JP7132886B2 - Corrosion Penetration Hydrogen Measuring Device and Corrosion Penetration Hydrogen Evaluation Method - Google Patents

Corrosion Penetration Hydrogen Measuring Device and Corrosion Penetration Hydrogen Evaluation Method Download PDF

Info

Publication number
JP7132886B2
JP7132886B2 JP2019098954A JP2019098954A JP7132886B2 JP 7132886 B2 JP7132886 B2 JP 7132886B2 JP 2019098954 A JP2019098954 A JP 2019098954A JP 2019098954 A JP2019098954 A JP 2019098954A JP 7132886 B2 JP7132886 B2 JP 7132886B2
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
specimen
corrosion
penetration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019098954A
Other languages
Japanese (ja)
Other versions
JP2020193851A (en
Inventor
学 北原
俊男 堀江
彩 杉田
努 柿本
正顕 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2019098954A priority Critical patent/JP7132886B2/en
Publication of JP2020193851A publication Critical patent/JP2020193851A/en
Application granted granted Critical
Publication of JP7132886B2 publication Critical patent/JP7132886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、腐食により金属内に侵入する水素量を、腐食環境と関連付けて測定する装置等に関する。 TECHNICAL FIELD The present invention relates to an apparatus and the like for measuring the amount of hydrogen that penetrates into metal due to corrosion in association with the corrosive environment.

金属材料内に侵入した水素は、金属材料を脆化させ、その機械的特性を劣化させる。水素脆化には、硫化水素環境下で起こる水素誘起割れ等もあるが、高強度鋼部材が突然、脆性破壊する遅れ破壊が問題とされることが多い。遅れ破壊は、通常、大気中等における腐食に起因して生じる。 Hydrogen penetrating into the metallic material embrittles the metallic material and degrades its mechanical properties. Hydrogen embrittlement includes hydrogen-induced cracking that occurs in a hydrogen sulfide environment. Delayed fracture usually occurs due to corrosion in air or the like.

水素脆化対策を行うため、先ず、金属材料(特に鋼材)へ侵入する微量な水素量(濃度)の把握が必要となる。侵入水素量の測定方法には、全面抽出法(溶融法、置換法、昇温法等)もあるが、水素脆化との関連性が強い拡散性水素を経時的に測定する片面透過法(電気化学的水素透過法)がしばしば利用される。これに関連する記載が、下記の特許文献にある。 In order to take measures against hydrogen embrittlement, it is first necessary to grasp the very small amount (concentration) of hydrogen that penetrates metal materials (especially steel materials). Methods for measuring the amount of penetrating hydrogen include the full-surface extraction method (melting method, replacement method, temperature rising method, etc.), but the single-sided transmission method ( Electrochemical hydrogen permeation methods) are often used. A description related to this can be found in the following patent documents.

特開2015-222264号公報JP 2015-222264 A

E. Akiyama et al., Electrochimica Acta, 56 1799-1805 (2011)E. Akiyama et al., Electrochimica Acta, 56 1799-1805 (2011) T. Nishimura, J. Power Energy System, 2 530-537 (2008)T. Nishimura, J. Power Energy System, 2 530-537 (2008)

特許文献1は、鋼板の水素検出面側に複数の電気化学セルを設け、その内の一つを基準セルとして、温度依存した残余電流値で補正された水素透過電流(アノード電流)値に基づいて、鋼板内へ侵入した水素量を算出することを提案している。但し、特許文献1は、単に、侵入水素量を測定しているに留まる。 In Patent Document 1, a plurality of electrochemical cells are provided on the hydrogen detection surface side of a steel plate, and one of them is used as a reference cell, based on the hydrogen permeation current (anode current) value corrected by the temperature-dependent residual current value. proposed to calculate the amount of hydrogen that has penetrated into the steel sheet. However, Patent Literature 1 merely measures the amount of intruding hydrogen.

ちなみに、pH(potential of hydrogen/水素イオン指数)がW電極により測定され得ることは非特許文献1や非特許文献2に記載がある。また、塩化物イオン(Cl-)濃度がAg/AgCl電極により測定され得ることも非特許文献2に記載がある。酸化還元電位(ORP)を測定するPt電極は、市販されている(例えば、株式会社堀場製作所製防水白金複合形 ORP電極 9300-10D)。 By the way, Non-Patent Document 1 and Non-Patent Document 2 describe that pH (potential of hydrogen) can be measured by a W electrode. Non-Patent Document 2 also describes that the chloride ion (Cl ) concentration can be measured by an Ag/AgCl electrode. Pt electrodes for measuring oxidation-reduction potential (ORP) are commercially available (for example, waterproof platinum composite ORP electrode 9300-10D manufactured by Horiba, Ltd.).

本発明は、このような事情に鑑みてなされたものであり、従来とは異なり、腐食環境と関連付けて侵入水素量を測定できる装置等を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a device and the like that can measure the amount of penetrating hydrogen in relation to a corrosive environment, unlike conventional devices.

本発明者はこの課題を解決すべく鋭意研究した結果、腐食環境と侵入水素量を電気化学的に併行して測定できる装置(デバイス)を新たに開発した。これらの成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of intensive research to solve this problem, the present inventor newly developed an apparatus (device) capable of electrochemically measuring the corrosive environment and the amount of penetrating hydrogen at the same time. By developing these results, the present invention described below has been completed.

《腐食侵入水素測定装置》
(1)本発明は、評価金属からなる試験体と、該試験体の第1面側に設けられた腐食環境測定部と、該試験体の第2面側に設けられた透過水素測定部と、を備える腐食侵入水素測定装置であって、該腐食環境測定部は、第1参照電極と、該第1参照電極に対して該第1面上の腐食環境に応じた自然電位を示す指標電極と、該試験体の第1面と該指標電極との間に介在する絶縁性多孔質層とを有し、該透過水素測定部は、該試験体の第2面側にある電解液を保持するアノード槽と、該電解液に接する第2参照電極および補助電極とを有する腐食侵入水素測定装置である。
《Corrosion Penetration Hydrogen Measuring Device》
(1) The present invention comprises a test piece made of an evaluation metal, a corrosion environment measurement section provided on the first surface side of the test piece, and a hydrogen permeation measurement section provided on the second surface side of the test piece. wherein the corrosive environment measuring unit includes a first reference electrode and an index electrode that indicates a natural potential corresponding to the corrosive environment on the first surface with respect to the first reference electrode. and an insulating porous layer interposed between the first surface of the specimen and the indicator electrode, the hydrogen permeation measuring section holding the electrolyte on the second surface side of the specimen and a second reference electrode and an auxiliary electrode in contact with the electrolytic solution.

(2)本発明の腐食侵入水素測定装置(単に「測定装置」という。)を用いれば、評価対象(構造物等)を構成する金属(評価金属)について、それが存在する環境を指標する情報(環境情報)と関連付けて、評価金属への侵入水素量を測定できる。そして、環境情報と侵入水素量の経時変化を示す相関データを解析(例えば、機械学習によるデータ解析等)すれば、例えば、構造物等の寿命予測や長寿命化対策等を適確に行うことが可能となる。 (2) By using the corrosion penetration hydrogen measuring device of the present invention (simply referred to as "measuring device"), information indicating the environment in which the metal (evaluation metal) constituting the evaluation object (structure etc.) exists In association with (environmental information), the amount of hydrogen penetrating into the evaluation metal can be measured. Then, by analyzing the correlation data that shows the environmental information and the amount of infiltrated hydrogen over time (for example, data analysis by machine learning), it is possible to accurately predict the life of structures and take measures to extend the life. becomes possible.

《腐食侵入水素評価方法》
本発明は、測定装置のみならず、評価方法としても把握できる。例えば、本発明は、試験体がある腐食環境の測定と該腐食環境から該試験体への侵入水素量の測定とを併行して行う測定工程を備え、該試験体への侵入水素量を該試験体の腐食環境と関連付けて評価する腐食侵入水素評価方法(単に「評価方法」という。)でもよい。
《Method for evaluating corrosion penetration hydrogen》
The present invention can be grasped not only as a measuring device but also as an evaluation method. For example, the present invention includes a measurement step of simultaneously measuring a certain corrosive environment of a test piece and measuring the amount of hydrogen entering the test piece from the corrosive environment, and measuring the amount of hydrogen entering the test piece. A corrosion penetration hydrogen evaluation method (simply referred to as “evaluation method”) that evaluates in relation to the corrosive environment of the test piece may also be used.

なお、侵入水素量の測定は、電気化学水素透過法により行うとよい。電気化学的水素透過法は、腐食により試験体の第1面(水素発生面/水素侵入面)側で発生した水素原子(Had)が、その試験体を透過して試験体の第2面(水素放出面/水素検出面)側から酸化水素(H+)として放出されるときに、その第2面側で検出される水素透過電流(酸化電流)に基づいて、試験体へ侵入する水素量を測定する方法である。 It should be noted that the measurement of the amount of infiltrated hydrogen is preferably carried out by an electrochemical hydrogen permeation method. In the electrochemical hydrogen permeation method, hydrogen atoms (Had) generated on the first surface (hydrogen generating surface/hydrogen permeating surface) side of the specimen due to corrosion permeate the specimen and pass through the second surface ( The amount of hydrogen that penetrates into the specimen based on the hydrogen permeation current (oxidation current) detected on the second surface side when hydrogen oxide (H + ) is released from the hydrogen release surface/hydrogen detection surface) side. is a method of measuring

《腐食侵入水素評価システム》
本発明は、測定装置や評価方法に限らず、評価システムとしても把握できる。例えば、本発明は、上述した測定装置に加えて、第1参照電極に対する(各)指標電極の電位(自然電位)を計測する第1計測手段と、作用電極である試験体へ第2参照電極に対して所定の電圧を印加しつつ、試験体と補助電極の間に流れる水素透過電流(酸化電流/アノード電流)を計測する第2計測手段とを備える腐食侵入水素評価システム(単に「評価システム」という。)でもよい。計測される自然電位またはその自然電位から求まる環境情報と、水素透過電流とを時系列に沿って対応させると、腐食環境と侵入水素量の経時変化を示す相関データが得られる。なお、自然電位の測定系は二電極系であり、水素透過電流の測定系は三電極系であるが、いずれの計測手段も、例えば、ポテンショスタットを用いて行える。
《Corrosion Penetration Hydrogen Evaluation System》
The present invention can be understood not only as a measuring device and an evaluation method, but also as an evaluation system. For example, in addition to the measuring apparatus described above, the present invention includes first measuring means for measuring the potential (spontaneous potential) of (each) index electrode with respect to the first reference electrode, A corrosion penetration hydrogen evaluation system (simply called "evaluation system "." By correlating the measured natural potential or the environmental information obtained from the natural potential with the hydrogen permeation current in chronological order, correlation data showing changes over time in the corrosive environment and the amount of penetrating hydrogen can be obtained. The self-potential measurement system is a two-electrode system, and the hydrogen permeation current measurement system is a three-electrode system.

《その他》
(1)試験体は、測定専用の試験片でもよいし、評価対象である部材や構造物(移動体を含む)等の現物を利用したものでもよい。現物を試験体とするとき、測定装置は、その現物に取り可能な測定セル(測定チップ)からなるとよい。
"others"
(1) The test piece may be a test piece dedicated to measurement, or may be an actual object such as a member or structure (including moving objects) to be evaluated. When an actual product is used as a test piece, the measuring device preferably comprises a measuring cell (measuring chip) that can be taken on the actual product.

(2)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。特に断らない限り、本明細書でいう「x~ynm」はxnm~ynmを意味する。他の単位系(μm等)についても同様である。 (2) Unless otherwise specified, "x to y" as used herein includes the lower limit value x and the upper limit value y. A new range such as “a to b” can be established as a new lower or upper limit of any numerical value included in the various numerical values or numerical ranges described herein. Unless otherwise specified, "x to ynm" as used herein means xnm to ynm. The same applies to other unit systems (μm, etc.).

腐食侵入水素評価システムの一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of a corrosion penetration hydrogen evaluation system; そのA部の拡大図である。It is an enlarged view of the A part. pHとW電極の自然電位との関係を示すグラフである。4 is a graph showing the relationship between pH and the natural potential of a W electrode. Cl-濃度とAg/AgCl電極の自然電位との関係を示すグラフである。4 is a graph showing the relationship between Cl concentration and spontaneous potential of Ag/AgCl electrode. 水素透過電流とpH、Cl-濃度およびORPとの相関を示すグラフである。1 is a graph showing the correlation between hydrogen permeation current and pH, Cl concentration and ORP.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の測定装置のみならず、評価方法、評価システム等にも適宜該当し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 In addition to the components of the present invention described above, one or more components selected arbitrarily from this specification may be added. The contents described in this specification may appropriately apply not only to the measuring apparatus of the present invention, but also to the evaluation method, the evaluation system, and the like. Which embodiment is the best depends on the target, required performance, and the like.

《試験体》
試験体は、水素脆化や遅れ破壊等の評価対象(部材や構造物等)に沿った材質(評価金属)からなればよい。その材質は、例えば、鉄系材料の他、アルミニウム系材料、マグネシウム系材料、チタン系材料等である。「X系材料」は、主成分(原子割合が最大なもの)がX元素であることを意味し、Xの純金属、合金、複合材等を含む。
《Test body》
The test piece should be made of a material (evaluation metal) that conforms to the evaluation object (member, structure, etc.) such as hydrogen embrittlement and delayed fracture. The material thereof is, for example, an iron-based material, an aluminum-based material, a magnesium-based material, a titanium-based material, or the like. "X-based material" means that the main component (the one with the largest atomic ratio) is the X element, and includes X pure metals, alloys, composite materials, and the like.

試験体は、展伸材からなっても鋳造材からなってよい。また試験体は、熱処理等がなされたものでもよい。試験体は、全体が同じ材料または組織でもよいし、表面改質等がされたものでもよい。試験体の基材は、透過水素測定部の作用極を兼ねる金属からなるが、その表面(水素発生面側/第1面側)には、金属や非金属(樹脂、セラミックス、カーボン系材料等)からなる被覆層(めっき、膜)があってもよい。 The specimen may consist of a wrought material or a cast material. Also, the specimen may be one that has undergone heat treatment or the like. The specimen may be made entirely of the same material or structure, or may be surface-modified. The base material of the specimen is made of a metal that also serves as the working electrode of the hydrogen permeation measurement part, but the surface (hydrogen generation surface side / first surface side) has metals and non-metals (resins, ceramics, carbon materials, etc.) ) may be a coating layer (plating, film).

試験体の形態(形状、大きさ)に応じて、腐食環境測定部と透過水素測定部を設ける第1面側と第2面側の選択も適宜なされる。例えば、試験体の同面上または連続面上で、一部の領域を第1面側、他の領域を第2面側としてもよい。試験体が(薄)板状なら、通常、一面(表面)側とその反対面(裏面)側が第1面側と第2面側とされる。 Depending on the form (shape, size) of the specimen, the first surface side and the second surface side on which the corrosion environment measurement section and the hydrogen permeation measurement section are provided are appropriately selected. For example, on the same surface or continuous surface of the specimen, a part of the area may be on the first surface side and the other area may be on the second surface side. If the specimen is (thin) plate-like, one side (front side) and the opposite side (back side) are usually defined as the first side and the second side.

《腐食環境測定》
腐食環境測定は、腐食環境に曝される試験体の表面(水素発生面/第1面)付近でなされる。腐食環境の測定系は、参照電極と腐食環境に応じた自然電位を示す指標電極とからなる二電極系で足る。
《Corrosion environment measurement》
The corrosive environment measurement is performed near the surface (hydrogen generation surface/first surface) of the specimen exposed to the corrosive environment. A two-electrode system consisting of a reference electrode and an index electrode that indicates the self-potential according to the corrosive environment is sufficient for the measuring system of the corrosive environment.

試験体の表面(第1面)と指標電極との間に介在させる絶縁性多孔質層は、指標電極と試験体との接触による短絡を回避し、試験体の自然電位ではなく、指標電極の自然電位の測定を可能とする。換言すると、絶縁性多孔質層は、指標電極と参照電極との間のイオン伝導を許容しつつ、指標電極と試験体との間の電子伝導を制限する。これにより、指標電極の表面で起こる電気化学反応を、試験体の表面で生じる電気化学反応と分離して、抽出できる。 The insulating porous layer interposed between the surface (first surface) of the test piece and the index electrode avoids a short circuit due to contact between the index electrode and the test piece, and the potential of the index electrode instead of the natural potential of the test piece Enables measurement of natural potential. In other words, the insulating porous layer limits electronic conduction between the indicator electrode and the specimen while permitting ionic conduction between the indicator electrode and the reference electrode. As a result, the electrochemical reaction occurring on the surface of the indicator electrode can be separated from the electrochemical reaction occurring on the surface of the specimen and extracted.

絶縁性多孔質層は、電子伝導を制限する絶縁性と、イオン伝導を許容する多孔質性とを備えれば、その材質や形態を問わない。絶縁性多孔質層は、例えば、試験体の第1面側に形成されていても、指標電極の表面側に形成されていてもよい。また、絶縁性多孔質層は、少なくとも、指標電極と試験体の直接接触を回避できる局所にあればよい。勿論、試験体の第1面全体や指標電極の表面全体を絶縁性多孔質層で被覆してもよい。絶縁性多孔質層は、例えば、多孔質樹脂(例えば樹脂塗膜)や、多孔質セラミックス(化合物粒子の焼成体等)からなる。 The insulating porous layer may be of any material or form as long as it has insulating properties that limit electronic conduction and porosity that allows ionic conduction. The insulating porous layer may be formed, for example, on the first surface side of the specimen or may be formed on the surface side of the index electrode. In addition, the insulating porous layer may be at least localized so as to avoid direct contact between the index electrode and the specimen. Of course, the entire first surface of the specimen or the entire surface of the index electrode may be covered with an insulating porous layer. The insulating porous layer is made of, for example, a porous resin (for example, a resin coating) or porous ceramics (such as a sintered body of compound particles).

腐食環境の指標値(環境情報)には種々あるが、例えば、pH、塩化物イオン(Cl-)濃度、酸化還元電位(ORP)がある。そこで指標電極は、例えば、pHに応じた自然電位を示すpH用電極、塩化物イオン(Cl-)濃度に応じた自然電位を示すCl-用電極および酸化還元電位(ORP)に応じた自然電位を示すORP用電極から選択された一種以上であるとよい。 There are various index values (environmental information) of a corrosive environment, such as pH, chloride ion (Cl - ) concentration, and oxidation-reduction potential (ORP). Therefore, the indicator electrodes are, for example, a pH electrode showing a natural potential corresponding to pH, a Cl electrode showing a natural potential corresponding to chloride ion (Cl ) concentration, and a natural potential corresponding to oxidation-reduction potential (ORP). It is preferably one or more selected from ORP electrodes that show

pH用電極は、例えば、W、SbまたはVのいずれかからなる。Cl-用電極は、例えば、Ag/AgClまたはSnのいずれかからなる。ORP用電極は、例えば、Ptからなる。なお、Ag/AgClは、水に不要なAgClがAgの表面に生成したものを意味する。 The pH electrode is made of W, Sb or V, for example. The electrodes for Cl - consist of, for example, either Ag/AgCl or Sn. The ORP electrodes are made of Pt, for example. Note that Ag/AgCl means that AgCl, which is unnecessary for water, is produced on the surface of Ag.

ちなみに、プロトン濃度[H+]であるpHは、金属の腐食速度や不動態皮膜の安定性等に影響し得る。例えば、pHが7付近(中性付近)であるとき、溶存酸素の還元反応が支配的になり、腐食速度ひいて侵入水素量が一定となり得る。Cl-濃度も不動態皮膜の安定性等に影響し得る。例えば、評価金属がAl系材料やステンレス鋼等である場合、Cl-濃度が増加して不動態皮膜が損傷すると、腐食が進行して侵入水素量も増加し得る。ORPは、液中におけるプロトン以外の酸化剤の存在を示し得る。ORPも高くなり、そのような酸化剤が多くなると、腐食が促進され、侵入水素量も増加し得る。 Incidentally, pH, which is the proton concentration [H + ], can affect the corrosion rate of metals, the stability of passive films, and the like. For example, when the pH is around 7 (near neutrality), the reduction reaction of dissolved oxygen becomes dominant, and the corrosion rate and thus the amount of penetrating hydrogen can be constant. The Cl - concentration can also affect the stability of the passive film. For example, when the metal to be evaluated is an Al-based material, stainless steel, or the like, if the passive film is damaged due to an increase in Cl.sup.- concentration, corrosion progresses and the amount of penetrating hydrogen may increase. ORP can indicate the presence of oxidants other than protons in the fluid. Higher ORPs and more such oxidants can also accelerate corrosion and increase the amount of hydrogen intrusion.

《透過水素測定》
透過水素測定は、試験体の第2面側(水素検出面側)において、アノード槽内の電解液に接する試験体(作用極)と、その電解液に接する参照電極および補助電極とからなる三電極系でなされる。
《Permeation hydrogen measurement》
Hydrogen permeation measurement is performed on the second surface side (hydrogen detection surface side) of the test piece. made in the electrode system.

アノード槽は、三電極間のイオン伝導を可能にする電解液を保持する。電解液は、例えば、多孔質体や海綿体等に保持された状態でもよいし、ゲル状でもよい。電解液は、例えば、アルカリ性溶液(pHが8~14さらには9~13程度)である。このとき、試験体は第2面において不動態化し、その溶出等が回避される。電解液は、例えば、0.001~1mol/LのNaOH水溶液であるとよい。 The anode reservoir holds an electrolyte that allows ionic conduction between the three electrodes. The electrolytic solution may be held in, for example, a porous body, a sponge body, or the like, or may be in the form of a gel. The electrolytic solution is, for example, an alkaline solution (pH of about 8 to 14, further 9 to 13). At this time, the specimen is passivated on the second surface, and its elution or the like is avoided. The electrolytic solution may be, for example, a 0.001 to 1 mol/L NaOH aqueous solution.

試験体の第2面側には、評価金属とは異なる水素透過金属層が形成されているとよい。水素透過金属は、例えば、周期律表の第5族元素(V、Nb、Ta等)、第8族元素(Fe等)、第10族元素(Nb、Pd、Pt等)等である。特に、水素の透過を阻害する(自然)酸化膜等を表面に形成し難い金属、例えば、PdまたはNiの純金属または合金等が好ましい。水素透過金属層は、例えば、厚さが10nm~10μmさらには50nm~1μm程度の薄膜でよい。このような水素透過金属層は、例えば、真空蒸着やスパッタリングにより形成される。 A hydrogen-permeable metal layer different from the evaluation metal is preferably formed on the second surface side of the specimen. Hydrogen-permeable metals are, for example, Group 5 elements (V, Nb, Ta, etc.), Group 8 elements (Fe, etc.), Group 10 elements (Nb, Pd, Pt, etc.) of the periodic table. In particular, it is preferable to use a metal that does not easily form a (natural) oxide film or the like that inhibits permeation of hydrogen, such as a pure metal or an alloy of Pd or Ni. The hydrogen-permeable metal layer may be, for example, a thin film with a thickness of about 10 nm to 10 μm, further 50 nm to 1 μm. Such a hydrogen-permeable metal layer is formed by vacuum deposition or sputtering, for example.

《参照電極/補助電極》
試験体の第1面側に設けられる第1参照電極と、試験体の第2面側に設けられる第2参照電極には、例えば、イリジウム―酸化イリジウム(Ir/IrOx)、銀―塩化銀電極(Ag/AgCl)、可逆水素電極(RHE)、標準水素電極(SHE)、パラジウム-水素電極(Pd/H)、飽和カルメロ電極(SCE:Hg/HgCl)、水銀―酸化銀電極(Hg/HgO)、飽和硫酸銅電極等から選択された適当な基準電極が用いられる。一例として、第1参照電極にはAg/AgCl(飽和KCl)、第2参照電極にはIr/IrOxを用いると、長期的に安定した電位の測定が可能となる。
《Reference electrode/Auxiliary electrode》
For the first reference electrode provided on the first surface side of the specimen and the second reference electrode provided on the second surface side of the specimen, for example, iridium-iridium oxide (Ir/IrOx), silver-silver chloride electrode (Ag/AgCl), reversible hydrogen electrode (RHE), standard hydrogen electrode (SHE), palladium-hydrogen electrode (Pd/H 2 ), saturated carmelo electrode (SCE: Hg/Hg 2 Cl 2 ), mercury-silver oxide electrode A suitable reference electrode selected from (Hg/HgO), a saturated copper sulfate electrode, or the like is used. As an example, when Ag/AgCl (saturated KCl) is used for the first reference electrode and Ir/IrOx is used for the second reference electrode, it is possible to measure potentials stably over a long period of time.

補助電極は、アノード槽内の電解液に不溶性または難溶性であり、試験体(評価金属)よりも標準電極電位が貴な金属等からなるとよい。その代表例はPt電極である。その他、貴金属(Au、Ag等)、酸化物半導体、ニクタイド導電材(TiP、FeTiP等)などからなる補助電極を用いてもよい。 The auxiliary electrode is preferably made of a metal or the like that is insoluble or sparingly soluble in the electrolytic solution in the anode tank and has a higher standard electrode potential than the specimen (evaluation metal). A typical example is a Pt electrode. In addition, auxiliary electrodes made of noble metals (Au, Ag, etc.), oxide semiconductors, pnictide conductive materials (Ti 3 P, FeTiP, etc.), etc. may be used.

《腐食侵入水素評価システム》
本発明の一例として、腐食侵入水素評価システムS(単に「システムS」という。)の概要を図1に模式的に示した。また、図1A中のA部の拡大図を図1Bに示した。なお、実際の配置とは関係なく、説明の便宜、上下方向と左右方向は、図1Aに矢印で示す方向とする。
《Corrosion Penetration Hydrogen Evaluation System》
As an example of the present invention, an overview of a corrosion penetration hydrogen evaluation system S (simply referred to as "system S") is schematically shown in FIG. Moreover, the enlarged view of the A section in FIG. 1A was shown to FIG. 1B. For convenience of explanation, the vertical direction and the horizontal direction are the directions indicated by the arrows in FIG. 1A, regardless of the actual arrangement.

システムSは、電気化学セルD(腐食侵入水素測定装置)と、ポテンショスタットP1、P2を備える。電気化学セルDは、腐食環境測定部1と、透過水素測定部2と、試験体3を備える。 The system S includes an electrochemical cell D (corrosion penetrating hydrogen measuring device) and potentiostats P1 and P2. The electrochemical cell D includes a corrosive environment measurement unit 1, a hydrogen permeation measurement unit 2, and a specimen 3.

試験体3は、評価対象である金属製の基板30からなり、その上面30aの一角に設けた絶縁性多孔質層31と、その下面30bを被覆する水素透過金属層32と有する。この場合、上面30aが試験体の第1面に相当し、水素透過金属層32の表面(下面)が試験体の第2面に相当する。 The specimen 3 is composed of a metal substrate 30 to be evaluated, and has an insulating porous layer 31 provided at one corner of an upper surface 30a and a hydrogen-permeable metal layer 32 covering its lower surface 30b. In this case, the upper surface 30a corresponds to the first surface of the specimen, and the surface (lower surface) of the hydrogen-permeable metal layer 32 corresponds to the second surface of the specimen.

腐食環境測定部1は、絶縁性多孔質層31上に配設した指標電極11と参照電極12からなる。指標電極11は、pH用電極111、Cl-用電極112およびORP用電極113からなる。 The corrosive environment measuring unit 1 comprises an index electrode 11 and a reference electrode 12 arranged on an insulating porous layer 31 . The indicator electrode 11 consists of a pH electrode 111 , a Cl electrode 112 and an ORP electrode 113 .

透過水素測定部2は、アノード槽20と、参照電極22と、補助電極23とを備える。アノード槽20は、水素透過金属層32に接触した電解液21を、液密に保持している。 The hydrogen permeation measuring unit 2 includes an anode tank 20 , a reference electrode 22 and an auxiliary electrode 23 . The anode tank 20 liquid-tightly holds the electrolytic solution 21 in contact with the hydrogen-permeable metal layer 32 .

ポテンショスタットP1の作用極ポートw11~13には、指標電極111~113がそれぞれ順に接続されている。ポテンショスタットP1の参照極ポートr1には参照電極12が接続されている。 Index electrodes 111 to 113 are connected in order to working electrode ports w11 to w13 of the potentiostat P1, respectively. A reference electrode 12 is connected to the reference electrode port r1 of the potentiostat P1.

ポテンショスタットP2の作用極ポートw2、参照極ポートr2および対極ポートc2には、基板30(作用電極/試料電極)、参照電極22および補助電極23がそれぞれ順に接続されている。 A substrate 30 (working electrode/sample electrode), a reference electrode 22 and an auxiliary electrode 23 are connected in order to the working electrode port w2, reference electrode port r2 and counter electrode port c2 of the potentiostat P2, respectively.

上述したシステムSを用いて、鋼材(評価金属)について、腐食環境と侵入水素量の相関を明らかにした。このような具体例に基づいて本発明をより詳しく説明する。 Using the system S described above, the correlation between the corrosive environment and the amount of penetrating hydrogen was clarified for the steel material (evaluation metal). The present invention will be described in more detail based on such specific examples.

《基礎試験》
(1)pH
pH用電極111となるW電極と、参照電極12となるKCl飽和Ag/AgCl電極とを用いて、pHと自然電位(参照電極12に対する電位)の関係を予め求めた。その結果を図2Aに示した。なお、この測定時の電解液には、pHが既知な塩酸(HCl)または水酸化ナトリウム(NaOH)の水溶液を用いた。各水溶液のpHはガラス電極(法)により予め測定しておいた。
《Basic test》
(1) pH
Using a W electrode as the pH electrode 111 and a KCl-saturated Ag/AgCl electrode as the reference electrode 12, the relationship between pH and spontaneous potential (potential relative to the reference electrode 12) was obtained in advance. The results are shown in FIG. 2A. An aqueous solution of hydrochloric acid (HCl) or sodium hydroxide (NaOH) having a known pH was used as the electrolytic solution for this measurement. The pH of each aqueous solution was previously measured with a glass electrode (method).

図2Aからわかるように、W電極の自然電位(E)はpHに応じて直線的に変化し、次の関係式が成立することがわかった。
E=-0.0445pH+0.0728 (式11)
逆にいうと、自然電位(E)が求まると、pHは次の校正式から定まる。
pH=-(E-0.0728)/0.0445 (式12)
As can be seen from FIG. 2A, it was found that the natural potential (E) of the W electrode changed linearly according to pH, and the following relational expression was established.
E = -0.0445 pH + 0.0728 (equation 11)
Conversely, when the natural potential (E) is determined, the pH is determined by the following calibration formula.
pH = - (E - 0.0728) / 0.0445 (equation 12)

(2)Cl-濃度
Cl-用電極112となるAg/AgCl電極と、参照電極12となるKCl飽和Ag/AgCl電極とを用いて、Cl-濃度と自然電位(参照電極12に対する電位)の関係を予め求めた。その結果を図2Bに示した。なお、この測定時の電解液には、Cl-濃度が既知な塩化ナトリウム(NaCl)の水溶液を用いた。この水溶液は、メスフラスコに入れた1mol/L塩化ナトリウム試薬を水で希釈して調製した。水溶液中のCl-濃度は、銀滴定(硝酸銀水溶液を用いた滴定/JIS K8150-2006)により測定した。
(2) Cl - concentration Using an Ag/AgCl electrode serving as the Cl - electrode 112 and a KCl-saturated Ag/AgCl electrode serving as the reference electrode 12, the relationship between the Cl - concentration and the natural potential (potential relative to the reference electrode 12) was asked in advance. The results are shown in FIG. 2B. An aqueous solution of sodium chloride (NaCl ) having a known Cl 2 concentration was used as the electrolytic solution for this measurement. This aqueous solution was prepared by diluting a 1 mol/L sodium chloride reagent in a volumetric flask with water. The Cl concentration in the aqueous solution was measured by silver titration (titration using silver nitrate aqueous solution/JIS K8150-2006).

図2Bからわかるように、Ag/AgCl電極の自然電位(E)とCl-濃度(CCl:mol/L)の自然対数との間にも線形関係があり、次の関係式が成立することがわかった。
E =-0.023ln(CCl)+0.0304 (式21)
逆にいうと、自然電位(E)が求まると、Cl-濃度が次の校正式から定まる。
Cl=exp{―(E-0.0304)/0.023} (式22)
As can be seen from FIG. 2B, there is also a linear relationship between the spontaneous potential (E) of the Ag/AgCl electrode and the natural logarithm of the Cl concentration (C Cl : mol/L), and the following relational expression holds: I found out.
E = -0.023 ln(C Cl ) + 0.0304 (equation 21)
Conversely, when the natural potential (E) is determined, the Cl - concentration is determined by the following calibration formula.
C Cl = exp {-(E-0.0304)/0.023} (Equation 22)

なお、酸化還元電位(ORP)には、参照電極12(KCl飽和Ag/AgCl電極)に対するORP用電極113(Pt電極)の電位をそのまま用いた。 As the oxidation-reduction potential (ORP), the potential of the ORP electrode 113 (Pt electrode) with respect to the reference electrode 12 (KCl-saturated Ag/AgCl electrode) was used as it was.

《電気化学セル》
次のように構成した電気化学セルDを用意した。基板30には純鉄板(厚さ:0.5mm、純度:99.5質量%)を用いた。絶縁性多孔質層31は、ポリイミド樹脂のエマルジョンを電着塗装して形成した。水素透過金属層32は、Pdをスパッタリングして形成した(厚さ100nm)。
《Electrochemical cell》
An electrochemical cell D configured as follows was prepared. A pure iron plate (thickness: 0.5 mm, purity: 99.5% by mass) was used for the substrate 30 . The insulating porous layer 31 was formed by electrocoating a polyimide resin emulsion. The hydrogen permeable metal layer 32 was formed by sputtering Pd (thickness 100 nm).

各指標電極11は、pH用電極111:W電極、Cl-用電極112:Ag/AgCl電極、ORP用電極113:Pt電極とした。いずれもワイヤー状の電極とした。参照電極12には、市販のKCl飽和Ag/AgCl電極を用いた。 As the indicator electrodes 11, pH electrode 111: W electrode, Cl - electrode 112: Ag/AgCl electrode, and ORP electrode 113: Pt electrode. Wire-shaped electrodes were used in all cases. A commercially available KCl-saturated Ag/AgCl electrode was used as the reference electrode 12 .

電解液21にはNaOH水溶液(0.01mol/L)を用いた。また、参照電極22にはIr/IrOx電極、補助電極23にはPt電極をそれぞれ用いた。 An aqueous NaOH solution (0.01 mol/L) was used as the electrolytic solution 21 . An Ir/IrOx electrode was used as the reference electrode 22, and a Pt electrode was used as the auxiliary electrode 23, respectively.

《測定》
(1)液滴
試験体3の上面30aを種々の腐食環境とするために、以下の液滴(液滴No./pH/Cl-濃度:CCl(mol/L))を用意した。
液滴 I/pH2/CCl=0mol/L、 液滴II/pH9/CCl=10-3mol/L、
液滴III /pH7/CCl=10-1 mol/L、液滴IV/pH4/CCl=10-2mol/L
"measurement"
(1) Droplets In order to create various corrosive environments on the upper surface 30a of the specimen 3, the following droplets (droplets No./pH/Cl -concentration: C Cl (mol/L)) were prepared.
Droplet I/pH2/C Cl =0 mol/L, Droplet II/pH9/C Cl =10 −3 mol/L,
Droplet III/pH7/C Cl =10 −1 mol/L, Droplet IV/pH4/C Cl =10 −2 mol/L

なお、各液滴には、次のような水溶液を用いた。液滴Iには、pH2に調整した硫酸水溶液を用いた。液滴II~液滴IVの水溶液は、pH緩衝液の水溶液を入れたメスフラスコへ、予め質量を測定しておいたNaClを加えて調製した。液滴IIの調製には、ホウ酸塩(四ほう酸ナトリウム)のpH緩衝液を用いた。液滴IIIの調製には、リン酸塩(リン酸二水素カリウム、無水リン酸水素二ナトリウム)のpH緩衝液を用いた。液滴IVの調製には、フタル酸塩(フタル酸水素カリウム)のpH緩衝液を用いた。pHとCl-濃度は、それぞれ前述した方法により特定した。 The following aqueous solution was used for each droplet. For droplet I, an aqueous solution of sulfuric acid adjusted to pH 2 was used. The aqueous solutions of Droplet II to Droplet IV were prepared by adding NaCl, whose mass had been measured in advance, to a volumetric flask containing an aqueous pH buffer solution. A borate (sodium tetraborate) pH buffer was used to prepare Droplet II. Phosphate (potassium dihydrogen phosphate, anhydrous disodium hydrogen phosphate) pH buffer was used for the preparation of Droplet III. A phthalate (potassium hydrogen phthalate) pH buffer was used to prepare Droplet IV. The pH and Cl - concentration were each determined by the methods previously described.

(2)腐食環境と侵入水素量の測定
試験体3の上面30aに、上述した各液滴を所定の時間間隔で順に滴下した。各液滴により、絶縁性多孔質層31には液膜ができた。
(2) Corrosive Environment and Measurement of Penetrating Hydrogen Amount Each of the droplets described above was dropped on the upper surface 30a of the specimen 3 in order at predetermined time intervals. Each droplet formed a liquid film on the insulating porous layer 31 .

その状態で、参照電極12に対する各指標電極11の電位(E)を、ポテンショスタットP1により連続的に測定した。測定されたpH用電極111の電位と校正式(12)から求まるpHと、測定されたCl-用電極112の電位と校正式(22)から求まるCl-濃度と、測定されたORP用電極113の電位(ORP)とを、それぞれ図3にまとめて示した。 In this state, the potential (E) of each index electrode 11 with respect to the reference electrode 12 was continuously measured by the potentiostat P1. The measured potential of the pH electrode 111 and the pH determined from the calibration equation (12), the measured potential of the Cl electrode 112 and the Cl concentration determined from the calibration equation (22), and the measured ORP electrode 113 and the potential (ORP) are collectively shown in FIG.

各指標電極11の電位測定と併行して、試験体3(基板30)と補助電極23を流れる水素透過電流をポテンショスタットP2により測定した。その水素透過電流を図3に併せて示した。なお、このとき、ポテンショスタットP2により、参照電極24に対する試験体3(基板30)の電位を+0.15Vに保持して、試験体3を分極させておいた。 In parallel with the potential measurement of each index electrode 11, the hydrogen permeation current flowing through the specimen 3 (substrate 30) and the auxiliary electrode 23 was measured by the potentiostat P2. The hydrogen permeation current is also shown in FIG. At this time, the potential of the specimen 3 (substrate 30) with respect to the reference electrode 24 was maintained at +0.15 V by the potentiostat P2, and the specimen 3 was polarized.

ちなみに、水素透過電流は次のようにして発生する。試験体3の上面30aで生じた腐食により発生した水素(Had)は、基板30に侵入し、水素透過金属層32(Pd層)に到達したときに、電気化学的に酸化(Had→H++e-)される。このとき、生じる酸化電流(アノード電流)が水素透過電流として検出される。この水素透過電流は、水素の侵入速度または侵入量を指標している。 Incidentally, the hydrogen permeation current is generated as follows. Hydrogen (Had) generated by corrosion on the upper surface 30a of the specimen 3 penetrates into the substrate 30 and electrochemically oxidizes (Had→H + +e - ). At this time, the generated oxidation current (anode current) is detected as hydrogen permeation current. This hydrogen permeation current is an index of the penetration speed or penetration amount of hydrogen.

《評価》
(1)腐食環境
図3から明らかなように、pH用電極111の自然電位から求まるpHは、ほぼ、滴下した液滴のpHと一致した。また、Cl-用電極112の自然電位から求まるCl-濃度も、10-3mol/L以上であれば、ほぼ、滴下した液滴のCl-濃度と一致した。
"evaluation"
(1) Corrosive Environment As is clear from FIG. 3, the pH obtained from the natural potential of the pH electrode 111 almost matched the pH of the dropped droplets. Also, the Cl - concentration obtained from the spontaneous potential of the Cl - electrode 112 almost coincided with the Cl - concentration of the dropped droplets if it was 10-3 mol/L or more.

ちなみに、ORPは、酸性溶液(液滴I、液滴IV)の下で、時間とともに低下した。ORPの低下は、溶液が還元性溶液になっていることを示す。試験体3の上面30aにおける腐食反応で発生した水素ガスが、溶液中へ溶存したためと考えられる。 Incidentally, ORP decreased with time under acidic solutions (Droplet I, Droplet IV). A decrease in ORP indicates that the solution is becoming a reducing solution. It is considered that the hydrogen gas generated by the corrosion reaction on the upper surface 30a of the specimen 3 was dissolved in the solution.

(2)侵入水素量
本実施例の場合、図3から明らかなように、侵入水素量は、少なくともpHと強く相関していることがわかった。具体的にいうと、pHが低いほど、水素透過電流が大きくなり、試験体3への侵入水素量が多くなった。
(2) Amount of Penetrating Hydrogen In the case of this example, as is clear from FIG. 3, it was found that the amount of penetrating hydrogen is strongly correlated with at least pH. Specifically, the lower the pH, the higher the hydrogen permeation current and the more hydrogen permeated into the specimen 3 .

試験体の材質(評価金属)や液滴(腐食環境)の特性が変化すると、Cl-濃度またはORPと水素透過電流(侵入水素量)との間でも、強い相関がみられるようになると考えられる。例えば、試験体がAl系材料やステンレス鋼等なら、Cl-濃度が増加すると、不動態皮膜(酸化膜)が損傷を受けて、侵入水素量は増加すると考えられる。また、ORPが高くなると、プロトン(H+)以外の酸化剤(溶存酸素、Fe3+等)も多くなり、侵入水素量も増加すると考えられる。 It is thought that a strong correlation can be seen between the Cl - concentration or ORP and the hydrogen permeation current (amount of invading hydrogen) as the material (evaluation metal) of the specimen and the characteristics of the droplet (corrosive environment) change. . For example, if the specimen is an Al-based material, stainless steel, or the like, an increase in the Cl concentration may damage the passive film (oxide film) and increase the amount of penetrating hydrogen. Moreover, it is thought that when the ORP increases, the amount of oxidizing agents (dissolved oxygen, Fe 3+ , etc.) other than protons (H + ) also increases, and the amount of infiltrating hydrogen also increases.

このように、本発明によれば、侵入水素量(水素透過電流)と腐食環境(環境情報)の定量的な相関を明らかにできる。 Thus, according to the present invention, it is possible to clarify the quantitative correlation between the penetrating hydrogen amount (hydrogen permeation current) and the corrosive environment (environmental information).

1 腐食環境測定部
11 指標電極
12 (第1)参照電極
2 透過水素測定部
22 (第2)参照電極
23 補助電極
3 試験体
31 絶縁性多孔質層
D 電気化学セル
S 腐食侵入水素評価システム
REFERENCE SIGNS LIST 1 corrosive environment measurement unit 11 index electrode 12 (first) reference electrode 2 permeation hydrogen measurement unit 22 (second) reference electrode 23 auxiliary electrode 3 specimen 31 insulating porous layer D electrochemical cell S corrosion penetration hydrogen evaluation system

Claims (9)

評価金属からなる試験体と、
該試験体の第1面側に設けられた腐食環境測定部と、
該試験体の第2面側に設けられた透過水素測定部と、
を備える腐食侵入水素測定装置であって、
該腐食環境測定部は、第1参照電極と、該第1参照電極に対して該第1面上の腐食環境に応じた自然電位を示す指標電極と、該試験体の第1面と該指標電極との間に介在する絶縁性多孔質層とを有し、
該透過水素測定部は、該試験体の第2面側にある電解液を保持するアノード槽と、該電解液に接する第2参照電極および補助電極とを有する腐食侵入水素測定装置。
a specimen made of an evaluation metal;
a corrosive environment measurement unit provided on the first surface side of the test body;
a hydrogen permeation measuring unit provided on the second surface side of the test body;
A corrosion penetration hydrogen measuring device comprising:
The corrosive environment measuring unit includes a first reference electrode, an index electrode that indicates a natural potential corresponding to the corrosive environment on the first surface with respect to the first reference electrode, the first surface of the specimen and the index. and an insulating porous layer interposed between the electrodes,
The permeation hydrogen measuring unit has an anode tank holding an electrolytic solution on the second surface side of the specimen, and a second reference electrode and an auxiliary electrode in contact with the electrolytic solution.
前記指標電極は、pHに応じた自然電位を示すpH用電極、塩化物イオン(Cl-)濃度に応じた自然電位を示すCl-用電極および酸化還元電位(ORP)に応じた自然電位を示すORP用電極から選択された一種以上である請求項1に記載の腐食侵入水素測定装置。 The indicator electrodes are a pH electrode that exhibits a natural potential corresponding to pH, a Cl electrode that exhibits a natural potential according to chloride ion (Cl ) concentration, and a natural potential that corresponds to an oxidation-reduction potential (ORP). 2. The corrosion penetration hydrogen measuring device according to claim 1, wherein the electrode is one or more selected from ORP electrodes. 前記pH用電極は、W、SbまたはVのいずれかからなり、
前記Cl-用電極は、Ag/AgClまたはSnのいずれかからなり、
前記ORP用電極は、Ptからなる請求項2に記載の腐食侵入水素測定装置。
The pH electrode is made of W, Sb or V,
the Cl electrode is made of either Ag/AgCl or Sn,
3. The corrosion penetrating hydrogen measuring device according to claim 2, wherein said ORP electrode is made of Pt.
前記絶縁性多孔質層は、前記試験体の第1面側または前記指標電極の表面側に形成されている請求項1~3のいずれかに記載の腐食侵入水素測定装置。 4. The corrosion penetration hydrogen measuring device according to claim 1, wherein the insulating porous layer is formed on the first surface side of the test piece or on the surface side of the index electrode. 前記絶縁性多孔質層は、多孔質樹脂または多孔質セラミックスからなる請求項1~4のいずれかに記載の腐食侵入水素測定装置。 5. The corrosion penetration hydrogen measuring device according to claim 1, wherein said insulating porous layer is made of porous resin or porous ceramics. 前記試験体の第2面側には、前記評価金属とは異なる水素透過金属層が形成されている請求項1~5のいずれかに記載の腐食侵入水素測定装置。 6. The apparatus for measuring corrosion penetration hydrogen according to claim 1, wherein a hydrogen-permeable metal layer different from the evaluation metal is formed on the second surface side of the test piece. 前記アノード槽内の電解液は、アルカリ性溶液である請求項1~6のいずれかに記載の腐食侵入水素測定装置。 The corrosion penetration hydrogen measuring device according to any one of claims 1 to 6, wherein the electrolyte in the anode tank is an alkaline solution. 試験体がある腐食環境の測定と該腐食環境から該試験体への侵入水素量の測定とを併行して行う測定工程を備え、
該試験体への侵入水素量を該試験体の腐食環境と関連付けて評価する腐食侵入水素評価方法。
A measurement step of simultaneously measuring a corrosive environment in which the test piece exists and measuring the amount of hydrogen entering the test piece from the corrosive environment,
A corrosion penetration hydrogen evaluation method for evaluating the amount of hydrogen penetration into the specimen in relation to the corrosive environment of the specimen.
前記侵入水素量の測定は、電気化学水素透過法によりなされる請求項8に記載の腐食侵入水素評価方法。 9. The corrosion penetration hydrogen evaluation method according to claim 8, wherein the measurement of the penetration hydrogen amount is performed by an electrochemical hydrogen permeation method.
JP2019098954A 2019-05-28 2019-05-28 Corrosion Penetration Hydrogen Measuring Device and Corrosion Penetration Hydrogen Evaluation Method Active JP7132886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019098954A JP7132886B2 (en) 2019-05-28 2019-05-28 Corrosion Penetration Hydrogen Measuring Device and Corrosion Penetration Hydrogen Evaluation Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019098954A JP7132886B2 (en) 2019-05-28 2019-05-28 Corrosion Penetration Hydrogen Measuring Device and Corrosion Penetration Hydrogen Evaluation Method

Publications (2)

Publication Number Publication Date
JP2020193851A JP2020193851A (en) 2020-12-03
JP7132886B2 true JP7132886B2 (en) 2022-09-07

Family

ID=73545808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019098954A Active JP7132886B2 (en) 2019-05-28 2019-05-28 Corrosion Penetration Hydrogen Measuring Device and Corrosion Penetration Hydrogen Evaluation Method

Country Status (1)

Country Link
JP (1) JP7132886B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986125A (en) * 2021-02-26 2021-06-18 武汉材料保护研究所有限公司 Sample for measuring galvanic corrosion between conductive coating and protected substrate and evaluation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269175A (en) 1984-04-06 1993-12-14 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Sensor for investigating liquids
US5405513A (en) 1994-07-08 1995-04-11 Saudi Arabian Oil Company Method and apparatus for an electrochemical test cell
JP2013127455A (en) 2011-11-15 2013-06-27 Yoshitaka Otomo Device and method for measuring oxidation reduction potential of air
JP2013185926A (en) 2012-03-07 2013-09-19 Osaka Gas Co Ltd Potential measuring device
US20190072479A1 (en) 2017-09-01 2019-03-07 Crane Resistoflex Corrosion indicator for use with a piping system, and a piping system using the corrosion indicator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3413135A1 (en) * 1984-04-06 1985-10-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München MEASURING PROBE FOR DETECTING QUALITATIVE CHANGES OF LIQUIDS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5269175A (en) 1984-04-06 1993-12-14 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Sensor for investigating liquids
US5405513A (en) 1994-07-08 1995-04-11 Saudi Arabian Oil Company Method and apparatus for an electrochemical test cell
JP2013127455A (en) 2011-11-15 2013-06-27 Yoshitaka Otomo Device and method for measuring oxidation reduction potential of air
JP2013185926A (en) 2012-03-07 2013-09-19 Osaka Gas Co Ltd Potential measuring device
US20190072479A1 (en) 2017-09-01 2019-03-07 Crane Resistoflex Corrosion indicator for use with a piping system, and a piping system using the corrosion indicator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Eiji Akiyama,Hydrogen entry into Fe and high strength steels under simulated atmospheric corrosion,Electrochimica Acta,56(2011),1799頁-1805頁

Also Published As

Publication number Publication date
JP2020193851A (en) 2020-12-03

Similar Documents

Publication Publication Date Title
Lamaka et al. In-situ visualization of local corrosion by Scanning Ion-selective Electrode Technique (SIET)
JP5700673B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
Cleveland et al. Nanometer-scale corrosion of copper in de-aerated deionized water
JP2011179893A (en) Method for measuring amount of hydrogen penetrated into metal and method for monitoring amount of hydrogen penetrated into metal region of moving body
Davies Anodic stripping voltammetry with graphite felt electrodes for the trace analysis of silver
JP5777098B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
Burstein et al. The remarkable passivity of austenitic stainless steel in sulphuric acid solution and the effect of repetitive temperature cycling
Li et al. Correlating corrosion to surface grain orientations of polycrystalline aluminum alloy by scanning electrochemical cell microscopy
JP7132886B2 (en) Corrosion Penetration Hydrogen Measuring Device and Corrosion Penetration Hydrogen Evaluation Method
Wolfe et al. Measurement of pH gradients in the crevice corrosion of iron using a palladium hydride microelectrode
Liu et al. Communication—Electrochemical sensor concept for the detection of lead contamination in water utilizing lead underpotential deposition
Langley et al. Linking the Cu (II/I) potential to the onset of dynamic phenomena at corroding copper microelectrodes immersed in aqueous 0.5 M NaCl
JP5888692B2 (en) Method for measuring amount of hydrogen penetrating into metal and method for monitoring amount of hydrogen penetrating into metal part of moving body
JP2018115942A (en) Hydrogen invasion evaluation method, hydrogen invasion evaluation system and hydrogen invasion evaluation cell
JP4458362B2 (en) Arsenic detection electrode, sensor using the same, and arsenic concentration measurement method
JP5979731B2 (en) Method for monitoring the amount of hydrogen entering the metal part of a moving object
Klassen et al. A novel approach to characterizing localized corrosion within a crevice
JP2017207302A (en) Intrusion hydrogen amount measurement method and intrusion hydrogen amount measurement device
McCafferty et al. Kinetics of corrosion
Huang et al. Application of cyclic thermal-oxidized IrOx electrode in pH detection of Zn/steel galvanic process in 3.5 wt.% NaCl solution
JP6130447B2 (en) Method for monitoring the amount of hydrogen entering the metal part of a moving object
Brown et al. The role of polarization in electrochemical corrosion
US3964981A (en) Method for polarographic analysis using an electrode of tantalum/carbon material
Strebl et al. Respirometric in situ methods for real-time monitoring of corrosion rates: Part III. Deconvolution of electrochemical polarization curves
Garcia-Vergara et al. Enrichment of alloying elements in aluminum: A scanning Kelvin probe approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220826

R150 Certificate of patent or registration of utility model

Ref document number: 7132886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150