の膜厚は、3nm以上20nm以下の範囲内にあることが好ましい。酸素含有層13は、剥離面14の近傍に酸素含有量の最大値を示すことが好ましい。酸素含有量の最大値は、剥離面14から1nm以上10nm以下の位置にあることが好ましい。酸素含有量の最大値は、20原子%以上50原子%以下の範囲内にあることが好ましい。 In addition, the thickness of the oxygen-containing layer 13 containing 10 atomic % or more of oxygen measured by elemental analysis by Auger electron spectroscopy in the depth direction (direction toward the rectangular copper wire 11) from the peeled surface 14 (Fig. 2 d) is in the range of 2 nm or more and 30 nm or less. Oxygen in the oxygen - containing layer 13 is mainly combined with copper to form CuO or Cu2O. If the film thickness of the oxygen-containing layer 13 becomes too thin, there is a possibility that the adhesion between the rectangular copper wire 11 and the insulating film 12 will deteriorate. On the other hand, if the thickness of the oxygen-containing layer 13 is too thick, cracks may occur in the oxygen-containing layer 13 during coil winding, and the rectangular copper wire 11 and the insulating coating 12 may separate. The film thickness of the oxygen-containing layer 13 is preferably in the range of 3 nm or more and 20 nm or less. The oxygen-containing layer 13 preferably exhibits the maximum oxygen content in the vicinity of the separation surface 14 . The maximum oxygen content is preferably at a position of 1 nm or more and 10 nm or less from the peeled surface 14 . The maximum oxygen content is preferably in the range of 20 atomic % or more and 50 atomic % or less.

図3は、後述の本発明例1で得られた絶縁銅線10を、剥離面14から深さ方向にオージェ電子分光法により元素分析した組成分布図である。図3の組成分布図において、横軸は剥離面14からの深さを表し、縦軸は検出された元素の合計を100原子%とした元素の含有量を表す。図3の組成分布図において、剥離面14から深さ方向に進むに従って、C(炭素)の濃度は低下し、O(酸素)の濃度は一旦上昇した後、低下に転じ、Cu(銅)の濃度は上昇を続けることがわかる。酸素含有層13の膜厚は10nmであり、酸素含有量は剥離面14から5nm付近の深さに最大値を示している。この組成分布図から、剥離面14から深さ方向に進むに従って、銅とポリアミドイミドとが結合した化合物の含有量が低下し、これにともなって酸化銅の含有量が上昇した後、酸化銅の含有量が低下に転じて、銅の含有量が上昇すると考えられる。 FIG. 3 is a composition distribution diagram obtained by elemental analysis of the insulated copper wire 10 obtained in Inventive Example 1, which will be described later, in the depth direction from the peeled surface 14 by Auger electron spectroscopy. In the composition distribution diagram of FIG. 3, the horizontal axis represents the depth from the peeled surface 14, and the vertical axis represents the content of the elements when the total of the detected elements is 100 atomic %. In the composition distribution diagram of FIG. 3, the concentration of C (carbon) decreases as it progresses in the depth direction from the peeled surface 14, the concentration of O (oxygen) once increases and then decreases, and the concentration of Cu (copper) decreases. It can be seen that the concentration continues to rise. The film thickness of the oxygen-containing layer 13 is 10 nm, and the oxygen content shows the maximum value at a depth of about 5 nm from the peeled surface 14 . From this composition distribution diagram, as it progresses in the depth direction from the peeled surface 14, the content of the compound in which copper and polyamideimide are bonded decreases, and along with this, the content of copper oxide increases. It is thought that the content turns to decrease and the content of copper increases.

次に、本実施形態の絶縁銅線10の製造方法について説明する。
本実施形態の絶縁銅線10は、例えば、平角銅線11の表面にポリアミドイミド膜を形成するポリアミドイミド膜形成工程と、加熱により、ポリアミドイミド膜を平角銅線11に焼き付けて絶縁銅線を得る絶縁銅線作製工程と、絶縁銅線10を加熱処理する加熱処理工程とを含む方法により製造することができる。
Next, a method for manufacturing the insulated copper wire 10 of this embodiment will be described.
The insulated copper wire 10 of the present embodiment is produced by, for example, forming a polyamideimide film on the surface of the rectangular copper wire 11, and baking the polyamideimide film on the rectangular copper wire 11 by heating to form the insulated copper wire. It can be manufactured by a method including a step of producing the insulated copper wire obtained and a heat treatment step of heat-treating the insulated copper wire 10 .

ポリアミドイミド膜形成工程において、平角銅線11の表面にポリアミドイミド膜を形成する方法としては、電着法およびディップ法を用いることができる。電着法は、有機溶剤に電荷を有するポリアミドイミド粒子が分散されている電着液に、平角銅線11と電極とを浸漬し、この平角銅線11と電極との間に直流電圧を印加することによって、平角銅線11の表面にポリアミドイミド粒子を電着させてポリアミドイミド膜を形成する方法である。ディップ法は、有機溶剤にポリアミドイミドが溶解しているワニスに、平角銅線11を浸漬して、平角銅線11の表面にワニスを塗布してポリアミドイミド膜を形成する方法である。 Electrodeposition and dipping can be used as a method for forming a polyamideimide film on the surface of the rectangular copper wire 11 in the polyamideimide film forming step. In the electrodeposition method, a rectangular copper wire 11 and an electrode are immersed in an electrodeposition liquid in which charged polyamideimide particles are dispersed in an organic solvent, and a DC voltage is applied between the rectangular copper wire 11 and the electrode. By doing so, polyamideimide particles are electrodeposited on the surface of the rectangular copper wire 11 to form a polyamideimide film. The dipping method is a method in which rectangular copper wire 11 is immersed in a varnish in which polyamideimide is dissolved in an organic solvent, and the surface of rectangular copper wire 11 is coated with varnish to form a polyamideimide film.

絶縁銅線作製工程では、ポリアミドイミド膜形成工程で得られたポリアミドイミド膜付き平角銅線11を、焼付炉を用いて加熱する。焼付炉としては、例えば、電気炉を用いることができる。加熱温度は、ポリアミドイミド膜の形成に用いる液体(電着液またはワニス)の有機溶剤の沸点以上で、かつポリアミドイミドの分解温度未満であり、通常は、200℃以上350℃以下の範囲内である。加熱時間は、ポリアミドイミド膜の膜厚や温度などの条件によって異なるが、例えば、1分以上10分以下の範囲内である。 In the insulated copper wire manufacturing process, the rectangular copper wire 11 with the polyamideimide film obtained in the polyamideimide film forming process is heated using a baking furnace. As the baking furnace, for example, an electric furnace can be used. The heating temperature is at least the boiling point of the organic solvent of the liquid (electrodeposition solution or varnish) used to form the polyamideimide film and below the decomposition temperature of the polyamideimide, and is usually in the range of 200° C. or higher and 350° C. or lower. be. The heating time varies depending on conditions such as the film thickness and temperature of the polyamide-imide film, but is, for example, within the range of 1 minute or more and 10 minutes or less.

加熱処理工程では、絶縁銅線作製工程で得られた絶縁銅線10を加熱処理して、絶縁銅線10の平角銅線11に含まれる銅と絶縁皮膜12に含まれるポリアミドとを結合させると共に、酸素含有層13を成長させる。加熱温度は、180℃以上で、かつポリアミドイミドの融点未満の範囲内である。加熱時間は、絶縁皮膜12の膜厚や温度などの条件によって異なるが、例えば、10分以上45分以下の範囲内、より好ましくは10分以上40分以下の範囲内である。加熱処理工程は、絶縁銅線作製工程と連続して行ってもよい。例えば、絶縁銅線作製工程後、焼付炉の内部温度を降温することによって、絶縁銅線10を加熱してもよい。 In the heat treatment step, the insulated copper wire 10 obtained in the insulated copper wire production step is heat-treated to combine the copper contained in the rectangular copper wire 11 of the insulated copper wire 10 and the polyamide contained in the insulating film 12. , the oxygen-containing layer 13 is grown. The heating temperature is 180° C. or more and within a range of less than the melting point of polyamideimide. The heating time varies depending on conditions such as the film thickness and temperature of the insulating film 12, but is, for example, within the range of 10 minutes or more and 45 minutes or less, more preferably within the range of 10 minutes or more and 40 minutes or less. The heat treatment step may be performed continuously with the insulated copper wire production step. For example, the insulated copper wire 10 may be heated by lowering the internal temperature of the baking furnace after the insulated copper wire manufacturing process.

本発明の一実施形態である電気コイルは、上述の絶縁銅線10を巻回して形成したものである。絶縁銅線10の曲げ加工方法は、平角銅線11のエッジ面を内側にして曲げるエッジワイズ曲げ加工であってもよいし、フラット面を内側にして曲げるフラットワイズ曲げ加工であってもよい。 An electric coil, which is one embodiment of the present invention, is formed by winding the insulated copper wire 10 described above. The method of bending the insulated copper wire 10 may be edgewise bending in which the rectangular copper wire 11 is bent with the edge surface inside, or may be flatwise bending in which the flat surface is bent inside.

以上のような構成とされた本実施形態の絶縁銅線10によれば、剥離面14において、窒素原子または炭素原子と結合した銅原子が、酸素原子と結合した銅原子よりも多く存在するので、平角銅線11と絶縁皮膜12との密着性が高くなる。また、剥離面14から深さ方向に形成されている酸素含有層13の膜厚が2nm以上とされているので、平角銅線11と絶縁皮膜12との密着性が高くなる。さらに、酸素含有層13の膜厚が30nm以下と薄いので、コイル状に巻回する際に酸素含有層13に亀裂が生じることによって、平角銅線11と絶縁皮膜12とが剥離することが起こりにくくなる。 According to the insulated copper wire 10 of the present embodiment configured as described above, the number of copper atoms bonded to nitrogen atoms or carbon atoms is greater than that of copper atoms bonded to oxygen atoms on the peeled surface 14. , the adhesion between the rectangular copper wire 11 and the insulating film 12 is enhanced. Moreover, since the film thickness of the oxygen-containing layer 13 formed in the depth direction from the separation surface 14 is set to 2 nm or more, the adhesion between the flat copper wire 11 and the insulating film 12 is enhanced. Furthermore, since the thickness of the oxygen-containing layer 13 is as thin as 30 nm or less, the rectangular copper wire 11 and the insulating coating 12 may be separated from each other due to cracks in the oxygen-containing layer 13 during coil winding. becomes difficult.

また、本実施形態の電気コイルは、上述の絶縁銅線10を巻回して形成したものであり、コイル状に巻回する際に、平角銅線11と絶縁皮膜12とが剥離しにくいので、絶縁皮膜12の浮きやシワが発生しにくい。 In addition, the electric coil of the present embodiment is formed by winding the above-mentioned insulated copper wire 10, and since the rectangular copper wire 11 and the insulating film 12 are less likely to separate when wound into a coil shape, The insulating film 12 is less likely to float or wrinkle.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、本実施形態の絶縁銅線10においては、銅線として平角銅線11を用いているが、銅線の種類はこれに限定されるものではない。銅線として、断面が円状の丸銅線を用いてもよい。また、絶縁皮膜12の材料としてポリアミドイミドを用いているが、絶縁皮膜12の材料はこれに限定されるものではない。絶縁皮膜12の材料は、銅原子と結合できるアミド結合を有する高分子材料であればよい。
Although the embodiment of the present invention has been described above, the present invention is not limited to this, and can be modified as appropriate without departing from the technical idea of the invention.
For example, in the insulated copper wire 10 of the present embodiment, the rectangular copper wire 11 is used as the copper wire, but the type of copper wire is not limited to this. A round copper wire having a circular cross section may be used as the copper wire. Also, although polyamide-imide is used as the material of the insulating coating 12, the material of the insulating coating 12 is not limited to this. The insulating film 12 may be made of any polymeric material having amide bonds capable of bonding with copper atoms.

次に、本発明の作用効果を実施例により説明する。 Next, the operational effects of the present invention will be described with reference to examples.

[本発明例1]
(1)ポリアミドイミド膜付き平角銅線の作製
銅線として、短辺の長さが1.5mmであって、長辺の長さが6.5mmの平角銅線を用意した。
ポリアミドイミド粒子を2質量%含有する電着液に、上記の平角銅線と電極とを浸漬し、平角銅線を正極とし、電極を負極として直流電圧を印加して、平角銅線の表面に、加熱によって生成する絶縁皮膜の厚さが40μmとなるようにPAI粒子を電着させて、ポリアミドイミド膜を形成した。
[Invention Example 1]
(1) Production of Rectangular Copper Wire with Polyamideimide Film As a copper wire, a rectangular copper wire having a short side length of 1.5 mm and a long side length of 6.5 mm was prepared.
The rectangular copper wire and the electrode are immersed in an electrodeposition liquid containing 2% by mass of polyamideimide particles, the rectangular copper wire is used as a positive electrode, and the electrode is used as a negative electrode, and a direct current voltage is applied to the surface of the rectangular copper wire. PAI particles were electrodeposited so that the thickness of the insulation film formed by heating was 40 μm to form a polyamideimide film.

(2)絶縁銅線の作製
上記(1)で得られたポリアミドイミド膜付き平角銅線を、焼付炉(電気炉)に投入し、300℃で5分間加熱して、ポリアミドイミド膜を平角銅線に焼き付けて絶縁銅線を作製した。その後、焼付炉の炉内温度を2℃/分の降温速度で降下させながら、40分間加熱処理を行った後に、絶縁銅線を焼付炉から取り出して、室温まで放冷した。
(2) Preparation of insulated copper wire The rectangular copper wire with the polyamideimide film obtained in (1) above is put into a baking furnace (electric furnace) and heated at 300 ° C. for 5 minutes to remove the polyamideimide film from the rectangular copper wire. An insulated copper wire was made by baking onto the wire. After that, the insulated copper wire was heat-treated for 40 minutes while the temperature inside the baking furnace was decreased at a rate of 2° C./minute, and then the insulated copper wire was taken out from the baking furnace and allowed to cool to room temperature.

[本発明例2]
前記(2)の絶縁銅線の作製において、ポリアミドイミド膜付き平角銅線を300℃で5分間加熱して作製した絶縁銅線を、焼付炉の炉内温度を3℃/分の降温速度で降下させながら、25分間加熱処理を行った後に、絶縁銅線を焼付炉から取り出して、室温まで放冷したこと以外は、本発明例1と同様にして絶縁銅線を得た。
[Invention Example 2]
In the preparation of the insulated copper wire in (2) above, the insulated copper wire prepared by heating the rectangular copper wire with the polyamideimide film at 300 ° C. for 5 minutes was heated in the baking furnace at a cooling rate of 3 ° C./min. An insulated copper wire was obtained in the same manner as in Inventive Example 1, except that after the heat treatment was performed for 25 minutes while the temperature was lowered, the insulated copper wire was taken out from the baking furnace and allowed to cool to room temperature.

[本発明例3]
前記(2)の絶縁銅線の作製において、ポリアミドイミド膜付き平角銅線を300℃で5分間加熱して作製した絶縁銅線を、250℃に保持された電気炉に移して、その電気炉内で10分間保持し、次いで、200℃に保持された電気炉に移して、その電気炉内で10分間保持した後、絶縁銅線を電気炉から取り出して、室温まで放冷したこと以外は、本発明例1と同様にして絶縁銅線を得た。ただし、本発明例3は、参考例である。
[Invention Example 3]
In the preparation of the insulated copper wire in (2) above, the insulated copper wire prepared by heating the rectangular copper wire with the polyamideimide film at 300 ° C. for 5 minutes was transferred to an electric furnace maintained at 250 ° C., and the electric furnace The insulated copper wire was held in the electric furnace for 10 minutes, then transferred to an electric furnace held at 200 ° C., held in the electric furnace for 10 minutes, then removed from the electric furnace and allowed to cool to room temperature. An insulated copper wire was obtained in the same manner as in Example 1 of the present invention. However, the present invention example 3 is a reference example.

[比較例1]
前記(2)の絶縁銅線の作製において、ポリアミドイミド膜付き平角銅線を300℃で5分間加熱して作製した絶縁銅線を、直ちに焼付炉から取り出して、室温まで放冷したこと以外は、本発明例1と同様にして絶縁銅線を得た。
[Comparative Example 1]
In the preparation of the insulated copper wire in (2) above, except that the insulated copper wire prepared by heating the rectangular copper wire with the polyamideimide film at 300 ° C. for 5 minutes was immediately removed from the baking furnace and allowed to cool to room temperature. An insulated copper wire was obtained in the same manner as in Example 1 of the present invention.

[比較例2]
前記(2)の絶縁銅線の作製において、ポリアミドイミド膜付き平角銅線を300℃で5分間加熱して作製した絶縁銅線を、焼付炉の炉内温度を2℃/分の降温速度で降下させながら、120分間加熱処理を行った後に、絶縁銅線を焼付炉から取り出して、室温まで放冷したこと以外は、本発明例1と同様にして絶縁銅線を得た。
[Comparative Example 2]
In the preparation of the insulated copper wire in (2) above, the insulated copper wire prepared by heating the rectangular copper wire with the polyamideimide film at 300 ° C. for 5 minutes was heated in the baking furnace at a cooling rate of 2 ° C./min. An insulated copper wire was obtained in the same manner as in Inventive Example 1, except that the insulated copper wire was taken out from the baking furnace and allowed to cool to room temperature after being heat-treated for 120 minutes while being lowered.

[比較例3]
前記(2)の絶縁銅線の作製において、ポリアミドイミド膜付き平角銅線を300℃で5分間加熱して作製した絶縁銅線を、250℃に保持された電気炉に移して、その電気炉内で20分間保持し、次いで、200℃に保持された電気炉に移して、その電気炉内で30分間保持した後、絶縁銅線を電気炉から取り出して、室温まで放冷したこと以外は、本発明例1と同様にして絶縁銅線を得た。
[Comparative Example 3]
In the preparation of the insulated copper wire in (2) above, the insulated copper wire prepared by heating the rectangular copper wire with the polyamideimide film at 300 ° C. for 5 minutes was transferred to an electric furnace maintained at 250 ° C., and the electric furnace The insulated copper wire was held for 20 minutes inside, then transferred to an electric furnace held at 200 ° C., held for 30 minutes in the electric furnace, and then the insulated copper wire was removed from the electric furnace and allowed to cool to room temperature. An insulated copper wire was obtained in the same manner as in Example 1 of the present invention.

[評価]
本発明例1~3および比較例1~3で得られた絶縁銅線について、JIS C5012:1993(プリント配線板試験方法)に準拠して、絶縁皮膜を引き剥がして剥離面を形成した。そして、絶縁銅線の剥離面に対して、CuC イオンの二次イオン強度とCuOイオンとCuイオンの合計二次イオン強度との比(CuC /Cu比)、および酸素含有層の膜厚を、下記の方法により測定した。また、絶縁銅線の剥離面が形成されていない部分について、コイル状に巻回したときの密着性を、下記の方法により評価した。これらの結果を、下記の表1に示す。
なお、表1における熱処理条件には、上記絶縁銅線作製工程および加熱処理工程における熱処理の条件を合わせて記載した。
[evaluation]
For the insulated copper wires obtained in Inventive Examples 1 to 3 and Comparative Examples 1 to 3, the insulating film was peeled off to form a peeled surface in accordance with JIS C5012:1993 (testing method for printed wiring boards). Then, the ratio of the secondary ion strength of CuC 2 N 2 - ions to the total secondary ion strength of CuO - ions and Cu 2 O - ions with respect to the peeled surface of the insulated copper wire (CuC 2 N 2 - /Cu x O -ratio ), and the film thickness of the oxygen-containing layer were measured by the following methods. In addition, the adhesiveness of the portion of the insulated copper wire where the peeled surface was not formed was evaluated by the following method when wound into a coil. These results are shown in Table 1 below.
The heat treatment conditions in Table 1 include the heat treatment conditions in the insulated copper wire manufacturing process and the heat treatment process.

(CuC /Cu比)
剥離面に対して、飛行時間型二次イオン質量分析装置(PHI nanoTOFII、UlVAC-PHI社製)を用い、一次イオンをBi (30kV)、分析エリアを50μmの測定条件にて、負のフラグメントイオンを検出した。検出された負のフラグメントイオンのうち、m/z=78.9のピークをCuOイオン、m/z=114.9のピークをCuC イオン、m/z=141.8のピークをCuイオンとして、その二次イオン強度を読み取って、CuC /Cu比を算出した。
(CuC 2 N 2 /Cu x O ratio)
A time-of-flight secondary ion mass spectrometer (PHI nanoTOF II, manufactured by UlVAC-PHI) was used for the peeled surface under the measurement conditions of Bi 3 + (30 kV) for primary ions and an analysis area of 50 μm. Fragment ions were detected. Among the detected negative fragment ions, the peak at m/z = 78.9 was CuO - ion, the peak at m/z = 114.9 was CuC 2 N 2 - ion, and the peak at m/z = 141.8. as Cu 2 O ions, the secondary ion intensity was read, and the CuC 2 N 2 /Cu x O ratio was calculated.

(酸素含有層の膜厚)
オージェ電子分光分析装置(PHI700、アルバック・ファイ株式会社製)を用いて、剥離面をArイオンでエッチングしながら、15秒毎にオージェ電子スペクトルを得た。Arイオンの加速電圧1kV、電子ビームの加速電圧は3kVとし、ステーのTilt角は30°とした。得られたオージェ電子スペクトルの強度から、元素相対感度係数を用いた相対感度係数法により、検出された元素の原子%を算出した。また、エッチング時間を、あらかじめ測定したオージェ電子分光分析装置のエッチングレート(1nm/分)を用いて剥離面からの深さに換算して、横軸を剥離面からの深さとし、縦軸を検出された元素の含有量(原子%)とした組成分布図を作成した。そして、得られた組成分布図から酸素濃度が10原子%を連続して超えている部分の深さを読み取り、これを酸素含有層の膜厚とした。なお、オージェ電子分光分析装置のエッチングレートは、膜厚20nmのSiO2膜を用いて測定した。
(Thickness of oxygen-containing layer)
Using an Auger electron spectrometer (PHI700, manufactured by Ulvac-Phi, Inc.), an Auger electron spectrum was obtained every 15 seconds while etching the peeled surface with Ar ions. The acceleration voltage of Ar ions was 1 kV, the acceleration voltage of the electron beam was 3 kV, and the tilt angle of the stay was 30°. From the intensity of the obtained Auger electron spectrum, the atomic % of the detected element was calculated by the relative sensitivity factor method using the relative sensitivity factor of the element. In addition, the etching time is converted to the depth from the peeled surface using the etching rate (1 nm / min) of the Auger electron spectrometer measured in advance, the horizontal axis is the depth from the peeled surface, and the vertical axis is detected. A composition distribution map was created as the content (atomic %) of the elements added. Then, the depth of the portion where the oxygen concentration continuously exceeded 10 atomic % was read from the obtained composition distribution map, and this was taken as the film thickness of the oxygen-containing layer. The etching rate of the Auger electron spectrometer was measured using an SiO2 film with a thickness of 20 nm.

(コイル状に巻回したときの密着性)
絶縁銅線を、直径が6.5mmの丸棒に添ってエッジワイズ曲げ加工にて、曲げ半径が3.25mmとなるようにL字状(90度)に折り曲げて、直線部とL字状折り曲げ部を持つコイル(エッジワイズコイル)を作製した。
平角銅線と絶縁皮膜との密着性は、コイル内側のL字状折り曲げ部の絶縁皮膜の表面状態により評価した。まず、コイル内側のL字状折り曲げ部の絶縁皮膜の表面を、光学顕微鏡を用いて20倍の倍率で観察して、凹凸の有無を確認した。次に、絶縁皮膜の表面に凹凸が確認されたものは、曲げ方向に対して垂直方向から、凹凸が確認された部分を拡大観察(300倍)して、凹凸がない部分を通るベースラインを引き、凸部の高さ(凸部の最も高い位置とベースラインとの距離)を測定した。絶縁皮膜の表面に凹凸が確認されなかった場合を「◎」、絶縁皮膜の表面に凹凸が確認されたが、凸部の高さが5μm未満の場合を「○」、凸部の高さが5μm以上の場合を「×」と評価した。
(Adhesion when coiled)
An insulated copper wire is edgewise bent along a round bar with a diameter of 6.5 mm, bent into an L shape (90 degrees) so that the bending radius is 3.25 mm, and the straight part and the L shape are bent. A coil having a bent portion (edgewise coil) was produced.
The adhesion between the rectangular copper wire and the insulation film was evaluated by the surface state of the insulation film at the L-shaped bent portion inside the coil. First, the surface of the insulating film at the L-shaped bent portion inside the coil was observed with an optical microscope at a magnification of 20 to confirm the presence or absence of unevenness. Next, if unevenness is confirmed on the surface of the insulating film, observe the area where unevenness is confirmed from the direction perpendicular to the bending direction at an enlarged scale (300 times), and draw a baseline that passes through the area without unevenness. Then, the height of the convex portion (the distance between the highest position of the convex portion and the baseline) was measured. When no unevenness was observed on the surface of the insulating coating, "◎" was observed. A case of 5 μm or more was evaluated as “x”.

Figure 0007136245000001
Figure 0007136245000001

飛行時間型二次イオン質量分析法によって測定される剥離面のCuC イオンの二次イオン強度とCuOイオンとCuイオンの合計二次イオン強度との比(CuC /Cu比)が本発明の範囲内にあって、かつ剥離面から深さ方向にオージェ電子分光法により元素分析することによって測定される酸素含有層の膜厚が本発明の範囲内にある本発明例1~3の絶縁銅線は、いずれもエッジワイズ曲げ加工によりコイル状に巻回したときに、絶縁皮膜の表面に凹凸が確認されず、平角銅線と絶縁皮膜との密着性が高くなった。
これに対して、剥離面のCuC /Cu比が本発明の範囲よりも低く、かつ酸素含有層の膜厚が本発明の範囲よりも薄い比較例1の絶縁銅線はエッジワイズ曲げ加工によりコイル状に巻回したときに、絶縁皮膜の表面に5μm以上の凸部が確認され、平角銅線と絶縁皮膜との密着性が低くなった。また、剥離面のCuC /Cu比は本発明の範囲内にあるが、酸素含有層の膜厚が本発明の範囲よりも厚い比較例2、3の絶縁銅線についてもエッジワイズ曲げ加工によりコイル状に巻回したときに、絶縁皮膜の表面に5μm以上の凸部が確認され、平角銅線と絶縁皮膜との密着性が低くなった。
The ratio of the secondary ion intensity of CuC 2 N 2 - ions on the exfoliated surface measured by time-of-flight secondary ion mass spectrometry to the total secondary ion intensity of CuO - ions and Cu 2 O - ions (CuC 2 N 2 /Cu x O ratio) is within the range of the present invention, and the thickness of the oxygen-containing layer measured by elemental analysis by Auger electron spectroscopy in the depth direction from the peeled surface is within the range of the present invention. When the insulated copper wires of Examples 1 to 3 of the present invention within the range were wound into a coil shape by edgewise bending, no unevenness was observed on the surface of the insulating film, and the rectangular copper wire and the insulating film increased adhesion.
On the other hand, the CuC 2 N 2 /Cu x O ratio of the peeled surface is lower than the range of the present invention, and the film thickness of the oxygen-containing layer is thinner than the range of the present invention. When the wire was wound into a coil by edgewise bending, protrusions of 5 μm or more were observed on the surface of the insulating coating, and the adhesion between the rectangular copper wire and the insulating coating was low. In addition, regarding the insulated copper wires of Comparative Examples 2 and 3, in which the CuC 2 N 2 /Cu x O ratio of the peeled surface is within the range of the present invention, but the thickness of the oxygen-containing layer is thicker than the range of the present invention, When the wire was also wound into a coil by edgewise bending, protrusions of 5 μm or more were observed on the surface of the insulating coating, and the adhesion between the rectangular copper wire and the insulating coating was low.

10 絶縁銅線
11 平角銅線
12 絶縁皮膜
13 酸素含有層
14 剥離面
REFERENCE SIGNS LIST 10 Insulated copper wire 11 Rectangular copper wire 12 Insulating coating 13 Oxygen-containing layer 14 Peeling surface

Claims (3)

平角銅線と、前記平角銅線の表面を被覆する絶縁皮膜とを有する絶縁銅線であって、
前記絶縁皮膜は、アミド結合を有する高分子材料を含み、
前記絶縁皮膜を引き剥すことによって前記絶縁銅線の表面に形成された剥離面において、窒素原子または炭素原子と結合した銅原子が、酸素原子と結合した銅原子よりも多く存在し、かつ剥離面から深さ方向に酸素を10原子%以上含有する酸素含有層が形成されていて、
前記剥離面は、飛行時間型二次イオン質量分析法によって測定されるCuC イオンの二次イオン強度とCuO イオンとCu イオンの合計二次イオン強度との比が10以上12以下の範囲内にあり、
前記絶縁銅線をエッジワイズ曲げ加工にて、90度に折り曲げて作製した直線部とL字状折り曲げ部を持つコイルの前記L字状折り曲げ部の前記絶縁皮膜の表面を、光学顕微鏡を用いて20倍の倍率で観察したときに、凹凸の有無が確認されないことを特徴とする絶縁銅線。
An insulated copper wire having a rectangular copper wire and an insulating film covering the surface of the rectangular copper wire,
The insulating coating contains a polymeric material having an amide bond,
In the peeled surface formed on the surface of the insulated copper wire by peeling off the insulating film, copper atoms bonded to nitrogen atoms or carbon atoms are present in a larger amount than copper atoms bonded to oxygen atoms, and the peeled surface An oxygen-containing layer containing 10 atomic % or more of oxygen is formed in the depth direction from
The peeled surface has a ratio of the secondary ion intensity of CuC 2 N 2 - ions to the total secondary ion intensity of CuO - ions and Cu 2 O - ions measured by time-of-flight secondary ion mass spectrometry of 10. is within the range of 12 or less,
The surface of the insulating coating of the L-shaped bent portion of the coil having a straight portion and an L-shaped bent portion produced by bending the insulated copper wire at 90 degrees by edgewise bending is examined using an optical microscope. An insulated copper wire characterized in that the presence or absence of unevenness is not confirmed when observed at a magnification of 20 times.
前記絶縁銅線をエッジワイズ曲げ加工にて、90度に折り曲げて作製した前記直線部と前記L字状折り曲げ部を持つコイルの前記L字状折り曲げ部の曲げ半径が3.25mmである請求項1に記載の絶縁銅線。A coil having said straight portion and said L-shaped bent portion, which is produced by bending said insulated copper wire at 90 degrees by edgewise bending, has a bending radius of 3.25 mm at said L-shaped bent portion. 2. The insulated copper wire according to 1. 請求項1または2に記載の絶縁銅線を巻回して形成した電気コイル。 An electrical coil formed by winding the insulated copper wire according to claim 1 or 2 .
JP2021025623A 2021-02-19 2021-02-19 Insulated copper wire and electrical coils Active JP7136245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021025623A JP7136245B2 (en) 2021-02-19 2021-02-19 Insulated copper wire and electrical coils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021025623A JP7136245B2 (en) 2021-02-19 2021-02-19 Insulated copper wire and electrical coils

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019061635A Division JP6874785B2 (en) 2019-03-27 2019-03-27 Insulated copper wire and electric coil

Publications (2)

Publication Number Publication Date
JP2021082836A JP2021082836A (en) 2021-05-27
JP7136245B2 true JP7136245B2 (en) 2022-09-13

Family

ID=75963298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021025623A Active JP7136245B2 (en) 2021-02-19 2021-02-19 Insulated copper wire and electrical coils

Country Status (1)

Country Link
JP (1) JP7136245B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107227A (en) 2012-11-29 2014-06-09 Mitsubishi Cable Ind Ltd Rectangular electric wire for coil, method for manufacturing the same, and coil using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107227A (en) 2012-11-29 2014-06-09 Mitsubishi Cable Ind Ltd Rectangular electric wire for coil, method for manufacturing the same, and coil using the same

Also Published As

Publication number Publication date
JP2021082836A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
KR102590075B1 (en) Insulated conductors and methods of manufacturing insulated conductors
US11276519B2 (en) Coil component
WO2015104905A1 (en) Flat insulated wire and electric generator coil
TW200945376A (en) Plated flat conductor and flexible flat cable therewith
KR102590076B1 (en) Insulated conductors and methods of manufacturing insulated conductors
JP7136245B2 (en) Insulated copper wire and electrical coils
CN110277192B (en) Tinned copper wire and manufacturing method thereof, and insulated wire and cable
JP6368241B2 (en) Insulated wire and electric coil using the same
US20060283621A1 (en) Electric wire having a core of aluminum or aluminum alloy
JP6874785B2 (en) Insulated copper wire and electric coil
CN111801744B (en) Insulated flat conductor, coil, and method for manufacturing insulated flat conductor
JP5102541B2 (en) Insulated wire
JP4269374B2 (en) Tin-plated flat conductor manufacturing method and flat cable manufacturing method
JP2008066024A (en) Extra-fine coaxial cable
WO2021049183A1 (en) Electrically conductive wire, insulated electric wire, coil, and electric/electronic instrument
CN213424629U (en) Insulated wire, and coil and motor provided with same
JP6352501B1 (en) High-frequency coil wires and electronic components
US7491890B2 (en) Electric wire having a core of aluminum or aluminum alloy
JP6887967B2 (en) Insulated electric wire, its manufacturing method, coil, electrical / electronic equipment and electrical / electronic equipment manufacturing method
JPH07282637A (en) Enamel copper wire strengthening adhesiveness to copper conductor
JP2023050956A (en) Wire, and wire manufacturing method
JP2023119705A (en) Breaking elongation prediction method of enamel layer on insulated wire
JP5166715B2 (en) Insulated wire paint and insulated wire using the same
JP2019009432A (en) High frequency coil electric wire and electronic component
JP2005135836A (en) Coating composition for insulated wire, and insulated wire using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R150 Certificate of patent or registration of utility model

Ref document number: 7136245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150