JP7131304B2 - Vehicle driving support device - Google Patents

Vehicle driving support device Download PDF

Info

Publication number
JP7131304B2
JP7131304B2 JP2018206500A JP2018206500A JP7131304B2 JP 7131304 B2 JP7131304 B2 JP 7131304B2 JP 2018206500 A JP2018206500 A JP 2018206500A JP 2018206500 A JP2018206500 A JP 2018206500A JP 7131304 B2 JP7131304 B2 JP 7131304B2
Authority
JP
Japan
Prior art keywords
vehicle
curvature
deceleration
control amount
vehicle speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018206500A
Other languages
Japanese (ja)
Other versions
JP2020069953A (en
Inventor
壮一 大久保
貴史 前田
恒和 八十嶋
真之 細川
雄貴 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018206500A priority Critical patent/JP7131304B2/en
Publication of JP2020069953A publication Critical patent/JP2020069953A/en
Application granted granted Critical
Publication of JP7131304B2 publication Critical patent/JP7131304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は、自車両がカーブ路を走行する際に減速制御量を演算し、その減速制御量に従って自車両を減速させる車両用運転支援装置に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving support system for a vehicle that calculates a deceleration control amount and decelerates the own vehicle according to the deceleration control amount when the own vehicle travels on a curved road.

従来から、自車両の横加加速度に基づいて、自車両の前後方向の加減速度を制御してドライバーの運転操作(ペダル操作)を支援する車両用運転支援装置が知られている。例えば、特許文献1に提案されている装置(以下、従来装置と呼ぶ)では、自車両の前方のプレビューポイントにおける道路のカーブ曲率を推定し、この推定したカーブ曲率と、現在の車速とに基づいて、プレビューポイントにおける横加速度(先読み横加速度と呼ぶ)と横加加速度(先読み横加加速度と呼ぶ)とを演算する。そして、先読み横加加速度を先読み横加速度で補正した値を、自車両の前後方向の加減速制御量(=要求加減速度)に設定する。 2. Description of the Related Art Conventionally, there has been known a vehicle driving assistance device that assists a driver's driving operation (pedal operation) by controlling the longitudinal acceleration/deceleration of the own vehicle based on the lateral jerk of the own vehicle. For example, a device proposed in Patent Document 1 (hereinafter referred to as a conventional device) estimates the curvature of a road curve at a preview point in front of the vehicle, and based on the estimated curvature of the curve and the current vehicle speed, Then, the lateral acceleration (predicted lateral acceleration) and the lateral jerk (predicted lateral jerk) at the preview point are calculated. Then, a value obtained by correcting the predicted lateral jerk with the predicted lateral acceleration is set as the acceleration/deceleration control amount (=requested acceleration/deceleration) of the vehicle in the longitudinal direction.

特許第6333655号公報Japanese Patent No. 6333655

しかしながら、従来装置においては、先読み横加加速度をベースとした加減速制御量が演算されるため、加減速がハンチングして乗り心地が悪化する。また、不要な減速が行われることがある。以下、その理由について説明する。 However, in the conventional device, since the acceleration/deceleration control amount is calculated based on the predicted lateral jerk, hunting occurs in the acceleration/deceleration, which deteriorates the ride comfort. Also, unnecessary deceleration may occur. The reason for this will be explained below.

例えば、プレビューポイントにおけるカーブの曲率Cpは、現在の曲率Cc(自車両の現在位置の曲率)と、曲率変化率dと、自車両位置からプレビューポイントまでの距離ΔL(先読み距離と呼ぶ)とを用いれば、次式(1)にて計算される。
Cp=Cc+dΔL ・・・(1)
従って、先読み横加速度Gypは、次式(2)にて計算され、先読み横加加速度Jypは、次式(3)にて計算される。Vは、自車両の車速である。
Gyp=(Cc+dΔL)・V2 ・・・(2)
Jyp=(Cc+dΔL)・V2-Cc・V2=dΔL・V2・・・(3)
For example, the curvature Cp of the curve at the preview point is obtained by combining the current curvature Cc (curvature at the vehicle's current position), the curvature change rate d, and the distance ΔL from the vehicle's position to the preview point (referred to as the look-ahead distance). If used, it is calculated by the following formula (1).
Cp=Cc+dΔL (1)
Therefore, the anticipated lateral acceleration Gyp is calculated by the following equation (2), and the anticipated lateral jerk Jyp is calculated by the following equation (3). V is the vehicle speed of the own vehicle.
Gyp=(Cc+dΔL)·V 2 (2)
Jyp=(Cc+dΔL)·V 2 -Cc·V 2 =dΔL·V 2 (3)

従って、先読み横加加速度Jypは、dΔL・V2がベースとされる。しかし、曲率変化率dは、道路の白線認識によって求められるものであり、図10に示すように、ノイズが大きい。このため、加減速制御量は、図11に示すようにハンチングする。 Therefore, the predicted lateral jerk Jyp is based on dΔL·V 2 . However, the curvature change rate d is obtained by recognizing white lines on the road, and as shown in FIG. 10, there is a large amount of noise. Therefore, the acceleration/deceleration control amount is hunted as shown in FIG.

また、自車両がレーンチェンジをするときには、車体が道路の形成方向に対して斜めに偏向するため、図12の太線にて示すように、直線道路であるにもかかわらず、カメラの撮像した白線がカーブした形状として認識されることがある。この場合には、曲率変化率dが真値に比べて大きくなり、加減速制御量の大きさが過剰になる(減速度が過剰になる)。この結果、必要でもない減速が行われてしまう。 In addition, when the own vehicle changes lanes, the vehicle body is deflected obliquely with respect to the formation direction of the road. Therefore, as shown by the thick line in FIG. is sometimes perceived as a curved shape. In this case, the curvature change rate d becomes larger than the true value, and the magnitude of the acceleration/deceleration control amount becomes excessive (the deceleration becomes excessive). This results in unnecessary deceleration.

本発明は、上記課題を解決するためになされたものであり、減速度のハンチングを低減して乗り心地を向上させること、および、不要な減速が行われることを低減することを目的とする。 The present invention has been made to solve the above problems, and aims to improve ride comfort by reducing deceleration hunting and to reduce unnecessary deceleration.

上記目的を達成するために、本発明の特徴は、
自車両がカーブ路を走行する際に減速制御量(A)を演算し、前記減速制御量に従って自車両を減速させる車両用運転支援装置(1)において、
車線情報に基づいて自車両の走行位置における道路の曲率である現在曲率(Cc)、および、自車両から所定距離前方位置における道路の曲率である先読み曲率(Cp)を取得する曲率取得手段(S12,S13)と、
前記現在曲率が現在曲率閾値以下であり、かつ、前記先読み曲率が先読み曲率閾値以上であるという道路曲率条件が成立するか否かを判定する曲率条件判定手段(S15,S21)と、
自車両のウインカーが作動している状況でもなく、自車両がレーンチェンジを行っている状況でもないという運転条件が成立するか否かを判定する運転条件判定手段(S17,S22)と、
前記道路曲率条件と前記運転条件との両方が成立する場合に(S15:Yes,S17:Yes,S21:No,S22:No)、自車両の現在の車速に応じて、前記車速が高くなるにしたがって減速度の大きさが増加するベース減速制御量(Abase)を演算するベース制御量演算手段(S19)と、
前記先読み曲率が大きくなるにしたがって低くなるように設定された目標車速から自車両の現在の車速を減算した車速偏差が大きいほど、前記ベース減速制御量の大きさを小さくするように補正して前記減速制御量(A)を算出する減速制御量演算手段(S21)と
を備えたことにある。
In order to achieve the above object, the features of the present invention are:
In a vehicle driving support device (1) for calculating a deceleration control amount (A) when the own vehicle travels on a curved road and decelerating the own vehicle according to the deceleration control amount,
Curvature acquisition means (S12) for acquiring the current curvature (Cc), which is the curvature of the road at the position where the vehicle is traveling, and the predicted curvature (Cp), which is the curvature of the road at a position ahead of the vehicle at a predetermined distance, based on the lane information. , S13) and
Curvature condition determination means (S15, S21) for determining whether a road curvature condition that the current curvature is equal to or less than the current curvature threshold and the foreseen curvature is not less than the foreseen curvature threshold is established;
Driving condition determination means (S17, S22) for determining whether or not a driving condition is satisfied that the turn signal of the vehicle is neither operating nor the vehicle is changing lanes;
When both the road curvature condition and the driving condition are satisfied (S15: Yes, S17: Yes, S21: No, S22: No), the speed increases according to the current speed of the own vehicle. Therefore, base control amount calculation means (S19) for calculating a base deceleration control amount (Abase) by which the magnitude of deceleration increases;
As the vehicle speed deviation obtained by subtracting the current vehicle speed of the host vehicle from the target vehicle speed set to decrease as the foreseeing curvature increases, the base deceleration control amount is corrected to decrease. and deceleration control amount calculation means (S21) for calculating the deceleration control amount (A).

本発明の車両用運転支援装置は、自車両がカーブ路を走行する際に減速制御量(要求減速度)を演算し、その減速制御量に従って自車両を減速させることにより、ドライバーの運転操作(ペダル操作)を支援する。例えば、この車両用運転支援装置は、アダプティブ・クルーズ・コントロール(ACC)の実施中において、自車両がカーブ路を走行する際の減速制御量である要求減速度を演算して、その要求減速度で自車両を減速させる。 The vehicle driving support system of the present invention calculates a deceleration control amount (requested deceleration) when the own vehicle travels on a curved road, and decelerates the own vehicle according to the deceleration control amount, thereby enabling the driver's driving operation ( pedal operation). For example, this vehicular driving support system calculates a required deceleration, which is a deceleration control amount when the own vehicle travels on a curved road, during execution of adaptive cruise control (ACC), and calculates the required deceleration. to slow down your vehicle.

車両用運転支援装置は、曲率取得手段と、曲率条件判定手段と、運転条件判定手段と、ベース制御量演算手段と、減速制御量演算手段とを備えている。 The vehicle driving support device includes curvature acquisition means, curvature condition determination means, driving condition determination means, base control amount calculation means, and deceleration control amount calculation means.

曲率取得手段は、車線情報に基づいて自車両の走行位置における道路の曲率である現在曲率、および、自車両から所定距離前方位置における道路の曲率である先読み曲率を取得する。例えば、曲率取得手段は、自車両の前方を撮影するカメラの画像を用いて白線を認識し、この白線に基づいて現在曲率、および、先読み曲率を取得する。この場合、例えば、自車両の車速が高いほど、所定距離が大きくなるように調整されることが好ましい。 The curvature acquisition means acquires the current curvature, which is the curvature of the road at the position where the vehicle is traveling, and the predicted curvature, which is the curvature of the road at a position a predetermined distance ahead of the vehicle, based on the lane information. For example, the curvature acquisition means recognizes a white line using a camera image of the front of the vehicle, and acquires the current curvature and the predicted curvature based on the white line. In this case, for example, it is preferable that the higher the vehicle speed of the own vehicle, the greater the predetermined distance.

曲率条件判定手段は、現在曲率が現在曲率閾値以下であり、かつ、先読み曲率が先読み曲率閾値以上であるという道路曲率条件が成立するか否かを判定する。この場合、例えば、現在曲率閾値は、自車両の車速が高いほど、大きくなるように調整されることが好ましく、先読み曲率閾値は、自車両の車速が高いほど、小さくなるように調整されることが好ましい。 The curvature condition determination means determines whether or not a road curvature condition that the current curvature is equal to or less than the current curvature threshold and the forward curvature is equal to or greater than the forward curvature threshold is satisfied. In this case, for example, the current curvature threshold is preferably adjusted to increase as the vehicle speed increases, and the look-ahead curvature threshold is adjusted to decrease as the vehicle speed increases. is preferred.

運転条件判定手段は、自車両のウインカーが作動している状況でもなく、自車両がレーンチェンジを行っている状況でもないという運転条件が成立するか否かを判定する。例えば、自車両が白線(自車レーンと隣接レーンとの境界を形成する白線)を跨いだ時点から所定時間経過するまでの期間を、自車両がレーンチェンジを行っている状況であるとすればよい。 The driving condition determination means determines whether or not a driving condition is satisfied that neither the turn signal of the vehicle is operating nor the vehicle is changing lanes. For example, if the vehicle is changing lanes during a period from when the vehicle crosses the white line (the white line that forms the boundary between the lane of the vehicle and the adjacent lane) to the elapse of a predetermined period of time. good.

ベース制御量演算手段は、道路曲率条件と運転条件との両方が成立する場合に、自車両の現在の車速に応じて、車速が高くなるにしたがって減速度の大きさ(絶対値)が増加するベース減速制御量を演算する。 The base control amount calculation means increases the magnitude (absolute value) of deceleration as the vehicle speed increases according to the current vehicle speed of the own vehicle when both the road curvature condition and the driving condition are satisfied. Calculate the base deceleration control amount.

減速制御量演算手段は、先読み曲率が大きくなるにしたがって低くなるように設定された目標車速から自車両の現在の車速を減算した車速偏差が大きいほど、ベース減速制御量の大きさを小さくするように補正して減速制御量を算出する。 The deceleration control amount calculation means decreases the magnitude of the base deceleration control amount as the vehicle speed deviation obtained by subtracting the current vehicle speed of the own vehicle from the target vehicle speed set to decrease as the look-ahead curvature increases. is corrected to calculate the deceleration control amount.

従って、曲率変化率にノイズが生じていても、車速に応じたベース減速制御量が演算されるため、ベース減速制御量については、その曲率変化率に含まれるノイズの影響を受けない。また、先読み曲率が大きくなるにしたがって目標車速が低くなるように設定され、この目標車速から自車両の現在の車速を減算した車速偏差が大きいほど、ベース減速制御量が、その大きさが小さくなるように補正される。この補正されたベース減速制御量が減速制御量として用いられる。 Therefore, even if noise occurs in the curvature change rate, the base deceleration control amount is calculated according to the vehicle speed, so the base deceleration control amount is not affected by the noise included in the curvature change rate. Also, the target vehicle speed is set to decrease as the look-ahead curvature increases, and the larger the vehicle speed deviation obtained by subtracting the current vehicle speed of the host vehicle from the target vehicle speed, the smaller the base deceleration control amount. is corrected as follows. This corrected base deceleration control amount is used as the deceleration control amount.

このため、先読みポイントにおけるカーブが急な場合、および、車速が高い場合には、減速度の大きな(減速度の絶対値の大きな)減速制御量が演算され、早めに適正な減速を行うことができる。また、先読みポイントにおけるカーブが緩い場合、および、車速が低い場合には、減速度の小さな(減速度の絶対値の小さな)減速制御量が演算され、過剰な減速が行われないようにすることができる。 Therefore, when the curve at the look-ahead point is steep, or when the vehicle speed is high, a deceleration control amount with a large deceleration (a large absolute value of deceleration) is calculated, and appropriate deceleration can be performed early. can. Also, when the curve at the look-ahead point is gentle and the vehicle speed is low, a deceleration control amount with a small deceleration (a small absolute value of deceleration) is calculated to prevent excessive deceleration. can be done.

また、ベース減速制御量を補正して減速制御量を算出するにあたって、先読み曲率が用いられるが、先読み曲率は、現在曲率と、曲率変化率に所定距離を乗算した値との和で求められるため、曲率変化分の占める割合は少ない。従って、曲率変化率に含まれるノイズが減速制御量の演算に与える影響は少ない。このため、減速制御量のハンチングを抑制することができる。 Further, the look-ahead curvature is used in calculating the deceleration control amount by correcting the base deceleration control amount. The look-ahead curvature is obtained by the sum of the current curvature and the value obtained by multiplying the curvature change rate by a predetermined distance. , the proportion of curvature change is small. Therefore, the noise contained in the curvature change rate has little influence on the calculation of the deceleration control amount. Therefore, hunting of the deceleration control amount can be suppressed.

また、レーンチェンジが行われている状況において道路の誤った曲率が取得されたとしても、誤った曲率に基づいて減速制御量が算出されない。このため、レーンチェンジ時に不要な減速を抑制することができる。 Also, even if an incorrect curvature of the road is acquired in a lane change situation, the deceleration control amount is not calculated based on the incorrect curvature. Therefore, unnecessary deceleration can be suppressed when changing lanes.

この結果、本発明によれば、減速度のハンチングを抑制して乗り心地を向上させるとともに、不要な減速が行われることを抑制することができる。 As a result, according to the present invention, deceleration hunting can be suppressed to improve ride comfort, and unnecessary deceleration can be suppressed.

上記説明においては、発明の理解を助けるために、実施形態に対応する発明の構成要件に対して、実施形態で用いた符号を括弧書きで添えているが、発明の各構成要件は、前記符号によって規定される実施形態に限定されるものではない。 In the above description, in order to facilitate understanding of the invention, the symbols used in the embodiments are attached to the constituent elements of the invention corresponding to the embodiments in parentheses. are not limited to the embodiments defined by

本実施形態に係る車両用運転支援装置の概略システム構成図である。1 is a schematic system configuration diagram of a vehicle driving assistance device according to an embodiment; FIG. SPM制御ルーチンを表すフローチャートである。4 is a flow chart representing an SPM control routine; 車速Vsと先読み距離ΔLとの関係を表すグラフである。4 is a graph showing the relationship between vehicle speed Vs and look-ahead distance ΔL. 車速Vsと、先読み曲率閾値C1および現在曲率閾値C2との関係を表すグラフである。4 is a graph showing the relationship between vehicle speed Vs, and prediction curvature threshold value C1 and current curvature threshold value C2. ステップS17でSPM制御が禁止される期間を表す図である。FIG. 4 is a diagram showing a period during which SPM control is prohibited in step S17; 車速Vsとベース減速制御量Abaseとの関係を表すグラフである。4 is a graph showing the relationship between vehicle speed Vs and base deceleration control amount Abase. 先読み曲率Cpと目標車速Vpとを関係を表すグラフである。4 is a graph showing the relationship between the look-ahead curvature Cp and the target vehicle speed Vp. 車速偏差ΔVとゲインGaとの関係を表すグラフである。4 is a graph showing the relationship between vehicle speed deviation ΔV and gain Ga. FIG. 要求減速度Aの推移を従来例と比較したグラフである。It is the graph which compared the transition of the request|requirement deceleration A with a conventional example. 曲率変化率dの推移を表すグラフである。It is a graph showing transition of curvature change rate d. 従来例における加減速制御量の推移を表すグラフである。7 is a graph showing changes in acceleration/deceleration control amount in a conventional example; レーンチェンジ時におけるカメラの認識する白線形状のイメージを表す平面図である。FIG. 4 is a plan view showing an image of a white line shape recognized by a camera when changing lanes;

以下、本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態の車両用運転支援装置1の概略システム構成図である。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic system configuration diagram of a vehicle driving assistance device 1 of this embodiment.

本実施形態の車両用運転支援装置1は、車両VAに搭載される。以下、この車両用運転支援装置1を搭載した車両VAについて、他車両と区別する必要がある場合には、自車両VAと呼ぶこともある。 A vehicle driving support system 1 of the present embodiment is mounted on a vehicle VA. Hereinafter, the vehicle VA equipped with the vehicle driving support system 1 may be referred to as the own vehicle VA when it is necessary to distinguish it from other vehicles.

運転支援ECU10、エンジンECU20、ブレーキECU30、および、メータECU40を備える。これらのECUは、図示しないCAN(Controller Area Network)を介してデータ交換可能(通信可能)に互いに接続されている。 A driving support ECU 10, an engine ECU 20, a brake ECU 30, and a meter ECU 40 are provided. These ECUs are connected to each other via a CAN (Controller Area Network) (not shown) so as to be able to exchange data (communicate).

ECUは、エレクトロニックコントロールユニットの略称であり、CPU、ROM、RAM及びインターフェース等を含むマイクロコンピュータを主要構成部品として有する電子制御回路である。CPUは、メモリ(ROM)に格納されたインストラクション(ルーチン)を実行することにより各種機能を実現する。これらのECUは、一つのECUに統合されてもよい。 ECU is an abbreviation for electronic control unit, and is an electronic control circuit having a microcomputer including CPU, ROM, RAM, interfaces, etc. as its main component. The CPU implements various functions by executing instructions (routines) stored in a memory (ROM). These ECUs may be integrated into one ECU.

車両用運転支援装置1は、車輪速センサ11、ヨーレートセンサ12、カメラ装置13、ミリ波レーダ装置14、加速度センサ15、および、ACCスイッチ16を備える。これらは運転支援ECU10に接続されている。 The vehicle driving assistance device 1 includes a wheel speed sensor 11 , a yaw rate sensor 12 , a camera device 13 , a millimeter wave radar device 14 , an acceleration sensor 15 and an ACC switch 16 . These are connected to the driving assistance ECU 10 .

車輪速センサ11は、各車輪毎に設けられる。各車輪速センサ11は、対応する車輪が所定角度回転する毎に一つのパルス信号(車輪パルス信号)を発生させる。運転支援ECU10は、各車輪速センサ11から送信されてくる車輪パルス信号の単位時間におけるパルス数を計測し、その計測したパルス数に基づいて各車輪の回転速度(車輪速度)を取得する。運転支援ECU10は、各車輪の車輪速度に基づいて車両VAの速度を示す車速Vsを取得する。一例として、運転支援ECU10は、四つの車輪の車輪速度の平均値を車速Vsとして取得する。尚、車速Vsは、必ずしも運転支援ECU10で演算される必要は無く、例えば、ブレーキECU30によって演算されてもよい。その場合には、ブレーキECU30は、車輪速度に基づいて車速Vsを演算し、その演算結果である車速Vsを表す情報を、運転支援ECU10を含む他のECUに対して送信する。 A wheel speed sensor 11 is provided for each wheel. Each wheel speed sensor 11 generates one pulse signal (wheel pulse signal) each time the corresponding wheel rotates by a predetermined angle. The driving support ECU 10 measures the number of pulses per unit time of the wheel pulse signal transmitted from each wheel speed sensor 11, and acquires the rotation speed (wheel speed) of each wheel based on the measured number of pulses. The driving assistance ECU 10 acquires the vehicle speed Vs indicating the speed of the vehicle VA based on the wheel speed of each wheel. As an example, the driving assistance ECU 10 acquires the average value of the wheel speeds of the four wheels as the vehicle speed Vs. The vehicle speed Vs does not necessarily have to be calculated by the driving support ECU 10, and may be calculated by the brake ECU 30, for example. In that case, the brake ECU 30 calculates the vehicle speed Vs based on the wheel speed, and transmits information representing the calculated vehicle speed Vs to the other ECUs including the driving support ECU 10 .

ヨーレートセンサ12は、車両VAに作用するヨーレートYrを検出し、検出したヨーレートYrを表す信号(以下、ヨーレート信号と呼ぶ)を出力する。 The yaw rate sensor 12 detects a yaw rate Yr acting on the vehicle VA and outputs a signal representing the detected yaw rate Yr (hereinafter referred to as a yaw rate signal).

カメラ装置13は、車室内のフロントウインドの上部に配設されている。カメラ装置13は、車両VAの前方領域の画像(カメラ画像)を取得し、その画像から物体情報(物体までの距離及び物体の方位等)、および、車両が走行している車線を区画する白線に関する車線情報を取得する。 The camera device 13 is arranged above the front window in the passenger compartment. The camera device 13 acquires an image (camera image) of the area in front of the vehicle VA, and from the image, object information (distance to the object, direction of the object, etc.) and white lines demarcating the lane in which the vehicle is traveling. Get lane information for .

ミリ波レーダ装置14は、ミリ波送受信部と処理部とを備えている。ミリ波レーダ装置14は、車両VAの前端部且つ車幅方向の中央部に配設されている。ミリ波送受信部は、車両VAの直進前方向に伸びる中心軸を有する。更に、ミリ波送受信部は、この中心軸から左方向及び右方向にそれぞれ所定の角度の広がりをもって伝播するミリ波を発信する。そのミリ波は、物体(例えば、他の車両、歩行者及び二輪車等)により反射される。ミリ波送受信部はこの反射波を受信する。処理部は、受信した反射波に基づいて、物体までの距離、物体の車両VAに対する相対速度、及び物体の車両VAに対する方位等の物体情報を演算により取得する。 The millimeter wave radar device 14 includes a millimeter wave transmitting/receiving section and a processing section. The millimeter wave radar device 14 is arranged at the front end of the vehicle VA and at the center in the vehicle width direction. The millimeter wave transmitting/receiving unit has a central axis extending in the straight ahead direction of the vehicle VA. Further, the millimeter-wave transmitting/receiving unit transmits millimeter-waves propagating leftward and rightward from the central axis with a spread of a predetermined angle. The millimeter waves are reflected by objects (eg, other vehicles, pedestrians, motorcycles, etc.). A millimeter wave transmitting/receiving unit receives this reflected wave. Based on the received reflected wave, the processing unit acquires object information such as the distance to the object, the relative speed of the object with respect to the vehicle VA, and the azimuth of the object with respect to the vehicle VA.

なお、運転支援ECU10は、ミリ波レーダ装置14が取得する物体情報をカメラ装置13が取得する物体情報に基づいて修正することにより、後述するACCに用いる最終的な物体情報を取得する。 Note that the driving assistance ECU 10 acquires final object information used for ACC, which will be described later, by correcting the object information acquired by the millimeter wave radar device 14 based on the object information acquired by the camera device 13 .

加速度センサ15は、車両VAの縦方向(前後方向)の加速度、車両VAの横方向(車幅方向)の加速度、および、車両VAの高さ方向の加速度を検出し、これらの加速度を表す検出信号を運転支援ECU10に送信する。 The acceleration sensor 15 detects acceleration in the longitudinal direction (front-rear direction) of the vehicle VA, acceleration in the lateral direction (transverse direction) of the vehicle VA, and acceleration in the height direction of the vehicle VA. A signal is transmitted to the driving assistance ECU 10 .

ACCスイッチ16は、運転者がアダプティブ・クルーズ・コントロール(以下、ACCと呼ぶ)の開始を望む場合、および、ACCの設定を行う場合に操作するスイッチである。ACCスイッチ16は、以下の操作信号を運転支援ECU10に送信する。
(1)運転支援機能のオン/オフ
(2)定速制御モードと追従制御モードとの切り替え
(3)定速走行用の車速(セット車速)の設定
(4)追従制御モードにおける車間距離の設定(長・中・短)
The ACC switch 16 is a switch operated when the driver wishes to start adaptive cruise control (hereinafter referred to as ACC) and when setting ACC. The ACC switch 16 transmits the following operation signals to the driving assistance ECU 10.
(1) ON/OFF of driving support function (2) Switching between constant speed control mode and follow-up control mode (3) Setting of vehicle speed for constant speed driving (set vehicle speed) (4) Setting of inter-vehicle distance in follow-up control mode (Long/Medium/Short)

ここでACCについて説明する。運転支援ECU10は、ACCスイッチ16によってACC運転支援がオンに設定されている場合にACCを実施する。運転支援ECU10は、ACCの実施に当たって、ACCスイッチ16によって定速制御モードが選択されている場合には、ACCスイッチ16によって設定されたセット車速にて自車両VAを定速走行させる制御である定速制御を実施する。また、運転支援ECU10は、ACCスイッチ16によって追従制御モードが選択されている場合であって、自車両VAの前方を走行する先行車両が存在する場合には、先行車両情報に基づいて、先行車両と自車両との車間距離を車速に応じた適切な距離に維持しながら自車両VAを先行車両に追従させる制御である追従制御を実施する。一方、自車両VAの前方を走行する先行車両が存在しない場合には、運転支援ECU10は、上記の定速制御を実施する。 ACC will now be described. The driving assistance ECU 10 performs ACC when the ACC driving assistance is set to ON by the ACC switch 16 . When the constant speed control mode is selected by the ACC switch 16, the driving support ECU 10 controls the vehicle VA to run at a constant speed set by the ACC switch 16. speed control. Further, when the follow-up control mode is selected by the ACC switch 16 and there is a preceding vehicle traveling ahead of the own vehicle VA, the driving assistance ECU 10 controls the preceding vehicle based on the preceding vehicle information. Follow-up control, which is control for causing the own vehicle VA to follow the preceding vehicle while maintaining the inter-vehicle distance between and the own vehicle at an appropriate distance according to the vehicle speed, is performed. On the other hand, when there is no preceding vehicle running in front of the own vehicle VA, the driving assistance ECU 10 performs the constant speed control described above.

運転支援ECU10は、ACC(定速制御あるいは追従制御)を実施しているあいだ、定速制御および追従制御で必要とされる加減速度(要求加減速度)を表す指令をエンジンECU20およびブレーキECU30に送信する。これにより、ドライバーのペダル操作は不要となる。加減速度は、その符号によって加速度と減速度とが区別され、正の値であれば加速度、負の値であれば減速度を表す。尚、加速度が大きい(小さい)、減速度が大きい(小さい)という表現は、その絶対値が大きい(小さい)ことを表す。 While the driving support ECU 10 is performing ACC (constant speed control or follow-up control), it sends commands representing acceleration/deceleration required for constant speed control and follow-up control (requested acceleration/deceleration) to the engine ECU 20 and the brake ECU 30. do. This eliminates the need for the driver to operate the pedals. Acceleration and deceleration are distinguished by the sign of the acceleration/deceleration. A positive value indicates acceleration, and a negative value indicates deceleration. The expressions that the acceleration is large (small) and the deceleration is large (small) indicate that the absolute values thereof are large (small).

また、運転支援ECU10は、ACCの実施中に、自車両VAがカーブ路を走行するときの車速を適切にするための制御であるスピードマネジメント制御(以下、SPM制御と呼ぶ)を実施する。運転支援ECU10は、定速制御で要求される要求加減速度と、追従制御で要求される要求加減速度と、SPM制御で要求される要求加減速度とを並行して演算し、それらのうちの最も小さい要求加減速度を選択して、その選択された要求加減速度を使って自車両VAの加減速度を制御する。従って、運転支援ECU10は、SPM制御を実施する必要がない状況においては、SPM制御用の要求加減速度を正の無限大に近い値(無効値と呼ぶ)に設定して、SPM制御が実施されないようにする。 In addition, the driving support ECU 10 performs speed management control (hereinafter referred to as SPM control), which is control for optimizing the vehicle speed when the host vehicle VA travels on a curved road, during ACC. The driving support ECU 10 calculates in parallel the required acceleration/deceleration required for constant speed control, the required acceleration/deceleration required for follow-up control, and the required acceleration/deceleration required for SPM control, and calculates the required acceleration/deceleration required for SPM control. A small requested acceleration/deceleration is selected, and the selected requested acceleration/deceleration is used to control the acceleration/deceleration of the own vehicle VA. Therefore, the driving support ECU 10 sets the required acceleration/deceleration for SPM control to a value close to positive infinity (called an invalid value) in a situation where it is not necessary to perform SPM control, and SPM control is not performed. make it

エンジンECU20は、アクセルペダル操作量センサ22、および、エンジンセンサ24と接続され、これらのセンサの検出信号を受け取る。 The engine ECU 20 is connected to an accelerator pedal operation amount sensor 22 and an engine sensor 24 to receive detection signals from these sensors.

アクセルペダル操作量センサ22は、車両VAのアクセルペダルの操作量を示すアクセルペダル操作量を検出する。運転者がアクセルペダルを操作していない場合のアクセルペダル操作量は「0」である。エンジンセンサ24は、車両VAの駆動源であるエンジン(例えば、内燃機関)の運転状態量を検出するセンサであって、例えば、スロットル弁開度センサ、機関回転速度センサ、および、吸入空気量センサ等である。 The accelerator pedal operation amount sensor 22 detects an accelerator pedal operation amount indicating the operation amount of the accelerator pedal of the vehicle VA. The accelerator pedal operation amount is "0" when the driver does not operate the accelerator pedal. The engine sensor 24 is a sensor that detects operating state quantities of an engine (for example, an internal combustion engine) that is a driving source of the vehicle VA, and includes, for example, a throttle valve opening sensor, an engine rotation speed sensor, and an intake air amount sensor. etc.

更に、エンジンECU20は、エンジンアクチュエータ26(例えば、スロットル弁アクチュエータ、燃料噴射弁等)と接続されている。エンジンECU20は、エンジンアクチュエータ26を駆動することによってエンジンが発生するトルクを変更し、これにより、車両VAの駆動力を調整する。エンジンECU20は、スロットル弁の開度が目標スロットル弁開度に一致するようにスロットル弁アクチュエータを駆動する。 Furthermore, the engine ECU 20 is connected to an engine actuator 26 (for example, throttle valve actuator, fuel injection valve, etc.). The engine ECU 20 changes the torque generated by the engine by driving the engine actuator 26, thereby adjusting the driving force of the vehicle VA. The engine ECU 20 drives the throttle valve actuator so that the opening of the throttle valve matches the target throttle valve opening.

ACCが実施されていない通常の運転時においては、エンジンECU20は、アクセルペダル操作量が大きくなるほど目標スロットル弁開度が大きくなるように目標スロットル弁開度を決定する。 During normal operation in which ACC is not performed, the engine ECU 20 determines the target throttle valve opening so that the target throttle valve opening increases as the accelerator pedal operation amount increases.

これに対し、ACCが実施されている場合、エンジンECU20は、アクセルペダル操作量が「0」である場合、運転支援ECU10から送信される加減速度指令に対応するスロットル弁開度を目標スロットル弁開度に決定する。また、ACCが実施されている場合であって、アクセルペダル操作量が「0」よりも大きい場合(即ち、運転者がアクセルペダルを操作している場合)、エンジンECU20は、アクセルペダル操作量に基づくスロットル弁開度を目標スロットル弁開度に決定する。このようなACCの実施中におけるアクセルペダル操作量による車両VAの加速を「アクセルオーバーライド」と呼ぶ。 On the other hand, when ACC is performed, the engine ECU 20 sets the throttle valve opening corresponding to the acceleration/deceleration command transmitted from the driving support ECU 10 to the target throttle valve opening when the accelerator pedal operation amount is "0". Decide on time. Further, when ACC is being performed and the accelerator pedal operation amount is greater than "0" (that is, when the driver is operating the accelerator pedal), the engine ECU 20 changes the accelerator pedal operation amount to is determined as the target throttle valve opening. Such acceleration of the vehicle VA due to the amount of accelerator pedal operation during execution of ACC is called "accelerator override".

ブレーキECU30は、車輪速センサ11、および、ブレーキペダル操作量センサ32と接続され、これらのセンサの検出信号を受け取る。 The brake ECU 30 is connected to the wheel speed sensor 11 and the brake pedal operation amount sensor 32 and receives detection signals from these sensors.

ブレーキペダル操作量センサ32は、車両VAのブレーキペダル(不図示)の操作量を示すブレーキペダル操作量を検出する。ブレーキペダルが操作されていない場合のブレーキペダル操作量は「0」である。 A brake pedal operation amount sensor 32 detects a brake pedal operation amount indicating an operation amount of a brake pedal (not shown) of the vehicle VA. The brake pedal operation amount is "0" when the brake pedal is not operated.

ブレーキECU30は、運転支援ECU10と同様に、車輪速センサ11からの車輪パルス信号に基づいて、各車輪の回転速度及び車速Vsを取得する。なお、ブレーキECU30は、運転支援ECU10が取得した各車輪の回転速度、および、車速Vsを運転支援ECU10から取得してもよい。この場合、ブレーキECU30は車輪速センサ11に接続されなくてもよい。 The brake ECU 30 acquires the rotation speed of each wheel and the vehicle speed Vs based on the wheel pulse signal from the wheel speed sensor 11, like the driving support ECU 10. FIG. Note that the brake ECU 30 may acquire from the driving assistance ECU 10 the rotational speed of each wheel acquired by the driving assistance ECU 10 and the vehicle speed Vs. In this case, the brake ECU 30 does not have to be connected to the wheel speed sensor 11 .

更に、ブレーキECU30は、ブレーキアクチュエータ34と接続されている。ブレーキアクチュエータ34は油圧制御アクチュエータである。ブレーキアクチュエータ34は、ブレーキペダルの踏力によって作動油を加圧するマスタシリンダと、各車輪に設けられる周知のホイールシリンダを含む摩擦ブレーキ装置と、の間の油圧回路(何れも、図示略)に配設される。ブレーキアクチュエータ34はホイールシリンダに供給する油圧を調整する。 Furthermore, the brake ECU 30 is connected with a brake actuator 34 . Brake actuator 34 is a hydraulic control actuator. The brake actuator 34 is arranged in a hydraulic circuit (neither of which is shown) between a master cylinder that pressurizes hydraulic oil by pressing the brake pedal and a known friction brake device including a known wheel cylinder provided for each wheel. be done. A brake actuator 34 adjusts the hydraulic pressure supplied to the wheel cylinders.

ブレーキECU30は、目標減速度に基づいてブレーキアクチュエータ34を駆動することによりホイールシリンダに供給される作動油の油圧を制御する。その結果、各車輪に調整された制動力(摩擦制動力)が発生し、以て、車両VAの減速度が目標減速度に一致させられる。 The brake ECU 30 controls the hydraulic pressure of hydraulic oil supplied to the wheel cylinders by driving the brake actuator 34 based on the target deceleration. As a result, an adjusted braking force (frictional braking force) is generated at each wheel, thereby matching the deceleration of the vehicle VA with the target deceleration.

ACCの実施中において、運転支援ECU10は、所定時間が経過する毎に要求加減速度を演算している。運転支援ECU10は、要求加減速度が負の値である場合(即ち、加減速度が減速度である場合)、この要求加減速度を表す制動指令をブレーキECU30に送信する。ブレーキECU30は、運転支援ECU10から制動指令を受信した場合、その制動指令で表される要求加減速度(減速度)、および、ブレーキペダル操作量に対応する要求減速度のうち絶対値が大きい方の減速度を選択し、その選択した要求減速度を、最終的な目標減速度に設定する。ブレーキECU30は、加速度センサ15によって検出される減速度が目標減速度に一致するようにブレーキアクチュエータ34の作動を制御する。 During execution of ACC, the driving assistance ECU 10 calculates the required acceleration/deceleration every time a predetermined time elapses. When the requested acceleration/deceleration is a negative value (that is, when the acceleration/deceleration is deceleration), the driving support ECU 10 transmits a braking command representing the requested acceleration/deceleration to the brake ECU 30 . When receiving a braking command from the driving support ECU 10, the brake ECU 30 selects the required acceleration/deceleration (deceleration) represented by the braking command and the required deceleration corresponding to the amount of brake pedal operation, whichever has a larger absolute value. Select a deceleration and set the selected desired deceleration to the final target deceleration. The brake ECU 30 controls the operation of the brake actuator 34 so that the deceleration detected by the acceleration sensor 15 matches the target deceleration.

メータECU40は、表示器41、および、左右のウインカー42(ウインカーランプを意味する。ターンランプと呼ばれることもある)に接続されている。表示器41は、例えば、運転席の正面に設けられたマルチインフォーメーションディスプレイであって、車速等のメータ類の計測値の表示に加えて、各種の情報を表示する。例えば、メータECU40は、運転支援ECU10から運転支援状態に応じた表示指令を受信すると、その表示指令で指定された画面を表示器41に表示させる。 The meter ECU 40 is connected to a display 41 and left and right winkers 42 (meaning winker lamps, sometimes called turn lamps). The display 41 is, for example, a multi-information display provided in front of the driver's seat, and displays various types of information in addition to display of measured values of meters such as vehicle speed. For example, when the meter ECU 40 receives a display command corresponding to the driving support state from the driving support ECU 10, the meter ECU 40 causes the display 41 to display a screen specified by the display command.

また、メータECU40は、ウインカー駆動回路(図示略)を備えており、CANを介してウインカー点滅指令を受信した場合には、ウインカー点滅指令で指定された方向(右、左)のウインカー42を点滅させる。また、メータECU40は、ウインカー42を点滅させている間、ウインカー42が点滅状態であることを表すウインカー点滅情報を運転支援ECU10に送信する。従って、運転支援ECU10は、ウインカー42の点滅状態(作動状態)を把握することができる。 In addition, the meter ECU 40 includes a turn signal drive circuit (not shown), and when a turn signal blinking command is received via the CAN, the turn signal 42 in the direction (right, left) specified by the turn signal blinking command blinks. Let Further, while the blinker 42 is blinking, the meter ECU 40 transmits to the driving assistance ECU 10 blinker blinking information indicating that the blinker 42 is blinking. Therefore, the driving assistance ECU 10 can grasp the flashing state (operating state) of the winker 42 .

<SPM制御ルーチン>
次に、運転支援ECU10の実施するSPM制御処理について説明する。図2は、SPM制御ルーチンを表す。SPM制御ルーチンは、ACCスイッチ16によってACCの実施が選択されている場合に、所定の演算周期にて繰り返し実施される。尚、アクセルオーバーライドが検出されている場合、SPM制御ルーチンは実施されない。
SPM制御ルーチンにおいて用いられる車速Vsおよび車線情報などの検出値は、その演算時における値、つまり、最新値である。
<SPM control routine>
Next, the SPM control process performed by the driving support ECU 10 will be described. FIG. 2 represents the SPM control routine. The SPM control routine is repeatedly executed at a predetermined operation cycle when ACC execution is selected by the ACC switch 16 . Note that the SPM control routine is not executed when an accelerator override is detected.
Detected values such as vehicle speed Vs and lane information used in the SPM control routine are the values at the time of calculation, that is, the latest values.

運転支援ECU10は、SPM制御ルーチンを開始すると、まず、ステップS11において、カメラ装置13の出力する車線情報に基づいて、自車両VAの走行している車線(自車レーンと呼ぶ)の左側白線および右側白線を認識する。 When the SPM control routine is started, the driving assistance ECU 10 first, in step S11, based on the lane information output from the camera device 13, the left side white line and Recognize the right white line.

続いて、運転支援ECU10は、ステップS12において、現在曲率Ccを演算によって取得する。現在曲率Ccは、自車両の現在位置における自車レーンの曲率[1/m]を表す。この場合、運転支援ECU10は、自車レーンの左側白線と右側白線との間の中央を通る仮想線(中央線)の曲率を演算するが、何れか一方の白線しか認識できていない状況においては、その一方の白線に基づいて中央線を推定し、その中央線の曲率を演算してもよいし、認識できている一方の白線の曲率を演算してもよい。 Subsequently, in step S12, the driving assistance ECU 10 acquires the current curvature Cc by calculation. The current curvature Cc represents the curvature [1/m] of the vehicle lane at the current position of the vehicle. In this case, the driving support ECU 10 calculates the curvature of an imaginary line (central line) that passes through the center between the left and right white lines of the host vehicle lane. , the center line may be estimated based on one of the white lines, and the curvature of the center line may be calculated, or the curvature of the one recognized white line may be calculated.

続いて、運転支援ECU10は、ステップS13において、先読み曲率Cpを演算によって取得する。この先読み曲率Cpは、自車両の現在位置から所定距離(先読み距離ΔLと呼ぶ)前方における位置の自車レーンの曲率を表す。従って、先読み曲率Cpは、自車両が先読み距離ΔLだけ走行した位置における自車レーンの曲率を表す。運転支援ECU10は、先読み曲率Cpの演算にあたって、現在位置における曲率変化率(単位距離当たりの曲率の変化量[1/m2]、以下、曲率変化率dと呼ぶ)を演算する。そして、この曲率変化率dと、現在曲率Ccと、先読み距離ΔLとを使って、次式(4)にて先読み曲率Cpを演算する。
Cp=Cc+dΔL ・・・(4)
Subsequently, in step S13, the driving assistance ECU 10 obtains the foresight curvature Cp by calculation. This look-ahead curvature Cp represents the curvature of the vehicle lane at a position ahead of the current position of the vehicle by a predetermined distance (called a look-ahead distance ΔL). Therefore, the look-ahead curvature Cp represents the curvature of the vehicle lane at the position where the vehicle has traveled the look-ahead distance ΔL. The driving assistance ECU 10 calculates the curvature change rate (amount of change in curvature per unit distance [1/m 2 ], hereinafter referred to as curvature change rate d) at the current position when calculating the look-ahead curvature Cp. Then, using the curvature change rate d, the current curvature Cc, and the look-ahead distance ΔL, the look-ahead curvature Cp is calculated by the following equation (4).
Cp=Cc+dΔL (4)

尚、先読み距離ΔLは、車速Vsが高いほど長くなるように設定されるとよい。例えば、運転支援ECU10は、図3に示すような車速Vsと先読み距離ΔLとを関係付けた関係付けデータ(マップ等)を記憶しており、この関係付けデータを参照して車速Vsに応じた先読み距離ΔLを設定し、この先読み距離ΔLを使って上記式(4)にて先読み曲率Cpを演算する。 The look-ahead distance ΔL is preferably set to be longer as the vehicle speed Vs is higher. For example, the driving support ECU 10 stores correlation data (such as a map) that correlates the vehicle speed Vs and the look-ahead distance ΔL as shown in FIG. A look-ahead distance ΔL is set, and the look-ahead curvature Cp is calculated by the above equation (4) using the look-ahead distance ΔL.

続いて、運転支援ECU10は、ステップS14において、SPM開始フラグFが「0」であるか否かについて判定する。このSPM開始フラグFは、SPM制御の開始条件が成立したときに「1」に設定され、SPM制御の終了条件が成立したときに「0」に設定される。また、SPM開始フラグFは、その初期値が「0」であって、ACCが開始されるときに「0」にリセットされる。 Subsequently, in step S14, the driving assistance ECU 10 determines whether or not the SPM start flag F is "0". The SPM start flag F is set to "1" when the SPM control start condition is satisfied, and is set to "0" when the SPM control end condition is satisfied. The SPM start flag F has an initial value of "0" and is reset to "0" when ACC is started.

SPM開始フラグFが「0」である場合、運転支援ECU10は、その処理をステップS15に進める。運転支援ECU10は、ステップS15において、先読み曲率Cpが先読み曲率閾値C1以上であり、かつ、現在曲率Ccが現在曲率閾値C2以下であるか否かについて判定する。現在曲率閾値C2は、先読み曲率閾値C1よりも小さな値に設定されている。このステップS15の処理は、自車両VAが直線路を走行中に、減速が必要なカーブが前方に検出されたか否かについて判定する処理である。 When the SPM start flag F is "0", the driving assistance ECU 10 advances the process to step S15. In step S15, the driving assistance ECU 10 determines whether or not the predicted curvature Cp is greater than or equal to the predicted curvature threshold C1 and the current curvature Cc is less than or equal to the current curvature threshold C2. The current curvature threshold C2 is set to a value smaller than the look-ahead curvature threshold C1. The process of step S15 is a process of determining whether or not a curve that requires deceleration is detected ahead while the vehicle VA is running on a straight road.

この2つの曲率条件は、SPM開始条件の1つである。運転支援ECU10は、この2つの曲率条件のうちの1つでも成立しない場合、つまり、先読み曲率Cpが先読み曲率閾値C1未満である、あるいは、現在曲率Ccが現在曲率閾値C2を超えている場合、「No」と判定してその処理をステップS16に進める。 These two curvature conditions are one of the SPM start conditions. If even one of these two curvature conditions is not satisfied, that is, if the predicted curvature Cp is less than the predicted curvature threshold C1, or if the current curvature Cc exceeds the current curvature threshold C2, A determination of "No" is made and the process proceeds to step S16.

自車両VAの前方に減速の必要なカーブが存在してなく、ステップS15において「No」と判定された場合、運転支援ECU10は、ステップS16において、要求加減速度Aを無効値に設定して、SPM制御が実施されないようにする。上述したように、ACCの実施中においては、定速制御で要求される要求加減速度と、追従制御で要求される要求加減速度と、SPM制御で要求される要求加減速度とのうちの最も小さな値が選択され、その選択された要求加減速度で自車両VAの加減速度が制御される。ステップS16では、SPM制御で要求される要求加減速度が選択されることのないように、SPM制御用の要求加減速度Aが正の無限大に近い値である無効値に設定される。これにより、SPM制御が実施されない。このSPM制御ルーチンでは、要求加減速度Aとして減速度が演算されるため、以下、要求加減速度Aを要求減速度Aと呼ぶ。 If there is no curve that requires deceleration in front of the host vehicle VA and it is determined "No" in step S15, the driving support ECU 10 sets the requested acceleration/deceleration A to an invalid value in step S16. Prevent SPM control from being implemented. As described above, during execution of ACC, the smallest of the required acceleration/deceleration required for constant speed control, the required acceleration/deceleration required for follow-up control, and the required acceleration/deceleration required for SPM control A value is selected, and the acceleration/deceleration of the host vehicle VA is controlled with the selected requested acceleration/deceleration. In step S16, the requested acceleration/deceleration A for SPM control is set to an invalid value close to positive infinity so that the requested acceleration/deceleration requested for SPM control is not selected. As a result, SPM control is not performed. In this SPM control routine, the deceleration is calculated as the requested acceleration/deceleration A, so the requested acceleration/deceleration A will be referred to as the requested deceleration A hereinafter.

尚、ステップS15において用いる先読み曲率閾値C1および現在曲率閾値C2については、車速Vsに応じた値に設定されるとよい。例えば、運転支援ECU10は、図4に示すような車速Vsと、先読み曲率閾値C1および現在曲率閾値C2とを関係付けた関係付けデータ(マップ等)を記憶しており、この関係付けデータを参照して車速に応じた先読み曲率閾値C1および現在曲率閾値C2を設定する。この場合、先読み曲率閾値C1は、車速Vsが高いほど小さくなる値に設定される。また、現在曲率閾値C2は、車速Vsが高いほど大きくなる値に設定される。 It should be noted that the prefetch curvature threshold value C1 and the current curvature threshold value C2 used in step S15 are preferably set to values corresponding to the vehicle speed Vs. For example, the driving support ECU 10 stores correlation data (such as a map) that correlates the vehicle speed Vs as shown in FIG. 4 with the prediction curvature threshold C1 and the current curvature threshold C2. Then, the prediction curvature threshold value C1 and the current curvature threshold value C2 are set according to the vehicle speed. In this case, the look-ahead curvature threshold value C1 is set to a value that decreases as the vehicle speed Vs increases. Further, the current curvature threshold value C2 is set to a value that increases as the vehicle speed Vs increases.

運転支援ECU10は、ステップS16の処理を実施するとSPM制御ルーチンを一旦終了する。運転支援ECU10は、所定の演算周期でSPM制御ルーチンを繰り返し、ステップS15において「Yes」、つまり、2つの曲率条件が成立した場合(減速が必要なカーブが前方に検出された場合)、その処理をステップS17に進める。 The driving assistance ECU 10 temporarily terminates the SPM control routine after executing the process of step S16. The driving support ECU 10 repeats the SPM control routine at a predetermined calculation cycle, and if "Yes" in step S15, that is, if two curvature conditions are satisfied (if a curve that requires deceleration is detected ahead), the process to step S17.

運転支援ECU10は、ステップS17において、ウインカー42が作動している状況でもなく、自車両VAがレーンチェンジを行っている状況でもないか否かについて判定する。この判定は、例えば、図5に示すように、ウインカー42の作動(点滅)期間と、自車両VAがレーンチェンジを行っている期間との両方において、「No」と判定される。従って、ウインカー42の作動が検知されている場合、および、自車両VAがレーンチェンジを行っていることが検知されている場合の何れにおいても、「No」と判定される。 In step S17, the driving support ECU 10 determines whether or not the turn signals 42 are operating and the host vehicle VA is changing lanes. For example, as shown in FIG. 5, this determination is "No" during both the operation (blinking) period of the turn signals 42 and the period during which the host vehicle VA is changing lanes. Therefore, the determination is "No" both when the operation of the turn signals 42 is detected and when it is detected that the host vehicle VA is changing lanes.

この場合、運転支援ECU10は、メータECU40から送信されるウインカー点滅情報を読み込んで、ウインカー42が作動している状況か否かについて判定する。また、運転支援ECU10は、自車両が自車レーンの左右何れかの白線を跨いだか否かを判定し、自車両が白線を跨いだと判定した時点から一定時間経過するまでの期間をレーンチェンジが行われている期間と認定する。この場合、自車両の特定位置(例えば、車体の中心位置)と白線との距離(道路幅方向の距離)を算出し、特定位置から白線までの距離が所定値(例えば、0メートル)未満にまで低下したときに、自車両が白線を跨いだと判定すればよい。 In this case, the driving support ECU 10 reads blinker blinking information transmitted from the meter ECU 40 and determines whether or not the blinkers 42 are operating. In addition, the driving support ECU 10 determines whether or not the vehicle has crossed the left or right white line of the lane of the vehicle, and determines whether the vehicle has crossed the white line or not. is recognized as the period during which In this case, the distance (distance in the width direction of the road) between the specific position of the own vehicle (for example, the center position of the vehicle body) and the white line is calculated, and the distance from the specific position to the white line is less than a predetermined value (for example, 0 m). , it can be determined that the vehicle has crossed the white line.

運転支援ECU10は、ステップS17において「Yes」と判定した場合、SPM制御の開始条件が成立したと判定して、その処理をステップS18に進めて、SPM開始フラグFを「1」に設定する。 If the determination in step S17 is "Yes", the driving assistance ECU 10 determines that the conditions for starting the SPM control are met, proceeds to step S18, and sets the SPM start flag F to "1".

続いて、運転支援ECU10は、ステップS19において、ベース減速制御量Abase[1/m2]を演算する。このベース減速制御量Abaseは、要求減速度Aを決めるベースとなる制御量(減速度)であって、現時点の車速Vsに応じた値に設定される。運転支援ECU10は、図6に示すように、車速Vsとベース減速制御量Abaseとを関係付けた関係付けデータ(マップ等)を記憶し、この関係付けデータを参照して、車速Vsに応じたベース減速制御量Abaseを演算する。この関係付けデータは、車速Vsが高くなるにしたがって、ベース減速制御量Abaseの大きさ(絶対値)が大きくなる特性を有している。従って、運転支援ECU10は、車速Vsに基づいて、車速Vsが高いほど、その大きさが増加するベース減速制御量Abaseを算出する。 Subsequently, the driving assistance ECU 10 calculates a base deceleration control amount Abase [1/m 2 ] in step S19. This base deceleration control amount Abase is a control amount (deceleration) that serves as a base for determining the required deceleration A, and is set to a value corresponding to the current vehicle speed Vs. As shown in FIG. 6, the driving support ECU 10 stores relational data (such as a map) that associates the vehicle speed Vs with the base deceleration control amount Abase, and refers to the relational data to determine the speed corresponding to the vehicle speed Vs. A base deceleration control amount Abase is calculated. This correlation data has the characteristic that the magnitude (absolute value) of the base deceleration control amount Abase increases as the vehicle speed Vs increases. Therefore, based on the vehicle speed Vs, the driving assistance ECU 10 calculates the base deceleration control amount Abase whose magnitude increases as the vehicle speed Vs increases.

続いて、運転支援ECU10は、ステップS20において、ゲインGaを演算する。このゲインGaを演算するにあたって、運転支援ECU10は、先読み曲率Cpに応じた目標車速Vpを算出する。運転支援ECU10は、図7に示すように、先読み曲率Cpと目標車速Vpとを関係付けた関係付けデータ(マップ等)を記憶し、この関係付けデータを参照して、先読み曲率Cpに応じた目標車速Vpを演算する。この関係付けデータは、先読み曲率Cpが大きくなる(カーブが急になる)にしたがって、目標車速Vpが低くなる特性を有している。従って、運転支援ECU10は、先読み曲率Cpに基づいて、先読み曲率Cpが大きいほど低くなる目標車速Vpを算出する。 Subsequently, the driving assistance ECU 10 calculates the gain Ga in step S20. In calculating the gain Ga, the driving assistance ECU 10 calculates the target vehicle speed Vp according to the predicted curvature Cp. As shown in FIG. 7, the driving support ECU 10 stores relational data (such as a map) that associates the predictive curvature Cp and the target vehicle speed Vp, and refers to the relational data to determine the value corresponding to the predictive curvature Cp. A target vehicle speed Vp is calculated. This correlation data has the characteristic that the target vehicle speed Vp decreases as the predictive curvature Cp increases (the curve becomes steeper). Therefore, the driving assistance ECU 10 calculates a target vehicle speed Vp that decreases as the predicted curvature Cp increases, based on the predicted curvature Cp.

運転支援ECU10は、算出した目標車速Vpから自車両VAの車速Vsを減算した値である車速偏差ΔV(=Vp-Vs)を演算し、この車速偏差ΔVに基づいて、ゲインGaを演算する。運転支援ECU10は、図8に示すように、車速偏差ΔVとゲインGaとを関係付けた関係付けデータ(マップ等)を記憶し、この関係付けデータを参照して、車速偏差ΔVに応じたゲインGaを演算する。この関係付けデータは、車速偏差ΔVが負の値である場合には、ゲインGaの値を「1」に設定し(Ga=1)、車速偏差ΔVが正の値である場合には、車速偏差ΔVが大きいほど、ゲインGaの値を「1」から「0」の間で小さくする特性を有している。車速偏差ΔVが所定値よりも大きい場合には、ゲインGaの値は「0」に設定される。 The driving support ECU 10 calculates a vehicle speed deviation ΔV (=Vp−Vs), which is a value obtained by subtracting the vehicle speed Vs of the own vehicle VA from the calculated target vehicle speed Vp, and calculates a gain Ga based on this vehicle speed deviation ΔV. As shown in FIG. 8, the driving support ECU 10 stores relational data (such as a map) that correlates the vehicle speed deviation ΔV and the gain Ga, and refers to this relational data to determine the gain corresponding to the vehicle speed deviation ΔV. Calculate Ga. This correlation data sets the value of the gain Ga to "1" (Ga=1) when the vehicle speed deviation ΔV is a negative value, and when the vehicle speed deviation ΔV is a positive value, the vehicle speed It has a characteristic that the larger the deviation ΔV, the smaller the value of the gain Ga between "1" and "0". When the vehicle speed deviation ΔV is greater than the predetermined value, the value of the gain Ga is set to "0".

続いて、運転支援ECU10は、ステップS21において、ベース減速制御量AbaseにゲインGaを乗算して要求減速度Aを算出する(A=Abase・Ga)。この要求減速度Aが、最終的に自車両VAを減速させるための制御量である減速制御量に相当する。 Subsequently, in step S21, the driving support ECU 10 multiplies the base deceleration control amount Abase by the gain Ga to calculate the required deceleration A (A=Abase·Ga). This required deceleration A corresponds to the deceleration control amount, which is the control amount for finally decelerating the host vehicle VA.

運転支援ECU10は、要求減速度Aを算出すると、その要求減速度Aを表す制動指令をブレーキECU30に送信する。ブレーキECU30は、運転支援ECU10から制動指令を受信した場合、その制動指令で表される要求減速度A、および、ブレーキペダル操作量に対応する要求減速度のうち絶対値が大きい方の減速度を選択し、その選択した要求減速度を、最終的な目標減速度に設定する。これにより、自車両VAの減速度が目標減速度に追従するようにホイールシリンダの油圧が調整される。 After calculating the required deceleration A, the driving assistance ECU 10 transmits a braking command indicating the required deceleration A to the brake ECU 30 . When the brake ECU 30 receives a braking command from the driving support ECU 10, the brake ECU 30 selects the deceleration with a larger absolute value out of the required deceleration A represented by the braking command and the required deceleration corresponding to the amount of brake pedal operation. Select and set the selected requested deceleration to the final target deceleration. As a result, the hydraulic pressure of the wheel cylinder is adjusted so that the deceleration of the own vehicle VA follows the target deceleration.

運転支援ECU10は、ステップS21の処理を実施するとSPM制御ルーチンを一旦終了する。運転支援ECU10は、所定の演算周期でSPM制御ルーチンを繰り返す。この場合、SPM開始フラグFが「1」に設定されているため、運転支援ECU10は、ステップS14において「No」と判定し、その処理をステップS21に進める。 The driving assistance ECU 10 temporarily terminates the SPM control routine after executing the process of step S21. The driving assistance ECU 10 repeats the SPM control routine at a predetermined calculation cycle. In this case, since the SPM start flag F is set to "1", the driving assistance ECU 10 determines "No" in step S14, and advances the process to step S21.

運転支援ECU10は、ステップS21において、先読み曲率Cpが先読み曲率閾値C3以下である、あるいは、現在曲率Ccが現在曲率閾値C4以上であるか否かについて判定する。運転支援ECU10は、「No」と判定した場合、続くステップS22において、ウインカー42が作動している状況である、あるいは、自車両VAがレーンチェンジを行っている状況であるか否かについて判定する。 In step S21, the driving assistance ECU 10 determines whether or not the forward curvature Cp is equal to or less than the forward curvature threshold C3, or the current curvature Cc is equal to or greater than the current curvature threshold C4. If the driving support ECU 10 determines "No", it determines in the following step S22 whether the turn signals 42 are operating or the host vehicle VA is changing lanes. .

先読み曲率閾値C3は、先読み曲率閾値C1よりも小さな値に設定されている。また、現在曲率閾値C4は、現在曲率閾値C2よりも大きな値に設定されている。この先読み曲率閾値C3および現在曲率閾値C4についても、先読み曲率閾値C1および現在曲率閾値C2と同様な特性で、車速Vsに応じて設定されるとよい。 The read-ahead curvature threshold C3 is set to a value smaller than the read-ahead curvature threshold C1. Also, the current curvature threshold C4 is set to a value greater than the current curvature threshold C2. The predictive curvature threshold value C3 and the current curvature threshold value C4 may also be set according to the vehicle speed Vs with the same characteristics as the predictive curvature threshold value C1 and the current curvature threshold value C2.

このステップS21およびステップS22は、SPM制御の終了条件の成立を判定する処理である。従って、運転支援ECU10は、ステップS21およびステップS22において「No」と判定されているあいだは、その処理をステップS19に進めて、上述した演算手法で要求減速度Aを演算して、車両VAを減速させる。 Steps S21 and S22 are processes for determining whether or not conditions for ending the SPM control are satisfied. Therefore, while the determinations in steps S21 and S22 are "No", the driving assistance ECU 10 advances the process to step S19, calculates the required deceleration A by the calculation method described above, and adjusts the vehicle VA. slow down.

運転支援ECU10は、こうした処理を繰り返し、SPM制御の終了条件が成立すると(S21またはS22:Yes)、その処理をステップS23に進めて、SPM開始フラグFを「0」に設定する(「1」→「0」)。続いて、運転支援ECU10は、その処理をステップS16に進めて、要求加減速度Aを無効値に設定して、SPM制御が実施されないようにする。 The driving support ECU 10 repeats this process, and when the SPM control end condition is satisfied (S21 or S22: Yes), the process proceeds to step S23, and the SPM start flag F is set to "0" ("1"). → “0”). Subsequently, the driving assistance ECU 10 advances the process to step S16, sets the requested acceleration/deceleration A to an invalid value, and prevents the SPM control from being performed.

例えば、自車両VAがカーブ路に到達した場合に、SPM制御が終了する。また、自車両がレーンチェンジを開始した場合、あるいは、レーンチェンジを開始しようとした場合に、SPM制御が終了する。 For example, the SPM control ends when the host vehicle VA reaches a curved road. Also, when the host vehicle starts a lane change or is going to start a lane change, the SPM control ends.

このSPM制御ルーチンでは、自車両VAがカーブ路に到着した場合(Cc≧C4)、SPM制御を終了するが、これは、先読み曲率Cpに基づく減速制御を終了するのであって、このSPM制御ルーチンとは別に、自車両VAの実際の旋回挙動(例えば、横加加速度)に基づいて減速制御を実施することができるからである。つまり、自車両VAの実際の旋回挙動(例えば、ヨーレート)に基づけば、カメラ装置13よって認識される自車レーンの曲率に基づく減速制御よりも、確実性の高い減速制御を実施できるからである。 In this SPM control routine, when the host vehicle VA reaches a curved road (Cc≧C4), the SPM control is terminated. Apart from this, the deceleration control can be performed based on the actual turning behavior (for example, lateral jerk) of the host vehicle VA. In other words, based on the actual turning behavior (for example, yaw rate) of the own vehicle VA, it is possible to perform deceleration control with higher reliability than deceleration control based on the curvature of the own vehicle lane recognized by the camera device 13. .

以上説明した本実施形態の車両用運転支援装置によれば、現時点の車速Vsに応じたベース減速制御量Abaseが演算され、このベース減速制御量Abaseをベースとして要求減速度Aが演算される。従って、ノイズの多く含まれる曲率変化率dがベース減速制御量Abaseの演算に用いられない。このため、ベース減速制御量Abaseをベースとして演算される要求減速度Aのハンチングを抑制することができる。 According to the vehicle driving support system of this embodiment described above, the base deceleration control amount Abase corresponding to the current vehicle speed Vs is calculated, and the required deceleration A is calculated based on this base deceleration control amount Abase. Therefore, the curvature change rate d containing much noise is not used for calculating the base deceleration control amount Abase. Therefore, hunting of the required deceleration A calculated based on the base deceleration control amount Abase can be suppressed.

図9は、従来装置の要求減速度と、本実施形態における要求減速度Aとを比較したグラフである。従来装置においては、ベース減速制御量として先読み横加加速度が演算されるが、この先読み横加加速度は、曲率変化率に比例した値に設定される。このため、従来装置の要求減速度は、曲率変化率dに含まれるノイズの影響が大きくなってハンチングする。一方、本実施形態では、ベース減速制御量Abaseの演算には、車速Vsに応じて決まる値が使用され、曲率変化率dは使用されない。このため、要求減速度Aのハンチングが抑制される。 FIG. 9 is a graph comparing the required deceleration of the conventional device and the required deceleration A of the present embodiment. In the conventional device, the predicted lateral jerk is calculated as the base deceleration control amount, and this predicted lateral jerk is set to a value proportional to the curvature change rate. Therefore, the required deceleration of the conventional device is subject to hunting due to the increased influence of noise contained in the curvature change rate d. On the other hand, in the present embodiment, a value determined according to the vehicle speed Vs is used to calculate the base deceleration control amount Abase, and the curvature change rate d is not used. Therefore, hunting of the required deceleration A is suppressed.

また、先読みポイントにおけるカーブが急な場合、および、車速Vsが高い場合には、大きな(絶対値の大きな)要求減速度Aが演算されるため、早めに適正な減速を行うことができる。また、先読みポイントにおけるカーブが緩い場合、および、車速Vsが低い場合には、小さな(絶対値の小さな)要求減速度Aが演算されるため、過剰な減速が行われないようにすることができる。 Also, when the curve at the look-ahead point is steep and when the vehicle speed Vs is high, a large (large absolute value) required deceleration A is calculated, so appropriate deceleration can be performed early. Also, when the curve at the look-ahead point is gentle and when the vehicle speed Vs is low, a small (small absolute value) required deceleration A is calculated, so excessive deceleration can be prevented. .

また、本実施形態においては、ベース減速制御量Abaseを補正して要求減速度Aを算出するにあたって、先読み曲率Cpが用いられるが、先読み曲率Cpは、現在曲率Ccと、曲率変化率dに先読み距離ΔLを乗算した値dΔL(Cc+dΔL)との和で求められるため、曲率変化率dの占める割合は少ない。従って、曲率変化率dに含まれるノイズが要求減速度Aの演算に与える影響は少ない。このため、要求減速度Aのハンチングを抑制することができる。 Further, in the present embodiment, the look-ahead curvature Cp is used in calculating the required deceleration A by correcting the base deceleration control amount Abase. Since it is obtained by adding the value dΔL (Cc+dΔL) obtained by multiplying the distance ΔL, the ratio of the curvature change rate d is small. Therefore, the noise contained in the curvature change rate d has little effect on the calculation of the required deceleration A. Therefore, hunting of the required deceleration A can be suppressed.

また、本実施形態においては、ウインカー42が作動しているとき、および、レーンチェンジが行われているときには、SPM制御が実施されないため、レーンチェンジ時に不要な減速を抑制することができる。 In addition, in the present embodiment, the SPM control is not performed when the turn signal 42 is activated and when the lane is changed, so unnecessary deceleration can be suppressed during the lane change.

この結果、本実施形態によれば、車両VAの減速度のハンチングを抑制して乗り心地を向上させるとともに、不要な減速が行われることを抑制することができる。 As a result, according to the present embodiment, it is possible to suppress deceleration hunting of the vehicle VA to improve ride comfort, and to suppress unnecessary deceleration.

また、本実施形態においては、先読み距離ΔLは、車速Vsが高いほど長くなる値に設定される。また、先読み曲率閾値C1は、車速Vsが高いほど小さくなる値に設定される。このため、車速Vsが高いほど、早くSPM制御を開始することができる。従って、SPM制御の開始タイミングを適切に設定することができる。 Further, in the present embodiment, the look-ahead distance ΔL is set to a value that increases as the vehicle speed Vs increases. Further, the look-ahead curvature threshold value C1 is set to a value that decreases as the vehicle speed Vs increases. Therefore, the higher the vehicle speed Vs, the earlier the SPM control can be started. Therefore, the start timing of SPM control can be appropriately set.

以上、本実施形態に係る車両用運転支援装置について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。 Although the vehicle driving assistance system according to the present embodiment has been described above, the present invention is not limited to the above-described embodiment, and various modifications are possible without departing from the object of the present invention.

例えば、本実施形態ではカメラ装置13から得られる白線情報に基づいて車線情報が取得されるが、それに代えて、カメラ装置13およびミリ波レーダ装置14から得られる他車両の移動軌跡を表す情報に基づいて車線情報を取得することもできる。 For example, in the present embodiment, the lane information is obtained based on the white line information obtained from the camera device 13, but instead of this, the information representing the movement trajectory of the other vehicle obtained from the camera device 13 and the millimeter wave radar device 14 is used. Lane information can also be obtained based on

また、例えば、本実施形態の運転支援装置の適用される車両は、走行用駆動源として内燃機関を備えた車両であるが、それに限定されるものではなく、例えば、電気自動車、ハイブリッド自動車、燃料電池自動車など他の車両にも適用できる。 Further, for example, the vehicle to which the driving support system of the present embodiment is applied is a vehicle equipped with an internal combustion engine as a drive source for running, but is not limited to this. It can also be applied to other vehicles such as battery vehicles.

1…車両用運転支援装置、10…運転支援ECU、11…車輪速センサ、12…ヨーレートセンサ、13…カメラ装置、14…ミリ波レーダ装置、15…加速度センサ、16…ACCスイッチ、20…エンジンECU、30…ブレーキECU、32…ブレーキペダル操作量センサ、34…ブレーキアクチュエータ、40…メータECU、42…ウインカー、A…要求減速度、Abase…ベース減速制御量、C1,C3…先読み曲率閾値、C2,C4…現在曲率閾値、Cc…現在曲率、Cp…先読み曲率、d…曲率変化率、F…SPM開始フラグ、Ga…ゲイン、VA…車両(自車両)、Vs…車速、Yr…ヨーレート、ΔL…先読み距離、ΔV…車速偏差。 REFERENCE SIGNS LIST 1 vehicle driving support device 10 driving support ECU 11 wheel speed sensor 12 yaw rate sensor 13 camera device 14 millimeter wave radar device 15 acceleration sensor 16 ACC switch 20 engine ECU 30 Brake ECU 32 Brake pedal operation amount sensor 34 Brake actuator 40 Meter ECU 42 Turn signal A Requested deceleration Abase Base deceleration control amount C1, C3 Look-ahead curvature threshold value C2, C4 -- current curvature threshold, Cc -- current curvature, Cp -- prediction curvature, d -- curvature change rate, F -- SPM start flag, Ga -- gain, VA -- vehicle (self-vehicle), Vs -- vehicle speed, Yr -- yaw rate, ΔL: look-ahead distance, ΔV: vehicle speed deviation.

Claims (1)

自車両がカーブ路を走行する際に減速制御量を演算し、前記減速制御量に従って自車両を減速させる車両用運転支援装置において、
車線情報に基づいて自車両の走行位置における道路の曲率である現在曲率、および、自車両から所定距離前方位置における道路の曲率である先読み曲率を取得する曲率取得手段と、
前記現在曲率が現在曲率閾値以下であり、かつ、前記先読み曲率が先読み曲率閾値以上であるという道路曲率条件が成立するか否かを判定する曲率条件判定手段と、
自車両のウインカーが作動している状況でもなく、自車両がレーンチェンジを行っている状況でもないという運転条件が成立するか否かを判定する運転条件判定手段と、
前記道路曲率条件と前記運転条件との両方が成立する場合に、自車両の現在の車速に応じて、前記車速が高くなるにしたがって減速度の大きさが増加するベース減速制御量を演算するベース制御量演算手段と、
前記先読み曲率が大きくなるにしたがって低くなるように設定された目標車速から自車両の現在の車速を減算した車速偏差が大きいほど小さくなるゲイン(Ga)を前記ベース減速制御量に乗算することにより、前記車速偏差が大きいほど前記ベース減速制御量の大きさを小さくした値である前記減速制御量を算出する減速制御量演算手段と
を備えた車両用運転支援装置。
A vehicle driving support device that calculates a deceleration control amount when the own vehicle travels on a curved road and decelerates the own vehicle according to the deceleration control amount,
Curvature acquisition means for acquiring the current curvature, which is the curvature of the road at the position where the vehicle is traveling, based on the lane information, and the predicted curvature, which is the curvature of the road at a position ahead of the vehicle at a predetermined distance, based on the lane information;
Curvature condition determination means for determining whether a road curvature condition that the current curvature is equal to or less than the current curvature threshold and the foreseen curvature is equal to or more than the foreseen curvature threshold is established;
a driving condition determination means for determining whether or not a driving condition is satisfied that the turn signals of the vehicle are neither operating nor the vehicle is changing lanes;
A base for calculating a base deceleration control amount that increases the magnitude of deceleration as the vehicle speed increases according to the current vehicle speed of the own vehicle when both the road curvature condition and the driving condition are satisfied. a control amount computing means;
By multiplying the base deceleration control amount by a gain (Ga) that decreases as the vehicle speed deviation increases, which is obtained by subtracting the current vehicle speed of the own vehicle from the target vehicle speed that is set to decrease as the look-ahead curvature increases. and deceleration control amount calculation means for calculating the deceleration control amount , which is a value obtained by reducing the magnitude of the base deceleration control amount as the vehicle speed deviation increases .
JP2018206500A 2018-11-01 2018-11-01 Vehicle driving support device Active JP7131304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018206500A JP7131304B2 (en) 2018-11-01 2018-11-01 Vehicle driving support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018206500A JP7131304B2 (en) 2018-11-01 2018-11-01 Vehicle driving support device

Publications (2)

Publication Number Publication Date
JP2020069953A JP2020069953A (en) 2020-05-07
JP7131304B2 true JP7131304B2 (en) 2022-09-06

Family

ID=70549183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018206500A Active JP7131304B2 (en) 2018-11-01 2018-11-01 Vehicle driving support device

Country Status (1)

Country Link
JP (1) JP7131304B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111591294B (en) * 2020-05-29 2021-06-25 长安大学 Early warning method for vehicle lane change in different traffic environments

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179247A (en) 2008-01-31 2009-08-13 Advics Co Ltd Motion controller for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3223240B2 (en) * 1996-11-19 2001-10-29 本田技研工業株式会社 Vehicle control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179247A (en) 2008-01-31 2009-08-13 Advics Co Ltd Motion controller for vehicle

Also Published As

Publication number Publication date
JP2020069953A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
US20210221362A1 (en) Vehicle travel control apparatus
US10597030B2 (en) Vehicle running control apparatus
US7904245B2 (en) Method and vehicle reacting to the detection of an in-path obstacle
US7236870B2 (en) Lane keep control apparatus and method for automotive vehicle
US8301341B2 (en) Travel control device and vehicle
US10800410B2 (en) Driving support device
JP5546106B2 (en) Vehicle motion control device
JP7230795B2 (en) vehicle controller
US8145389B2 (en) Driving assisting system, method and vehicle incorporating the system
US20030154016A1 (en) Vehicle to vehicle distance controller and vehicle
US20110087415A1 (en) Vehicular Deceleration Aiding Device
JP7273359B2 (en) Vehicle driving support device
JP7147524B2 (en) vehicle controller
US11760350B2 (en) Vehicle control device
JP7131304B2 (en) Vehicle driving support device
US20200139968A1 (en) Vehicle control device
JP7047708B2 (en) Vehicle driving support device
JP7505467B2 (en) Driving assistance device, driving assistance method, and program
JP4206762B2 (en) Control device for automatic transmission
JP2023153532A (en) Driving support device, driving support method and driving support program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R151 Written notification of patent or utility model registration

Ref document number: 7131304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151