JP7119805B2 - Thick steel plate quality evaluation method - Google Patents

Thick steel plate quality evaluation method Download PDF

Info

Publication number
JP7119805B2
JP7119805B2 JP2018171217A JP2018171217A JP7119805B2 JP 7119805 B2 JP7119805 B2 JP 7119805B2 JP 2018171217 A JP2018171217 A JP 2018171217A JP 2018171217 A JP2018171217 A JP 2018171217A JP 7119805 B2 JP7119805 B2 JP 7119805B2
Authority
JP
Japan
Prior art keywords
plate
thick steel
steel plate
joined
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018171217A
Other languages
Japanese (ja)
Other versions
JP2020041966A (en
Inventor
鉄平 大川
祐介 島田
直樹 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018171217A priority Critical patent/JP7119805B2/en
Publication of JP2020041966A publication Critical patent/JP2020041966A/en
Application granted granted Critical
Publication of JP7119805B2 publication Critical patent/JP7119805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、厚鋼板の品質評価方法に係り、特に、コンテナ船等に利用される溶接構造体用の厚鋼板の品質評価方法に関する。 TECHNICAL FIELD The present invention relates to a quality evaluation method for thick steel plates, and more particularly to a quality evaluation method for thick steel plates for welded structures used in container ships and the like.

大量の貨物を搭載する大型のコンテナ船においては、アッパーデッキ(上甲板)に、貨物の積み下ろしを行うための大きな開口部(ハッチ)が形成されている。また、アッパーデッキ上には、海水の流入防止等のために、ハッチを囲むようにハッチサイドコーミングが設けられている。アッパーデッキおよびハッチサイドコーミングはそれぞれ、複数の鋼板を溶接して構成されている。また、ハッチサイドコーミングは、アッパーデッキ上に溶接されている。 A large container ship carrying a large amount of cargo has a large opening (hatch) on the upper deck for loading and unloading cargo. In addition, hatch side coamings are provided on the upper deck so as to surround the hatch to prevent inflow of seawater. The upper deck and hatch side coaming are each constructed by welding together multiple steel plates. Also, the hatch side coaming is welded on the upper deck.

上記のような大型のコンテナ船が海上を航行する際には、波浪によって、船体全体を曲げるような荷重(縦曲げ荷重)が船体に付加される。このような荷重に対して、船体の強度(縦曲げ強度)を十分に確保するために、アッパーデッキおよびハッチサイドコーミングには、高強度の厚肉鋼板が利用されている。 When a large container ship such as the one described above navigates on the sea, a load that bends the entire hull (longitudinal bending load) is applied to the hull by waves. In order to ensure sufficient strength (vertical bending strength) of the hull against such loads, high-strength thick steel plates are used for the upper deck and hatch side coamings.

また、上述のように、ハッチサイドコーミングおよびアッパーデッキはそれぞれ、複数の鋼板を溶接した構成を有している。言い換えると、ハッチサイドコーミングおよびアッパーデッキには、鋼板同士を溶接するための複数の溶接部が形成されている。溶接部で発生したき裂は、溶接部に沿って伝播しやすい。 Also, as described above, the hatch side coaming and the upper deck each have a structure in which a plurality of steel plates are welded together. In other words, the hatch side coaming and the upper deck are formed with a plurality of welds for welding the steel plates together. A crack initiated in a welded portion tends to propagate along the welded portion.

このため、例えば、ハッチサイドコーミングの溶接部においてき裂が発生した場合、そのき裂が溶接部に沿ってアッパーデッキ側に向かって伝播し、伝播したき裂がアッパーデッキの溶接部に進展する場合がある。また、上記の例だけでなく、き裂がアッパーデッキから発生しハッチサイドコーミング側に向かって伝播する可能性もある。 Therefore, for example, if a crack occurs in the welded portion of the hatch side coaming, the crack propagates along the welded portion toward the upper deck side, and propagates to the welded portion of the upper deck. Sometimes. In addition to the above examples, cracks can also originate from the upper deck and propagate toward the hatch side coaming.

したがって、船体の強度を十分に向上させるためには、ハッチサイドコーミングおよびアッパーデッキが、上記のようなき裂の進展を停止させることができる特性(脆性き裂伝播停止特性)を有する必要がある。 Therefore, in order to sufficiently improve the strength of the hull, the hatch side coamings and the upper deck must have properties capable of stopping the growth of cracks (brittle crack arresting properties).

従来、ハッチサイドコーミングおよびアッパーデッキに用いられる厚鋼板の脆性き裂伝播停止特性を評価する場合には、ESSO試験(脆性破壊伝播停止試験:試験片に脆性き裂を人為的に発生させ、脆性き裂を停止させる性能を評価する試験)などの大型試験が実施されていた。 Conventionally, when evaluating the brittle crack arrestability of thick steel plates used for hatch side coaming and upper decks, an ESSO test (brittle fracture arrest test: artificially generating a brittle crack in a test piece to Large-scale tests such as a test to evaluate the ability to stop cracks) were being conducted.

しかしながら、大型試験を実施するためには、多くの時間と費用とを必要とするため、脆性き裂伝播停止特性の評価が容易でないという問題があった。そのようなことを背景として、例えば、特許文献1および2には、小型試験片を用いた脆性き裂伝播停止特性の評価方法が提案されている。 However, there is a problem that it is not easy to evaluate the brittle crack arrestability because it takes a lot of time and money to conduct a large-scale test. Against this background, Patent Literatures 1 and 2, for example, propose evaluation methods for brittle crack arrestability using small test pieces.

特開2012-52873号公報JP 2012-52873 A 国際公開第2014/208072号WO2014/208072

しかしながら、特許文献1に記載される方法では、厚鋼板の板厚方向の各位置から試験片を採取し、シャルピー衝撃試験を実施する必要があるため、簡便さの点において不十分である。また、特許文献2に記載される方法では、厚鋼板の板厚中心部から採取した試験片により評価を行うため、正確に脆性き裂伝播停止特性を評価することができないという問題がある。 However, the method described in Patent Literature 1 is insufficient in terms of simplicity because it is necessary to collect test pieces from each position in the plate thickness direction of the thick steel plate and perform the Charpy impact test. Moreover, in the method described in Patent Document 2, since evaluation is performed using a test piece taken from the thickness center of a thick steel plate, there is a problem that the brittle crack arrestability cannot be evaluated accurately.

本発明は、このような問題を解決するためになされたものであり、高精度かつ簡便に厚鋼板の品質を評価する方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and an object of the present invention is to provide a method for evaluating the quality of a thick steel plate with high precision and simplicity.

本発明は、下記の厚鋼板の品質評価方法を要旨とする。 The gist of the present invention is the following quality evaluation method for thick steel plates.

(1)溶接構造体に用いられる厚鋼板の品質評価方法であって、
前記溶接構造体は、板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に両側部分溶込み溶接されたT継手部を有するものであり、
前記接合部材または前記被接合部材となる板厚50mm以上の厚鋼板から、前記厚鋼板の板厚方向と厚さ方向が一致し、かつ前記厚鋼板の表面から5mm深さまでの領域の一部を含む板状試験片を採取し、
前記板状試験片を用いて、NRL落重試験による無延性遷移温度を測定し、
前記無延性遷移温度に基づいて、前記接合部材または前記被接合部材となる前記厚鋼板の脆性き裂伝播停止特性を判定する、
厚鋼板の品質評価方法。
(1) A quality evaluation method for a thick steel plate used in a welded structure,
The welded structure is a T-joint portion in which the joining member is partially penetration-welded to the joined member on both sides with the end surface of the plate-shaped joining member in contact with the joined surface of the plate-shaped member to be joined. and
From a thick steel plate having a thickness of 50 mm or more, which is the member to be joined or the member to be joined, a part of the region from the surface of the thick steel plate to a depth of 5 mm, the thickness direction of the thick steel plate matching the thickness direction of the thick steel plate Take a plate-shaped test piece containing
Using the plate-shaped test piece, measure the non-ductile transition temperature by NRL drop weight test,
Based on the non-ductility transition temperature, determine the brittle crack arresting property of the steel plate to be the member to be joined or the member to be joined;
A quality evaluation method for thick steel plates.

(2)前記接合部材となる前記厚鋼板の品質評価方法であって、
前記板状試験片は、前記接合部材となる前記厚鋼板の板厚方向と直交する一表面から5mm深さまでの領域の一部を含むように採取され、
NRL落重試験により測定された前記無延性遷移温度をNDTT(℃)とし、前記両側部分溶込み溶接によって前記一表面側に形成される溶接部の熱影響部の最頂点と前記一表面との前記接合部材の板厚方向の距離をh(mm)とした場合に、
下記(i)式および(ii)式を満足する場合に、前記接合部材となる前記厚鋼板が脆性き裂伝播停止特性に優れると判定する、
上記(1)に記載の厚鋼板の品質評価方法。
NDTT≦-60 ・・・(i)
NDTT≦-30.5×ln(h)-14.0 ・・・(ii)
(2) A quality evaluation method for the thick steel plate to be the joining member,
The plate-shaped test piece is collected so as to include part of a region from one surface perpendicular to the thickness direction of the thick steel plate to be the joining member to a depth of 5 mm,
The non-ductile transition temperature measured by the NRL drop weight test is NDTT (° C.), and the maximum peak of the heat affected zone of the weld formed on the one surface side by the double-sided partial penetration welding and the one surface When the distance in the plate thickness direction of the joint member is h (mm),
When the following formulas (i) and (ii) are satisfied, it is determined that the thick steel plate to be the joining member is excellent in brittle crack arrestability.
A quality evaluation method for a thick steel plate according to (1) above.
NDTT≦−60 (i)
NDTT≦−30.5×ln(h)−14.0 (ii)

(3)前記被接合部材となる前記厚鋼板の品質評価方法であって、
前記板状試験片は、前記被接合部材となる前記厚鋼板の前記被接合面に対応する一表面から5mm深さまでの領域の一部を含むように採取され、
NRL落重試験により測定された前記無延性遷移温度をNDTT(℃)とし、前記接合部材の前記端面に垂直な方向における長さをH(mm)、予め設定される前記接合部材の許容応力をσ(N/mm)とした場合に、
下記(iii)式を満足する場合に、前記被接合部材となる前記厚鋼板が脆性き裂伝播停止特性に優れると判定する、
上記(1)に記載の厚鋼板の品質評価方法。
NDTT≦360.4-46.8×ln{σ(πH)0.5} ・・・(iii)
(3) A quality evaluation method for the thick steel plate to be the member to be joined,
The plate-shaped test piece is collected so as to include part of a region from one surface corresponding to the surface to be joined of the thick steel plate to be the member to be joined to a depth of 5 mm,
The non-ductile transition temperature measured by the NRL drop weight test is NDTT (° C.), the length of the joint member in the direction perpendicular to the end face is H (mm), and the preset allowable stress of the joint member is When σ (N/mm 2 ),
When the following formula (iii) is satisfied, it is determined that the thick steel plate to be the member to be joined is excellent in brittle crack arrestability.
A quality evaluation method for a thick steel plate according to (1) above.
NDTT≦360.4−46.8×ln{σ(πH) 0.5 } (iii)

本発明によれば、脆性き裂伝播停止特性に優れた溶接構造体を得るために必要な厚鋼板の品質を、高精度かつ簡便に評価することが可能である。 ADVANTAGE OF THE INVENTION According to this invention, it is possible to evaluate with high precision and simply the quality of the steel plate required in order to obtain the welded structure excellent in brittle crack arrestability.

本発明の一実施形態に係る品質評価の対象となる厚鋼板によって構成される溶接構造体を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing a welded structure composed of thick steel plates to be evaluated for quality according to one embodiment of the present invention; 本発明の一実施形態に係る品質評価の対象となる厚鋼板によって構成される他の溶接構造体を示す斜視図である。Fig. 10 is a perspective view showing another welded structure composed of thick steel plates to be subjected to quality evaluation according to one embodiment of the present invention; 本発明の一実施形態に係る品質評価の対象となる厚鋼板によって構成される他の溶接構造体を示す斜視図である。Fig. 10 is a perspective view showing another welded structure composed of thick steel plates to be subjected to quality evaluation according to one embodiment of the present invention; 溶接構造体の断面図である。FIG. 4 is a cross-sectional view of a welded structure; 実施例1における構造モデルアレスト試験体の形状を説明するための図である。4 is a diagram for explaining the shape of a structural model arrest test piece in Example 1. FIG. 実施例2における構造モデルアレスト試験体の形状を説明するための図である。FIG. 10 is a diagram for explaining the shape of a structural model arrest test piece in Example 2;

本発明者らが上記の課題を解決するために検討を行った結果、以下の知見を得るに至った。 As a result of studies conducted by the present inventors to solve the above problems, the following findings were obtained.

ハッチサイドコーミングからアッパーデッキ側に向かってき裂が伝播する場合においては、アッパーデッキ(被接合部材)に脆性き裂伝播停止特性が求められる。そして、被接合部材の全厚にわたって脆性き裂伝播停止特性を向上させるためには、例えば、脆性き裂伝播停止特性の指標である-10℃におけるKca値が6000N/mm1.5以上の鋼板を被接合部材として用いる必要がある。Kca値はESSO試験により評価される厚鋼板の全厚の脆性き裂伝播停止特性の指標である。 When a crack propagates from the hatch side coaming toward the upper deck side, the upper deck (joined member) is required to have brittle crack arrestability. In order to improve the brittle crack arrestability over the entire thickness of the member to be joined, for example, a steel plate having a Kca value of 6000 N / mm 1.5 or more at -10 ° C., which is an index of the brittle crack arrestability should be used as the member to be joined. The Kca value is an index of full-thickness brittle crack arrestability of a steel plate evaluated by an ESSO test.

さらに、アッパーデッキからハッチサイドコーミング側に向かってき裂が伝播する場合においては、ハッチサイドコーミング(接合部材)には、Kca値が8000N/mm1.5以上の鋼板を用いる必要がある。しかしながら、6000N/mm1.5以上または8000N/mm1.5以上といったKca値を有する厚鋼板の製造は容易ではなく、厚鋼板の製造コストが高くなるという問題がある。 Furthermore, when a crack propagates from the upper deck toward the hatch side coaming, it is necessary to use a steel plate with a Kca value of 8000 N/mm 1.5 or more for the hatch side coaming (joining member). However, it is not easy to manufacture a thick steel plate having a Kca value of 6000 N/mm 1.5 or more or 8000 N/mm 1.5 or more, and there is a problem that the manufacturing cost of the thick steel plate increases.

そこで本発明者らが検討を重ねた結果、き裂の突入領域である厚鋼板の表層領域における脆性き裂伝播停止特性を向上させることによって、接構造体全体での脆性き裂伝播停止特性を低コストで向上させることが可能になることが分かった。 Therefore, as a result of repeated studies by the present inventors, by improving the brittle crack arresting property in the surface layer region of the steel plate, which is the crack penetration region, the brittle crack arresting property in the entire contact structure can be improved. It turned out that it can be improved at low cost.

言い換えれば、厚鋼板の全厚ではなく、表層部における脆性き裂伝播停止特性の評価のみを行うことによって、溶接構造体に用いられる厚鋼板の品質を高精度かつ簡便に評価することが可能となる。 In other words, it is possible to evaluate the quality of steel plates used in welded structures with high accuracy and ease by evaluating only the brittle crack propagation arresting properties of the surface layer instead of the entire thickness of the steel plates. Become.

本発明は上記の知見に基づいてなされたものである。以下、本発明の一実施形態に係る厚鋼板の品質評価方法について説明する。 The present invention has been made based on the above findings. Hereinafter, a method for evaluating the quality of a thick steel plate according to one embodiment of the present invention will be described.

1.溶接構造体の構成
本発明は、溶接構造体に用いられる厚鋼板の品質評価方法に関するものである。図1は、本発明の一実施形態に係る品質評価の対象となる厚鋼板によって構成される溶接構造体を示す斜視図である。溶接構造体10は、接合部材11および被接合部材12を備えている。接合部材11は板状であり、板厚方向に直交する一対の表面11a,11bを有する。また、被接合部材12は板状であり、接合部材11の端面11cが当接される被接合面12aを有する。
1. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quality evaluation method for thick steel plates used in welded structures. FIG. 1 is a perspective view showing a welded structure composed of thick steel plates to be evaluated for quality according to one embodiment of the present invention. The welded structure 10 includes a joining member 11 and a joined member 12 . The joining member 11 is plate-shaped and has a pair of surfaces 11a and 11b perpendicular to the plate thickness direction. The member to be joined 12 is plate-shaped and has a surface to be joined 12a against which the end surface 11c of the member to be joined 11 is brought into contact.

そして、図1に示すように、溶接構造体10は、端面11cが被接合面12aに当接した状態で、接合部材11が被接合部材12に両側部分溶込み溶接されたT継手部を有する。なお、上記のT継手部を有する溶接構造体には、図1に示すようなT字状の構造体に加えて、例えば、図2および3に示す形状の構造体も含まれる。 As shown in FIG. 1, the welded structure 10 has a T-joint portion in which the joining member 11 is partially penetration welded to the joining member 12 on both sides with the end surface 11c in contact with the joining surface 12a. . In addition to the T-shaped structure shown in FIG. 1, the welded structure having the T-joint includes, for example, the structures shown in FIGS.

また、接合部材11と被接合部材12とが、隅肉溶接によって接合されるものであってもよいし、接合強度の観点から、接合部材11に開先を設け、開先溶接によって接合されるものであってもよい。図1~3に示すように、溶接構造体10には、表面11a,11bのそれぞれの側に溶接部13a,13bが形成される。 In addition, the joining member 11 and the member to be joined 12 may be joined by fillet welding, or from the viewpoint of joining strength, a groove is provided in the joining member 11 and joined by groove welding. can be anything. As shown in FIGS. 1-3, welded structure 10 is formed with welds 13a, 13b on respective sides of surfaces 11a, 11b.

本発明においては、接合部材11または被接合部材12となる厚鋼板の品質評価を行う。以下、各工程について詳しく説明する。なお、本発明において、厚鋼板とは、板厚が50mm以上である鋼板を意味する。 In the present invention, a quality evaluation is performed on the thick steel plate that will be the member to be joined 11 or the member to be joined 12 . Each step will be described in detail below. In the present invention, a thick steel plate means a steel plate having a thickness of 50 mm or more.

2.試験片採取工程
まず、接合部材11または被接合部材12となる厚鋼板から、板状試験片を採取する。板状試験片は、厚鋼板の表層部から採取する。具体的には、厚鋼板の板厚方向と厚さ方向が一致し、かつ厚鋼板の表面から5mm深さまでの領域の一部を含むように採取する必要がある。
2. Test Piece Sampling Step First, a plate-shaped test piece is sampled from the thick steel plate to be the joining member 11 or the member to be joined 12 . A plate-shaped test piece is taken from the surface layer of a thick steel plate. Specifically, it is necessary that the thickness direction of the thick steel plate coincides with the thickness direction, and that a part of the region from the surface of the thick steel plate to a depth of 5 mm is included.

また、後述するように、本発明に係る方法においては、板状試験片の長手方向と垂直な面においてき裂が発生するように試験を行う。溶接構造体において、き裂は溶接部13a,13bの延伸方向(図1に示されるY方向)と垂直な面において発生する。そのため、板状試験片は、その長手方向が溶接構造体のY方向となる方向と一致するように採取することが好ましい。 Moreover, as will be described later, in the method according to the present invention, the test is performed so that cracks are generated in the plane perpendicular to the longitudinal direction of the plate-shaped test piece. In the welded structure, cracks occur in a plane perpendicular to the extending direction (the Y direction shown in FIG. 1) of the welded portions 13a and 13b. Therefore, it is preferable that the plate-shaped test piece is sampled so that its longitudinal direction coincides with the Y direction of the welded structure.

試験片の形状および寸法について、特に制限は設けないが、ASTM E208に規定されるタイプP1~P3試験片を採用することが好ましい。なかでも、最も小型なタイプP3試験片を採用することが好ましい。タイプP3試験片とは、長さ130mm、幅50mm、厚さ16mmの試験片である。 Although there are no particular restrictions on the shape and dimensions of the test piece, it is preferable to adopt type P1 to P3 test pieces specified in ASTM E208. Among them, it is preferable to adopt the smallest type P3 test piece. A type P3 specimen is a specimen having a length of 130 mm, a width of 50 mm and a thickness of 16 mm.

例えば、上記のタイプP3試験片を採取するに際しては、上述のように、厚鋼板の板厚方向と厚さ方向が一致し、かつ厚鋼板の表面から5mm深さまでの領域の一部を含む限り、どの位置から採取してもよい。例えば、厚鋼板の表面から16mm深さ位置までの領域において採取してもよい。または、厚鋼板の表面を1mm削り取った後、1mm深さ位置から17mm深さ位置までの領域において採取してもよい。 For example, when collecting the above type P3 test piece, as described above, as long as the plate thickness direction and the thickness direction of the thick steel plate match, and a part of the region from the surface of the thick steel plate to a depth of 5 mm is included. , can be taken from any position. For example, samples may be taken from the surface of the steel plate to a depth of 16 mm. Alternatively, after scraping off the surface of the thick steel plate by 1 mm, the sample may be taken from the region from the 1 mm depth position to the 17 mm depth position.

接合部材11となる厚鋼板の品質評価を行う場合においては、接合部材11となる厚鋼板の板厚方向と直交する一表面から5mm深さまでの領域の一部を含むように、板状試験片を採取する。接合部材11となる厚鋼板の板厚方向と直交する一表面とは、上述した接合部材11が有する表面11a,11bのいずれか一方に対応する面である。 In the case of evaluating the quality of the thick steel plate to be the joining member 11, a plate-shaped test piece is prepared so as to include part of a region from one surface perpendicular to the thickness direction of the thick steel plate to be the joining member 11 to a depth of 5 mm. to collect. The one surface perpendicular to the plate thickness direction of the thick steel plate to be the joining member 11 is a surface corresponding to either one of the surfaces 11a and 11b of the joining member 11 described above.

一方、被接合部材12となる厚鋼板の品質評価を行う場合においては、被接合部材12となる厚鋼板の被接合面12aに対応する一表面から5mm深さまでの領域の一部を含むように、板状試験片を採取する。 On the other hand, when evaluating the quality of the thick steel plate that will be the member to be joined 12, a part of the region from one surface corresponding to the surface to be joined 12a of the thick steel plate that will be the member to be joined 12 to a depth of 5 mm is included. , Take a plate-shaped test piece.

3.無延性遷移温度測定工程
次に、上記の板状試験片を用いて無延性遷移温度NDTT(℃)を測定する。本発明において、無延性遷移温度NDTT(℃)は、ASTM E208に準拠したNRL落重試験を実施することにより測定する。NRL落重試験について詳しく説明する。
3. Non-Ductile Transition Temperature Measurement Step Next, the non-ductile transition temperature NDTT (° C.) is measured using the plate-shaped test piece. In the present invention, the non-ductile transition temperature NDTT (° C.) is measured by performing an NRL drop weight test according to ASTM E208. The NRL drop weight test will be described in detail.

まず、上記板状試験片の厚さ方向に垂直な面であって、厚鋼板の表面側であった面上に、板状試験片の長手方向に平行な方向に延びる溶接ビードを形成する。その際、溶接材料はASTM E208に規定される靱性の低い溶接材料を使用する。溶接ビードの長さは60~70mm、幅は12~16mmの範囲となるよう調整する。そして、溶接ビード上に板状試験片の幅方向に平行な切欠きを形成する。この時、切欠きの幅は1.5mm以下とし、切欠きの溝底と板状試験片との距離が1.8~2.0mmの範囲となるよう調整する。 First, a weld bead extending in a direction parallel to the longitudinal direction of the plate-shaped test piece is formed on the surface perpendicular to the thickness direction of the plate-shaped test piece, which was the surface side of the thick steel plate. At that time, a welding material with low toughness specified in ASTM E208 is used as the welding material. The length of the weld bead is adjusted to 60 to 70 mm and the width to 12 to 16 mm. Then, a notch parallel to the width direction of the plate-shaped test piece is formed on the weld bead. At this time, the width of the notch is 1.5 mm or less, and the distance between the groove bottom of the notch and the plate-shaped test piece is adjusted to be in the range of 1.8 to 2.0 mm.

そして、上記板状試験片の溶接ビードを形成した面を下側に向け、長さ方向の両端部を支持した後、溶接ビードを形成したのと反対側の面に対して、落重による衝撃曲げ荷重を加える。その後、切欠きから発生した脆性き裂が試験片を伝播した状態を調べることで、Break(き裂伝播あり)またはNo Break(き裂伝播なし)を判定する。切欠から発生した脆性き裂が試験片の表面を試験片幅方向に伝播してその端部まで進行した場合、試験結果はBreak(き裂伝播あり)と判定される。幅方向の端部にき裂が達しなかった場合、試験結果はNo Break(き裂伝播なし)と判定される。 Then, the surface of the plate-shaped test piece on which the weld bead is formed faces downward, and after supporting both ends in the length direction, the impact due to the drop weight is applied to the surface opposite to the surface on which the weld bead is formed. Apply bending load. After that, by examining the state in which the brittle crack generated from the notch has propagated through the test piece, Break (with crack propagation) or No Break (with no crack propagation) is determined. If the brittle crack generated from the notch propagates across the surface of the test piece in the width direction and progresses to the end of the test piece, the test result is determined as Break (crack propagation). If the crack did not reach the end in the width direction, the test result is determined as No Break (no crack propagation).

上記の落重試験の結果から無延性遷移温度を特定する方法については、特に制限する必要はない。例えば、2個ずつの板状試験片を用いて、-100℃の条件から開始して、5℃間隔で試験温度を変化させながら(No Breakの場合は5℃低下、Breakの場合は5℃上昇)、2個の板状試験片ともにNo Breakが得られた最も低い試験温度から5℃低い温度を無延性遷移温度とすることができる。 There is no particular limitation on the method for identifying the non-ductile transition temperature from the results of the above drop weight test. For example, using two plate-shaped test pieces, starting from the condition of -100 ° C., while changing the test temperature at intervals of 5 ° C. (5 ° C. drop for No Break, 5 ° C. for Break rise), a temperature 5°C lower than the lowest test temperature at which No Break was obtained for both plate-shaped test pieces can be taken as the non-ductility transition temperature.

4.脆性き裂伝播停止特性判定工程
以上の工程によって得られた無延性遷移温度に基づいて、厚鋼板が脆性き裂伝播停止特性に優れるか否かの判定を行う。具体的な判定方法については特に制限はないが、例えば、接合部材となる厚鋼板の品質評価を行う場合、または被接合部材となる厚鋼板の品質評価を行う場合のそれぞれにおいて、以下のように判定することができる。
4. Step of Determining Brittle Crack Arresting Property Whether or not the steel plate has excellent brittle crack arresting property is judged based on the non-ductile transition temperature obtained by the above steps. There is no particular limitation on the specific determination method, but for example, when evaluating the quality of a thick steel plate that will be a member to be joined, or when evaluating the quality of a thick steel plate that will be a member to be joined, the following are used. can judge.

4-1.接合部材となる厚鋼板の品質評価を行う場合について
き裂が被接合部材から接合部材側に向かって伝播する場合において、き裂が突入する領域の深さは、接合部材および被接合部材の接合箇所の構造に大きく依存する。
4-1. When evaluating the quality of steel plates to be joined members When a crack propagates from the member to be joined to the side of the member to be joined, the depth of the region where the crack penetrates Much depends on the structure of the site.

図4を用いて、接合部材の表層部の構造について詳しく説明する。図4は、溶接構造体10の、表面11aおよび被接合面12aに垂直な断面図である。図4においては、図面が煩雑になることを避けるため、ハッチングは付していない。 The structure of the surface layer portion of the joining member will be described in detail with reference to FIG. FIG. 4 is a cross-sectional view of the welded structure 10 perpendicular to the surface 11a and the surfaces to be joined 12a. In FIG. 4, hatching is not provided in order to avoid complicating the drawing.

図1および図4に示すように、接合部材11および被接合部材12の接合箇所の表面11a側には、溶接金属14aが形成されている。そして、溶接金属14aと接合部材11および被接合部材12との境界部には、熱影響部15aが形成されている。本願明細書において、溶接金属14aと熱影響部15aとを合わせた領域が溶接部13aである。 As shown in FIGS. 1 and 4, a weld metal 14a is formed on the surface 11a side of the joint between the member 11 to be joined and the member 12 to be joined. A heat-affected zone 15a is formed at the boundary between the weld metal 14a, the joining member 11, and the joined member 12. As shown in FIG. In the specification of the present application, the welded portion 13a is a region where the weld metal 14a and the heat affected zone 15a are combined.

ここで、被接合部材12から発生し、接合部材11に伝播するき裂の突入領域は、表面11aから溶接部13aの熱影響部15aの最頂点までの深さに依存する。すなわち、接合部材の表層部における無延性遷移温度を、表面11aから溶接部13aの熱影響部15aの最頂点までの深さに応じて制御することによって、き裂の進展を停止することが可能になる。具体的には、表面11aから溶接部13aの熱影響部15aの最頂点までの深さが大きいほど、き裂が進展しやすくなるため、表層部における無延性遷移温度が低い厚鋼板が要求される。 Here, the penetration area of the crack generated from the member to be joined 12 and propagating to the member to be joined 11 depends on the depth from the surface 11a to the highest peak of the heat affected zone 15a of the welded portion 13a. That is, by controlling the non-ductile transition temperature in the surface layer portion of the joint member according to the depth from the surface 11a to the highest peak of the heat-affected zone 15a of the welded portion 13a, crack propagation can be stopped. become. Specifically, as the depth from the surface 11a to the highest peak of the heat-affected zone 15a of the welded portion 13a increases, the crack propagates more easily. be.

したがって、接合部材となる厚鋼板の品質評価を行う場合においては、NRL落重試験により測定された無延性遷移温度をNDTT(℃)とし、表面11aから溶接部13aの熱影響部15aの最頂点までの接合部材11の板厚方向の距離をh(mm)とした場合に、下記(i)式および(ii)式を満足する場合に、接合部材となる厚鋼板が脆性き裂伝播停止特性に優れると判定することができる。
NDTT≦-60 ・・・(i)
NDTT≦-30.5×ln(h)-14.0 ・・・(ii)
Therefore, when evaluating the quality of thick steel plates to be joined members, the non-ductile transition temperature measured by the NRL drop weight test is NDTT (° C.), and the highest peak of the heat affected zone 15a from the surface 11a to the welded portion 13a. When the distance in the plate thickness direction of the joint member 11 to the joint member 11 is h (mm), and the following formulas (i) and (ii) are satisfied, the thick steel plate to be the joint member has the brittle crack arresting property can be determined to be excellent.
NDTT≦−60 (i)
NDTT≦−30.5×ln(h)−14.0 (ii)

なお、熱影響部15aの最頂点とは、熱影響部15aの板厚方向における先端を意味する。また、図4に示すように、距離hは、表面11aと、表面11aと平行でかつ熱影響部15aの板厚方向における先端を通る仮想的な面11dとの距離である。熱影響部15aの先端位置については、ナイタール腐食により現出させることで容易に判別することが可能である。 The highest vertex of the heat-affected zone 15a means the tip of the heat-affected zone 15a in the plate thickness direction. Further, as shown in FIG. 4, the distance h is the distance between the surface 11a and an imaginary surface 11d parallel to the surface 11a and passing through the tip of the heat affected zone 15a in the plate thickness direction. The tip position of the heat-affected zone 15a can be easily identified by exposing it by nital corrosion.

4-2.被接合部材となる厚鋼板の品質評価を行う場合について
き裂が接合部材から被接合部材側に向かって伝播する場合においては、被接合部材の接合部材側の表層部における脆性き裂伝播停止特性を、接合部材の高さおよび想定される許容応力に応じて向上させることによって、き裂の進展を停止することが可能になる。
4-2. When evaluating the quality of steel plates that are to be welded When a crack propagates from the welded member to the welded member side, the brittle crack propagation arresting characteristics can be improved depending on the height of the joint member and the assumed allowable stress, crack propagation can be stopped.

すなわち、被接合部材の表層部における無延性遷移温度を、接合部材の高さおよび予め設定される接合部材の許容応力に応じて制御することによって、き裂の進展を停止することが可能になる。具体的には、接合部材の高さが高いほど、また、接合部材の許容応力が高いほど、き裂が進展しやすくなるため、表層部における無延性遷移温度を低くする必要がある。 That is, by controlling the non-ductile transition temperature in the surface layer portion of the member to be joined according to the height of the member to be joined and the preset allowable stress of the member to be joined, it is possible to stop the propagation of cracks. . Specifically, the higher the height of the joint member and the higher the allowable stress of the joint member, the easier it is for cracks to propagate.

したがって、被接合部材となる厚鋼板の品質評価を行う場合においては、NRL落重試験により測定された無延性遷移温度をNDTT(℃)とし、接合部材の端面に垂直な方向における長さをH(mm)、予め設定される接合部材の許容応力をσ(N/mm)とした場合に、下記(iii)式を満足する場合に、被接合部材となる厚鋼板が脆性き裂伝播停止特性に優れると判定することができる。
NDTT≦360.4-46.8×ln{σ(πH)0.5} ・・・(iii)
Therefore, when evaluating the quality of a thick steel plate to be joined, the non-ductility transition temperature measured by the NRL drop weight test is NDTT (° C.), and the length in the direction perpendicular to the end surface of the joining member is H. (mm) and the preset allowable stress of the members to be joined is σ (N/mm 2 ). It can be determined that the characteristics are excellent.
NDTT≦360.4−46.8×ln{σ(πH) 0.5 } (iii)

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.

表1に示す板厚を有する各種鋼板を用意した後、それぞれの鋼板について、一方側の面の表層部における無延性遷移温度を調査した。具体的には、表面を1mm削り取った後、試験片の厚さ方向が、上記鋼板の板厚方向と一致するように、ASTM E208に規定されるタイプP3試験片を採取した。そして、当該試験片を用いて、ASTM E208に準拠したNRL落重試験を実施し、無延性遷移温度NDTT(℃)を求めた。 After preparing various steel sheets having the thicknesses shown in Table 1, the non-ductile transition temperature in the surface layer portion of one side surface of each steel sheet was investigated. Specifically, after scraping off the surface by 1 mm, a type P3 test piece specified in ASTM E208 was taken such that the thickness direction of the test piece coincided with the plate thickness direction of the steel plate. Then, using the test piece, an NRL drop weight test conforming to ASTM E208 was performed to determine the non-ductility transition temperature NDTT (°C).

その後、上記の各種鋼板を試験板(接合部材11)とし、図5に示す構造モデルアレスト試験体を作製して試験を実施した。板厚100mmの鋼板をCO溶接により接合した溶接継手を助走溶接継手(被接合部材12)とし、表1に示す条件でCO溶接または被覆アーク溶接(SMAW)により溶接構造体10を作製した。 After that, using the various steel plates described above as test plates (bonding members 11), structural model arrest test pieces shown in FIG. 5 were prepared and tested. A welded joint obtained by joining steel plates with a thickness of 100 mm by CO 2 welding was used as a run-up welded joint (member to be joined 12), and a welded structure 10 was produced by CO 2 welding or covered arc welding (SMAW) under the conditions shown in Table 1. .

その後、溶接構造体10のフュージョンライン部16aにノッチ16bを導入した。そして、溶接構造体10を船舶設計温度である-10℃に冷却し、EH40の設計応力に相当する257MPaの試験応力を負荷し、ノッチ部近傍だけを-50℃程度に急冷し、ノッチ部に楔を介して打撃を加えて脆性き裂を発生、伝播させた。 After that, a notch 16b was introduced into the fusion line portion 16a of the welded structure 10. As shown in FIG. Then, the welded structure 10 is cooled to −10° C., which is the ship design temperature, a test stress of 257 MPa corresponding to the design stress of EH40 is applied, and only the vicinity of the notch portion is rapidly cooled to about −50° C. A brittle crack was initiated and propagated by striking through the wedge.

試験後の構造モデルアレスト試験体を使用し、試験体長手方向の中心位置から左右に250mm離れた位置において、接合部材と被接合部材との一方側の溶接部の断面を切り出した。その後、研磨して、ナイタール腐食を施すことで溶接金属部と溶接熱影響部(溶接時にAc変態点以上に加熱された領域)を現出させた。これらの2カ所の溶接継手断面の写真をデジタルカメラによりそれぞれ撮影し、写真画像から溶接部形状を測定し、2カ所の測定結果の平均値を使用した。 Using the structural model arrest specimen after the test, a cross section of the welded portion on one side of the joining member and the joined member was cut out at a position 250 mm left and right from the center position in the longitudinal direction of the specimen. After that, by polishing and applying nital corrosion, a weld metal zone and a weld heat-affected zone (a region heated to the Ac 1 transformation point or higher during welding) were exposed. Photographs of the cross sections of the welded joints at these two locations were taken with a digital camera, the weld shape was measured from the photograph images, and the average value of the measurement results at the two locations was used.

そして、得られた無延性遷移温度NDTT(℃)と、溶接部の熱影響部の最頂点と上記の表面との接合部材の板厚方向の距離h(mm)に基づいて、接合部材として用いた厚鋼板が脆性き裂伝播停止特性に優れるか否かの判定を行った。 Then, based on the obtained non-ductility transition temperature NDTT (° C.) and the distance h (mm) in the plate thickness direction of the joining member between the highest vertex of the heat affected zone of the weld and the above surface, it can be used as the joining member. It was determined whether or not the thick steel plate with the brittle crack propagation was excellent in brittle crack arrestability.

また、構造モデルアレスト試験体を用いた試験の結果については、脆性き裂が試験板で停止した場合は停止、試験板を破断した場合は伝播と判定した。それらの結果を表1にまとめて示す。 As for the results of the test using the structural model arrest test specimen, it was determined that the brittle crack stopped when it stopped at the test plate, and propagated when the test plate was broken. These results are summarized in Table 1.

Figure 0007119805000001
Figure 0007119805000001

表1から明らかなように、本発明の評価方法によって良好と判定された厚鋼板を接合部材として用いた場合には、脆性き裂が試験板で停止したのに対して、不良と判定された厚鋼板を用いた場合には、脆性き裂が接合部材まで伝播する結果となった。 As is clear from Table 1, when a thick steel plate judged to be good by the evaluation method of the present invention was used as a joining member, the brittle crack was stopped in the test plate, whereas it was judged to be bad. When a thick steel plate was used, the brittle crack propagated to the joint member.

表2に示す板厚を有する各種鋼板を用意した後、それぞれの鋼板について、一方側の面(被接合面)の表層部における無延性遷移温度を調査した。具体的には、被接合面を1mm削り取った後、試験片の厚さ方向が、上記鋼板の板厚方向と一致するように、ASTM E208に規定されるタイプP3試験片を採取した。そして、当該試験片を用いて、ASTM E208に準拠したNRL落重試験を実施し、無延性遷移温度NDTT(℃)を求めた。 After preparing various steel sheets having the thicknesses shown in Table 2, the non-ductile transition temperature in the surface layer portion of one side surface (surface to be joined) of each steel sheet was investigated. Specifically, after scraping off the surface to be joined by 1 mm, a type P3 test piece specified in ASTM E208 was taken so that the thickness direction of the test piece coincided with the plate thickness direction of the steel plate. Then, using the test piece, an NRL drop weight test conforming to ASTM E208 was performed to determine the non-ductility transition temperature NDTT (°C).

その後、上記の各種鋼板を試験板(被接合部材12)とし、図6に示す構造モデルアレスト試験体を作製して試験を実施した。表2に示す高さH(mm)を有し、板厚100mmの鋼板をCO溶接により接合した溶接継手を助走溶接継手(接合部材11)とし、表2に示す条件でCO溶接または被覆アーク溶接(SMAW)により溶接構造体10を作製した。その際、接合部材11に板厚の1/3の深さの両側開先を設け、接合部材11と被接合部材12とを開先溶接により接合した。 After that, using the various steel plates described above as test plates (members 12 to be joined), a structural model arrest test piece shown in FIG. 6 was produced and tested. A welded joint obtained by joining a steel plate having a height H (mm) and a thickness of 100 mm shown in Table 2 by CO2 welding is used as a run-up welded joint (joining member 11), and CO2 welding or coating is performed under the conditions shown in Table 2. A welded structure 10 was produced by arc welding (SMAW). At that time, the joining member 11 was provided with grooves on both sides having a depth of ⅓ of the plate thickness, and the joining member 11 and the member to be joined 12 were joined by groove welding.

その後、溶接構造体10のフュージョンライン部16aにノッチ16bを導入した。そして、溶接構造体10を船舶設計温度である-10℃に冷却し、表2に示す接合部材11の許容応力σに相当する試験応力を負荷し、ノッチ部近傍だけを-50℃程度に急冷し、ノッチ部に楔を介して打撃を加えて脆性き裂を発生、伝播させた。 After that, a notch 16b was introduced into the fusion line portion 16a of the welded structure 10. As shown in FIG. Then, the welded structure 10 is cooled to −10° C., which is the ship design temperature, a test stress corresponding to the allowable stress σ of the joint member 11 shown in Table 2 is applied, and only the vicinity of the notch portion is rapidly cooled to about −50° C. Then, the notch portion was hit through a wedge to generate and propagate a brittle crack.

そして、得られた無延性遷移温度NDTT(℃)と、接合部材の高さH(mm)および許容応力σに基づいて、被接合部材として用いた厚鋼板が脆性き裂伝播停止特性に優れるか否かの判定を行った。 Then, based on the obtained non-ductility transition temperature NDTT (° C.), the height H (mm) of the joining member, and the allowable stress σ, whether the steel plate used as the member to be joined has excellent brittle crack arrestability made a decision as to whether or not

また、構造モデルアレスト試験体を用いた試験の結果については、脆性き裂が試験板で停止した場合は停止、試験板を破断した場合は伝播と判定した。それらの結果を表2にまとめて示す。 As for the results of the test using the structural model arrest test specimen, it was determined that the brittle crack stopped when it stopped at the test plate, and propagated when the test plate was broken. These results are summarized in Table 2.

Figure 0007119805000002
Figure 0007119805000002

表2から明らかなように、本発明の評価方法によって良好と判定された厚鋼板を被接合部材として用いた場合には、脆性き裂が試験板で停止したのに対して、不良と判定された厚鋼板を用いた場合には、脆性き裂が被接合部材まで伝播する結果となった。 As is clear from Table 2, when the steel plate judged to be good by the evaluation method of the present invention was used as the member to be joined, the brittle crack was stopped in the test plate, whereas it was judged to be defective. When a thick steel plate was used, the brittle crack propagated to the joined members.

以上のように、本発明によれば、脆性き裂伝播停止特性に優れた溶接構造体を得るために必要な厚鋼板の品質を、高精度かつ簡便に評価することが可能である。 As described above, according to the present invention, it is possible to accurately and simply evaluate the quality of steel plates necessary for obtaining a welded structure having excellent brittle crack arrestability.

10 溶接構造体
11 接合部材
11a,11b 表面
11c 端面
11d 仮想的な面
12 被接合部材
12a 被接合面
13a,13b 溶接部
14a,14b 溶接金属
15a,15b 熱影響部
16a フュージョンライン部
16b ノッチ
REFERENCE SIGNS LIST 10 Welded structure 11 Joining member 11a, 11b Surface 11c End face 11d Imaginary face 12 Joined member 12a Joined surface 13a, 13b Welding part 14a, 14b Weld metal 15a, 15b Heat affected zone 16a Fusion line part 16b Notch

Claims (2)

板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に両側部分溶込み溶接されたT継手部を有する溶接構造体において、
前記接合部材となる板厚50mm以上の厚鋼板の品質評価方法であって、
前記厚鋼板から、厚さ方向が前記厚鋼板の板厚方向と一致し、かつ前記厚鋼板の板厚方向と直交する一表面から5mm深さまでの領域の一部を含むように板状試験片を採取
前記板状試験片を用いて、NRL落重試験による無延性遷移温度を測定し、
NRL落重試験により測定された前記無延性遷移温度をNDTT(℃)とし、前記両側部分溶込み溶接によって前記一表面側に形成される溶接部の熱影響部の最頂点と前記一表面との前記接合部材の板厚方向の距離をh(mm)とした場合に、
下記(i)式および(ii)式を満足する場合に、前記接合部材となる前記厚鋼板が脆性き裂伝播停止特性に優れると判定する、
鋼板の品質評価方法。
NDTT≦-60 ・・・(i)
NDTT≦-30.5×ln(h)-14.0 ・・・(ii)
In a welded structure having a T-joint portion in which the plate-like joining member is partially penetration-welded on both sides to the plate-like member to be joined in a state in which the end surface of the plate-like joining member is in contact with the joining surface of the plate-like member to be joined ,
A quality evaluation method for a thick steel plate having a thickness of 50 mm or more to be the joining member,
From the thick steel plate, the plate-shaped test piece so that the thickness direction matches the thickness direction of the thick steel plate and includes a part of the region from one surface perpendicular to the thickness direction of the thick steel plate to a depth of 5 mm and _
Using the plate-shaped test piece, measure the non-ductile transition temperature by NRL drop weight test,
The non-ductile transition temperature measured by the NRL drop weight test is NDTT (° C.), and the maximum peak of the heat affected zone of the weld formed on the one surface side by the double-sided partial penetration welding and the one surface When the distance in the plate thickness direction of the joint member is h (mm),
When the following formulas (i) and (ii) are satisfied, it is determined that the thick steel plate to be the joining member is excellent in brittle crack arrestability.
A quality evaluation method for thick steel plates.
NDTT≦−60 (i)
NDTT≦−30.5×ln(h)−14.0 (ii)
板状の接合部材の端面が板状の被接合部材の被接合面に当接した状態で、前記接合部材が前記被接合部材に両側部分溶込み溶接されたT継手部を有する溶接構造体において、
前記被接合部材となる板厚50mm以上の前記厚鋼板の品質評価方法であって、
前記厚鋼板から、厚さ方向が前記厚鋼板の板厚方向と一致し、かつ前記厚鋼板の前記被接合面に対応する一表面から5mm深さまでの領域の一部を含むように板状試験片を採取
前記板状試験片を用いて、NRL落重試験による無延性遷移温度を測定し、
NRL落重試験により測定された前記無延性遷移温度をNDTT(℃)とし、前記接合部材の前記端面に垂直な方向における長さをH(mm)、予め設定される前記接合部材の許容応力をσ(N/mm)とした場合に、
下記(iii)式を満足する場合に、前記被接合部材となる前記厚鋼板が脆性き裂伝播停止特性に優れると判定する、
鋼板の品質評価方法。
NDTT≦360.4-46.8×ln{σ(πH)0.5} ・・・(iii)
In a welded structure having a T-joint portion in which the plate-like joining member is partially penetration-welded on both sides to the plate-like member to be joined in a state in which the end surface of the plate-like joining member is in contact with the joining surface of the plate-like member to be joined ,
A quality evaluation method for the thick steel plate having a thickness of 50 mm or more to be the member to be joined,
From the thick steel plate, the plate shape test so that the thickness direction matches the thickness direction of the thick steel plate and includes a part of the region from one surface corresponding to the joined surface of the thick steel plate to a depth of 5 mm take a piece and
Using the plate-shaped test piece, measure the non-ductile transition temperature by NRL drop weight test,
The non-ductile transition temperature measured by the NRL drop weight test is NDTT (° C.), the length of the joint member in the direction perpendicular to the end face is H (mm), and the preset allowable stress of the joint member is When σ (N/mm 2 ),
When the following formula (iii) is satisfied, it is determined that the thick steel plate to be the member to be joined is excellent in brittle crack arrestability.
A quality evaluation method for thick steel plates.
NDTT≦360.4−46.8×ln{σ(πH) 0.5 } (iii)
JP2018171217A 2018-09-13 2018-09-13 Thick steel plate quality evaluation method Active JP7119805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018171217A JP7119805B2 (en) 2018-09-13 2018-09-13 Thick steel plate quality evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171217A JP7119805B2 (en) 2018-09-13 2018-09-13 Thick steel plate quality evaluation method

Publications (2)

Publication Number Publication Date
JP2020041966A JP2020041966A (en) 2020-03-19
JP7119805B2 true JP7119805B2 (en) 2022-08-17

Family

ID=69798094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171217A Active JP7119805B2 (en) 2018-09-13 2018-09-13 Thick steel plate quality evaluation method

Country Status (1)

Country Link
JP (1) JP7119805B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112577820A (en) * 2020-11-24 2021-03-30 江苏科技大学 Tensile test method for T-shaped welding joint
KR20230162021A (en) * 2021-07-26 2023-11-28 닛폰세이테츠 가부시키가이샤 Welded structures, and their design and construction methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212992A (en) 2007-03-05 2008-09-18 Kobe Steel Ltd T-welded joint structure having excellent fragility fracture resistance crack propagation stopping characteristics
JP2009063320A (en) 2007-09-04 2009-03-26 Nippon Steel Corp Judge method of brittle crack propagation stopping characteristics of thick steel plate
JP2010230666A (en) 2009-03-04 2010-10-14 Nippon Steel Corp Method for determining brittle crack propagation inhibiting performance of high-strength steel plate
JP2012052873A (en) 2010-08-31 2012-03-15 Jfe Steel Corp Method for managing quality of thick steel plate for crack arrestor
JP2015135324A (en) 2013-12-20 2015-07-27 新日鐵住金株式会社 Determination method of brittle crack arrest property of high strength thick steel plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543273B1 (en) * 1999-08-17 2003-04-08 The United States Of America As Represented By The Secretary Of The Navy Efficient use of metallic materials for dynamic tear testing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212992A (en) 2007-03-05 2008-09-18 Kobe Steel Ltd T-welded joint structure having excellent fragility fracture resistance crack propagation stopping characteristics
JP2009063320A (en) 2007-09-04 2009-03-26 Nippon Steel Corp Judge method of brittle crack propagation stopping characteristics of thick steel plate
JP2010230666A (en) 2009-03-04 2010-10-14 Nippon Steel Corp Method for determining brittle crack propagation inhibiting performance of high-strength steel plate
JP2012052873A (en) 2010-08-31 2012-03-15 Jfe Steel Corp Method for managing quality of thick steel plate for crack arrestor
JP2015135324A (en) 2013-12-20 2015-07-27 新日鐵住金株式会社 Determination method of brittle crack arrest property of high strength thick steel plate

Also Published As

Publication number Publication date
JP2020041966A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
CN101402159B (en) Device and method for testing weldability for rolled steel for vessel
Alam et al. The influence of surface geometry and topography on the fatigue cracking behaviour of laser hybrid welded eccentric fillet joints
Zeinoddini et al. Repair welding influence on offshore pipelines residual stress fields: An experimental study
JP7119805B2 (en) Thick steel plate quality evaluation method
JP6562189B1 (en) Welded structure
JP4761746B2 (en) Evaluation method of brittle fracture resistance of large heat input butt welded joints for ship hulls
JP7288197B2 (en) Welded structure
JP7288196B2 (en) Welded structure
An et al. Brittle crack arrestability of thick steel plate welds in large structure
JP6562190B1 (en) Welded structure
WO2019220681A1 (en) Welded structure
JP7299554B1 (en) Welded structures and their design and construction methods
Barsoum et al. Fatigue assessment of cruciform joints welded with different methods
Unt et al. Effects of sealing run welding with defocused laser beam on the quality of T-joint fillet weld
JP5197496B2 (en) Quality control method for brittle crack propagation stopping performance of T-shaped full penetration welded structure
Toyoda et al. Safety of mega container ship focusing on brittle crack initiation and arrest behavior of heavy thickness plate
JP2009180646A (en) Evaluating method of partial penetration welding in fatigue-resistant steel
KR102047284B1 (en) Method for quantifiable test of tenacity of welded part of steel plate having taper and welding structure for quantifiable test of steel plate having taper
Ye et al. Fatigue and static behaviour of aluminium box-stiffener lap joints
Myllymaki Failure of Ship Hull Plate Attributed to Lamellar Tearing
Leng et al. Analysis of the relationship between CTOD toughness and micromechanism of marine steel weld joints
Metrovich et al. Fatigue strength of stainless steel weldments
Sumi et al. Overview of Japanese joint research project on safety-related issue of extremely thick steel plate applied to large container ships
Kober et al. The effect of welding discontinuities on the variability of fatigue life
Kahl et al. Yield Strength and Thickness Effect on Fatigue Strength of Thermal Cut Plate Edges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R151 Written notification of patent or utility model registration

Ref document number: 7119805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151