JP7135371B2 - In vivo impedance measurement device - Google Patents

In vivo impedance measurement device Download PDF

Info

Publication number
JP7135371B2
JP7135371B2 JP2018059475A JP2018059475A JP7135371B2 JP 7135371 B2 JP7135371 B2 JP 7135371B2 JP 2018059475 A JP2018059475 A JP 2018059475A JP 2018059475 A JP2018059475 A JP 2018059475A JP 7135371 B2 JP7135371 B2 JP 7135371B2
Authority
JP
Japan
Prior art keywords
electrode
voltage
impedance
insulating member
vivo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018059475A
Other languages
Japanese (ja)
Other versions
JP2019170450A (en
Inventor
達弥 岡田
友介 坂上
千草 井中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2018059475A priority Critical patent/JP7135371B2/en
Publication of JP2019170450A publication Critical patent/JP2019170450A/en
Application granted granted Critical
Publication of JP7135371B2 publication Critical patent/JP7135371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、生体内のインピーダンスを測定する方法、及び生体内インピーダンス測定装置に関する。 The present invention relates to a method for measuring impedance in vivo and an in vivo impedance measuring device.

血管等の器官内にカテーテルを挿入して、病変部に対して検査や治療を行うことが行われている。 2. Description of the Related Art A catheter is inserted into an organ such as a blood vessel to examine or treat a lesion.

カテーテルを用いた治療の一つに、バルーン付きのカテーテル・アブレーション治療がある。この治療は、カテーテルの先端にバルーンを取り付け、バルーン内に液体を注入することによってバルーンを膨らませた後、高周波電流によりバルーン内の液体を温めることによって、バルーンの表面と接触している器官を焼灼するもので、例えば、心房細動の治療等に適用されている。 One of the treatments using a catheter is catheter ablation treatment with a balloon. In this treatment, a balloon is attached to the tip of a catheter, and after the balloon is inflated by injecting liquid into the balloon, high-frequency current is used to heat the liquid inside the balloon to cauterize the organ that is in contact with the surface of the balloon. For example, it is applied to the treatment of atrial fibrillation.

この治療によれば、バルーンが柔軟な球形を有しているので、心房細動の治療部位である左心房と肺静脈との接合近傍の内壁面に、膨らんだバルーンの外周面をリング状に接触させることができるため、一度に肺静脈の周囲を焼灼することができる。 According to this treatment, since the balloon has a flexible spherical shape, the outer peripheral surface of the inflated balloon is formed into a ring shape on the inner wall surface near the junction of the left atrium and the pulmonary vein, which is the treatment site for atrial fibrillation. Because it can be brought into contact, it is possible to cauterize around the pulmonary veins at once.

一方、アブレーション治療によって器官を焼灼した後、焼灼効果を評価するために、焼灼後における生体内のインピーダンスを測定することが行われている。例えば、非特許文献1には、体内に配置した電極と、生体表面に配置した電極との間に、高周波電流を流して、出力電力Wと出力電流Iから、生体内のインピーダンスZ(=W/I)を算出する方法が開示されている。 On the other hand, after cauterizing an organ by ablation treatment, in order to evaluate the cauterization effect, the impedance in the living body after cauterization is measured. For example, in Non-Patent Document 1, a high-frequency current is passed between an electrode placed in the body and an electrode placed on the surface of the living body, and from the output power W and the output current I, the impedance Z (=W /I 2 ) is disclosed.

山本尚武、中村隆夫著「生体電気計測」コロナ社、2011年11月2日、p.105~139Naotake Yamamoto, Takao Nakamura, "Bioelectricity Measurement" Corona Publishing, November 2, 2011, p.105-139

しかしながら、従来の生体内インピーダンス測定方法では、生体内に高周波交流電流を流すため、感電等を引き起こすおそれがある。 However, in the conventional in-vivo impedance measurement method, a high-frequency alternating current flows in the living body, which may cause an electric shock or the like.

また、高周波交流電流は、細胞膜を通過できるため、従来の生体内インピーダンス測定方法で得られる生体内インピーダンスは、細胞膜、細胞内液、及び細胞外液の全てのインピーダンスの合計値となる。 In addition, since the high-frequency alternating current can pass through the cell membrane, the in-vivo impedance obtained by the conventional in-vivo impedance measurement method is the sum of the impedances of the cell membrane, the intracellular fluid, and the extracellular fluid.

一方、例えば、アブレーション治療によって器官を焼灼した場合、細胞膜が破れて、細胞外液が増加するので、生体内インピーダンスは減少する。 On the other hand, for example, when an organ is cauterized by ablation therapy, the cell membrane is ruptured and the extracellular fluid increases, so the in vivo impedance decreases.

しかしながら、上述したように、従来の生体内インピーダンス測定方法で得られる生体内インピーダンスは、細胞外液の変化だけでなく、細胞膜や細胞内液の変化にも影響を受ける。そのため、生体内インピーダンスの変化を利用して、アブレーション治療による焼灼効果を精度よく良く評価することが難しい。 However, as described above, the bioimpedance obtained by the conventional bioimpedance measurement method is affected not only by changes in the extracellular fluid but also by changes in the cell membrane and the intracellular fluid. Therefore, it is difficult to accurately evaluate the cauterization effect of ablation treatment using changes in in vivo impedance.

本発明は、かかる点に鑑みなされたもので、その主な目的は、安全で、かつ、細胞外液の変化を精度よく評価することができる生体内インピーダンス測定方法、及び生体内インピーダンス測定装置を提供することにある。 The present invention has been made in view of the above points, and its main object is to provide an in vivo impedance measurement method and an in vivo impedance measurement device that are safe and capable of accurately evaluating changes in extracellular fluid. to provide.

本発明に係る生体内インピーダンス測定方法は、生体の内部に体内電極を配置するとともに、生体の表面又は内部に測定基準電極を配置し、体内電極と測定基準電極との間に、第1の外部抵抗を並列接続したときに生じる第1の電圧V、及び第2の外部抵抗を並列接続したときに生じる第2の電圧Vを測定し、第1の電圧V及び第2の電圧Vの電圧比V/Vに基づいて、生体内のインピーダンスを測定することを特徴とする。 An in-vivo impedance measuring method according to the present invention includes placing an in-vivo electrode inside a living body, placing a measurement reference electrode on the surface or inside the living body, and placing a first external electrode between the in-vivo electrode and the measurement reference electrode. A first voltage V 1 that occurs when the resistors are connected in parallel and a second voltage V 2 that occurs when the second external resistors are connected in parallel are measured, and the first voltage V 1 and the second voltage V 2 , the impedance in the living body is measured based on the voltage ratio V 1 /V 2 of 2.

本発明に係る生体内インピーダンス測定装置は、生体の内部に配置される体内電極と、 生体の表面又は内部に配置される測定基準電極と、体内電極と測定基準電極との間に、第1の外部抵抗及び第2の外部抵抗を、それぞれ切り替え可能に並列接続する接続手段と、接続手段により、体内電極と測定基準電極との間に、第1の外部抵抗を並列接続したときに生じる第1の電圧V、及び第2の外部抵抗を並列接続したときに生じる第2の電圧Vを測定する電圧測定手段とを備え、第1の電圧V及び第2の電圧Vの電圧比V/Vに基づいて、生体内のインピーダンスを測定することを特徴とする。 An in-vivo impedance measuring device according to the present invention comprises: an in-vivo electrode placed inside a living body; a measurement reference electrode placed on the surface or inside the living body; a connection means for switchably connecting an external resistance and a second external resistance in parallel; and a voltage measuring means for measuring a voltage V 1 of and a second voltage V 2 generated when a second external resistor is connected in parallel, and a voltage ratio of the first voltage V 1 and the second voltage V 2 It is characterized by measuring impedance in the living body based on V 1 /V 2 .

本発明によれば、安全で、かつ、細胞外液の変化を精度よく評価することができる生体内インピーダンス測定方法、及び生体内インピーダンス測定装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the in-vivo impedance measuring method and in-vivo impedance measuring apparatus which can evaluate a change of an extracellular fluid safely and accurately can be provided.

生体内を交流電流が流れる様子を模式的に示した図で、(a)は、高周波交流電流が流れる場合、(b)は、低周波交流電流が流れる場合を、それぞれ示す。1A and 1B are diagrams schematically showing how alternating current flows in a living body, where FIG. 1A shows a case where a high-frequency alternating current flows, and FIG. 本発明の一実施形態における生体内インピーダンス測定方法を説明した図である。It is a figure explaining the in-vivo impedance measuring method in one Embodiment of this invention. 絶縁性部材の外周面が、器官の内壁面に接触した状態を模式的に示した図である。FIG. 4 is a diagram schematically showing a state in which the outer peripheral surface of the insulating member is in contact with the inner wall surface of the organ. 絶縁性部材の外周面を、器官の内壁面に接触させた状態で、体内電極と測定基準電極との間に生じた電圧を測定する方法を示した等価回路図である。FIG. 4 is an equivalent circuit diagram showing a method of measuring the voltage generated between the internal electrode and the measurement reference electrode while the outer peripheral surface of the insulating member is in contact with the inner wall surface of the organ. 本発明の他の実施形態における生体内インピーダンス測定方法を説明した図である。It is a figure explaining the in-vivo impedance measuring method in other embodiment of this invention.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In addition, this invention is not limited to the following embodiment. In addition, appropriate modifications are possible without departing from the scope of the effects of the present invention.

図1は、生体内を交流電流が流れる様子を模式的に示した図で、図1(a)は、高周波交流電流が流れる場合、図1(b)は、低周波交流電流が流れる場合を、それぞれ示す。 1A and 1B schematically show how an alternating current flows in a living body. FIG. 1A shows a case where a high-frequency alternating current flows, and FIG. 1B shows a case where a low-frequency alternating current flows. , respectively.

図1(a)に示すように、高周波交流電流Iは、細胞膜100を通過できるため、細胞膜100、細胞内液110、及び細胞外液120を流れる。 As shown in FIG. 1( a ), the high-frequency alternating current I can pass through the cell membrane 100 and therefore flows through the cell membrane 100 , the intracellular fluid 110 and the extracellular fluid 120 .

一方、図1(b)に示すように、低周波交流電流Iは、細胞膜100を通過できないため、細胞外液120のみを流れる。そのため、低周波交流電流Iを用いて、生体内のインピーダンスを測定すれば、当該インピーダンスの変化から、細胞外液120の変化を精度よく評価することが可能となる。 On the other hand, as shown in FIG. 1(b), the low-frequency alternating current I cannot pass through the cell membrane 100, so it flows only through the extracellular fluid 120. FIG. Therefore, if the impedance in the living body is measured using the low-frequency alternating current I, it is possible to accurately evaluate the change in the extracellular fluid 120 from the change in impedance.

本発明者等は、生体内で発生した電気信号が、低周波(0.01~100Hz)であることに着目し、この生体内で発生した電気信号を、生体表面に配置した電極で検出することによって、生体内のインピーダンスを、低い周波数帯域で測定できると考え、本発明を想到するに至った。 The present inventors have focused on the fact that the electrical signal generated in vivo is of low frequency (0.01 to 100 Hz), and the electrical signal generated in the body is detected by electrodes placed on the surface of the body. As a result, the inventors thought that the impedance in the living body could be measured in a low frequency band, and came up with the present invention.

図2は、本発明の一実施形態における生体内インピーダンス測定方法を説明した図である。 FIG. 2 is a diagram explaining the in-vivo impedance measurement method according to one embodiment of the present invention.

図2に示すように、本実施形態では、生体の内部に、体内電極10を配置することによって、生体内で発生した電気信号を検出する。具体的には、内部に体内電極10が配置された絶縁性部材20を、生体の器官70内に挿入して、器官70の内壁面に接触させて、接触した部位の電気信号を検出する。 As shown in FIG. 2, in this embodiment, an electrical signal generated in the living body is detected by arranging the intracorporeal electrode 10 inside the living body. Specifically, the insulating member 20 with the internal electrode 10 disposed therein is inserted into the organ 70 of the living body and brought into contact with the inner wall surface of the organ 70 to detect electrical signals at the contact site.

ここで、絶縁性部材20は、外周面が変形自在又は拡張自在な材料からなり、例えば、中空袋状からなるバルーンを用いることができる。また、絶縁性部材20に、中空管状の可撓性部材(カテーテル)30が結合したバルーン付きカテーテルを用いてもよい。 Here, the insulating member 20 is made of a material whose outer peripheral surface is deformable or expandable, and for example, a hollow bag-like balloon can be used. Alternatively, a balloon-equipped catheter in which a hollow tubular flexible member (catheter) 30 is coupled to the insulating member 20 may be used.

図2では、絶縁性部材20の中に、導電性の流動体21を注入することによって、絶縁性部材20の外周面を、器官70の内壁面に接触させた状態を示している。導電性の流動体21は、例えば、中空管状の可撓性部材(カテーテル)10を介して、外部から注入することができる。また、導電性の流動体21は、例えば、生理食塩水等を用いることができる。 FIG. 2 shows a state in which the outer peripheral surface of the insulating member 20 is brought into contact with the inner wall surface of the organ 70 by injecting the conductive fluid 21 into the insulating member 20 . The conductive fluid 21 can be injected from the outside, for example, through a hollow tubular flexible member (catheter) 10 . Also, for the conductive fluid 21, for example, physiological saline or the like can be used.

本実施形態では、図2に示すように、生体の表面60に、測定基準電極40を貼り付け、絶縁性部材20の中に配置された体内電極10と、測定基準電極40との間の電圧を、生体の外部に配置された増幅器80で増幅することによって計測する。なお、体内電極10の電位は、リード線31を介して、増幅器80に入力される。 In this embodiment, as shown in FIG. 2, a measurement reference electrode 40 is attached to the surface 60 of the living body, and the voltage between the internal electrode 10 placed in the insulating member 20 and the measurement reference electrode 40 is is measured by amplification with an amplifier 80 placed outside the living body. Note that the potential of the body electrode 10 is input to the amplifier 80 via the lead wire 31 .

さらに、本実施形態では、図2に示すように、体内電極10と測定基準電極40との間に、第1の外部抵抗Rg1と、第2の外部抵抗Rg2とが並列に配置されている。そして、スイッチSWによって、体内電極10と測定基準電極40との間に、第1の外部抵抗Rg1が並列接続された状態と、第2の外部抵抗Rg2が並列接続された状態とに切り替えられる。 Furthermore, in this embodiment, a first external resistor Rg1 and a second external resistor Rg2 are arranged in parallel between the body electrode 10 and the measurement reference electrode 40, as shown in FIG. A switch SW switches between a state in which the first external resistor Rg1 is connected in parallel between the body electrode 10 and the measurement reference electrode 40, and a state in which the second external resistor Rg2 is connected in parallel.

図3は、絶縁性部材20の外周面が、器官70の内壁面に接触した状態を模式的に示した図である。ここで、絶縁性部材20の中に注入された流動体21は、導電性を有しているため、流動体21と接触している絶縁性部材20の内周面の電位は、絶縁性部材20の中に配置された電極10の電位と、実質的に同じと考えられる。従って、図3に示すように、電極10と、器官70の内壁面とは、絶縁性部材20を挟んで、静電容量結合型電極を構成していることになる。 FIG. 3 is a diagram schematically showing a state in which the outer peripheral surface of insulating member 20 is in contact with the inner wall surface of organ 70 . Here, since the fluid 21 injected into the insulating member 20 has conductivity, the potential of the inner peripheral surface of the insulating member 20 in contact with the fluid 21 is equal to that of the insulating member 20. It is considered substantially the same as the potential of the electrode 10 placed in 20 . Therefore, as shown in FIG. 3, the electrode 10 and the inner wall surface of the organ 70 constitute a capacitively coupled electrode with the insulating member 20 interposed therebetween.

図4は、絶縁性部材20の外周面を、器官70の内壁面に接触させた状態で、体内電極10と測定基準電極40との間に生じた電圧を測定する方法を示した等価回路図である。 FIG. 4 is an equivalent circuit diagram showing a method of measuring the voltage generated between the body electrode 10 and the measurement reference electrode 40 while the outer peripheral surface of the insulating member 20 is in contact with the inner wall surface of the organ 70. is.

ここで、Vbは、絶縁性部材20が器官70の内壁面に接触した部位の電位で、Rbは、測定基準電極40と、器官70の内壁面が絶縁性部材20と接触した部位との間の生体内インピーダンス、Rinは、増幅器80の入力抵抗を、それぞれ示す。また、体内電極10と測定基準電極40との間に生じた電圧は、増幅器80で増幅されて、出力電圧Voutとして計測される。 Here, Vb is the potential at the site where the insulating member 20 contacts the inner wall surface of the organ 70, and Rb is the potential between the measurement reference electrode 40 and the site at which the inner wall surface of the organ 70 contacts the insulating member 20. and Rin denote the input resistance of amplifier 80, respectively. Also, the voltage generated between the body electrode 10 and the measurement reference electrode 40 is amplified by the amplifier 80 and measured as the output voltage Vout.

なお、体内電極10の電位は、図2に示したリード線31を介して、増幅器80に入力されるため、図4では、等価回路図として、体内電極10の位置を、測定基準電極40と同様に、体内の表面60に表示している。 Since the potential of the body electrode 10 is input to the amplifier 80 via the lead wire 31 shown in FIG. 2, FIG. Similarly, it is shown on the surface 60 within the body.

図4に示した等価回路図において、体内電極10と測定基準電極40との間に、第1の外部抵抗Rg1を並列接続したときに生じる第1の電圧Vは、式(2)で与えられる。 In the equivalent circuit diagram shown in FIG. 4, the first voltage V1 generated when the first external resistor Rg1 is connected in parallel between the body electrode 10 and the measurement reference electrode 40 is given by equation (2). be done.

Figure 0007135371000001
Figure 0007135371000001

また、体内電極10と測定基準電極40との間に、第2の外部抵抗Rg2を並列接続したときに生じる第2の電圧Vは、式(3)で与えられる。 A second voltage V2 generated when a second external resistor Rg2 is connected in parallel between the body electrode 10 and the measurement reference electrode 40 is given by equation (3).

Figure 0007135371000002
Figure 0007135371000002

従って、式(2)、(3)より、測定基準電極40と、器官70の内壁面が絶縁性部材20と接触した部位との間のインピーダンスRbは、以下の式(1)より求めることができる。 Therefore, from equations (2) and (3), the impedance Rb between the measurement reference electrode 40 and the portion where the inner wall surface of the organ 70 contacts the insulating member 20 can be obtained from the following equation (1). can.

Figure 0007135371000003
Figure 0007135371000003

すなわち、式(1)より、測定基準電極40と、器官70の内壁面が絶縁性部材20と接触した部位との間の生体内のインピーダンスRbは、第1の電圧Vと、第2の電圧Vの電圧比(V/V)に基づいて、測定することができる。 That is, from equation (1), the in vivo impedance Rb between the measurement reference electrode 40 and the portion where the inner wall surface of the organ 70 contacts the insulating member 20 is the first voltage V1 and the second voltage V1. It can be measured based on the voltage ratio ( V1 / V2) of the voltage V2.

本実施形態において、生体の内部に体内電極10を配置するとともに、生体の表面に測定基準電極40を配置し、体内電極10と測定基準電極40との間に、第1の外部抵抗Rg1を並列接続したときに生じる第1の電圧V、及び第2の外部抵抗Rg2を並列接続したときに生じる第2の電圧Vを測定することによって、生体内のインピーダンスRbを測定することができる。 In this embodiment, the body electrode 10 is placed inside the living body, the measurement reference electrode 40 is placed on the surface of the body, and the first external resistor Rg1 is connected in parallel between the body electrode 10 and the measurement reference electrode 40. By measuring the first voltage V1 generated when connecting and the second voltage V2 generated when connecting the second external resistor Rg2 in parallel, the impedance Rb in the living body can be measured.

本実施形態によれば、生体内で発生した低周波数帯域の電気信号を利用して、生体内のインピーダンスRbを測定しているため、細胞外液のみのインピーダンスRbを測定することができる。これにより、生体内のインピーダンスRbの変化を検出することによって、細胞外液の変化を精度よく評価することができる。また、体内に外部から電流を流さないため、安全に、生体内のインピーダンスRbを測定することができる。 According to this embodiment, since the impedance Rb in the living body is measured using the electrical signal in the low frequency band generated in the living body, the impedance Rb of only the extracellular fluid can be measured. Accordingly, changes in extracellular fluid can be accurately evaluated by detecting changes in impedance Rb in the living body. Moreover, since no electric current is applied to the body from the outside, the impedance Rb in the body can be safely measured.

なお、本実施形態では、体内電極10と測定基準電極40との間に、第1の外部抵抗Rg1、及び、第2の外部抵抗Rg2を、それぞれ並列接続したが、いずれか一方の抵抗値を無限大にしてもよい。すなわち、体内電極10と測定基準電極40との間に、外部抵抗を接続しないようにしてもよい。 In this embodiment, the first external resistor Rg1 and the second external resistor Rg2 are connected in parallel between the body electrode 10 and the measurement reference electrode 40. It can be infinite. That is, an external resistor may not be connected between the internal electrode 10 and the measurement reference electrode 40 .

この場合、式(1)において、Rg1をRg、Rb2を無限大とすれば、生体内のインピーダンスRbは、式(4)によって求めることができる。 In this case, if Rg1 is Rg and Rb2 is infinite in Equation (1), the in-vivo impedance Rb can be obtained by Equation (4).

Figure 0007135371000004
Figure 0007135371000004

図5は、本発明の他の実施形態における生体内のインピーダンスを測定する方法を示した等価回路図である。なお、本実施形態においても、図4に示したのと同様に、絶縁性部材20の外周面を、器官70の内壁面に接触させた状態で、体内電極10と測定基準電極40との間に生じた電圧を測定する。 FIG. 5 is an equivalent circuit diagram showing a method of measuring impedance in vivo according to another embodiment of the present invention. Also in this embodiment, similarly to the case shown in FIG. Measure the voltage developed at

図5に示すように、本実施形態では、生体の表面60に、グランド電極50をさらに配置し、体内電極10と測定基準電極40との間に生じた電圧を、差動アンプ80によって測定する点が、図4に示した方法と異なる。この場合、グランド電極50の電位は、差動アンプ80のグランド端子に入力される。 As shown in FIG. 5, in this embodiment, a ground electrode 50 is further arranged on the surface 60 of the living body, and the voltage generated between the body electrode 10 and the measurement reference electrode 40 is measured by a differential amplifier 80. This method differs from the method shown in FIG. In this case, the potential of the ground electrode 50 is input to the ground terminal of the differential amplifier 80 .

本実施形態においても、測定基準電極40と、器官70の内壁面が絶縁性部材20と接触した部位との間のインピーダンスRbは、上記の式(1)により求めることができる。この場合、第1の電圧V、及び第2の電圧Vは、その差分をとって差動アンプ80で増幅されて測定されるため、外部からのノイズを除去することができる。これにより、生体内のインピーダンスRbをより精度よく検出することができる。 Also in this embodiment, the impedance Rb between the measurement reference electrode 40 and the portion where the inner wall surface of the organ 70 is in contact with the insulating member 20 can be obtained by the above equation (1). In this case, since the difference between the first voltage V 1 and the second voltage V 2 is taken and amplified by the differential amplifier 80 for measurement, external noise can be removed. Thereby, the impedance Rb in the living body can be detected with higher accuracy.

また、図2は、本発明の一実施形態における生体内インピーダンス測定装置の構成を示す。 Moreover, FIG. 2 shows the structure of the in-vivo impedance measuring device in one Embodiment of this invention.

図2に示すように、本実施形態における生体内インピーダンス測定装置は、生体の内部に配置される体内電極10と、生体の表面60に配置される測定基準電極40と、体内電極10と測定基準電極40との間に、第1の外部抵抗Rg1及び第2の外部抵抗Rg2を、それぞれ切り替え可能に並列接続するスイッチ(接続手段)SWと、スイッチSWにより、体内電極10と測定基準電極40との間に、第1の外部抵抗Rg1を並列接続したときに生じる第1の電圧V、及び第2の外部抵抗Rg2を並列接続したときに生じる第2の電圧Vを測定する増幅器(電圧測定手段)80とを備えている。そして、上記の式(1)を用いて、測定した第1の電圧V及び第2の電圧Vの電圧比V/Vに基づいて、生体内のインピーダンスRbを測定する。 As shown in FIG. 2, the in-vivo impedance measuring device according to the present embodiment includes an in-vivo electrode 10 arranged inside the living body, a measurement reference electrode 40 arranged on the surface 60 of the living body, the in-vivo electrode 10 and the measurement reference. A switch (connecting means) SW for switchably connecting a first external resistor Rg1 and a second external resistor Rg2 in parallel with the electrode 40, and a switch SW to connect the body electrode 10 and the measurement reference electrode 40. An amplifier ( voltage measuring means) 80. Then, the impedance Rb in the living body is measured based on the voltage ratio V1 / V2 of the measured first voltage V1 and the second voltage V2 using the above equation (1).

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、上記実施形態では、絶縁性部材20として、中空袋状のバルーンを例に説明したが、これに限定されず、体内電極10を、絶縁性部材20で被覆したものであればよい。あるいは、体内電極10を、導電性の流動体21を介して絶縁性部材20で被覆したものであってもよい。 Although the present invention has been described in terms of preferred embodiments, such description is not intended to be limiting, and various modifications are of course possible. For example, in the above-described embodiment, the insulating member 20 is a hollow bag-shaped balloon, but the present invention is not limited to this. Alternatively, the body electrode 10 may be covered with an insulating member 20 via a conductive fluid 21 .

また、上記実施形態では、絶縁性部材20内に体内電極10を配置して、絶縁性部材20の外周面を、器官の内壁面に接触させた状態で、第1の電圧V及び第2の電圧Vを測定したが、体内電極10を、直接、器官の内壁面に接触させて、第1の電圧V及び第2の電圧Vを測定してもよい。また、複数個の体内電極10を用いて、第1の電圧V及び第2の電圧Vを測定してもよい。 In the above embodiment, the internal electrode 10 is placed inside the insulating member 20, and the outer peripheral surface of the insulating member 20 is in contact with the inner wall surface of the organ. However, the internal electrode 10 may be brought into direct contact with the inner wall surface of the organ to measure the first voltage V1 and the second voltage V2. Alternatively, a plurality of body electrodes 10 may be used to measure the first voltage V1 and the second voltage V2.

また、上記実施形態では、測定基準電極40を、生体の表面60に配置した例を説明したが、測定基準電極40を、生体の内部に配置してもよい。これにより、生体自身がシールド効果を持つことによって、ノイズを軽減した状態で、生体内のインピーダンスを測定することができる。 Further, in the above-described embodiment, an example in which the measurement reference electrode 40 is arranged on the surface 60 of the living body has been described, but the measurement reference electrode 40 may be arranged inside the living body. As a result, the living body itself has a shielding effect, so that the impedance in the living body can be measured while noise is reduced.

また、上記実施形態では、絶縁性部材20の外周面を、器官の内壁面に接触させた状態で、生体内のインピーダンスを測定した例を説明したが、これに限定されず、例えば、平面部位に絶縁性部材20を押し当てた状態で、生体内のインピーダンスを測定するものであってもよい。 In the above embodiment, an example was described in which the impedance in the living body was measured while the outer peripheral surface of the insulating member 20 was in contact with the inner wall surface of the organ. The impedance in the living body may be measured while the insulating member 20 is pressed against.

また、上記実施形態では、内部に体内電極10が配置された絶縁性部材20を、生体の器官70内に挿入して、生体内のインピーダンスを測定したが、絶縁性部材20を挿入する器官70は、特に限定されない。例えば、心筋が活動(収縮)する際に発生する電位(心内電位)を利用する場合には、内部に体内電極10が配置された絶縁性部材20を、心房にある肺静脈の血管内に挿入することによって、生体内のインピーダンスを測定することができる。この場合、絶縁性部材20が接触した部位を焼灼した後に、測定基準電極40と、絶縁性部材20と接触した部位との間のインピーダンスRbを測定することによって、焼灼効果(細胞外液が増えることで、インピーダンスRbが減少)を評価することができる。 Further, in the above-described embodiment, the insulating member 20 having the internal electrode 10 disposed therein is inserted into the organ 70 of the living body to measure the impedance in the living body. is not particularly limited. For example, when utilizing the potential (intracardiac potential) generated when the myocardium is active (contracting), the insulating member 20 having the internal electrode 10 disposed therein is inserted into the pulmonary vein in the atrium. By inserting it, the impedance in the living body can be measured. In this case, by measuring the impedance Rb between the measurement reference electrode 40 and the site in contact with the insulating member 20 after cauterizing the site in contact with the insulating member 20, the cauterization effect (extracellular fluid increases Therefore, the impedance Rb decreases) can be evaluated.

また、本発明は、病変部の治療、診断において、生体内インピーダンスの変化を利用して、その治療効果や診断を精度よく評価することができるが、病変部の治療結果や状態が、細胞外液の変化に表れるものに対して、特に有効である。例えば、心房細胞のアブレーション治療の他に、心臓肥大(水膨れ)の診断や、肺水腫の診断等に、効果的である。 In addition, in the treatment and diagnosis of lesions, the present invention makes it possible to accurately evaluate the therapeutic effect and diagnosis by using changes in bioimpedance. It is particularly effective for those appearing in changes in liquid. For example, in addition to the ablation treatment of atrial cells, it is effective in diagnosing cardiac hypertrophy (blisters), diagnosing pulmonary edema, and the like.

10 体内電極
20 絶縁性部材
21 流動体
30 中空管状の可撓性部材(カテーテル)
31 リード線
40 測定基準電極
50 グランド電極
60 生体の表面
70 器官
80 増幅器(差動アンプ)
10 body electrodes
20 insulating member
21 Fluid
30 hollow tubular flexible member (catheter)
31 lead wire
40 measurement reference electrode
50 ground electrode
60 Biological surfaces
70 organs
80 amplifier (differential amplifier)

Claims (3)

アブレーション治療によって器官を焼灼した後の生体内の細胞外液のみのインピーダンスを測定する生体内インピーダンス測定装置であって、An in vivo impedance measuring device for measuring the impedance of only extracellular fluid in a living body after cauterizing an organ by ablation treatment,
前記器官の内部に配置される体内電極と、an intracorporeal electrode positioned inside the organ;
生体の表面又は内部に配置される測定基準電極と、a measurement reference electrode placed on or inside a living body;
前記体内電極と前記測定基準電極との間に、第1の外部抵抗及び第2の外部抵抗を、それぞれ切り替え可能に並列接続する接続手段と、connection means for switchably connecting a first external resistor and a second external resistor in parallel between the body electrode and the measurement reference electrode;
前記接続手段により、前記体内電極と前記測定基準電極との間に、前記第1の外部抵抗を並列接続したときに生じる第1の電圧VA first voltage V generated when the first external resistor is connected in parallel between the body electrode and the measurement reference electrode by the connecting means. 1 、及び前記第2の外部抵抗を並列接続したときに生じる第2の電圧V, and a second voltage V produced when the second external resistor is connected in parallel 2 を測定する電圧測定手段と、a voltage measuring means for measuring
を備え、with
前記体内電極は、絶縁性部材内に配置されており、The body electrode is disposed within an insulating member,
前記第1の電圧Vthe first voltage V 1 及び第2の電圧Vand a second voltage V 2 は、前記絶縁性部材を、前記器官に挿入して、前記絶縁性部材の外周面を前記器官の内壁面に接触させた状態で測定され、is measured with the insulating member inserted into the organ and the outer peripheral surface of the insulating member in contact with the inner wall surface of the organ,
前記第1の外部抵抗をRg1、前記第2の外部抵抗Rg2としたとき、前記絶縁性部材が接触した前記器官の部位を焼灼した後の生体内の細胞外液のみのインピーダンスRbは、以下の式(1)に基づいて測定される、生体内インピーダンス測定装置。Assuming that the first external resistance is Rg1 and the second external resistance is Rg2, the impedance Rb of only the extracellular fluid in the living body after cauterization of the part of the organ in contact with the insulating member is given by the following: An in-vivo impedance measuring device that is measured based on the formula (1).
Figure 0007135371000005
Figure 0007135371000005
前記第1の外部抵抗及び第2の外部抵抗のいずれか一方は、抵抗値が無限大である、請求項1に記載の生体内インピーダンス測定装置。2. The in-vivo impedance measuring device according to claim 1, wherein one of said first external resistance and said second external resistance has an infinite resistance value. 前記体内電極には、該体内電極の電位を外部に導出するリード線が接続されており、A lead wire is connected to the body electrode for leading the potential of the body electrode to the outside,
前記体内電極と前記測定基準電極との間の電圧測定は、前記リード線を介して行われる、請求項1に記載の生体内インピーダンス測定装置。2. The in-vivo impedance measuring device according to claim 1, wherein voltage measurement between said in-vivo electrode and said measurement reference electrode is performed via said lead wire.
JP2018059475A 2018-03-27 2018-03-27 In vivo impedance measurement device Active JP7135371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018059475A JP7135371B2 (en) 2018-03-27 2018-03-27 In vivo impedance measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018059475A JP7135371B2 (en) 2018-03-27 2018-03-27 In vivo impedance measurement device

Publications (2)

Publication Number Publication Date
JP2019170450A JP2019170450A (en) 2019-10-10
JP7135371B2 true JP7135371B2 (en) 2022-09-13

Family

ID=68167903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018059475A Active JP7135371B2 (en) 2018-03-27 2018-03-27 In vivo impedance measurement device

Country Status (1)

Country Link
JP (1) JP7135371B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7402388B1 (en) 2023-07-18 2023-12-20 康裕 中島 Ablation status determination system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080027350A1 (en) 2006-07-13 2008-01-31 Advanced Cardiovascular Systems, Inc. Methods and apparatus for localization, diagnosis, contact or activity detection of bio-electric tissue
JP2009518151A (en) 2005-12-06 2009-05-07 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Evaluation of electrode coupling for tissue ablation
JP2010169527A (en) 2009-01-22 2010-08-05 Olympus Corp Method and apparatus for measuring frequency characteristic of internal impedance of fuel cell
JP2011152430A (en) 2000-07-07 2011-08-11 Biosense Webster Inc Method for detecting electrode-object contact

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3898754B2 (en) * 1993-07-01 2007-03-28 ボストン サイエンティフィック リミテッド Imaging, potential detection and ablation catheters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152430A (en) 2000-07-07 2011-08-11 Biosense Webster Inc Method for detecting electrode-object contact
JP2009518151A (en) 2005-12-06 2009-05-07 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Evaluation of electrode coupling for tissue ablation
US20080027350A1 (en) 2006-07-13 2008-01-31 Advanced Cardiovascular Systems, Inc. Methods and apparatus for localization, diagnosis, contact or activity detection of bio-electric tissue
JP2010169527A (en) 2009-01-22 2010-08-05 Olympus Corp Method and apparatus for measuring frequency characteristic of internal impedance of fuel cell

Also Published As

Publication number Publication date
JP2019170450A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US11896284B2 (en) System and method for measurement of an impedance using a catheter such as an ablation catheter
EP3206612B1 (en) Tissue diagnosis and treatment using mini-electrodes
ES2261350T3 (en) MULTIELECTRODE CATHETER, SYSTEM AND PROCEDURE.
KR100859675B1 (en) System For Detecting Electrode-Tissue Contact
JP5005296B2 (en) Skin impedance detection
JP2017217473A (en) Balloon catheter, and impedance-based methods for detecting occlusion related to balloon catheter
JP2021030086A (en) Estimation of electrode-tissue contact using stem electrode and edge electrode
JP6732425B2 (en) Minimization of effective parasitic capacitance for microablation electrodes
JP2017508528A (en) Electrophysiology system
JP2015513350A (en) A system for evaluating the effects of ablation treatment of cardiac tissue using photoacoustic method
TW201206393A (en) Catheter for electric potential measurement
US20190183392A1 (en) Electrochemical Impedance Spectroscopy
US20210401495A1 (en) Method and system for monitoring tissue ablation through constrained impedance measurements
JP2018501837A (en) System and method for high resolution mapping of tissue
JP7135371B2 (en) In vivo impedance measurement device
JP7106926B2 (en) In vivo potential measuring instrument
JP6950337B2 (en) In-vivo potential measuring instrument and in-vivo potential measuring system
JP2022115837A (en) Managing medical device equipment by online magnetic calibration of catheter
Hashim et al. Modelling dynamically re-sizeable electrodes (DRE) for targeted transcutaneous measurements in impedance plethysmography
JP7211002B2 (en) In vivo potential measuring instrument, in vivo potential measuring method, and in vivo potential measuring system
BR112021001121A2 (en) SYSTEMS AND METHODS FOR MONITORING PHYSIOLOGICAL PARAMETERS DURING DIATERMY
WO2020196142A1 (en) Medical device
Zhang et al. Flexible micro sensor for intravascular vulnerable plaque diagnostic with electrical impedance spectroscopy
KR100482191B1 (en) Mid-board of computer system for detecting ECG and BIA with one sencing means and method of operating it
JP2023171320A (en) Impedance-based ablation index for IRE

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R151 Written notification of patent or utility model registration

Ref document number: 7135371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151