JP7132395B2 - light emitting device - Google Patents

light emitting device Download PDF

Info

Publication number
JP7132395B2
JP7132395B2 JP2021083424A JP2021083424A JP7132395B2 JP 7132395 B2 JP7132395 B2 JP 7132395B2 JP 2021083424 A JP2021083424 A JP 2021083424A JP 2021083424 A JP2021083424 A JP 2021083424A JP 7132395 B2 JP7132395 B2 JP 7132395B2
Authority
JP
Japan
Prior art keywords
light
emitting element
semiconductor light
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021083424A
Other languages
Japanese (ja)
Other versions
JP2021114634A (en
Inventor
亜紀 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2021083424A priority Critical patent/JP7132395B2/en
Publication of JP2021114634A publication Critical patent/JP2021114634A/en
Application granted granted Critical
Publication of JP7132395B2 publication Critical patent/JP7132395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、半導体発光素子を実装基板に搭載した発光装置に関する。 The present invention relates to a light-emitting device having a semiconductor light-emitting element mounted on a mounting substrate.

半導体発光素子を実装基板に実装する方法としては、銀ペースト等の導電性粒子が含有された接着剤(導電性接着剤)を用い、発光素子の裏面電極を実装基板の電極に接着する方法が知られている(特許文献1)。この方法では、発光素子の下面全体と、側面の下部も導電性接着剤で覆われる。導電性接着剤は、発光素子の裏面電極と実装基板の電極とを電気的に接続するだけでなく、発光素子の発光層から発光されて、発光素子の底面や側面の下部に到達した光を、発光素子と導電性接着剤の界面の屈折率差および導電性粒子の反射特性によって反射する。これにより、導電性接着剤は、発光層から下方に発せられた光を、発光素子の上面および側面から出射させる作用をする。 As a method of mounting a semiconductor light emitting element on a mounting substrate, there is a method of bonding the back electrode of the light emitting element to the electrode of the mounting substrate using an adhesive (conductive adhesive) containing conductive particles such as silver paste. It is known (Patent Document 1). In this method, the entire bottom surface of the light-emitting element and even the lower side surfaces are covered with the conductive adhesive. The conductive adhesive not only electrically connects the back electrode of the light-emitting element and the electrode of the mounting substrate, but also protects the light emitted from the light-emitting layer of the light-emitting element and reaching the bottom surface and lower side surfaces of the light-emitting element. , is reflected by the refractive index difference at the interface between the light emitting element and the conductive adhesive and the reflective properties of the conductive particles. Thereby, the conductive adhesive acts to cause the light emitted downward from the light emitting layer to be emitted from the upper surface and side surfaces of the light emitting element.

特許第4529041号公報Japanese Patent No. 4529041

しかしながら、導電性接着剤を用いて発光素子を実装基板に接続した場合、発光素子の発する光等により導電性接着剤中の樹脂成分が消失し、導電性接着剤の体積が減少したり、接着力が低下するという問題が生じる。これにより、発光素子の底面や側面と導電性接着剤との界面に隙間が生じ、隙間に空気層が形成されるため、発光素子の底面や側面に到達した光の反射特性は、隙間が生じていない初期状態とは変化し、発光素子全体の出射光量が変化してしまう。なお、発光素子の発する光が当たらないため、裏面電極と導電性接着剤との界面においては、導電性接着剤の体積減少は生じず、導電性は維持される。 However, when a light-emitting element is connected to a mounting board using a conductive adhesive, the resin component in the conductive adhesive disappears due to the light emitted by the light-emitting element, etc., and the volume of the conductive adhesive decreases. The problem of power loss arises. As a result, gaps are formed at the interfaces between the bottom and side surfaces of the light-emitting element and the conductive adhesive, and an air layer is formed in the gaps. The amount of light emitted from the entire light-emitting element changes from the initial state in which the light-emitting element is not exposed. Since the light emitted from the light emitting element does not hit the interface between the back electrode and the conductive adhesive, the volume of the conductive adhesive does not decrease and the conductivity is maintained.

発光素子を用いた製品は、出荷時の出射光量を基準として各部が設計されているため、導電性が維持されたとしても、長期使用しているうちに出射光量が変化することは望ましくなく、出荷時と変わらぬ光量が長期間維持されることが望まれる。 Since each part of a product using a light-emitting element is designed based on the amount of emitted light at the time of shipment, it is undesirable for the amount of emitted light to change during long-term use, even if conductivity is maintained. It is desired that the same amount of light as at the time of shipment is maintained for a long period of time.

本発明の目的は、長期間にわたって出射光量が変化しにくい発光装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a light emitting device in which the amount of emitted light is less likely to change over a long period of time.

本発明は上記目的を達成するために、底面の一部に素子側電極を備えた半導体発光素子と、上面に基板側電極を備えた実装基板と、素子側電極と基板側電極とを接続する導電性接続層とを有する発光装置を提供する。ここで、導電性接続層は、導電性粒子を焼結したものであって、半導体発光素子の底面と同等以上の面積をもち、その上面は、素子側電極と接続され、かつ、素子側電極が備えられていない半導体発光素子の底面との間に間隙を有する。 In order to achieve the above object, the present invention connects a semiconductor light-emitting element having an element-side electrode on a part of its bottom surface, a mounting substrate having a substrate-side electrode on its upper surface, and the element-side electrode and the substrate-side electrode. and a conductive connecting layer. Here, the conductive connection layer is made by sintering conductive particles, has an area equal to or greater than the bottom surface of the semiconductor light emitting device, and has an upper surface connected to the device side electrode, and There is a gap between the bottom surface of the semiconductor light emitting element where the is not provided.

本発明によれば、導電性接続層の形状変化を抑制できるため、長期間にわたって出射光量が変化しにくい発光装置を提供できる。 According to the present invention, since it is possible to suppress the change in the shape of the conductive connection layer, it is possible to provide a light emitting device in which the amount of emitted light is less likely to change over a long period of time.

第1実施形態の発光装置の断面図。Sectional drawing of the light-emitting device of 1st Embodiment. 比較例である従来の発光装置の(a)製造直後、(b)長期間使用後の断面図。Sectional views of a conventional light-emitting device as a comparative example (a) immediately after manufacture and (b) after long-term use. (a)~(d)第1実施形態の発光装置の製造工程を示す断面図。(a) to (d) are cross-sectional views showing manufacturing steps of the light emitting device according to the first embodiment. 第2実施形態の発光装置の断面図。Sectional drawing of the light-emitting device of 2nd Embodiment. (a)第3実施形態の発光装置の断面図、(b)発光素子の底面図。(a) Cross-sectional view of a light emitting device of a third embodiment, (b) bottom view of a light emitting element. 第4実施形態の発光装置の断面図。Sectional drawing of the light-emitting device of 4th Embodiment.

本発明の一実施形態について図面を用いて説明する。 An embodiment of the present invention will be described with reference to the drawings.

<第1実施形態>
第1実施形態の発光装置について、図1を用いて説明する。図1は、本実施形態の発光装置の断面図である。また、比較例である従来の発光装置の製造直後(初期)の状態と長期間使用後の状態を示す断面図を図2(a),(b)にそれぞれ示す。
<First Embodiment>
A light emitting device according to the first embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view of the light emitting device of this embodiment. 2(a) and 2(b) are cross-sectional views showing a state immediately after manufacture (initial stage) and a state after long-term use of a conventional light-emitting device as a comparative example, respectively.

図1に示すように、本実施形態の発光装置は、実装基板4の上に半導体発光素子1を搭載した構造である。半導体発光素子1の底面の一部に備えられた素子側電極1は、導電性接続層3によって、実装基板4の上面に備えられた基板側電極5に接続されている。 As shown in FIG. 1, the light-emitting device of this embodiment has a structure in which a semiconductor light-emitting element 1 is mounted on a mounting substrate 4 . An element-side electrode 1 provided on a portion of the bottom surface of the semiconductor light-emitting element 1 is connected to a substrate-side electrode 5 provided on the top surface of a mounting substrate 4 via a conductive connection layer 3 .

導電性接続層3は、導電性粒子を焼結したものであって、半導体発光素子1の底面と同等以上の面積をもつ。導電性接続層3の上面は、素子側電極2に固定され、これにより半導体発光素子1は、導電性接続層3に電気的および構造的に接続されている。導電性接続層3の上面と、素子側電極2が備えられていない半導体発光素子1の底面との間には、間隙6が形成されている。 The conductive connection layer 3 is made by sintering conductive particles and has an area equal to or larger than the bottom surface of the semiconductor light emitting device 1 . The upper surface of the conductive connection layer 3 is fixed to the device-side electrode 2 , thereby electrically and structurally connecting the semiconductor light emitting device 1 to the conductive connection layer 3 . A gap 6 is formed between the top surface of the conductive connection layer 3 and the bottom surface of the semiconductor light emitting device 1 on which the device side electrode 2 is not provided.

このように、本実施形態では、導電性接続層3の上面と半導体発光素子1の底面との間に、製造時において予め間隙6を形成しているため、導電性接続層3の上面と半導体発光素子1の底面との間には、素子側電極2の部分を除き、製造直後の状態から空気層が存在する。よって、半導体発光素子1から発せられた光は、半導体発光素子1の底面や側面において、空気層との界面において反射され、導電性接続層3に対して直接照射されない。したがって、製造直後から長期間使用後においても導電性接続層3の形状が変化しないため、光学特性も変わらない。 As described above, in the present embodiment, since the gap 6 is formed in advance between the upper surface of the conductive connection layer 3 and the bottom surface of the semiconductor light emitting element 1 at the time of manufacturing, the upper surface of the conductive connection layer 3 and the semiconductor are separated from each other. An air layer exists between the bottom surface of the light emitting element 1 and the bottom surface of the light emitting element 1 except for the element-side electrode 2 from the state immediately after manufacturing. Therefore, the light emitted from the semiconductor light emitting element 1 is reflected at the interface with the air layer on the bottom surface and side surfaces of the semiconductor light emitting element 1 and does not directly irradiate the conductive connection layer 3 . Therefore, since the shape of the conductive connection layer 3 does not change even after long-term use from immediately after manufacture, the optical characteristics do not change.

さらに、本実施形態の導電性接続層3は、導電性粒子を焼結したものであるため、導電性接続層3はそもそも樹脂を含有せず、仮に長期間にわたって半導体発光素子1からの光が照射されたとしても、樹脂の消失や分解に起因する体積収縮や接着力の低下を生じない。 Furthermore, since the conductive connection layer 3 of the present embodiment is formed by sintering conductive particles, the conductive connection layer 3 does not contain a resin in the first place, and even if the light from the semiconductor light emitting element 1 is emitted for a long period of time, Even if it is irradiated, it does not cause volume shrinkage or decrease in adhesive force due to disappearance or decomposition of the resin.

このように、本実施形態の半導体発光装置は、製造直後も長時間にわたって半導体発光素子1を発光させた後も、導電性接続層3の形状が変化することがなく、長期間にわたって出射光量を維持することができる。 As described above, in the semiconductor light emitting device of the present embodiment, the shape of the conductive connection layer 3 does not change immediately after manufacturing or after the semiconductor light emitting element 1 emits light for a long period of time. can be maintained.

なお、従来の図2(a)の発光装置は、半導体発光素子1の底面や側面下部において導電性接着剤層23に直接光が到達するため、図2(b)のように導電性接着剤層23の樹脂が消失して体積が収縮するという現象は生じる。よって、製造直後と長期間使用後とでは、導電性接続層3の形状が変化してしまうため、光学特性が変化する。 In the conventional light emitting device shown in FIG. 2(a), light directly reaches the conductive adhesive layer 23 at the bottom surface and lower side surfaces of the semiconductor light emitting element 1. A phenomenon occurs in which the resin of the layer 23 disappears and the volume shrinks. Therefore, since the shape of the conductive connection layer 3 changes between immediately after manufacture and after long-term use, the optical characteristics change.

具体的には、本実施形態の発光装置は、半導体発光素子1内の発光層から発せられた光が上面および側面から発せられる。また、発光層から下方に向けて発せられた光の一部は、底面の素子側電極2との界面において素子側電極2によって反射され、半導体発光素子1の上面または側面から反射される。また、発光層から下方に向けて発せられた光のうち、半導体発光素子1の底面と間隙6の空気層との界面に到達した光の一部は、その屈折率差によって反射され、半導体発光素子1の上面及び側面から反射される。このような各部の作用は、製造直後も長期間にわたって半導体発光素子1を発光させた後も同じであり、出射光量を維持することができる。 Specifically, in the light-emitting device of this embodiment, light emitted from the light-emitting layer in the semiconductor light-emitting element 1 is emitted from the upper surface and side surfaces. Part of the light emitted downward from the light-emitting layer is reflected by the device-side electrode 2 at the interface with the device-side electrode 2 on the bottom surface, and reflected from the upper surface or the side surface of the semiconductor light-emitting device 1 . Among the light emitted downward from the light emitting layer, part of the light that reaches the interface between the bottom surface of the semiconductor light emitting element 1 and the air layer in the gap 6 is reflected due to the difference in refractive index, resulting in semiconductor light emission. Reflected from the top and side surfaces of the element 1 . The function of each part is the same both immediately after manufacturing and after the semiconductor light emitting device 1 emits light for a long period of time, and the emitted light amount can be maintained.

導電性接続層を構成する導電性粒子としては、金属粒子を用い、具体的には、AuSn、Ag,Au等を用いることができる。焼結により導電性を発現させる金属粒子については、その粒径は、半導体発光素子1および実装基板4等にダメージを与えない加熱温度で焼結できるサイズのものを用いる。Agの粒子は、比較的低温で焼結可能であり、焼結後の洗浄も不要であるというメリットがある。 As the conductive particles forming the conductive connection layer, metal particles, specifically AuSn, Ag, Au, etc., can be used. Metal particles that exhibit conductivity by sintering should have a particle size that allows them to be sintered at a heating temperature that does not damage the semiconductor light emitting element 1, the mounting board 4, and the like. Ag particles are advantageous in that they can be sintered at a relatively low temperature and do not require cleaning after sintering.

以下、本実施形態の発光装置の製造方法について図3(a)~(d)を用いて説明する。 A method for manufacturing the light emitting device of this embodiment will be described below with reference to FIGS.

まず、図3(a)のように、上面に基板側電極5が予め設けられた実装基板4を用意し、基板側電極5の上に、導電性粒子が分散された溶媒33を塗布する。導電性粒子としては、上述のように例えばAuSn、Ag,Au等を用いることができる。例えば平均粒径が0.01~5μm程度のものを用いる。また溶媒としては、アルコールやエチルヘキサンジオール等を用いることができる。必要に応じて、フラックスを添加してもよい。 First, as shown in FIG. 3A, a mounting substrate 4 having substrate-side electrodes 5 provided on its upper surface is prepared, and a solvent 33 in which conductive particles are dispersed is applied onto the substrate-side electrodes 5 . As the conductive particles, for example, AuSn, Ag, Au, etc. can be used as described above. For example, one having an average particle size of about 0.01 to 5 μm is used. As a solvent, alcohol, ethylhexanediol, or the like can be used. Flux may be added as needed.

つぎに、図3(b)のように、塗布した導電性粒子が分散された溶媒33の上に、底面の一部に素子側電極を備えた半導体発光素子1を搭載する。これにより、溶媒33の表面張力により、半導体発光素子1の側面の下部にも溶媒33が這い上がる。 Next, as shown in FIG. 3B, the semiconductor light emitting device 1 having the device side electrode on a part of the bottom surface is mounted on the solvent 33 in which the applied conductive particles are dispersed. As a result, the surface tension of the solvent 33 causes the solvent 33 to creep up to the lower portion of the side surface of the semiconductor light emitting device 1 as well.

そして、図3(c-1)のように、ホットプレート34または恒温槽によって、所定の温度で、導電性粒子が分散された溶媒33を少なくとも加熱する。これにより、溶媒33を揮発させ、導電性粒子を焼結する。したがって、所定の温度は、溶媒の沸点以上で、かつ、導電性粒子が焼結される温度以上であって、半導体発光素子1や実装基板4にはダメージを与えない温度に設定する。例えば、溶媒がエチルヘキサンジオールで、導電性粒子の平均粒径が1μmのAgである場合には、180℃に設定する。 Then, as shown in FIG. 3(c-1), at least the solvent 33 in which the conductive particles are dispersed is heated at a predetermined temperature by a hot plate 34 or a constant temperature bath. Thereby, the solvent 33 is volatilized and the conductive particles are sintered. Therefore, the predetermined temperature is set to a temperature that is higher than the boiling point of the solvent and higher than the temperature at which the conductive particles are sintered so as not to damage the semiconductor light emitting device 1 and the mounting substrate 4 . For example, when the solvent is ethylhexanediol and the conductive particles are Ag with an average particle size of 1 μm, the temperature is set at 180°C.

このとき、図3(c-2)のように、半導体発光素子1を溶媒33に押し付ける方向に加圧ツール35により加圧してもよい。加圧することにより、素子側電極2を導電性粒子に押し付けながら焼結することができるため、素子側電極2と導電性接続層3の密着性を高めることができる。 At this time, as shown in FIG. 3C-2, a pressure tool 35 may be used to press the semiconductor light emitting device 1 against the solvent 33 . By applying pressure, the element-side electrode 2 can be sintered while being pressed against the conductive particles, so that the adhesion between the element-side electrode 2 and the conductive connection layer 3 can be enhanced.

このように導電性粒子が分散された溶媒33を加熱して溶媒33を揮発させ、導電性粒子を焼結することにより、導電性粒子が分散された溶媒33の体積が収縮し、図3(d)のように、半導体発光素子2の底面との間に間隙6が生じた導電性接続層3を形成することができる。 By heating the solvent 33 in which the conductive particles are dispersed in this way to volatilize the solvent 33 and sinter the conductive particles, the volume of the solvent 33 in which the conductive particles are dispersed shrinks. As in d), the conductive connection layer 3 with the gap 6 between it and the bottom surface of the semiconductor light emitting element 2 can be formed.

最後に、必要に応じて導電性接続層3のフラックスを洗浄する。 Finally, the conductive connection layer 3 is washed to remove flux, if necessary.

このように、本実施形態では、単純な工程で、長期間にわたって出射光量が変化しにくい発光装置を製造することができる。 As described above, according to the present embodiment, it is possible to manufacture a light-emitting device in which the amount of emitted light is less likely to change over a long period of time through a simple process.

<第2実施形態>
第2の実施形態の発光装置を図4を用いて説明する。
<Second embodiment>
A light emitting device according to the second embodiment will be described with reference to FIG.

第2の実施形態の発光装置は、図4にその断面図を示したように、第1の実施形態の図1の発光装置の周囲を、半導体発光素子1の発する光を透過する封止樹脂8により封止した構成である。封止樹脂8は、間隙6内にも充填されている。また、実装基板4の周囲には、封止樹脂8を充填するための枠7が配置されている。他の構造は、第1の実施形態と同様である。 As shown in the cross-sectional view of FIG. 4, the light-emitting device of the second embodiment includes a sealing resin that transmits light emitted from the semiconductor light-emitting element 1 around the light-emitting device of FIG. 1 of the first embodiment. 8 is sealed. The sealing resin 8 is also filled in the gap 6 . A frame 7 for filling the sealing resin 8 is arranged around the mounting board 4 . Other structures are the same as in the first embodiment.

このような構成において、半導体発光素子1の底面では、封止樹脂8との界面で発光層からの光が放出される構成となるが、封止樹脂8は、従来の導電性接着剤よりも、接着性は必要ないため、耐光性の高い樹脂(例えばシリコーン樹脂)を用いることができる。あるいは、金属粉がない樹脂では、樹脂中の光吸収を起こす不純物濃度を低減することが出来る為、従来の導電性接着剤よりも耐光性が高い。よって、封止樹脂8によって間隙6を充填した場合であっても、従来の導電性接着剤を用いた図2(a)の構造よりも、導電性接続層3の形状や封止樹脂8の界面が変化することがなく、長期間にわたって出射光量を維持することができる。 In such a configuration, light from the light emitting layer is emitted at the interface with the sealing resin 8 on the bottom surface of the semiconductor light emitting element 1. Since adhesiveness is not required, a highly light-resistant resin (for example, silicone resin) can be used. Alternatively, a resin containing no metal powder can reduce the concentration of impurities that cause light absorption in the resin, and therefore has higher light resistance than conventional conductive adhesives. Therefore, even when the gap 6 is filled with the sealing resin 8, the shape of the conductive connection layer 3 and the amount of the sealing resin 8 are smaller than the structure of FIG. 2A using the conventional conductive adhesive. The output light intensity can be maintained for a long period of time without changing the interface.

また、半導体発光素子1の側面が空気よりも屈折率の高い封止樹脂8により封止されているため、全反射角度が第1の実施形態よりも小さい。よって、発光層から下方に向けて出射され、発光素子1の底面で反射され、側面に到達した光の側面からの出射効率を高めることができる。 In addition, since the side surface of the semiconductor light emitting element 1 is sealed with the sealing resin 8 having a higher refractive index than air, the total reflection angle is smaller than in the first embodiment. Therefore, it is possible to increase the emission efficiency from the side surface of the light that is emitted downward from the light emitting layer, reflected on the bottom surface of the light emitting element 1, and reaches the side surface.

なお、本実施形態の発光装置を製造する方法としては、図3(a)~(d)と同様の工程を用いることができるが、図3(d)の工程の後、実装基板4の縁に枠7を固定し、枠7内に封止樹脂8を充填する工程をさらに行えばよい。 3A to 3D can be used as a method for manufacturing the light emitting device of this embodiment, but after the step of FIG. A step of fixing the frame 7 to the frame 7 and filling the sealing resin 8 into the frame 7 may be further performed.

<第3実施形態>
第3の実施形態の発光装置を図5(a)、(b)を用いて説明する。
<Third Embodiment>
The light-emitting device of the third embodiment will be described with reference to FIGS. 5(a) and 5(b).

本実施形態の発光装置は、第2の実施形態と同様に、半導体発光素子1の周囲の空間が、封止樹脂8により封止されている。素子側電極2は、半導体発光素子1の底面の所定の領域の周囲を枠状に取り囲む形状である。このため、素子側電極2で取り囲まれた領域の内側に位置する半導体発光素子1の底面と、導電性接続層5の上面との間の間隙6には、封止樹脂8が充填されていない。 In the light emitting device of this embodiment, the space around the semiconductor light emitting element 1 is sealed with a sealing resin 8 as in the second embodiment. The element-side electrode 2 has a frame-like shape surrounding a predetermined area on the bottom surface of the semiconductor light emitting element 1 . Therefore, the sealing resin 8 is not filled in the gap 6 between the bottom surface of the semiconductor light emitting element 1 positioned inside the region surrounded by the element-side electrode 2 and the top surface of the conductive connection layer 5 . .

このように、本実施形態では、素子1の底面の中央部の領域に間隙6が位置する。また、間隙6に封止樹脂8が充填されていないため、間隙6は空気層であり、半導体発光素子1の底面と空気層との界面の屈折率差による全反射によって、発光層から底面に向かって反射された光を上方に反射することができる。よって、第2の実施形態と比較して、間隙6が空気層6であるため、光照射に対する安定性が大きく、長期間にわたって出射光量を変化させることがない。 Thus, in this embodiment, the gap 6 is located in the central area of the bottom surface of the element 1 . Since the gap 6 is not filled with the sealing resin 8, the gap 6 is an air layer, and the total reflection due to the difference in the refractive index at the interface between the bottom surface of the semiconductor light emitting element 1 and the air layer causes light from the light emitting layer to the bottom surface. Light reflected toward can be reflected upward. Therefore, as compared with the second embodiment, since the gap 6 is the air layer 6, the stability against light irradiation is high, and the emitted light amount is not changed over a long period of time.

また、空気層との屈折率差による反射は、素子側電極2による金属反射と比較して、光の減衰が小さいため、高効率で発光層からの光を全反射することができる。よって、半導体発光素子1の上面からの発光量を増加させることができる。 In addition, the reflection due to the difference in refractive index with the air layer causes less attenuation of light than the metal reflection due to the element-side electrode 2, so that the light from the light emitting layer can be totally reflected with high efficiency. Therefore, the amount of light emitted from the upper surface of the semiconductor light emitting device 1 can be increased.

また、本実施形態では、枠状の導電性接続層2の大きさを、半導体発光素子1の底面の大きさと同等に設定しているため、中央部の間隙6の面積が大きく、半導体発光素子1の底面と空気層との界面で全反射を生じさせることができる領域が広いという効果も得られる。 In addition, in this embodiment, the size of the frame-shaped conductive connection layer 2 is set to be the same as the size of the bottom surface of the semiconductor light emitting element 1, so that the area of the central gap 6 is large and the semiconductor light emitting element It is also possible to obtain the effect that the area where total reflection can occur at the interface between the bottom surface of 1 and the air layer is wide.

<第4実施形態>
第4の実施形態の発光装置を図6を用いて説明する。
<Fourth Embodiment>
A light emitting device according to the fourth embodiment will be described with reference to FIG.

本実施形態の発光装置は、第3の実施形態と同様に、枠状の素子側電極2を用い、間隙6には封止樹脂8が充填されていない構造である。第3の実施形態と異なるのは、導電性接続層3の大きさが、半導体発光素子1の底面と同等であって、半導体発光素子1よりも外側領域には、導電性接続層3が配置されていない点である。 As in the third embodiment, the light emitting device of this embodiment has a structure in which the frame-shaped element-side electrode 2 is used and the gap 6 is not filled with the sealing resin 8 . The difference from the third embodiment is that the size of the conductive connection layer 3 is the same as the bottom surface of the semiconductor light emitting device 1, and the conductive connection layer 3 is arranged outside the semiconductor light emitting device 1. The point is that it is not.

このような構造であるため、第3の実施形態と同様の効果が得られるとともに、半導体発光素子1の側面から出射された光が、半導体発光素子1よりも外側に位置する導電性接続層3に入射して反射され、半導体発光素子1の側面から再び入射することがなく、半導体発光素子1への戻り光を低減することができる。よって、半導体発光素子1の発光効率を向上させることができる。 With such a structure, the same effect as in the third embodiment can be obtained, and the light emitted from the side surface of the semiconductor light emitting element 1 is directed to the conductive connection layer 3 located outside the semiconductor light emitting element 1. and is reflected, and does not enter again from the side surface of the semiconductor light emitting device 1, thereby reducing the return light to the semiconductor light emitting device 1. Therefore, the luminous efficiency of the semiconductor light emitting device 1 can be improved.

なお、図6の発光装置を製造する方法としては、図3と同様な工程を用いることができるが、図3(a)の工程において、導電性粒子を分散させた溶媒33を塗布する際に、マスクを用いて、半導体発光素子1の底面サイズと同等の領域にのみ塗布すればよい。 As a method for manufacturing the light emitting device shown in FIG. 6, the same process as that shown in FIG. 3 can be used. , using a mask, it is sufficient to apply only to a region equivalent to the size of the bottom surface of the semiconductor light emitting device 1 .

上述してきた各実施形態の発光装置は、長期間にわたって出射光量が変化しないため、車両用インジケータや車両内インテリア装置等に用いるのに好適である。 The light emitting device of each of the embodiments described above is suitable for use as a vehicle indicator, a vehicle interior device, etc., because the emitted light intensity does not change over a long period of time.

1…半導体発光素子、2…素子側電極、3…導電性接続層、4…実装基板、5…基板側電極、6…間隙、7…枠、8…封止樹脂、23…導電性接着剤層、33…導電性粒子が分散された溶媒、34…ホットプレート、35…加圧ツール

DESCRIPTION OF SYMBOLS 1... Semiconductor light-emitting element, 2... Element side electrode, 3... Conductive connection layer, 4... Mounting board, 5... Board side electrode, 6... Gap, 7... Frame, 8... Sealing resin, 23... Conductive adhesive Layer, 33... Solvent in which conductive particles are dispersed, 34... Hot plate, 35... Pressure tool

Claims (5)

底面の一部に素子側電極を備えた半導体発光素子と、上面に基板側電極を備えた実装基板と、前記素子側電極と前記基板側電極とを接続する導電性接続層とを有し、
前記半導体発光素子は、当該半導体発光素子の上面方向、側面方向および下面方向に向けて光を発する発光層を備えており、
前記半導体発光素子と前記実装基板との間には、前記導電性接続層の上面が前記素子側電極と接続する領域と、前記導電性接続層の上面と前記半導体発光素子との間に間隙が形成された領域とを含み、
前記間隙が形成された領域は、前記半導体発光素子の底面と前記導電性接続層の上面との間に空気層を含み、
前記空気層と前記半導体発光素子の底面は、互いに接触する界面を形成し、
前記導電性接続層は、樹脂を含有しない金属材料からなり、
前記素子側電極は、前記半導体発光素子の底面の所定の領域の周囲を枠状に取り囲む形状であり、
当該素子側電極で取り囲まれた領域においては、前記半導体発光素子の底面が露出し、前記空気層と接していることを特徴とする発光装置。
A semiconductor light-emitting element having an element-side electrode on a part of its bottom surface, a mounting substrate having a substrate-side electrode on its upper surface, and a conductive connection layer connecting the element-side electrode and the substrate-side electrode,
The semiconductor light-emitting element includes a light-emitting layer that emits light toward the upper surface direction, the side surface direction, and the lower surface direction of the semiconductor light-emitting element,
Between the semiconductor light emitting element and the mounting substrate, there is a region where the upper surface of the conductive connection layer is connected to the element-side electrode, and a gap between the upper surface of the conductive connection layer and the semiconductor light emitting element. a formed region;
the region in which the gap is formed includes an air layer between the bottom surface of the semiconductor light emitting element and the top surface of the conductive connection layer;
the air layer and the bottom surface of the semiconductor light emitting element form an interface in contact with each other;
The conductive connection layer is made of a metal material that does not contain resin,
the element-side electrode has a shape surrounding a predetermined area on the bottom surface of the semiconductor light emitting element in a frame shape,
A light-emitting device, wherein a bottom surface of the semiconductor light-emitting element is exposed and is in contact with the air layer in a region surrounded by the element-side electrode.
請求項に記載の発光装置であって、
前記導電性接続層は、前記半導体発光素子よりも外側領域に配置されていない大きさであることを特徴とする発光装置。
The light emitting device according to claim 1 ,
The light-emitting device according to claim 1, wherein the conductive connection layer has a size that is not located outside the semiconductor light-emitting element.
請求項1または2に記載の発光装置であって、
さらに、前記実装基板の上面に、前記半導体発光素子の側面を囲む枠を備えており、
前記半導体発光素子の側面と前記枠との間には、空気よりも屈折率が高く、金属粉を含まない樹脂からなる封止樹脂が設けられていることを特徴とする発光装置。
The light emitting device according to claim 1 or 2 ,
Further, a frame surrounding a side surface of the semiconductor light emitting element is provided on the upper surface of the mounting substrate,
A light-emitting device according to claim 1, wherein a sealing resin having a higher refractive index than air and containing no metal powder is provided between the side surface of the semiconductor light-emitting element and the frame.
請求項1または2に記載の発光装置であって、
前記半導体発光素子の側面が、当該半導体発光素子の発する光を透過し、空気よりも屈折率の高い封止樹脂により封止された構成であることを特徴とする発光装置。
The light emitting device according to claim 1 or 2 ,
A light-emitting device according to claim 1, wherein a side surface of the semiconductor light-emitting element is sealed with a sealing resin that transmits light emitted from the semiconductor light-emitting element and has a higher refractive index than air.
請求項1ないし4の何れかに記載の発光装置であって、
前記導電性接続層は、AuSn、Ag,Auの中の何れかの金属粒子が焼結された焼結体であることを特徴とする発光装置。
The light emitting device according to any one of claims 1 to 4 ,
A light-emitting device, wherein the conductive connection layer is a sintered body obtained by sintering metal particles of any one of AuSn, Ag, and Au.
JP2021083424A 2017-06-14 2021-05-17 light emitting device Active JP7132395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021083424A JP7132395B2 (en) 2017-06-14 2021-05-17 light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017117112A JP6887321B2 (en) 2017-06-14 2017-06-14 Light emitting device and its manufacturing method
JP2021083424A JP7132395B2 (en) 2017-06-14 2021-05-17 light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017117112A Division JP6887321B2 (en) 2017-06-14 2017-06-14 Light emitting device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021114634A JP2021114634A (en) 2021-08-05
JP7132395B2 true JP7132395B2 (en) 2022-09-06

Family

ID=65008013

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017117112A Active JP6887321B2 (en) 2017-06-14 2017-06-14 Light emitting device and its manufacturing method
JP2021083424A Active JP7132395B2 (en) 2017-06-14 2021-05-17 light emitting device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017117112A Active JP6887321B2 (en) 2017-06-14 2017-06-14 Light emitting device and its manufacturing method

Country Status (1)

Country Link
JP (2) JP6887321B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113439348B (en) * 2019-02-21 2024-04-05 夏普株式会社 Light-emitting element and display device
CN114828401A (en) * 2022-04-08 2022-07-29 百为智能科技(广州)有限公司 Lamp bead circuit preparation method based on large-size hollow glass substrate and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156448A (en) 2014-02-21 2015-08-27 スタンレー電気株式会社 Semiconductor light emitting device and mounting substrate
JP2016054267A (en) 2014-09-04 2016-04-14 日亜化学工業株式会社 Circuit board and light-emitting apparatus using the same
JP2016184621A (en) 2015-03-25 2016-10-20 スタンレー電気株式会社 Method of manufacturing electronic device, and electronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850579A (en) * 1981-09-22 1983-03-25 株式会社東芝 Display
JPH0645651A (en) * 1992-05-22 1994-02-18 Sanyo Electric Co Ltd Electrode for n-type sic and its formation
JP6368924B2 (en) * 2012-08-30 2018-08-08 日亜化学工業株式会社 Semiconductor device
JP6210562B2 (en) * 2014-09-30 2017-10-11 ニホンハンダ株式会社 Method for manufacturing light emitting diode device
JP2017041479A (en) * 2015-08-18 2017-02-23 セイコーエプソン株式会社 Junction material, electronic device, projector, and manufacturing method of junction material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156448A (en) 2014-02-21 2015-08-27 スタンレー電気株式会社 Semiconductor light emitting device and mounting substrate
JP2016054267A (en) 2014-09-04 2016-04-14 日亜化学工業株式会社 Circuit board and light-emitting apparatus using the same
JP2016184621A (en) 2015-03-25 2016-10-20 スタンレー電気株式会社 Method of manufacturing electronic device, and electronic device

Also Published As

Publication number Publication date
JP2021114634A (en) 2021-08-05
JP2019004032A (en) 2019-01-10
JP6887321B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
KR102349834B1 (en) Light-emitting device
JP7132395B2 (en) light emitting device
US20180083168A1 (en) Light emitting component
JP2019220726A (en) Led module with hermetic seal of wavelength conversion material
US20070228947A1 (en) Luminescent Light Source, Method for Manufacturing the Same, and Light-Emitting Apparatus
JP2008502159A (en) Power light emitting die package having a reflective lens and method of manufacturing
CN206432286U (en) Light-emitting element packaging base structure
JP6194426B2 (en) Optoelectronic component and manufacturing method thereof
JP2007180059A (en) Optical semiconductor device and manufacturing method therefor
CN106972013A (en) Encapsulation for UV emitting device
JP2017152475A (en) Light-emitting device
JP6079544B2 (en) Light emitting device and method for manufacturing light emitting device
JP4238666B2 (en) Method for manufacturing light emitting device
JP6204525B2 (en) Light emitting device and manufacturing method thereof
JP6172455B2 (en) Light emitting device
JP6164215B2 (en) Optical semiconductor device
TW202129867A (en) Package structure and method for forming package structure
JP2015012203A (en) Light-emitting device and process of manufacturing the same
JP6754206B2 (en) Light emitting device
KR20180062365A (en) LED elements, Manufacturing method for the same, and LED display module
JP2017175113A (en) Recessed chip scale packaging light emitting element and method of manufacturing the same
US20170236984A1 (en) Semiconductor light emitting device packages
CN107924971B (en) Optoelectronic component and method for producing an optoelectronic component
JP2016134539A (en) Semiconductor light-emitting device
KR101616474B1 (en) Package for Light Emitting Device and Method for Manufacturing thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220825

R150 Certificate of patent or registration of utility model

Ref document number: 7132395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150