JP7117968B2 - A method for producing a hydroxy acid. - Google Patents

A method for producing a hydroxy acid. Download PDF

Info

Publication number
JP7117968B2
JP7117968B2 JP2018193205A JP2018193205A JP7117968B2 JP 7117968 B2 JP7117968 B2 JP 7117968B2 JP 2018193205 A JP2018193205 A JP 2018193205A JP 2018193205 A JP2018193205 A JP 2018193205A JP 7117968 B2 JP7117968 B2 JP 7117968B2
Authority
JP
Japan
Prior art keywords
producing
acid
reaction
zeolite
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018193205A
Other languages
Japanese (ja)
Other versions
JP2020059682A (en
Inventor
祐樹 辻
鉄平 浦山
隆介 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2018193205A priority Critical patent/JP7117968B2/en
Publication of JP2020059682A publication Critical patent/JP2020059682A/en
Application granted granted Critical
Publication of JP7117968B2 publication Critical patent/JP7117968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明はヒドロキシ酸の製造方法に関する。 The present invention relates to a method for producing hydroxyacids.

ヒドロキシ酸は医薬品、樹脂原料、繊維原料、有機合成中間体として有用な化合物であり、ケトンの過酸化反応により合成されるラクトンの加水分解により製造される。この時、ケトンからラクトンを製造する方法としてBaeyer-Villiger反応(以下「BV反応」と記す)が知られている(例えば、非特許文献1)。 Hydroxy acids are compounds useful as pharmaceuticals, raw materials for resins, raw materials for fibers, and intermediates for organic synthesis, and are produced by hydrolysis of lactones synthesized by peroxidation of ketones. At this time, the Baeyer-Villiger reaction (hereinafter referred to as "BV reaction") is known as a method for producing lactone from ketone (eg, Non-Patent Document 1).

一般的に、BV反応には酸化剤として有機過酸、例えば、過ギ酸、過酢酸、過安息香酸が使用される。例えば、特許文献1では過酢酸溶液とカルボニル化合物とを反応させ対応したラクトンを製造する方法が示され、さらに実施例ではシクロヘキサノンを原料としたカプロラクトンの合成法が開示されている。また、非特許文献1では過ギ酸をカルボニル化合物と直接反応させ、対応するラクトンを製造する方法が示されている。 Generally, organic peracids such as performic acid, peracetic acid, perbenzoic acid are used as oxidizing agents in the BV reaction. For example, Patent Document 1 discloses a method for producing a corresponding lactone by reacting a peracetic acid solution with a carbonyl compound, and further discloses a method for synthesizing caprolactone using cyclohexanone as a raw material in Examples. In addition, Non-Patent Document 1 discloses a method for producing the corresponding lactone by directly reacting performic acid with a carbonyl compound.

特許文献1及び非特許文献1に示されるように、BV反応で従来より酸化剤として使用される有機過酸は温度、衝撃に敏感で濃縮状態では爆発の危険があるため、工業スケールでの使用は好ましくない。さらに、反応後に、量論量の有機酸が副生するため、反応器を侵しやすく、分離にも困難を伴う。一方、過酸化水素を酸化剤として用いるBV反応は、副生物が酸化物由来の水のみであり、環境調和性が高く、工業的に好ましい。過酸化水素を用いた過酸化反応によりラクトンやヒドロキシ酸を製造する方法は、例えば、特許文献3及び4に開示されている。 As shown in Patent Document 1 and Non-Patent Document 1, organic peracids conventionally used as oxidizing agents in BV reactions are sensitive to temperature and shock, and have the danger of explosion in a concentrated state. is not preferred. Furthermore, after the reaction, a stoichiometric amount of organic acid is by-produced, which tends to attack the reactor and is difficult to separate. On the other hand, the BV reaction using hydrogen peroxide as an oxidizing agent produces only water derived from the oxide as a by-product, and is highly environmentally friendly, which is industrially preferable. Methods for producing lactones and hydroxy acids by peroxidation using hydrogen peroxide are disclosed in Patent Documents 3 and 4, for example.

特開2004-143047号公報JP-A-2004-143047 特開2008-94768号公報JP-A-2008-94768 特開2013-209305号公報JP 2013-209305 A 中国特許出願公開第103373914号明細書Chinese Patent Application Publication No. 103373914

Green Chem., 2013,15,3332-3336Green Chem. , 2013, 15, 3332-3336

特許文献3ではSn含有触媒存在下、アセトニトリル、酢酸等を溶媒とし、過酸化水素とカルボニル化合物とを反応させ、対応するラクトン及びヒドロキシ酸を製造する方法が示され、さらに実施例ではシクロヘキサノンを原料としたカプロラクトン及び、その加水分解生成物であるヒドロキシカプロン酸の合成法が開示されている。特許文献4ではSnを含む脱Al-betaゼオライト触媒存在下、水、有機酸、エタノールを溶媒として過酸化水素とカルボニル化合物とを反応させ、対応するヒドロキシ酸を製造する方法が示されている。実施例では、有機溶媒存在下においてヒドロキシカプロン酸が高収率で得られることを開示しているが、水を溶媒とした場合にはヒドロキシカプロン酸の収率は4.5%に留まる。 Patent Document 3 discloses a method for producing the corresponding lactone and hydroxy acid by reacting hydrogen peroxide with a carbonyl compound in the presence of a Sn-containing catalyst, using acetonitrile, acetic acid, etc. as a solvent. and its hydrolysis product, hydroxycaproic acid, are disclosed. Patent Document 4 discloses a method for producing a corresponding hydroxy acid by reacting hydrogen peroxide with a carbonyl compound using water, an organic acid, and ethanol as solvents in the presence of a dealuiding-beta zeolite catalyst containing Sn. Although the examples disclose that hydroxycaproic acid can be obtained in high yield in the presence of an organic solvent, the yield of hydroxycaproic acid is only 4.5% when water is used as the solvent.

これらの既報のようにBV反応は有機溶媒存在下で効率的に促進されるが、酸化条件では溶媒自身が反応することで、過酸化水素が消費されるだけでなく、予期せぬ化合物が副生するリスクをはらむ。特に、酢酸溶媒では酢酸と過酸化水素とが反応することで生成する過酸量を制御することが難しく、上述した過酸によるBV反応のように工業規模での応用は困難となる。また、有機溶媒ではなく、水を溶媒とした場合、収率よくヒドロキシ酸を得ることは困難である。 As in these previous reports, the BV reaction is efficiently promoted in the presence of an organic solvent. take the risk of creating In particular, it is difficult to control the amount of peracid produced by the reaction of acetic acid and hydrogen peroxide in the acetic acid solvent, making it difficult to apply on an industrial scale like the above-described BV reaction using peracid. Moreover, when water is used as a solvent instead of an organic solvent, it is difficult to obtain a hydroxy acid in good yield.

そこで、本発明では、水を溶媒として使用した場合でも収率よくヒドロキシ酸を製造する方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a hydroxy acid with good yield even when water is used as a solvent.

本発明者らは、本発明の課題を達成するために鋭意検討を行った結果、過酸化水素と環状ケトンとの反応において、ゼオライト触媒の存在下、反応系中に触媒量の有機酸を添加すると水を溶媒とした場合でも過酸化反応が促進されることを見出した。さらに、当該触媒系を用いて環状ケトンの過酸化反応を行い、収率よくヒドロキシ酸を得られるという知見に基づいて本発明をなすに至った。 The present inventors have conducted intensive studies in order to achieve the object of the present invention. As a result, they found that the peroxidation reaction was promoted even when water was used as a solvent. Furthermore, the inventors have completed the present invention based on the finding that a hydroxy acid can be obtained in good yield by peroxidizing a cyclic ketone using the catalyst system.

即ち、本発明は以下の通りである。
[1]ゼオライト触媒及び触媒量の有機酸存在下、水を溶媒として過酸化水素と環状ケトンとを反応させる工程を含む、ヒドロキシ酸の製造方法。
[2]前記反応の生成物がラクトンを含む、[1]に記載のヒドロキシ酸の製造方法。
[3]前記有機酸がカルボン酸である、[1]又は[2]に記載のヒドロキシ酸の製造方法。
[4]前記有機酸が酢酸である、[1]~[3]のいずれかに記載のヒドロキシ酸の製造方法。
[5]前記有機酸の量が前記環状ケトンに対してモル基準で0.01当量以上0.5当量以下である、[1]~[4]のいずれかに記載のヒドロキシ酸の製造方法。
[6]前記溶媒の量が前記環状ケトンに対してモル基準で60当量以下である、[1]~[5]のいずれかに記載のヒドロキシ酸の製造方法。
[7]前記ゼオライト触媒が大孔径ゼオライトを含有する触媒である、[1]~[6]のいずれかに記載のヒドロキシ酸の製造方法。
[8]前記大孔径ゼオライトがbetaゼオライトである、[7]に記載のヒドロキシ酸の製造方法。
[9]前記環状ケトンがシクロヘキサノンである、[1]~[8]のいずれかに記載のヒドロキシ酸の製造方法。
That is, the present invention is as follows.
[1] A method for producing a hydroxy acid, which comprises reacting hydrogen peroxide with a cyclic ketone using water as a solvent in the presence of a zeolite catalyst and a catalytic amount of an organic acid.
[2] The method for producing a hydroxy acid according to [1], wherein the reaction product contains a lactone.
[3] The method for producing a hydroxy acid according to [1] or [2], wherein the organic acid is a carboxylic acid.
[4] The method for producing a hydroxy acid according to any one of [1] to [3], wherein the organic acid is acetic acid.
[5] The method for producing a hydroxy acid according to any one of [1] to [4], wherein the amount of the organic acid is 0.01 equivalent or more and 0.5 equivalent or less on a molar basis with respect to the cyclic ketone.
[6] The method for producing a hydroxy acid according to any one of [1] to [5], wherein the amount of the solvent is 60 equivalents or less on a molar basis with respect to the cyclic ketone.
[7] The method for producing a hydroxy acid according to any one of [1] to [6], wherein the zeolite catalyst contains zeolite with a large pore size.
[8] The method for producing a hydroxy acid according to [7], wherein the large pore size zeolite is beta zeolite.
[9] The method for producing a hydroxy acid according to any one of [1] to [8], wherein the cyclic ketone is cyclohexanone.

本発明の製造方法によれば、過酸化水素を酸化剤、水を溶媒とした環境調和な反応系により、収率よくヒドロキシ酸を製造することができる。また、過酸の最大生成量を初期添加する有機酸の量で制御することにより、安全かつ高い収率で目的物を得ることができる。 INDUSTRIAL APPLICABILITY According to the production method of the present invention, a hydroxy acid can be produced in good yield in an environmentally friendly reaction system using hydrogen peroxide as an oxidizing agent and water as a solvent. Also, by controlling the maximum amount of peracid produced by the amount of the organic acid initially added, the desired product can be obtained safely and in high yield.

本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。本発明は以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 A mode for carrying out the present invention (hereinafter simply referred to as "this embodiment") will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.

本実施形態のヒドロキシ酸の製造方法は、ゼオライト触媒及び触媒量の有機酸存在下、水を溶媒として過酸化水素と環状ケトンとを反応させる工程を含む。 The method for producing a hydroxy acid of the present embodiment includes a step of reacting hydrogen peroxide and a cyclic ketone using water as a solvent in the presence of a zeolite catalyst and a catalytic amount of an organic acid.

[1]触媒
本実施形態のヒドロキシ酸の製造方法においては、ゼオライト触媒を用いる。ゼオライト触媒は、BV反応において反応液に溶解しない不均一系触媒として機能する。本実施形態において、ゼオライトとは、結晶性多孔質アルミノケイ酸塩、又はメタロケイ酸塩のことであり、それらと同様又は類似の構造を有するリン酸塩系多孔質結晶も含まれる。ゼオライトは、大孔径ゼオライトが好ましく、触媒活性の点からbetaゼオライトがさらに好ましい。ここで、大孔径ゼオライトとは、12員環以上の細孔を有するゼオライトである。
[1] Catalyst A zeolite catalyst is used in the method for producing a hydroxy acid of the present embodiment. The zeolite catalyst functions as a heterogeneous catalyst that does not dissolve in the reaction solution in the BV reaction. In the present embodiment, zeolite refers to crystalline porous aluminosilicate or metallosilicate, and includes phosphate-based porous crystals having the same or similar structure. The zeolite is preferably large pore size zeolite, more preferably beta zeolite from the viewpoint of catalytic activity. Here, the large-pore zeolite is a zeolite having pores with 12-membered rings or more.

ゼオライト触媒の使用量としては、反応速度と反応後の触媒分離との点から、例えば、環状ケトン1グラムに対して、好ましくは0.01グラム~1.0グラム、より好ましくは0.05グラム~0.8グラム、さらに好ましくは0.1グラム~0.5グラムである。 The amount of the zeolite catalyst used is preferably 0.01 g to 1.0 g, more preferably 0.05 g, per 1 g of the cyclic ketone, from the viewpoint of reaction rate and catalyst separation after the reaction. ~0.8 grams, more preferably 0.1 grams to 0.5 grams.

[2]有機酸
本実施形態のヒドロキシ酸の製造方法においては、有機酸を用いる。有機酸とは炭化水素骨格中にプロトンを解離することができる能力を持つ置換基を有する化合物であり、特に限定しないが、無機酸に比べて反応器を侵しにくい下記式(1)に示すカルボン酸が好ましく、その中でも酢酸が好適である。

Figure 0007117968000001
(式(1)中、R1はH、又は炭素数20以下の炭化水素基を示す。) [2] Organic acid In the method for producing a hydroxy acid of the present embodiment, an organic acid is used. The organic acid is a compound having a substituent capable of dissociating protons in the hydrocarbon skeleton, and is not particularly limited. Acids are preferred, of which acetic acid is preferred.
Figure 0007117968000001
(In Formula (1), R 1 represents H or a hydrocarbon group having 20 or less carbon atoms.)

本実施形態のヒドロキシ酸の製造方法においては、有機酸は触媒量のみ添加する。触媒量とは、収率と反応後の生成物単離との点から、環状ケトンに対して、モル基準で、例えば0.01当量以上0.5当量以下であることが好ましく、0.01当量以上0.4当量以下であることがより好ましく、0.01当量以上0.1当量以下であることがさらに好ましく、0.01当量以上0.05当量以下であることが特に好ましい。有機酸を触媒量で用いると、当量生成する有機過酸の量を制御でき、反応が暴走することを抑制でき安全性が向上する。 In the method for producing a hydroxy acid of this embodiment, only a catalytic amount of the organic acid is added. The amount of the catalyst is preferably 0.01 equivalent or more and 0.5 equivalent or less on a molar basis with respect to the cyclic ketone from the viewpoint of yield and product isolation after the reaction, and 0.01 It is more preferably 0.4 equivalents or more, further preferably 0.01 equivalents or more and 0.1 equivalents or less, and particularly preferably 0.01 equivalents or more and 0.05 equivalents or less. When the organic acid is used in a catalytic amount, it is possible to control the amount of the organic peracid to be produced in the equivalent amount, suppress the runaway reaction, and improve the safety.

[3]原料
本実施形態のヒドロキシ酸の製造方法においては、環状ケトンを原料として使用する。環状ケトンとしては、特に限定されないが、例えば、下記式(2)に示す化合物が挙げられる。環状ケトンの具体例としては、特に限定されないが、例えば、シクロペンタノン、シクロヘキサノン、シクロへプタノン、シクロオクタノンが挙げられる。反応性の点から、環状ケトンはシクロヘキサノンが好ましい。

Figure 0007117968000002
(式(2)中、R2、R3は炭素数20以下の炭化水素基を示す。) [3] Raw Material In the method for producing a hydroxy acid of the present embodiment, a cyclic ketone is used as a raw material. Examples of the cyclic ketone include, but are not particularly limited to, compounds represented by the following formula (2). Specific examples of cyclic ketones include, but are not particularly limited to, cyclopentanone, cyclohexanone, cycloheptanone, and cyclooctanone. The cyclic ketone is preferably cyclohexanone from the viewpoint of reactivity.
Figure 0007117968000002
(In Formula (2), R 2 and R 3 represent hydrocarbon groups having 20 or less carbon atoms.)

本実施形態のヒドロキシ酸の製造方法において、過酸化反応に用いる過酸として、過酸化水素を使用することができる。過酸化水素の濃度は0質量%を超え100質量%以下の範囲で任意に使用することができる。 In the method for producing a hydroxy acid of the present embodiment, hydrogen peroxide can be used as the peracid used for the peroxidation reaction. The concentration of hydrogen peroxide can be arbitrarily used within a range of more than 0% by mass and 100% by mass or less.

[4]溶媒
本実施形態のヒドロキシ酸の製造方法において、前記工程は過酸化反応に対する反応性が低い水を溶媒として行う。前記工程における溶媒は、炭化水素系溶媒(例えば、トルエン、ベンゼン、キシレン、ペンタン、ヘキサン)、エーテル系溶媒(例えば、テトラヒドロフラン、ジオキサン)、アルコール系溶媒(例えば、エチレングリコール、エタノール、メタノール、t-ブタノール)、エステル系溶媒(例えば、ギ酸エチル、酢酸エチル)を含んでいてもよい。前記工程における溶媒の量は、環状ケトンに対しモル基準で60当量以下、好ましくは50当量以下、特に好ましくは40当量以下が好ましい。当該溶媒の量の下限は、特に限定されないが、例えば、環状ケトンに対してモル基準で0.1当量以上である。
[4] Solvent In the method for producing a hydroxy acid of the present embodiment, the above steps are performed using water, which has low reactivity to peroxidation, as a solvent. Solvents in the above step include hydrocarbon solvents (e.g., toluene, benzene, xylene, pentane, hexane), ether solvents (e.g., tetrahydrofuran, dioxane), alcohol solvents (e.g., ethylene glycol, ethanol, methanol, t- butanol), ester solvents (eg, ethyl formate, ethyl acetate). The amount of the solvent in the above step is preferably 60 equivalents or less, preferably 50 equivalents or less, particularly preferably 40 equivalents or less on a molar basis relative to the cyclic ketone. The lower limit of the amount of the solvent is not particularly limited, but is, for example, 0.1 equivalent or more on a molar basis with respect to the cyclic ketone.

[5]反応条件
前記工程において、反応温度としては、好ましくは30℃~250℃、より好ましくは30℃~180℃、さらに好ましくは60℃~100℃程度である。
上記反応は、例えば、回分式、半回分式、連続式等の慣用の方法により行うことができる。
[5] Reaction conditions In the above step, the reaction temperature is preferably about 30°C to 250°C, more preferably 30°C to 180°C, even more preferably about 60°C to 100°C.
The above reaction can be carried out, for example, by a conventional method such as a batch system, a semi-batch system, or a continuous system.

[6]反応生成物
前記工程において、反応の生成物は、ラクトンを含んでいてもよい。
反応の生成物としては、例えば、下記一般式(3)に示されるヒドロキシ酸、下記一般式(4)に示されるラクトンが挙げられる。反応の生成物は、例えば、濃縮、蒸留、抽出、晶析、再結晶等の分離手段や、これらを組み合わせた分離手段により分離精製できる。

Figure 0007117968000003
(式(3)中、R4は炭素数20以下の炭化水素基を示す。)
Figure 0007117968000004
(式(4)中、R5は炭素数20以下の炭化水素基を示す。) [6] Reaction product In the above step, the reaction product may contain a lactone.
Examples of reaction products include hydroxy acids represented by the following general formula (3) and lactones represented by the following general formula (4). The product of the reaction can be separated and purified by, for example, separation means such as concentration, distillation, extraction, crystallization, and recrystallization, or a separation means combining these.
Figure 0007117968000003
(In formula (3), R 4 represents a hydrocarbon group having 20 or less carbon atoms.)
Figure 0007117968000004
(In formula (4), R 5 represents a hydrocarbon group having 20 or less carbon atoms.)

以下に実施例を示して、本発明をより詳細に説明するが、本発明は以下に記載の実施例によって制限されるものではない。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the examples described below.

[実施例1]
ガラス製容器にスターラーチップ、シクロヘキサノン0.982g(10mmol)に、ベータ(beta)ゼオライト0.1g、30質量%過酸化水素1.36g(12mmol)、酢酸0.006g(0.1mmol)、水6gを加え、70℃にて1時間攪拌した。その後、反応液を室温まで冷却し、不溶物をろ過にて取り除いた。次いで、得られたろ液にアセトニトリルとt-ブチルアルコールとを加え、液相を一相にした後に高速液体クロマトグラフィー(HPLC)を用いて分析したところ、6-ヒドロキシカプロン酸の収率は85.4%、カプロラクトンの収率は8.3%であった。反応中に生成し得る過酸の最大量は加えた酢酸の量に依存し、本実施例では0.71質量%以下であった。これは過酢酸が伝爆性を示す下限濃度である21質量%を大きく下回る。また、反応時に爆発、急激な発熱等の危険な現象は観測されなかった。尚、6-ヒドロキシカプロン酸、カプロラクトンの収率は液体クロマトグラフィーを使用して内部標準法で測定した。分析条件を以下に示す。
(分析条件)
装置:島津LC-20AD
カラム:ODS-80Ts
条件:
・溶離液:アセトニトリル/0.01Mリン酸水溶液=20/80(v/v)
・検出器:UV (使用波長:190nm)
・カラム温度:40℃
・流量:1mL/分
内標:t-ブチルアルコール
[Example 1]
Stirrer tip in a glass container, 0.982 g (10 mmol) of cyclohexanone, 0.1 g of beta zeolite, 1.36 g (12 mmol) of 30 mass% hydrogen peroxide, 0.006 g (0.1 mmol) of acetic acid, 6 g of water was added and stirred at 70° C. for 1 hour. After that, the reaction solution was cooled to room temperature, and insoluble matter was removed by filtration. Next, acetonitrile and t-butyl alcohol were added to the obtained filtrate to convert the liquid phase into one phase, and then analyzed by high performance liquid chromatography (HPLC). The yield of 6-hydroxycaproic acid was 85.5. 4% and the yield of caprolactone was 8.3%. The maximum amount of peracid that can be produced during the reaction depends on the amount of acetic acid added, and was 0.71% by mass or less in this example. This is far below 21% by mass, which is the lower limit concentration at which peracetic acid exhibits explosive properties. Also, no dangerous phenomena such as explosion or rapid heat generation were observed during the reaction. The yields of 6-hydroxycaproic acid and caprolactone were measured by internal standard method using liquid chromatography. Analysis conditions are shown below.
(Analysis conditions)
Apparatus: Shimadzu LC-20AD
Column: ODS-80Ts
conditions:
- Eluent: acetonitrile/0.01M aqueous solution of phosphoric acid = 20/80 (v/v)
・ Detector: UV (use wavelength: 190 nm)
・Column temperature: 40°C
・Flow rate: 1 mL/min Internal standard: t-butyl alcohol

[実施例2]
酢酸の量をシクロヘキサノンに対してモル基準で0.4当量にしたこと以外は実施例1と同条件で実験を行った結果、6-ヒドロキシカプロン酸の収率は80.2%、カプロラクトンの収率は6.3%であった。反応中に生成し得る過酸の最大量は加えた酢酸の量に依存し、本実施例では2.8質量%以下であった。これは過酢酸が伝爆性を示す下限濃度である21質量%を大きく下回る。また、反応時に爆発、急激な発熱等の危険な現象は観測されなかった。
[Example 2]
The experiment was conducted under the same conditions as in Example 1 except that the amount of acetic acid was 0.4 equivalents on a molar basis with respect to cyclohexanone. As a result, the yield of 6-hydroxycaproic acid was 80.2%, and the yield of caprolactone was The rate was 6.3%. The maximum amount of peracid that can be produced during the reaction depends on the amount of acetic acid added, and was 2.8% by mass or less in this example. This is far below 21% by mass, which is the lower limit concentration at which peracetic acid exhibits explosive properties. Also, no dangerous phenomena such as explosion or rapid heat generation were observed during the reaction.

[比較例1]
酢酸を添加しなかったこと以外は実施例1と同条件で実験を行った結果、6-ヒドロキシカプロン酸の収率は69.4%、カプロラクトンの収率は8.0%であった。
[Comparative Example 1]
As a result of conducting an experiment under the same conditions as in Example 1 except that no acetic acid was added, the yield of 6-hydroxycaproic acid was 69.4% and the yield of caprolactone was 8.0%.

[比較例2]
ベータ(beta)ゼオライトを添加しなかったこと以外は実施例1と同条件で実験を行った結果、6-ヒドロキシカプロン酸の収率は7.8%、カプロラクトンの収率は0.0%であった。
[Comparative Example 2]
As a result of conducting an experiment under the same conditions as in Example 1 except that beta zeolite was not added, the yield of 6-hydroxycaproic acid was 7.8% and the yield of caprolactone was 0.0%. there were.

本発明は、環状ケトンの過酸化反応により、ヒドロキシ酸及びラクトンを製造する方法として好適である。 INDUSTRIAL APPLICABILITY The present invention is suitable as a method for producing hydroxy acids and lactones by peroxidation of cyclic ketones.

Claims (3)

ゼオライト触媒及び触媒量の有機酸存在下、水を溶媒として過酸化水素と環状ケトンとを反応させる工程を含み、
前記有機酸が酢酸であり、
前記有機酸の量が前記環状ケトンに対してモル基準で0.01当量以上0.5当量以下であり、
前記ゼオライト触媒が大孔径ゼオライトを含有する触媒であり、前記大孔径ゼオライトがbetaゼオライトであり、
前記環状ケトンがシクロヘキサノンである、
ヒドロキシ酸の製造方法。
A step of reacting hydrogen peroxide with a cyclic ketone using water as a solvent in the presence of a zeolite catalyst and a catalytic amount of an organic acid ;
the organic acid is acetic acid,
The amount of the organic acid is 0.01 equivalent or more and 0.5 equivalent or less on a molar basis with respect to the cyclic ketone,
The zeolite catalyst is a catalyst containing large pore zeolite, the large pore zeolite is beta zeolite,
wherein the cyclic ketone is cyclohexanone;
A method for producing a hydroxy acid.
前記反応の生成物がラクトンを含む、請求項1に記載のヒドロキシ酸の製造方法。 2. The method for producing a hydroxyacid according to claim 1, wherein the product of said reaction comprises a lactone. 前記溶媒の量が前記環状ケトンに対してモル基準で60当量以下である、請求項1又は2に記載のヒドロキシ酸の製造方法。 3. The method for producing a hydroxy acid according to claim 1, wherein the amount of said solvent is 60 equivalents or less on a molar basis with respect to said cyclic ketone.
JP2018193205A 2018-10-12 2018-10-12 A method for producing a hydroxy acid. Active JP7117968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018193205A JP7117968B2 (en) 2018-10-12 2018-10-12 A method for producing a hydroxy acid.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018193205A JP7117968B2 (en) 2018-10-12 2018-10-12 A method for producing a hydroxy acid.

Publications (2)

Publication Number Publication Date
JP2020059682A JP2020059682A (en) 2020-04-16
JP7117968B2 true JP7117968B2 (en) 2022-08-15

Family

ID=70219365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193205A Active JP7117968B2 (en) 2018-10-12 2018-10-12 A method for producing a hydroxy acid.

Country Status (1)

Country Link
JP (1) JP7117968B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452872A (en) 2010-10-29 2012-05-16 中国石油化工股份有限公司 Reaction method for catalyzing cyclic ketone by total silicone molecular sieve
CN102452894A (en) 2010-10-29 2012-05-16 中国石油化工股份有限公司 Method for catalytic oxidation of cyclic ketone by nanometer Beta molecule sieve
CN103373978A (en) 2012-04-27 2013-10-30 中国石油化工股份有限公司 Reaction method for preparing corresponding lactone, hydroxy acid and dicarboxylic acid through cyclic ketone oxidation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870192A (en) * 1985-08-12 1989-09-26 Mobil Oil Corporation Production of lactones and omega-hydroxycarboxylic acids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102452872A (en) 2010-10-29 2012-05-16 中国石油化工股份有限公司 Reaction method for catalyzing cyclic ketone by total silicone molecular sieve
CN102452894A (en) 2010-10-29 2012-05-16 中国石油化工股份有限公司 Method for catalytic oxidation of cyclic ketone by nanometer Beta molecule sieve
CN103373978A (en) 2012-04-27 2013-10-30 中国石油化工股份有限公司 Reaction method for preparing corresponding lactone, hydroxy acid and dicarboxylic acid through cyclic ketone oxidation

Also Published As

Publication number Publication date
JP2020059682A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP5083670B2 (en) Process for producing 3-hydroxytetrahydrofuran using dehydration cyclization
US8633327B2 (en) Process for preparing divinylarene dioxides
JP7117968B2 (en) A method for producing a hydroxy acid.
JP4036242B2 (en) Production method of dibasic acid.
DE102008020361A1 (en) Preparing 2,5-dimethylphenylthioacetomorpholide comprises reacting 2,5-dimethylacetophenone with sulfur and morpholine in a liquid reaction system
WO2000063199A1 (en) Process for the preparation of 3-hydroxytetrahydrofuran
JP5468870B2 (en) Method for producing lactone compound
EP1167365B1 (en) Method of producing sesamol formic acid ester and sesamol
US3517033A (en) Process for the production of epsilon-caprolactone and its alkyl derivatives
JPH0240365A (en) Production of n-hydroxypyrazole
CN110857264B (en) Process for preparing (E2, Z6) -2, 6-nonadienal
US3026328A (en) Processes for converting l-threo-5-amino-6-phenyl dioxane to the corresponding l-erythro dioxane
DE2842715A1 (en) 3-CHLORO-3-METHYL-BUTANE OR 3-METHYL-2-BUTEN-1,4-DIAL-BIS-ACETALS, A METHOD FOR MAKING THESE COMPOUNDS AND USES
US5670661A (en) Process for producing lactones and lactones obtained with this process
JP5468868B2 (en) Method for producing lactone compound
JPH06166652A (en) Production of aldol compound
JP2003073376A (en) Method for producing cyclic acetal
EP1533307B1 (en) Process for producing tetrahydropyran-4-ol, intermediate therefor, and process for producing the same
JP5468869B2 (en) Method for producing lactone compound
JP2952027B2 (en) Method for producing cyclohexene oxide
CN117486966A (en) Method for synthesizing brassinolide
KR101315751B1 (en) New method for producing Loperamide oxide monohydrate
JPH0524913B2 (en)
EP2809637A1 (en) Process for producing dodecane-1, 12-diol by reduction of lauryl lactone produced from the oxidation of cyclododecanone
JP2006104110A (en) Manufacturing method of epoxy compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220802

R150 Certificate of patent or registration of utility model

Ref document number: 7117968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150