JP7123819B2 - Motor control device and compressor and refrigerator using the same - Google Patents

Motor control device and compressor and refrigerator using the same Download PDF

Info

Publication number
JP7123819B2
JP7123819B2 JP2019011804A JP2019011804A JP7123819B2 JP 7123819 B2 JP7123819 B2 JP 7123819B2 JP 2019011804 A JP2019011804 A JP 2019011804A JP 2019011804 A JP2019011804 A JP 2019011804A JP 7123819 B2 JP7123819 B2 JP 7123819B2
Authority
JP
Japan
Prior art keywords
motor
control
speed
refrigerator
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019011804A
Other languages
Japanese (ja)
Other versions
JP2020118408A (en
Inventor
進太郎 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2019011804A priority Critical patent/JP7123819B2/en
Publication of JP2020118408A publication Critical patent/JP2020118408A/en
Application granted granted Critical
Publication of JP7123819B2 publication Critical patent/JP7123819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、モータの制御装置並びにそれを用いた圧縮機及び冷蔵庫に関する。 The present invention relates to a motor control device and a compressor and a refrigerator using the same.

例えばピストンがシリンダ内を往復動する往復動圧縮機は、ピストンの1往復中に流体の吸込・圧縮・吐出をそれぞれ行うため、流体がピストンに与える負荷が変動する。例えば吸込過程では負荷が小さく、圧縮過程では大きい。このため、モータ負荷トルク、ひいてはモータ速度(モータの運転周波数)やモータ電流が理想的な正弦波から外れて脈動が発生する。モータ速度の脈動は圧縮機の振動・騒音に繋がり得て、モータ電流の脈動は省エネ性の低下につながり得る。特にモータ速度の脈動は、ピストンの往復動の慣性が小さい場合、すなわち、ピストンの低速領域(モータの低運転周波数領域)で顕著になる。 For example, a reciprocating compressor in which a piston reciprocates within a cylinder sucks, compresses, and discharges fluid during one reciprocation of the piston, so the load applied to the piston by the fluid varies. For example, the load is small during the suction process and large during the compression process. As a result, the motor load torque, and thus the motor speed (motor operating frequency) and motor current deviate from an ideal sine wave, generating pulsation. The pulsation of the motor speed can lead to vibration and noise of the compressor, and the pulsation of the motor current can lead to a decrease in energy efficiency. In particular, the pulsation of the motor speed becomes noticeable when the inertia of the reciprocating motion of the piston is small, that is, in the low speed range of the piston (low operating frequency range of the motor).

特許文献1は、コンプレッサの運転周波数が一定値以下のときにトルク脈動補正(速度脈動補正に相当する。)を行う旨を開示している(請求項1、0041)。 Patent Document 1 discloses that torque pulsation correction (corresponding to speed pulsation correction) is performed when the operating frequency of the compressor is below a certain value (Claim 1, 0041).

特開2001-119981号公報Japanese Patent Application Laid-Open No. 2001-119981

モータ速度の脈動を抑制する(振動を抑制する)制御とモータ電流の脈動を抑制する(省エネ性の向上を試みる)制御とは択一的な関係にあるのが一般である。すなわち、速度脈動の抑制を主眼とした制御(振動抑制制御)は、その必要性が大きい場合に限って行われるのが望ましい。すなわち、モータ速度以外の値にも注目して、振動抑制制御(速度脈動抑制制御)の必要性の判定基準を改善することが望まれる。 Control for suppressing motor speed pulsation (suppressing vibration) and control for suppressing motor current pulsation (attempting to improve energy efficiency) generally have an alternative relationship. That is, it is desirable that the control (vibration suppression control) mainly focused on suppressing the velocity pulsation is performed only when the necessity thereof is high. That is, it is desired to improve the criteria for judging the necessity of vibration suppression control (speed pulsation suppression control) by paying attention to values other than the motor speed.

上記事情に鑑みてなされた本発明は、
冷媒を圧縮する圧縮機と、
冷媒を比較的高温で蒸発させて冷気を生成する冷蔵蒸発器と、
冷媒を比較的低温で蒸発させて冷気を生成する冷凍蒸発器と、
圧縮された冷媒を前記冷蔵蒸発器に供給する冷蔵室冷却モード、又は、圧縮された冷媒を前記冷凍蒸発器に供給する冷凍室冷却モードのうちいずれを実行するかを切替える弁と、を有する、冷凍サイクルに配された前記圧縮機のモータの制御装置であって、
消費電力が比較的小さい電流脈動抑制制御と、前記圧縮機の振動が比較的小さい速度脈動抑制制御とを切替えて実行可能であり、
前記冷蔵室冷却モード中であって、前記モータの運転周波数が低場合には、前記速度脈動抑制制御を実行し、
前記冷蔵室冷却モード中であって、前記モータの運転周波数が高い場合には、前記電流脈動抑制制御を実行し、
前記冷凍室冷却モード中には、前記モータの運転周波数に依らずに前記電流脈動抑制制御を実行する。
The present invention, which has been made in view of the above circumstances,
a compressor that compresses a refrigerant;
a refrigeration evaporator that evaporates a refrigerant at a relatively high temperature to produce cold air;
a refrigeration evaporator that evaporates a refrigerant at a relatively low temperature to produce cool air;
a valve for switching between a refrigerating compartment cooling mode in which compressed refrigerant is supplied to the refrigerating evaporator and a freezer compartment cooling mode in which compressed refrigerant is supplied to the refrigerating evaporator; A control device for a motor of the compressor arranged in a refrigeration cycle,
current pulsation suppression control with relatively low power consumption and speed pulsation suppression control with relatively low vibration of the compressor can be switched and executed,
When the refrigerating compartment cooling mode is in progress and the operating frequency of the motor is low , the speed pulsation suppression control is executed ,
When the refrigerating compartment cooling mode is in progress and the operating frequency of the motor is high, the current pulsation suppression control is executed,
During the freezer compartment cooling mode, the current pulsation suppression control is executed regardless of the operating frequency of the motor .

実施例1の冷蔵庫の冷凍サイクルの構成図Schematic diagram of a refrigerating cycle of the refrigerator of the first embodiment 実施例1のモータ制御装置の回路構成図FIG. 1 is a circuit configuration diagram of a motor control device according to Embodiment 1; 実施例1の制御器への指令信号を生成する構成図FIG. 4 is a configuration diagram for generating a command signal to the controller of the first embodiment; 実施例1の制御器の構成図Configuration diagram of the controller of the first embodiment 実施例1の制御フローチャートControl flowchart of embodiment 1 実施例1の2つの脈動抑制制御の切替を示すタイムチャートTime chart showing switching between two pulsation suppression controls in embodiment 1 実施例1の速度脈動抑制制御の実行時のモータ電流の一例を示す図A diagram showing an example of the motor current when the speed pulsation suppression control of the first embodiment is executed. 実施例1の電流脈動抑制制御の実行時のモータ電流の一例を示す図A diagram showing an example of the motor current when the current pulsation suppression control of the first embodiment is executed. 実施例1の高速運転時のモータ電流の一例を示す図A diagram showing an example of the motor current during high-speed operation in the first embodiment. 実施例2の外気温度による判定を付加した脈動抑制制御の切替を示すタイムチャートTime chart showing switching of pulsation suppression control with determination based on outside air temperature in embodiment 2

冷蔵庫では圧縮機及び蒸発器を含む冷凍サイクルを利用して冷気を供給する。近年、複数の蒸発器を使い分ける冷蔵庫、例えば冷蔵室用と冷凍室・野菜室用とで異なる蒸発器を持つ冷蔵庫が提案されている。エネルギー効率の観点では、冷蔵室等比較的高温の貯蔵室のみに冷気を供給する蒸発器では比較的、冷媒が蒸発する温度(蒸発器温度)を高くし(例えば0~5℃の冷気が供給される。)、冷凍室等比較的低温の貯蔵室を含んで冷気を供給する蒸発器では比較的、冷媒が蒸発する温度を低く(例えば-30~-20℃の冷気が供給される。)する。すると、冷蔵室用の蒸発器では冷媒蒸発温度が高いため圧縮機に戻る冷媒温度が高い。高温の気相冷媒は圧力が高く、モータへの負荷を大きくさせて脈動を顕著にさせる。すなわち本発明者らは、複数の蒸発器に例えば択一的に冷媒を供給する冷凍サイクルに圧縮機が配された場合、比較的高い蒸発温度に設定された蒸発器が選択されたときに、圧縮機の振動が生じやすいことを見出した。
以下、本発明の実施例を添付の図面を参照しつつ説明する。
Refrigerators supply cold air using a refrigeration cycle that includes a compressor and an evaporator. In recent years, refrigerators that use a plurality of evaporators differently, for example, refrigerators that have different evaporators for the refrigerator compartment and the freezer compartment/vegetable compartment have been proposed. From the viewpoint of energy efficiency, the temperature at which the refrigerant evaporates (evaporator temperature) is set relatively high (for example, 0 to 5 ° ), and in an evaporator that includes a relatively low-temperature storage room such as a freezer compartment and supplies cold air, the temperature at which the refrigerant evaporates is relatively low (for example, cold air of -30 to -20°C is supplied.) do. Then, since the refrigerant evaporation temperature is high in the evaporator for the refrigerator compartment, the temperature of the refrigerant returning to the compressor is high. The high-temperature gas-phase refrigerant has a high pressure, which increases the load on the motor and makes pulsation noticeable. That is, the present inventors found that when a compressor is arranged in a refrigeration cycle that alternatively supplies refrigerant to a plurality of evaporators, for example, when an evaporator set to a relatively high evaporation temperature is selected, It was found that the vibration of the compressor is likely to occur.
Embodiments of the present invention will now be described with reference to the accompanying drawings.

[冷凍サイクル]
図1は実施例1の冷蔵庫の冷凍サイクル構成図である。本冷凍サイクルは複数の蒸発器を有している。冷媒は、圧縮機9、凝縮器10、弁11、減圧部(キャピラリーチューブ等)、冷凍室用蒸発器12又は冷蔵室用蒸発器13、圧縮機9の順にサイクルで流れる。複数の蒸発器12,13を搭載した冷蔵庫の場合、凝縮器10を通過した後の冷媒経路を弁11により切替える。冷却したい部屋(貯蔵室)に対応する蒸発器に冷媒が流れるよう、弁11により冷凍室用蒸発器12または冷蔵室用蒸発器13に切替える。これにより、各部屋を冷却する蒸発器いずれに冷媒を供給するか、変更が可能となる。本実施例の冷蔵庫は、冷凍温度帯の貯蔵室と冷蔵温度帯の貯蔵室とを少なくとも含んでおり、冷凍室用蒸発器12は冷凍温度帯の貯蔵室に冷気を供給し、冷蔵室用蒸発器13は冷蔵温度帯の貯蔵室に冷気を供給する。
[Refrigeration cycle]
FIG. 1 is a configuration diagram of a refrigerating cycle of a refrigerator of Example 1. FIG. This refrigeration cycle has a plurality of evaporators. The refrigerant flows in cycles through the compressor 9, the condenser 10, the valve 11, the decompression section (capillary tube or the like), the freezer compartment evaporator 12 or the refrigerator compartment evaporator 13, and the compressor 9 in this order. In the case of a refrigerator equipped with a plurality of evaporators 12 and 13 , valve 11 switches the refrigerant path after passing through condenser 10 . The valve 11 switches between the freezer compartment evaporator 12 and the refrigerator compartment evaporator 13 so that the refrigerant flows to the evaporator corresponding to the room (storeroom) to be cooled. This makes it possible to change which of the evaporators that cool each room is supplied with the refrigerant. The refrigerator of this embodiment includes at least a freezing temperature zone storage compartment and a refrigerating temperature zone storage compartment, and the freezing compartment evaporator 12 supplies cool air to the freezing temperature zone storage compartment, The container 13 supplies cool air to the storage compartment in the refrigerating temperature zone.

[圧縮機9のモータ2の制御装置]
図2は実施例1のモータ制御装置100の回路構成図である。モータ制御装置100は、冷凍サイクル中の圧縮機9を駆動させるモータ2を制御する装置であり、直流電力源と、交流電圧を出力するインバータ1と、インバータ1に接続されたモータ2と、インバータ1に対してパルス幅変調信号を出力しインバータ1を制御する制御器3と、電流検知部の一例としてのシャント抵抗器4とを有する。
[Control Device for Motor 2 of Compressor 9]
FIG. 2 is a circuit configuration diagram of the motor control device 100 of the first embodiment. A motor control device 100 is a device that controls a motor 2 that drives a compressor 9 in a refrigeration cycle, and includes a DC power source, an inverter 1 that outputs an AC voltage, a motor 2 connected to the inverter 1, and an inverter. 1 and a shunt resistor 4 as an example of a current detector.

モータ2としては、インバータ1からの3相交流電流それぞれが流れるコイルを有する電機子と、永久磁石を有する界磁子と、を有し、電機子と界磁子とが相対回転又は相対往復動するものにできる。 The motor 2 has an armature having coils through which the three-phase alternating currents from the inverter 1 respectively flow, and a field element having permanent magnets. You can do it.

[冷凍サイクルの制御]
図3は、制御器3への指令信号を生成する構成図である。冷蔵庫に配された庫内制御器14は、冷蔵庫内の各部屋に設置された温度センサ値(冷凍室温度センサ18、冷蔵室温度センサ19)から各部屋の温度状態を把握することで、冷気供給が必要な部屋と冷却に必要なモータ速度指令ω*を決定し、決定したモータ速度指令ω*を制御器3へ送信する。また、後述する電流脈動制御と速度脈動制御のどちらを実行すべきかを判断し、速度脈動制御が必要な場合は振動抑制制御要求を出力する。すなわち、庫内制御器14からの振動抑制要求ありの場合、脈動抑制制御器22を振動抑制制御器(速度脈動抑制制御器)として動作させる。庫内制御器14からの振動抑制要求なしの場合、脈動抑制制御器22を電流脈動抑制制御器として動作させる。
[Refrigeration cycle control]
FIG. 3 is a configuration diagram for generating a command signal to the controller 3. As shown in FIG. The internal controller 14 arranged in the refrigerator grasps the temperature state of each room from the temperature sensor values (the freezer compartment temperature sensor 18 and the refrigerator compartment temperature sensor 19) installed in each room in the refrigerator. A room to be supplied and a motor speed command ω* required for cooling are determined, and the determined motor speed command ω* is transmitted to the controller 3 . It also determines which of current pulsation control and speed pulsation control, which will be described later, should be executed, and outputs a request for vibration suppression control when speed pulsation control is necessary. That is, when there is a vibration suppression request from the internal controller 14, the pulsation suppression controller 22 is operated as a vibration suppression controller (speed pulsation suppression controller). When there is no vibration suppression request from the internal controller 14, the pulsation suppression controller 22 is operated as a current pulsation suppression controller.

制御器3は、モータ速度指令ω*となるようなインバータ駆動パターンを決定し、インバータ1にパルス幅変調信号を出力する。これにより、モータ2が庫内制御器14で決定した速度で駆動する。また、庫内制御器14は、冷凍室温度センサ18、冷蔵室温度センサ19からの温度情報をもとに、冷却すべき部屋の蒸発器を決定し、弁11を駆動させ、何れの蒸発器に冷媒を供給するか決定し、冷媒経路を切替える。庫内制御器14は、さらに外気温度センサ20の情報を利用しても良い。 The controller 3 determines an inverter drive pattern that gives the motor speed command ω* and outputs a pulse width modulated signal to the inverter 1 . As a result, the motor 2 is driven at the speed determined by the internal controller 14 . Further, the internal controller 14 determines the evaporator of the room to be cooled based on the temperature information from the freezer compartment temperature sensor 18 and the refrigerator compartment temperature sensor 19, drives the valve 11, and determines which evaporator determines whether to supply the refrigerant to and switches the refrigerant route. The in-fridge controller 14 may further utilize information from the outside air temperature sensor 20 .

[制御ブロック]
図4は実施例1の制御器3の構成図である。シャント抵抗器4を用いて検出されるインバータ直流電流Idcを入力とし、電流再現器5にてインバータ直流電流Idcからdq軸電流を算出し、位置推定器6によって制御上のdq軸とモータ2の実軸との軸誤差Δθから位置推定を行い、推定した位置情報に基づいて速度推定器7によりモータの速度推定値ω1を出力し、速度制御器8にてモータ速度制御を実行する。
[Control block]
FIG. 4 is a configuration diagram of the controller 3 of the first embodiment. The inverter DC current Idc detected using the shunt resistor 4 is input, the current reproducer 5 calculates the dq-axis current from the inverter DC current Idc, and the position estimator 6 calculates the dq-axis current for control and the motor 2. A position is estimated from the axis error Δθ with respect to the real axis, a speed estimator 7 outputs an estimated motor speed ω1 based on the estimated position information, and a speed controller 8 executes motor speed control.

このとき電圧指令値Vd*およびVq*は例えば式1および式2のように演算できる。ここで、ω*はモータ速度指令値、Iq*はq軸電流指令値、Lqはq軸インダクタンス、Rmはモータ巻線抵抗値、Keは角速度に対するモータ誘起電圧の大きさを示す。
Vd* = - ω* × Lq × Iq* ・・・・式1
Vq* = Rm × Iq* - ω* × Ke ・・・・・式2
切替器23は、q軸電流値と軸誤差とのうち一方を選択して出力し、脈動抑制制御器22へ入力する。すなわち、電流脈動抑制時はq軸電流値を出力し、速度脈動抑制時は軸誤差を出力するものであり、抑制対象成分を切替える機能を奏する。q軸電流値や軸誤差を目的変数として、これを0にすることを目標とすることができる。
At this time, voltage command values Vd* and Vq* can be calculated, for example, as shown in Equations 1 and 2. Here, ω* is the motor speed command value, Iq* is the q-axis current command value, Lq is the q-axis inductance, Rm is the motor winding resistance value, and Ke is the magnitude of the motor induced voltage with respect to the angular velocity.
Vd* = - ω* x Lq x Iq* Expression 1
Vq*=Rm*Iq*-ω**Ke Equation 2
The switch 23 selects and outputs one of the q-axis current value and the axis error, and inputs it to the pulsation suppression controller 22 . That is, the q-axis current value is output when current pulsation is suppressed, and the axis error is output when velocity pulsation is suppressed. A q-axis current value and an axis error can be used as objective variables, and the target can be set to zero.

脈動抑制制御器22は、脈動周波数成分と抑制対象成分を入力とし、抑制対象成分の脈動を抑制するq軸電流指令値Iqsin*を出力する制御器である。
モータ負荷トルク脈動は、モータ1回転と同じ周期で発生するため、脈動周波数成分には、速度推定器7によって算出したモータ速度推定値ω1を用いる。
電流抑制制御として動作させる場合、電流再現器5によって算出されるq軸電流値Iqを抑制対象成分として用いる。脈動抑制制御器22からモータ電流脈動を抑制するようなq軸電流指令値Iqsin*が出力される。一方、振動抑制制御として動作させる場合、位置推定器7によって算出される軸誤差Δθを抑制対象成分として用いる。脈動抑制制御器22からモータ速度脈動を抑制するようなq軸電流指令値Iqsin*が出力される。
The pulsation suppression controller 22 is a controller that receives a pulsation frequency component and a suppression target component and outputs a q-axis current command value Iqsin* that suppresses pulsation of the suppression target component.
Since the motor load torque pulsation occurs in the same period as one rotation of the motor, the motor speed estimated value ω1 calculated by the speed estimator 7 is used as the pulsation frequency component.
When operating as current suppression control, the q-axis current value Iq calculated by the current reproducer 5 is used as the suppression target component. A q-axis current command value Iqsin* that suppresses motor current pulsation is output from the pulsation suppression controller 22 . On the other hand, when operating as vibration suppression control, the axis error Δθ calculated by the position estimator 7 is used as the suppression target component. A q-axis current command value Iqsin* that suppresses motor speed pulsation is output from the pulsation suppression controller 22 .

[低速運転時の電流脈動抑制制御と速度脈動抑制制御の切替判定]
図5は、本実施例の制御フローチャートである。まず、冷凍室および冷蔵室の温度センサ値を取得する(S101)。取得した冷凍室温度と予め設定された冷凍室設定温度Tfを比較する(S102)。冷凍室温度が冷凍室設定温度Tfより高い場合(S102,N)、冷凍室の冷却が必要と判断されて冷凍室冷却モードとなる(S105)。冷凍室冷却モードでは、弁11を冷凍室冷却用蒸発器12側へ切替えるとともに電流脈動抑制制御を実行する。そして、冷凍室の冷却に適したモータ速度指令ω*を決定する(S106)。
[Determination of switching between current pulsation suppression control and speed pulsation suppression control during low-speed operation]
FIG. 5 is a control flowchart of this embodiment. First, the temperature sensor values of the freezer compartment and the refrigerator compartment are acquired (S101). The obtained freezer compartment temperature is compared with the preset freezer compartment set temperature Tf (S102). When the freezer compartment temperature is higher than the freezer compartment set temperature Tf (S102, N), it is determined that the freezer compartment needs to be cooled, and the freezer compartment cooling mode is set (S105). In the freezer compartment cooling mode, the valve 11 is switched to the freezer compartment cooling evaporator 12 side, and current pulsation suppression control is executed. Then, a motor speed command ω* suitable for cooling the freezer compartment is determined (S106).

このように本実施例では、冷凍室冷却モードでは圧縮機9の振動が顕著になることはないとして、常に電流脈動抑制制御を実行する。尤も、条件によっては振動が顕著になることもあるとして、後述する冷蔵室冷却モードの閾値よりも低い速度指令ω*を閾値として、速度脈動抑制制御に切替可能にしても良い。 As described above, in this embodiment, the current pulsation suppressing control is always performed on the assumption that the vibration of the compressor 9 is not conspicuous in the freezer compartment cooling mode. Of course, depending on the conditions, the vibration may become conspicuous. Therefore, the speed command ω*, which is lower than the threshold value of the refrigerator compartment cooling mode, which will be described later, may be used as a threshold value to enable switching to the speed pulsation suppression control.

一方、冷凍室温度が冷凍室設定温度Tf以下である場合(S102,Y)、冷凍室は十分冷却されていると判断できる。次に取得した冷蔵室温度と予め設定された冷蔵室設定温度Trを比較する(S103)。冷蔵室温度が冷蔵室設定温度Trより高い場合(S103,N)、冷蔵室の冷却が必要と判断されて冷蔵室冷却モードとなる(S107)。冷蔵室冷却モードでは、弁11を冷蔵室冷却用蒸発器13側へ切替える。冷蔵室の冷却に適したモータ速度指令ω*を決定する(S108)。 On the other hand, when the freezer compartment temperature is equal to or lower than the freezer compartment set temperature Tf (S102, Y), it can be determined that the freezer compartment is sufficiently cooled. Next, the obtained refrigerating chamber temperature is compared with the preset refrigerating chamber set temperature Tr (S103). When the refrigerating compartment temperature is higher than the refrigerating compartment set temperature Tr (S103, N), it is determined that cooling of the refrigerating compartment is necessary and the refrigerating compartment cooling mode is set (S107). In the refrigerator compartment cooling mode, the valve 11 is switched to the refrigerator compartment cooling evaporator 13 side. A motor speed command ω* suitable for cooling the refrigerator compartment is determined (S108).

また、冷蔵室冷却モードでは、供給すべき冷気量が比較的少ないためモータ速度指令ω*は比較的小さい値になりやすい。冷蔵室冷却モードでは上述の通り冷媒圧力が高いことから負荷が大きく、速度脈動が生じやすい。このため、モータ速度指令ω*が小さくなると負荷変動に鋭敏となるから速度脈動(圧縮機振動)が顕著になりやすい。 Also, in the refrigerator compartment cooling mode, the amount of cold air to be supplied is relatively small, so the motor speed command ω* tends to be a relatively small value. In the refrigerating compartment cooling mode, as described above, since the refrigerant pressure is high, the load is large, and speed pulsation is likely to occur. Therefore, when the motor speed command .omega.* becomes small, the speed pulsation (compressor vibration) tends to become conspicuous because it becomes sensitive to load fluctuations.

このため本実施例では、冷蔵室冷却モード中、決定したモータ速度指令ω*を予め設定した閾値と比較する(S109)。モータ速度が閾値以下であるとき、速度脈動抑制(振動抑制)制御が必要と判断し、制御器3へ振動抑制要求を送信する。 Therefore, in this embodiment, the determined motor speed command ω* is compared with a preset threshold value during the refrigerator compartment cooling mode (S109). When the motor speed is equal to or less than the threshold, it determines that speed pulsation suppression (vibration suppression) control is necessary, and transmits a vibration suppression request to the controller 3 .

一方、冷蔵室温度が冷蔵室設定温度Tr以下である場合(S103,Y)、冷凍室、冷蔵室ともに冷却が十分であるため、モータ速度指令ω*を0とし、圧縮機を停止させる(S104)。
これにより、冷蔵庫の運転状態によって、電流脈動抑制制御と速度脈動抑制制御(振動抑制制御)のいずれを実行するかの判定が可能となる。
On the other hand, if the refrigerator compartment temperature is equal to or lower than the refrigerator compartment set temperature Tr (S103, Y), both the freezer compartment and the refrigerator compartment are sufficiently cooled, so the motor speed command ω* is set to 0, and the compressor is stopped (S104 ).
This makes it possible to determine which of current pulsation suppression control and speed pulsation suppression control (vibration suppression control) is to be executed depending on the operating state of the refrigerator.

[速度脈動抑制と電流脈動抑制制御の切替タイムチャート]
図6は、2つの脈動抑制制御の切替を示すタイムチャートである。冷蔵室冷却モード中は、モータ速度が速度閾値よりも大きければ(S109,Y)切替器23を電流脈動抑制制御器として動作させ、小さければ速度脈動抑制制御器として動作させる。
冷凍室冷却モード中は、モータ速度に依らず電流脈動抑制制御器として動作させることができる。
[Switching time chart between speed pulsation suppression and current pulsation suppression control]
FIG. 6 is a time chart showing switching between two pulsation suppression controls. During the refrigerating compartment cooling mode, if the motor speed is greater than the speed threshold (S109, Y), the switch 23 is operated as a current pulsation suppression controller, and if it is smaller, it is operated as a speed pulsation suppression controller.
During the freezer compartment cooling mode, it can be operated as a current pulsation suppression controller regardless of the motor speed.

[高速運転時の制御]
モータ速度指令ω*が比較的高い場合は、正弦波状のモータ電流を出力するよう制御器3は動作する。高速運転時の制御目標としては、q軸電流値や軸誤差値を監視せず、指令周波数と実周波数の残差Δωを0にすることとして設定できる。なお、高速運転とは、本願時点の技術的水準では、概ね2000rpm以上と認識することができ、低速運転は概ねそれ以下、好ましくは1500rpm以下、さらに好ましくは1000rpm以下と認識することができる。
[Control during high-speed operation]
When the motor speed command ω* is relatively high, the controller 3 operates to output a sinusoidal motor current. A control target during high-speed operation can be set to zero the residual Δω between the command frequency and the actual frequency without monitoring the q-axis current value and the axis error value. High-speed operation can be recognized as approximately 2000 rpm or more, and low-speed operation can be recognized as approximately 2000 rpm or more, preferably 1500 rpm or less, and more preferably 1000 rpm or less, according to the technical level at the time of the present application.

[速度脈動抑制時、電流脈動抑制時、高速運転時のモータ電流の特徴]
図7は速度脈動抑制制御の実行時のモータ電流の一例を示す図である。800rpmのものを図示している。
モータへかかる負荷トルクは、ピストンの往復(回転モータの場合はロータ1回転)を1周期として周期的に変化する。負荷トルクが大きくなる圧縮工程時はモータ電流の振幅を増加させて速度低下を抑制する。負荷トルクが小さくなる吐出・吸込工程時はモータ電流の振幅を減少させて速度増加を抑制する。これにより、速度脈動抑制時のモータ電流は、1周期中で電流振幅が大きく変化するような波形となる。
[Features of motor current during speed pulsation suppression, current pulsation suppression, and high-speed operation]
FIG. 7 is a diagram showing an example of motor current when speed pulsation suppressing control is executed. 800 rpm is shown.
The load torque applied to the motor changes periodically with one cycle of reciprocation of the piston (one rotation of the rotor in the case of a rotary motor). During the compression stroke when the load torque increases, the amplitude of the motor current is increased to suppress speed reduction. During the discharge/suction process when the load torque becomes small, the amplitude of the motor current is reduced to suppress the speed increase. As a result, the motor current during speed pulsation suppression has a waveform in which the current amplitude changes greatly during one cycle.

図8は電流脈動抑制制御の実行時のモータ電流の一例を示す図である。800rpmのものを図示している。
電流脈動抑制制御時は、モータ電流の振幅を略一定に保つようにする。こうすることで負荷トルクの変化によるモータ電流振幅の変化がなく、1周期毎の電流振幅変化が小さい波形となる。
FIG. 8 is a diagram showing an example of motor current when current pulsation suppression control is executed. 800 rpm is shown.
During the current pulsation suppressing control, the amplitude of the motor current is kept substantially constant. By doing so, a waveform is obtained in which there is no change in the motor current amplitude due to changes in the load torque, and the current amplitude change in each cycle is small.

図9は高速運転時のモータ電流の一例を示す図である。2400rpmのものを図示している。
高速運転時は、低速運転時に比べロータの慣性力が大きくなっているため、速度・モータ電流ともに負荷トルクの影響をあまり受けない。そのため、速度脈動抑制制御および電流脈動抑制制御を実行せずに、1周期毎の電流振幅変化が小さい波形となる。
FIG. 9 is a diagram showing an example of motor current during high-speed operation. 2400 rpm is illustrated.
During high-speed operation, the inertial force of the rotor is greater than during low-speed operation, so both the speed and motor current are less affected by the load torque. Therefore, without executing speed pulsation suppression control and current pulsation suppression control, the waveform has a small current amplitude change for each cycle.

本実施例の構成は次の点を除き実施例1と同様にできる。
[外気温度を利用した速度脈動抑制と電流脈動抑制制御の切替え]
図10は、外気温度による判定を付加した脈動抑制制御の切替を示すタイムチャートである。外気温度が低い場合、庫外からの熱侵入が低下するためモータ負荷トルク脈動が小さくなる傾向にあり、冷蔵室冷却モード中であってもモータの速度脈動が小さく、振動への影響が少なくなる。
The configuration of this embodiment can be the same as that of the first embodiment except for the following points.
[Switching between speed pulsation suppression and current pulsation suppression control using outside air temperature]
FIG. 10 is a time chart showing switching of pulsation suppression control with determination based on outside air temperature. When the outside air temperature is low, the heat penetration from the outside of the refrigerator decreases, so the motor load torque pulsation tends to be small, and even in the refrigerator compartment cooling mode, the motor speed pulsation is small and the effect on vibration is reduced. .

したがって、冷蔵室冷却モード中、モータ速度が速度閾値よりも大きい又は外気温度センサ20から取得した外気温度が予め設定された外気温度閾値以下の場合は、電流脈動抑制制御器として動作させ、モータ速度が速度閾値以下で外気温度が外気温度閾値以上の場合は、速度脈動抑制制御器として動作させる。 Therefore, during the refrigerator compartment cooling mode, if the motor speed is greater than the speed threshold or if the outside air temperature obtained from the outside air temperature sensor 20 is equal to or lower than the preset outside temperature threshold, the current pulsation suppression controller is operated to control the motor speed. is equal to or less than the speed threshold and the outside air temperature is equal to or more than the outside air temperature threshold, it operates as a speed pulsation suppression controller.

各実施例では複数の蒸発器を有する冷凍サイクルについて説明したが、蒸発温度の変動が大きい蒸発器を使用するのであれば、蒸発器が1つのみの冷凍サイクルに配された圧縮機9のモータ2の制御を行う場合にも同様の思想を採用できる。すなわち、モータ2の運転周波数が低く(例えば1500rpm以下)、かつ、蒸発温度が高い(例えば0℃以上)場合に速度脈動抑制制御を実行させることができる。 In each embodiment, a refrigerating cycle having a plurality of evaporators has been described, but if an evaporator with large fluctuations in the evaporating temperature is used, the motor of the compressor 9 arranged in a refrigerating cycle with only one evaporator can be used. The same concept can be adopted when performing the control of 2. That is, when the operating frequency of the motor 2 is low (for example, 1500 rpm or lower) and the evaporation temperature is high (for example, 0° C. or higher), speed pulsation suppression control can be executed.

1・・・インバータ
2・・・モータ
3・・・制御器
4・・・シャント抵抗器
5・・・電流再現器
6・・・位置推定器
7・・・速度推定器
8・・・速度制御器
9・・・圧縮機
10・・・凝縮器
11・・・弁
12・・・冷凍室用蒸発器
13・・・冷蔵執拗蒸発器
14・・・庫内制御器
18・・・冷凍室温度センサ
19・・・冷蔵室温度センサ
20・・・外気温度センサ
Reference Signs List 1 inverter 2 motor 3 controller 4 shunt resistor 5 current reproducer 6 position estimator 7 speed estimator 8 speed control Unit 9 Compressor 10 Condenser 11 Valve 12 Freezer compartment evaporator 13 Refrigerator persistent evaporator 14 In-chamber controller 18 Freezer compartment temperature Sensor 19...Refrigerator temperature sensor 20...Outdoor air temperature sensor

Claims (5)

冷媒を圧縮する圧縮機と、
冷媒を比較的高温で蒸発させて冷気を生成する冷蔵蒸発器と、
冷媒を比較的低温で蒸発させて冷気を生成する冷凍蒸発器と、
圧縮された冷媒を前記冷蔵蒸発器に供給する冷蔵室冷却モード、又は、圧縮された冷媒を前記冷凍蒸発器に供給する冷凍室冷却モードのうちいずれを実行するかを切替える弁と、を有する、冷凍サイクルに配された前記圧縮機のモータの制御装置であって、
消費電力が比較的小さい電流脈動抑制制御と、前記圧縮機の振動が比較的小さい速度脈動抑制制御とを切替えて実行可能であり、
前記冷蔵室冷却モード中であって、前記モータの運転周波数が低場合には、前記速度脈動抑制制御を実行し、
前記冷蔵室冷却モード中であって、前記モータの運転周波数が高い場合には、前記電流脈動抑制制御を実行し、
前記冷凍室冷却モード中には、前記モータの運転周波数に依らずに前記電流脈動抑制制御を実行する制御装置。
a compressor that compresses a refrigerant;
a refrigeration evaporator that evaporates a refrigerant at a relatively high temperature to produce cold air;
a refrigeration evaporator that evaporates a refrigerant at a relatively low temperature to produce cool air;
a valve for switching between a refrigerating compartment cooling mode in which compressed refrigerant is supplied to the refrigerating evaporator and a freezer compartment cooling mode in which compressed refrigerant is supplied to the refrigerating evaporator; A control device for a motor of the compressor arranged in a refrigeration cycle,
current pulsation suppression control with relatively low power consumption and speed pulsation suppression control with relatively low vibration of the compressor can be switched and executed,
When the refrigerating compartment cooling mode is in progress and the operating frequency of the motor is low , the speed pulsation suppression control is executed ,
When the refrigerating compartment cooling mode is in progress and the operating frequency of the motor is high, the current pulsation suppression control is executed,
A control device that executes the current pulsation suppression control during the freezer compartment cooling mode regardless of the operating frequency of the motor .
前記電流脈動抑制制御は、q軸電流値を目的変数とする制御であり、
前記速度脈動抑制制御は、軸誤差を目的変数とする制御であ請求項1に記載の制御装置。
The current pulsation suppression control is control with the q-axis current value as an objective variable,
2. The control device according to claim 1, wherein the speed pulsation suppression control is control with an axis error as an objective variable.
前記冷凍サイクル及び請求項1又は請求項2に記載の制御装置を有する冷蔵庫であって、
当該冷蔵庫外の温度値を取得する庫外温度センサを有し、
前記冷蔵室冷却モード中であって、前記モータの運転周波数が低さらに、前記庫外温度センサの検知値が高い場合には、前記速度脈動抑制制御を実行する冷蔵庫。
A refrigerator comprising the refrigeration cycle and the control device according to claim 1 or 2 ,
having an outside temperature sensor that acquires a temperature value outside the refrigerator,
A refrigerator that executes the speed pulsation suppressing control when the operating frequency of the motor is low and the detection value of the outside temperature sensor is high during the refrigerator compartment cooling mode .
請求項1又は請求項2に記載の制御装置を有する圧縮A compressor comprising the control device according to claim 1 or 2 . 請求項1又は請求項2に記載の制御装置を有する冷蔵庫A refrigerator comprising the control device according to claim 1 or 2 .
JP2019011804A 2019-01-28 2019-01-28 Motor control device and compressor and refrigerator using the same Active JP7123819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019011804A JP7123819B2 (en) 2019-01-28 2019-01-28 Motor control device and compressor and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019011804A JP7123819B2 (en) 2019-01-28 2019-01-28 Motor control device and compressor and refrigerator using the same

Publications (2)

Publication Number Publication Date
JP2020118408A JP2020118408A (en) 2020-08-06
JP7123819B2 true JP7123819B2 (en) 2022-08-23

Family

ID=71891932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019011804A Active JP7123819B2 (en) 2019-01-28 2019-01-28 Motor control device and compressor and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP7123819B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101163A (en) 2005-10-07 2007-04-19 Hoshizaki Electric Co Ltd Cooling storage
JP2007113894A (en) 2005-10-24 2007-05-10 Toshiba Corp Refrigerator
JP2018057085A (en) 2016-09-26 2018-04-05 日立ジョンソンコントロールズ空調株式会社 Motor drive device, refrigeration cycle device with the same, and motor drive method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3278491B2 (en) * 1993-04-19 2002-04-30 株式会社東芝 Refrigeration cycle control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101163A (en) 2005-10-07 2007-04-19 Hoshizaki Electric Co Ltd Cooling storage
JP2007113894A (en) 2005-10-24 2007-05-10 Toshiba Corp Refrigerator
JP2018057085A (en) 2016-09-26 2018-04-05 日立ジョンソンコントロールズ空調株式会社 Motor drive device, refrigeration cycle device with the same, and motor drive method

Also Published As

Publication number Publication date
JP2020118408A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
KR100738755B1 (en) Motor controlling device, compressor, air conditioner and refrigerator
TWI495252B (en) A motor drive and a power machine using it
BR112018003257B1 (en) REFRIGERATOR
KR101953124B1 (en) Driving apparatus of motor and cooling apparatus using the same
JP3860383B2 (en) Compressor control device
US10488086B2 (en) Domestic refrigeration appliance with a refrigerant circuit, and method for operating a domestic refrigeration appliance with a refrigerant circuit
US11454436B2 (en) Refrigerator having variable speed compressor and control method thereof
JP7123819B2 (en) Motor control device and compressor and refrigerator using the same
JP2010252406A (en) Motor drive and refrigerator using the same
WO2022176615A1 (en) Motor drive and refrigerator using same
WO2019244743A1 (en) Motor drive device and refrigerator using same
JP2010252480A (en) Motor drive and refrigerator using the same
KR101203408B1 (en) BLDC motor of Compressor for refrigerator having accelerometer
JP4453308B2 (en) Compressor control device
KR100301828B1 (en) Method for operating compressor with sensorless bldc motor
JP2012186876A (en) Compressor drive unit and refrigerator using the same
JP6979568B2 (en) Motor drive device and refrigerator using it
KR101918058B1 (en) Apparatus and method for driving brushless motor, and air conditioner having the same
JP6877580B2 (en) Refrigeration cycle equipment
JP2007288938A (en) Motor drive and storage device having the same
KR19990079694A (en) How to Operate a Compressor with a Sensorless BLDC Motor
JP2007040281A (en) Reciprocating compressor control device
JP2005337583A (en) Refrigerator
JP2001309692A (en) Control device of refrigerating system
JP2016001931A (en) Inverter controller

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220810

R150 Certificate of patent or registration of utility model

Ref document number: 7123819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150