JP7113680B2 - Color difference calculation method - Google Patents

Color difference calculation method Download PDF

Info

Publication number
JP7113680B2
JP7113680B2 JP2018122119A JP2018122119A JP7113680B2 JP 7113680 B2 JP7113680 B2 JP 7113680B2 JP 2018122119 A JP2018122119 A JP 2018122119A JP 2018122119 A JP2018122119 A JP 2018122119A JP 7113680 B2 JP7113680 B2 JP 7113680B2
Authority
JP
Japan
Prior art keywords
light
plots
color difference
angle
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018122119A
Other languages
Japanese (ja)
Other versions
JP2020003302A (en
Inventor
宏平 若井
啓彰 神澤
泰 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2018122119A priority Critical patent/JP7113680B2/en
Publication of JP2020003302A publication Critical patent/JP2020003302A/en
Application granted granted Critical
Publication of JP7113680B2 publication Critical patent/JP7113680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

本発明は、色差算出方法に関する。 The present invention relates to a color difference calculation method.

自動車の塗装工程において、鋼板製のボデーと樹脂製のバンパーに同色の塗装を施す場合、両部材の色を完全に一致させることは難しい。特に、メタリック塗装やパール塗装のように光輝材を含む塗料を用いた場合は、光輝材の配列等によって色の見え方(反射具合)が大きく異なる。ボデーとバンパーの色が僅かでも異なると、両部材の境界で色が不連続となり、美観が損なわれる恐れがある。従って、両部材の色の差(色差)を確認しながら、塗料の配合や塗装条件を調整する必要がある。 In the painting process of automobiles, when applying the same color paint to a steel body and a resin bumper, it is difficult to completely match the colors of both parts. In particular, when a paint containing luster material such as metallic paint or pearl paint is used, the way the color looks (the degree of reflection) varies greatly depending on the arrangement of the luster material. If the colors of the body and the bumper are even slightly different, the colors will be discontinuous at the boundary between the two members, which may spoil the appearance. Therefore, it is necessary to adjust the composition of the paint and the coating conditions while confirming the color difference (color difference) between the two members.

色を定量的に測定する測色機器として、複数の受光角を持つ多角度測色機器が知られている。多角度測色機器は、正反射光に近い明るく見える受光角から、正反射光から遠い暗く見える受光角まで、複数の受光角における分光反射強度を計測できる。このような多角度測色機器の存在を反映して、JIS Z 8722(色の測定方法-反射及び透過物体色)「5.3.1照射及び受光の幾何条件」には、複数の照射光および受光の角度についての記載がある。一般的には、多角度測色機器で測定されたデータを、CIELab表色系(JIS Z 8781-4:2013参照)に換算し、色を3つの値による座標で表示することが多い。そして、これらの3つの座標を立体座標とみなし、対象物のうち、ターゲットの立体座標と、リファレンスの立体座標との間の距離を色差とみなす。 A multi-angle colorimetric device having a plurality of light-receiving angles is known as a colorimetric device for quantitatively measuring colors. The multi-angle colorimetric instrument can measure the spectral reflection intensity at a plurality of light-receiving angles, from light-receiving angles close to specular light that appear bright to light-receiving angles far from specular light that appear dark. Reflecting the existence of such a multi-angle colorimetric instrument, JIS Z 8722 (color measurement method-reflected and transmitted object color) "5.3.1 Geometric conditions for irradiation and light reception" includes multiple irradiation light and the angle of light reception. In general, data measured with a multi-angle colorimetric device is converted into the CIELab color system (see JIS Z 8781-4:2013), and colors are often displayed as coordinates based on three values. These three coordinates are regarded as three-dimensional coordinates, and the distance between the three-dimensional coordinates of the target and the three-dimensional coordinates of the reference is regarded as the color difference.

しかし、メタリックやパールを含む塗装色を、多角度測色機器を用いて色差を求めてみても、目視で感じる色差と合致しないことが多い。すなわち、多角度測色機器を用いた色差では明らかな差が有るはずなのに目視では感じられない、またその逆もあり、これは多角度測色機器への信頼や規格の定義を揺るがす問題であった。 However, even if a multi-angle colorimetric device is used to determine the color difference of paint colors including metallic and pearl, it often does not match the color difference perceived visually. In other words, even though there should be a clear color difference in the color difference using a multi-angle colorimetry device, it is not perceived visually, and vice versa. rice field.

従って、カラー製品の生産を行う工場では目視評価が欠かせず、測色機器はあくまで補助的な役割として用いられており、目視による評価結果を測色機器による評価結果と照合して色差を総合的に評価しているのが実情である。しかし、目視で正確に色差を評価することは容易ではなく、一部の熟練作業者のみしか行うことができないため、作業効率が非常に悪い。また、作業者ごとに色差の感度にバラつきが生じやすいため、色差の評価結果の信頼性も十分であるとは言えない。 Therefore, visual evaluation is indispensable in factories that produce color products, and colorimetry equipment is used only as a supplementary role. It is the actual situation that it is evaluated. However, it is not easy to visually evaluate the color difference accurately, and only some skilled workers can do it, so the work efficiency is very poor. In addition, since the sensitivity to color difference tends to vary from operator to operator, the reliability of the color difference evaluation results is not sufficient.

多角度測色機器による色差評価を、目視評価の感覚と一致させることができれば、目視評価を省略することができる。例えば、下記の特許文献1には、各測定対象部位に入射光を照射して測定された複数の受光角における反射光の分光反射率から算出した三刺激値X,Y,Zの各点から、反射光の受光角と各刺激値X,Y,Zとの関係を表す連続した近似曲線を算出する色差測定方法が示されている。これにより、実際に反射光を受光した受光角だけでなく、任意の受光角における色差を算出することができるため、目視では見ているはずであるが測定では空きスペースとして抜けてしまう受光角における複数の測定対象部位間の色差を測定値としてカバーすることができる。 Visual evaluation can be omitted if the color difference evaluation by the multi-angle colorimetric device can be matched with visual evaluation. For example, in Patent Document 1 below, tristimulus values X, Y, and Z calculated from the spectral reflectance of reflected light at a plurality of light-receiving angles measured by irradiating incident light on each measurement target site From each point , a color difference measuring method for calculating a continuous approximation curve representing the relationship between the angle of reception of reflected light and each stimulus value X, Y, Z. As a result, it is possible to calculate the color difference not only at the angle at which the reflected light is actually received, but also at any angle. Color differences between a plurality of measurement target sites can be covered as measured values.

特開2017-90060号公報JP 2017-90060 A

多角度測色機器による測色(マルチアングル測色)で得られる幾何光学系の特性として、正反射方向からの変位量(受光角)が大きくなると、観察される光強度(受光量)が減少する。この受光角と受光量との関係は、一次直線関係ではなく、指数関数を当てはめて関係式を作成することができる。このとき、受光角と受光量との関係を示すプロットが3点であれば、上記特許文献1のように、これらの関係を指数曲線モデルに換算できる。しかし、このプロットが4点以上になると、必ずしも指数曲線で完全に追従できるとは限らない。このような場合、例えば最小二乗法等により、4点以上のプロット付近を通る近似曲線を算出することができる。 As a characteristic of the geometrical optics system obtained by colorimetry using multi-angle colorimetry (multi-angle colorimetry), the observed light intensity (received light amount) decreases as the amount of displacement from the specular reflection direction (light-receiving angle) increases. do. The relationship between the light receiving angle and the amount of light received can be a relational expression by applying an exponential function instead of a linear relationship. At this time, if there are three plots showing the relationship between the light receiving angle and the amount of light received, these relationships can be converted into an exponential curve model as in Patent Document 1 above. However, when this plot has 4 points or more, it is not always possible to follow the exponential curve completely. In such a case, it is possible to calculate an approximation curve that passes through the vicinity of the plots of four or more points, for example, by the method of least squares.

しかし、上記のような最小二乗法等による近似曲線では、反射光の受光角に対する受光量の変動を正確に推測できるとは言えず、このような近似曲線に基づく色差の評価結果は目視による色差の評価結果と一致しないことがある。 However, it cannot be said that the variation in the amount of received light with respect to the angle of reception of reflected light can be accurately estimated with the approximate curve obtained by the method of least squares or the like as described above. may not match the evaluation results of

そこで、本発明は、多角度測色機器による測定結果を用いて色差を算出するに際し、反射光の受光角に対する受光量の変動をより一層正確に推測することで、目視による色差の感度により近い算出結果を得ることを目的とする。 Therefore, when calculating the color difference using the measurement results of a multi-angle colorimetric instrument, the present invention more accurately estimates the variation in the amount of received light with respect to the angle at which the reflected light is received. The purpose is to obtain calculation results.

前記課題を解決するために、本発明は、複数の測定対象部位間の色差を算出するための方法であって、多角度測色機器により、4つ以上の幾何光学系の波長ごとの受光量を取得し、波長ごとに設けられた座標上に、各幾何光学系の正反射方向に対する受光角と受光量との関係をプロットする工程と、各座標上に設けられた4個以上のプロットのうち、3個のプロットを通る初期近似曲線を作成する工程と、前記初期近似曲線の一部を、前記4個以上のプロットのうち、前記3個のプロット以外のプロットを通るように補正して近似曲線を作成する工程と、各測定対象部位の前記近似曲線に基づいて、前記複数の測定対象部位間の色差を算出する工程とを有する色差算出方法を提供する。尚、幾何光学系とは、一本の入射光及び反射光からなる光線のことを言う。 In order to solve the above-mentioned problems, the present invention provides a method for calculating color differences between a plurality of measurement target sites, comprising: using a multi-angle colorimetric instrument, the amount of received light for each wavelength of four or more geometrical optics systems; and plotting the relationship between the light-receiving angle and the light-receiving amount with respect to the specular reflection direction of each geometrical optical system on coordinates provided for each wavelength, and plotting four or more plots provided on each coordinate Among them, the step of creating an initial approximate curve passing through three plots, and correcting a part of the initial approximate curve to pass through plots other than the three plots out of the four or more plots A color difference calculation method comprising the steps of: creating an approximate curve; and calculating the color difference between the plurality of measurement target sites based on the approximate curve of each measurement target site. Note that the geometrical optics refers to a light ray composed of one incident light and one reflected light.

本発明では、上記のように、各座標上に4個以上のプロットがある場合において、まず3個のプロットを通る初期近似曲線を算出した後、その初期近似曲線の一部を、残りのプロットを通るように補正して近似曲線を作成する。これにより、全てのプロットの情報を正確に反映させた近似曲線を得ることができるため、例えば最小二乗法により近似曲線を求める場合と比べて、受光量の差の詳細な変動をより正確に推測することができる。 In the present invention, as described above, when there are four or more plots on each coordinate, after first calculating the initial approximate curve passing through the three plots, part of the initial approximate curve is transferred to the remaining plots Create an approximation curve by correcting it so that it passes through . As a result, it is possible to obtain an approximated curve that accurately reflects all the plotted information, making it possible to more accurately estimate detailed fluctuations in the amount of received light compared to obtaining an approximated curve using, for example, the least-squares method. can do.

受光角が小さい(すなわち正反射方向に近い)反射光の受光量はメタリックやパール等の光輝材が支配的要因であり、受光角が大きい(すなわち正反射方向から遠い)反射光の受光量はソリッドカラーが支配的要因である。一方、これらの間の受光角の反射光の受光量は光輝材の影響及びソリッドカラーの双方の影響を受ける。この場合、まず、4つ以上のプロットのうち、光輝材が支配的要因である受光角が最小のプロットと、ソリッドカラーが支配的要因である受光角が最大のプロットとを含む3つのプロットを用いて近似曲線を算出した後、光輝材及びソリッドカラーの双方の影響を受ける中間の受光角のプロットを通るように初期近似曲線を補正することが好ましい。これにより、先に中間の受光角のプロットを用いて初期近似曲線を算出した後、受光角最大あるいは最小のプロットを通るように初期近似曲線を補正する場合よりも、近似曲線の信頼性を高めることができる。 The amount of reflected light with a small acceptance angle (that is, close to the specular reflection direction) is dominated by luster materials such as metallics and pearls. Solid color is the dominant factor. On the other hand, the amount of reflected light received at an acceptance angle between these is affected by both the glitter material and the solid color. In this case, first, among the four or more plots, three plots including a plot with the smallest light-receiving angle in which the luster material is the dominant factor and a plot with the largest light-receiving angle in which the solid color is the dominant factor are plotted. After calculating the approximation curve using the approx. This increases the reliability of the approximated curve compared to the case where the initial approximated curve is first calculated using plots for intermediate acceptance angles and then the initial approximated curve is corrected so that it passes through plots for maximum or minimum acceptance angles. be able to.

ところで、多角度測色機器を用いた色差の算出にあたっては、多角度測色機器により幾何光学系ごとに多数の波長における分光反射率を測定し、この多数の分光反射率に基づいて三刺激値X,Y,Zを算出する。すなわち、波長ごとに測定された多数の分光反射率のデータが、3つの刺激値X,Y,Zに集約される。上記特許文献1に示されている色差測定方法では、受光角に対する各刺激値X,Y,Zのプロットを曲線で近似している。このように、三刺激値X,Y,Zを用いて近似曲線を算出することで、計算負荷が軽減される。 By the way, in calculating the color difference using a multi-angle colorimetric device, the spectral reflectance at a large number of wavelengths is measured for each geometrical optical system by the multi-angle colorimetric device, and tristimulus values are calculated based on the large number of spectral reflectances. Calculate X, Y, Z. That is, a large number of spectral reflectance data measured for each wavelength are aggregated into three stimulus values X, Y, and Z. FIG. In the color difference measuring method disclosed in the above-mentioned Patent Document 1, plots of the respective stimulus values X, Y, and Z with respect to the light receiving angle are approximated by curves. By calculating the approximate curve using the tristimulus values X, Y, and Z in this way, the calculation load is reduced.

しかし、三刺激値X,Y,Zは、分光反射率のデータに等色関数を適用して算出されるため、複雑な関数(グラフ)になる傾向がある。このような複雑な関数である三刺激値X,Y,Zを用いて近似曲線を算出すると、精度の良い近似曲線が得られない恐れがある。そこで、等色関数を適用する前の、より単純な物理現象を表す分光反射率を用いて近似曲線を算出することで、近似の精度が高められる。 However, since the tristimulus values X, Y, and Z are calculated by applying color matching functions to spectral reflectance data, they tend to be complex functions (graphs). If an approximated curve is calculated using tristimulus values X, Y, and Z, which are such complex functions, there is a risk that an approximated curve with high accuracy cannot be obtained. Therefore, the accuracy of the approximation can be improved by calculating the approximated curve using the spectral reflectance representing a simpler physical phenomenon before applying the color matching function.

以上のように、多角度測色機器による測定結果を用いて色差を算出するにあたり、本発明の算出方法を用いれば、反射光の受光角に対する受光量の変動をより一層正確に推測することができるため、目視による色差の感度により近い算出結果を得ることができる。 As described above, if the calculation method of the present invention is used in calculating the color difference using the measurement results obtained by the multi-angle colorimetric instrument, it is possible to more accurately estimate the variation in the amount of received light with respect to the angle at which the reflected light is received. Therefore, it is possible to obtain a calculation result closer to the sensitivity of the color difference by visual observation.

多角度分光測色計を概念的に示す斜視図である。1 is a perspective view conceptually showing a multi-angle spectrophotometer; FIG. 図1の多角度分光測色計の側面図であり、入射角度45°の照射部1aから入射光を照射した場合を示す。FIG. 2 is a side view of the multi-angle spectrophotometer of FIG. 1, showing a case where incident light is emitted from an irradiation unit 1a with an incident angle of 45°. 図1の多角度分光測色計の側面図であり、入射角度15°の照射部1bから入射光を照射した場合を示す。FIG. 2 is a side view of the multi-angle spectrophotometer of FIG. 1, showing a case where incident light is emitted from an irradiation unit 1b with an incident angle of 15°. 図1の多角度分光測色計の平面図である。2 is a plan view of the multi-angle spectrophotometer of FIG. 1; FIG. 色差算出方法のフロー図である。It is a flow chart of a color difference calculation method. 図5の色差算出方法のステップ(2)を詳しく説明するフロー図である。FIG. 6 is a flowchart explaining in detail step (2) of the color difference calculation method of FIG. 5; 図6のステップ(2-2)を詳しく説明する図である。FIG. 7 is a diagram illustrating in detail step (2-2) of FIG. 6; 受光角θ,受光量Yのプロットに基づいて算出した近似曲線を示すグラフである。It is a graph which shows the approximation curve calculated based on the light-receiving angle (theta) and the light-receiving amount Y plotted.

以下、本発明の実施の形態を図面に基づいて説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施形態では、自動車の塗装面における複数の測定対象部位間の色差を算出する場合を説明する。具体的には、例えば、同色に塗装された異種材料からなる部品(例えば鋼板製のボデーと樹脂製のバンパー)の色差や、同一部品上の複数の測定対象部位の色差を算出し、これらの部位間の色差が許容範囲内であるか否かを評価する。 In this embodiment, a case of calculating color differences between a plurality of measurement target portions on a painted surface of an automobile will be described. Specifically, for example, the color difference between parts made of different materials that are painted in the same color (for example, a steel body and a resin bumper) and the color difference between multiple measurement target parts on the same part are calculated. Evaluate whether the color difference between parts is within the allowable range.

本実施形態に係る色差算出方法は、多角度測色機器としての多角度分光測色計と、これにより測定された受光量を用いて各種演算を行う演算部(コンピュータ、タブレット等)とを備えた色差算出装置を用いて行われる。多角度分光測色計と演算部とは、有線あるいは無線で通信可能に接続される。 The color difference calculation method according to the present embodiment includes a multi-angle spectrophotometer as a multi-angle colorimetry device and a calculation unit (computer, tablet, etc.) that performs various calculations using the amount of received light measured by the multi-angle spectrophotometer. This is done using a color difference calculator. The multi-angle spectrophotometer and the computing unit are connected by wire or wirelessly so as to be communicable.

多角度分光測色計は、図1~3に示すように、測定対象部位Oに入射光を照射する照射部1a,1bと、測定対象部位Oで反射した反射光を受光する受光部2a,2b,2cとを有する。尚、図1~図3では、入射光及び正反射光を含む平面を主平面Pとし、円弧で示している。 The multi-angle spectrophotometer, as shown in FIGS. 2b and 2c. 1 to 3, the plane containing the incident light and specularly reflected light is defined as the principal plane P0, which is indicated by an arc.

照射部1a,1bは、測定対象部位Oに対して異なる角度から入射光Linを照射する位置に設けられる。具体的に、照射部1aは、測定対象部位Oを通る垂線Vに対して45°方向から入射光Lin(45)を照射し(図2参照)、照射部1bは、垂線Vに対して15°方向から入射光Lin(15)を照射する(図3参照)。 The irradiating units 1a and 1b are provided at positions where the site O to be measured is irradiated with incident light L in from different angles. Specifically, the irradiating unit 1a irradiates the incident light L in (45) from a direction of 45° to the perpendicular V passing through the measurement target site O (see FIG. 2), and the irradiating unit 1b Incident light L in (15) is applied from a direction of 15° (see FIG. 3).

受光部2aは、主平面P上の反射光を受光する。本実施形態では、主平面P上に複数の受光部2aが設けられ、図示例では、垂線Vの入射光側及び正反射光側の双方に、それぞれ複数の受光部2aが設けられる。受光部2b,2cは、主平面Pに対して交差する方向の反射光を受光する。図4に示すように、受光部2bは、正反射光Lref0に対して平面視で90°方向の反射光を受光し、受光部2cは、正反射光Lref0(45)、ref0(15)に対して平面視で90°未満の方向(図示例では45°方向)の反射光Lrefを受光する。図示例では、受光部2b及び受光部2cが、それぞれ主平面Pに関して対称な位置に設けられる。 The light receiving portion 2a receives reflected light on the principal plane P0 . In this embodiment, a plurality of light receiving portions 2a are provided on the principal plane P0 , and in the illustrated example, a plurality of light receiving portions 2a are provided on both the incident light side and the specularly reflected light side of the vertical line V, respectively. The light receiving portions 2b and 2c receive reflected light in a direction intersecting the principal plane P0 . As shown in FIG. 4, the light-receiving unit 2b receives the reflected light in the direction of 90° in plan view with respect to the specularly reflected light Lref0 , and the light-receiving unit 2c receives the specularly reflected light Lref0(45), Lref0( 15) , the reflected light L ref is received in a direction less than 90° in plan view (45° direction in the illustrated example). In the illustrated example, the light receiving portion 2b and the light receiving portion 2c are provided at symmetrical positions with respect to the main plane P0 .

本実施形態の色差評価方法は、図5に示すステップ(1)~(5)を経て行われる。以下、各ステップを詳しく説明する。 The color difference evaluation method of this embodiment is performed through steps (1) to (5) shown in FIG. Each step will be described in detail below.

ステップ(1)では、部品A及び部品Bのそれぞれの測定対象部位の分光反射率を測定する。本実施形態では、上記の多角度分光測色計を用いて、複数の幾何光学系の分光反射率を測定する。具体的には、各幾何光学系において、可視光線波長域内に設定された所定間隔の多数の波長(例えば、400~700nmの範囲の10nm間隔の波長)ごとの反射率を測定する。詳しくは、まず、測定対象部位Oに対して照射部1aから入射角度45°の入射光Lin(45)を照射し、測定対象部位Oで反射した複数方向の反射光Lref(45)を受光部2a、2b、2cで受光して、それぞれの分光反射率を取得する(図2及び図4参照)。次に、測定対象部位Oに対して照射部1bから入射角度15°の入射光Lin(15)を照射し、測定対象部位Oで反射した複数方向の反射光Lref(15)を受光部2a、2b、2cで受光して、それぞれの分光分布を取得する(図3及び図4参照)。これらの操作を部品A,Bのそれぞれに対して行うことにより、部品A,Bのそれぞれについて、幾何光学系ごとに、波長λに対する反射率Yのデータが得られる(図7の上図参照)。 In step (1), the spectral reflectance of each measurement target portion of component A and component B is measured. In this embodiment, the multi-angle spectrophotometer described above is used to measure the spectral reflectance of a plurality of geometrical optics. Specifically, in each geometrical optics system, the reflectance is measured for each of a number of wavelengths at predetermined intervals set within the visible light wavelength range (for example, wavelengths at intervals of 10 nm in the range of 400 to 700 nm). Specifically, first, incident light L in (45) with an incident angle of 45° is irradiated from the irradiation unit 1a to the measurement target site O, and reflected light L ref (45) in multiple directions reflected at the measurement target site O is The light is received by the light receiving units 2a, 2b, and 2c, and the respective spectral reflectances are obtained (see FIGS. 2 and 4). Next, an incident light L in (15) having an incident angle of 15° is irradiated from the irradiation unit 1b to the measurement target site O, and the reflected light L ref (15) in multiple directions reflected at the measurement target site O is received by the light receiving unit. Light is received by 2a, 2b, and 2c, and respective spectral distributions are obtained (see FIGS. 3 and 4). By performing these operations for each of the parts A and B, data of the reflectance Y with respect to the wavelength λ can be obtained for each of the parts A and B for each geometrical optical system (see the upper diagram in FIG. 7). .

ステップ(2)では、ステップ(1)で取得した分光反射率のデータに基づいて、分光反射率の近似曲線を算出する。本実施形態では、多角度分光測色計で測定したデータ(各部品A,Bの幾何光学系ごとの波長λに対する反射率Yのデータ)を演算部に送信し、演算部が分光反射率の近似曲線を算出する。以下、図6を用いて、ステップ(2)を詳しく説明する。 In step (2), an approximate curve of spectral reflectance is calculated based on the spectral reflectance data acquired in step (1). In this embodiment, the data measured by the multi-angle spectrophotometer (data of reflectance Y for wavelength λ for each geometrical optics system of each part A and B) is sent to the calculation unit, and the calculation unit calculates the spectral reflectance. Calculate an approximate curve. Step (2) will be described in detail below with reference to FIG.

尚、本実施形態では、複数の幾何光学系を、複数の系統に分類している。具体的には、主平面P上の幾何光学系からなる4つの系統F(45as+)、F(45as-)、F(15as+)、F(15as-)、及び、主平面P以外に設けられた幾何光学系からなる4つの系統F(45az+)、F(45az-)、F(15az+)、F(15az-)の、合計8系統が設定される。 In addition, in this embodiment, a plurality of geometrical optics systems are classified into a plurality of systems. Specifically, four systems F (45as+) , F (45as−) , F (15as+) , F (15as− ) consisting of geometrical optics on the principal plane P 0 , and four systems provided outside the principal plane P 0 Four systems F (45az+) , F (45az−) , F (15az+) , and F ( 15az−), which are composed of geometrical optics, are set for a total of eight systems.

系統F(45as+)は、図2に示すように、入射角度45°の照射部1aから照射された入射光Lin(45)と、正反射光Lref0(45)よりも入射光Lin(45)側に配された受光部2aで受光する反射光Lref(45as+)とからなる幾何光学系で構成される。系統F(45as-)は、上記の入射光Lin(45)と、正反射光Lref0(45)よりも入射光Lin(45)と反対側に配された受光部2aで受光する反射光Lref(45as-)とからなる幾何光学系で構成される。系統F(15as+)は、図3に示すように、入射角度15°の照射部1bから照射された入射光Lin(15)と、正反射光Lref0(15)よりも入射光Lin(15)側に配された受光部2aで受光する反射光Lref(15as+)とからなる幾何光学系で構成される。系統F(15as-)は、上記の入射光Lin(15)と、正反射光Lref0(15)よりも入射光Lin(15)と反対側に配された受光部2bで受光する反射光Lref(15as-)とからなる幾何光学系で構成される。 System F ( 45as+) is , as shown in FIG. 45) is composed of a geometrical optical system including the reflected light L ref (45as+) received by the light receiving portion 2a arranged on the side of 45). The system F (45as-) is the incident light L in (45) and the reflected light L in (45) received by the light receiving unit 2a disposed on the opposite side of the incident light L in (45) from the specularly reflected light L ref0 (45) . It is composed of a geometrical optical system consisting of light L ref (45as−) . System F ( 15as+) is , as shown in FIG. 15) is composed of a geometrical optical system including reflected light L ref (15as+) received by the light receiving portion 2a disposed on the side. The system F (15as-) is the incident light L in (15) and the reflected light L in (15) received by the light receiving unit 2b disposed on the opposite side of the incident light L in (15) from the specularly reflected light L ref0 (15) . It is composed of a geometrical optical system consisting of light L ref (15as−) .

系統F(45az+)は、図4に示すように、入射角度45°の照射部1aから照射された入射光Lin(45)と、主平面Pの一方側に設けられた受光部2b、2cで受光する反射光Lref(45az+)とからなる幾何光学系で構成される。系統F(45az-)は、上記の入射光Lin(45)と、主平面Pの他方側に設けられた受光部2b、2cで受光する反射光Lref(45az-)とからなる幾何光学系で構成される。系統F(15az+)は、入射角度15°の照射部1bから照射された入射光Lin(15)と、主平面Pの一方側に設けられた受光部2b、2cで受光する反射光Lref(15az+)とからなる幾何光学系で構成される。系統F(15az-)は、上記の入射光Lin(15)と、主平面Pの他方側に設けられた受光部2b、2cで受光する反射光Lref(15az-)とからなる幾何光学系で構成される。 System F ( 45az+) includes , as shown in FIG. 2c and the reflected light L ref (45az+) . The system F (45az-) is a geometrical system composed of the incident light L in (45) and the reflected light L ref (45az-) received by the light receiving units 2b and 2c provided on the other side of the principal plane P 0 . It consists of an optical system. System F (15az+) consists of incident light L in(15) emitted from irradiation unit 1b with an incident angle of 15° and reflected light L received by light receiving units 2b and 2c provided on one side of main plane P0 . ref(15az+) . The system F (15az-) is a geometrical system composed of the incident light L in (15) and the reflected light L ref (15az-) received by the light receiving units 2b and 2c provided on the other side of the principal plane P 0 . It consists of an optical system.

尚、幾何光学系の系統の分類方法は上記に限らず、上記の系統の一部を削除したり、上記以外の系統を追加したりしてもよい。また、上記のように、入射角が一定の幾何光学系からなる系統の他、受光角が一定で入射角が異なる幾何光学系からなる系統や、入射角及び受光角の双方が異なる幾何光学系からなる系統を設定してもよい。何れの系統でも、各幾何光学系の正反射方向と受光方向との間の角度が「受光角」となる。 The method of classifying the systems of the geometrical optics system is not limited to the above, and a part of the above systems may be deleted or a system other than the above may be added. Further, as described above, in addition to the geometrical optical system having a constant incident angle, a geometrical optical system having a constant light-receiving angle and different incident angles, and a geometrical-optical system having different incident angles and different light-receiving angles. A system consisting of In any system, the angle between the specular reflection direction and the light receiving direction of each geometrical optical system is the "light receiving angle".

図6に示すように、ステップ(2-1)では、まず、波長に対する分光反射率のデータを、受光角に対する分光反射率のデータに並び替える。具体的には、図7に示すように、各部品A,Bの幾何光学系ごとの波長λに対する反射率Yのデータ(λ,Y)を、各部品A,Bの波長λごと及び系統Fごとの受光角θに対する反射率Yのデータ(θ,Y)に並べ替えて、座標上にプロットする。 As shown in FIG. 6, in step (2-1), first, the spectral reflectance data for wavelengths is rearranged into spectral reflectance data for light-receiving angles. Specifically, as shown in FIG. 7, data (λ, Y) of the reflectance Y with respect to the wavelength λ for each geometrical optical system of each of the parts A and B are obtained for each wavelength λ of each of the parts A and B and for the system F Data (θ, Y) of the reflectance Y for each light receiving angle θ is rearranged and plotted on the coordinates.

これにより、反射率を測定する波長λの数×系統の数の分だけ、(θ,Y)のグラフが得られる。本実施形態では、400~700nmの範囲で10nmごとに設定された31チャンネルのそれぞれに、上記の8系統が設定され、合計248個のグラフが得られる。各グラフには、各系統における幾何光学系の数と同数のプロットが設けられる。本実施形態では、系統F(45as+)のグラフには4個以上(具体的には5個)のプロットが設けられ、その他の系統F(45as-)、F(15as+)、F(15as-)、F(45az+)、F(45az-)、F(15az+)、F(15az-)のグラフには3個以下のプロットが設けられる。 As a result, graphs of (θ, Y) are obtained for the number of wavelengths λ for which the reflectance is to be measured×the number of systems. In the present embodiment, the above eight systems are set for each of the 31 channels set every 10 nm in the range of 400 to 700 nm, and a total of 248 graphs are obtained. Each graph is provided with as many plots as there are geometrical optics in each system. In this embodiment, the graph of the line F (45as+) is provided with 4 or more (specifically 5) plots, and the other lines F (45as-) , F (15as+) , F (15as-) , F (45az+) , F (45az−) , F (15az+) , F (15az−) are provided with no more than three plots.

次に、ステップ(2-2)では、ステップ(2-1)で得られた各グラフのプロットから、近似曲線を算出する(図6参照)。具体的には、受光角の増大に伴う受光量の減衰要因が指数関数に近似していることから、各系統の波長ごとのプロットを指数曲線で近似する。 Next, in step (2-2), approximate curves are calculated from the plots of each graph obtained in step (2-1) (see FIG. 6). Specifically, since the attenuation factor of the amount of received light that accompanies an increase in the light receiving angle approximates an exponential function, the plot for each wavelength in each system is approximated by an exponential curve.

このとき、プロットが3個以下であれば、全てのプロットを通る指数関数を設定することが可能であるが、系統F(45az+)のように、プロットが4個以上になると、全てのプロットを通る指数関数を設定することはできないことが多い。 At this time, if there are 3 plots or less, it is possible to set an exponential function that passes through all plots, but if there are 4 or more plots, such as the strain F (45az+) , all plots It is often not possible to set an exponential function to pass through.

そこで、本実施形態では、系統F(45az+)の近似曲線を算出するにあたり、まず、5個のプロットのうちの3個のプロットを通る指数曲線を設定する(この指数曲線を、「初期近似曲線」と言う。)。図8に示すように、系統F(45az+)における(θ,Y)の5個のプロットP1~P5は、それぞれ正反射方向に対する受光角が15°、25°、45°、75°、110°である。選択する3個のプロットは、受光角が最小(15°)のプロットP1と、受光角が最大(110°)のプロットP5とを含むことが好ましく、さらにこれらに隣接するプロットP2、P4の何れかを含むことがより好ましい。図示例では、プロットP1、P2、P5を通る初期近似曲線C(実線参照)を設定している。 Therefore, in this embodiment, in calculating the approximate curve of the strain F (45az+) , first, an exponential curve passing through three of the five plots is set (this exponential curve is referred to as the "initial approximate curve ”). As shown in FIG. 8, the five plots P1 to P5 of (θ, Y) in the system F (45az+) show the light-receiving angles of 15°, 25°, 45°, 75°, and 110° with respect to the specular reflection direction, respectively. is. The three selected plots preferably include a plot P1 with a minimum acceptance angle (15°) and a plot P5 with a maximum acceptance angle (110°), and any of the adjacent plots P2 and P4. It is more preferable to include In the illustrated example, an initial approximation curve C (see solid line) passing through plots P1, P2, and P5 is set.

次に、上記の初期近似曲線CとプロットP3、P4との乖離を解消するように、初期近似曲線Cを補正する。例えば、初期近似曲線Cのうち、この初期近似曲線Cから乖離したプロットP3、P4に隣接する初期近似曲線C上のプロットP2、P5間の領域に係数を掛けて、この領域の曲線が、プロットP3、P4を通り、且つ、他の領域の曲線と滑らかに連続するように補正する(図8の鎖線参照)。 Next, the initial approximate curve C is corrected so as to eliminate the divergence between the initial approximate curve C and the plots P3 and P4. For example, of the initial approximate curve C, the area between the plots P2 and P5 on the initial approximate curve C adjacent to the plots P3 and P4 that deviate from this initial approximate curve C is multiplied by a coefficient, and the curve in this area is plotted It is corrected so that it passes through P3 and P4 and smoothly continues to the curves in other regions (see the chain line in FIG. 8).

ここで、初期近似曲線と残りのプロットとの乖離の原因としては、光輝材に起因する要因(光輝材輝度増加モデルの変化(質感変化)など)と、光輝材以外に起因する要因(光輝材以外の拡散反射や表面凹凸影響など)とが考えられる。光輝材に起因する要因については、初期指数関数の係数を一次関数から多次元化することで対応することができ、例えばベジェ曲線で係数化することにより対応することができる(ステップ(2-3a)参照)。一方、光輝材以外に起因する要因については、基底拡散反射係数及び受光角と乖離拡散反射成分とをスプライン曲線を利用して変換することで対応することができる(ステップ(2-3b)参照)。 Here, the causes of the discrepancy between the initial approximated curve and the rest of the plot are factors attributable to the glitter material (changes in the glitter material brightness increase model (change in texture), etc.) and factors other than the glitter material (gloss material other factors such as diffuse reflection and the effect of surface unevenness). Factors caused by the luster material can be dealt with by making the coefficients of the initial exponential function multi-dimensional from linear functions, for example, by converting them into coefficients using Bezier curves (step (2-3a )reference). On the other hand, factors other than the luster material can be dealt with by converting the base diffuse reflection coefficient, the light receiving angle, and the divergent diffuse reflection component using a spline curve (see step (2-3b)). .

以上により、全てのプロットP1~P5を完全にトレースした近似曲線を作製することができる(この近似曲線を、「完全トレース曲線」と言う。)。この完全トレース曲線で表される受光角θに対する反射率Yの関数は、以下の数式で表される。
Y=α・EXP{β・γ・(Radθ)}+K+S
上記の数式のうち、αは指数曲線の傾きを表す係数である。βは、指数曲線の弛み具合を表す係数である。Kは、指数曲線の最小値(底値)を決定する係数である。γ、Sは補正係数である。
As described above, an approximation curve that completely traces all the plots P1 to P5 can be created (this approximation curve is called a "complete trace curve"). The function of the reflectance Y with respect to the acceptance angle θ represented by this complete trace curve is represented by the following formula.
Y=α・EXP{β・γ・(Radθ)}+K+S
In the above formula, α is a coefficient representing the slope of the exponential curve. β is a coefficient representing the slackness of the exponential curve. K is a coefficient that determines the minimum value (bottom value) of the exponential curve. γ and S are correction coefficients.

尚、他の系統については、プロットが3点であれば、指数曲線で完全にトレースすることができる。また、プロットが2点以下の系統は、指数曲線を確定させることはできないため、除外してもよい。 For other systems, if the plot is 3 points, it can be traced completely with an exponential curve. In addition, since the exponential curve cannot be established for the strains with 2 plots or less, they may be excluded.

以上のように、5個のプロットP1~P5からなる系統F(45as+)において、3つのプロットを通る初期近似曲線Cを作成した後、初期近似曲線Cの一部を、他のプロットを通るように補正することで、例えば5つのプロットに基づいて最小二乗法により近似曲線を算出する場合と比べて、受光角θに対する反射率Yの差の詳細な変動をより正確に推測することができる。特に、光輝材が支配的要因である受光角が最小のプロットP1と、ソリッドカラーが支配的要因である受光角が最大のプロットP5とを含む3つのプロットを用いて初期近似曲線Cを算出することで、信頼性の高い近似曲線を得ることができる。 As described above, in the system F (45as+) consisting of five plots P1 to P5, after creating an initial approximate curve C that passes through the three plots, part of the initial approximate curve C is made to pass through the other plots. , it is possible to more accurately estimate detailed fluctuations in the difference in reflectance Y with respect to the light receiving angle θ compared to the case of calculating an approximate curve by the least squares method based on five plots, for example. In particular, the initial approximation curve C is calculated using three plots including a plot P1 in which the light receiving angle is the dominant factor of the glitter material and a plot P5 in which the light receiving angle is the dominant factor of the solid color is the maximum. Thus, a highly reliable approximation curve can be obtained.

また、本実施形態では、上記のように、波長ごとに設けた座標の受光角θに対する反射率Yのプロット(図7の下図参照)を指数関数で近似している。このように、三刺激値X,Y,Zに変換する前の単純な物理現象である分光反射率を用いて近似曲線を算出することで、近似の精度が高められる。尚、近似の精度に問題がなければ、後述する三刺激値X,Y,Zを算出した後、図6と同様のステップに従って三刺激値X,Y,Zの近似曲線を算出してもよい。 Further, in the present embodiment, as described above, the plot of the reflectance Y against the light-receiving angle θ of the coordinates provided for each wavelength (see the lower diagram of FIG. 7) is approximated by an exponential function. By calculating the approximate curve using the spectral reflectance, which is a simple physical phenomenon before conversion to the tristimulus values X, Y, and Z, the accuracy of the approximation can be improved. If there is no problem with the accuracy of the approximation, after calculating the tristimulus values X, Y, and Z, which will be described later, the approximate curves of the tristimulus values X, Y, and Z may be calculated according to the same steps as in FIG. .

図5に戻り、ステップ(3)では、ステップ(2)で算出した、各部品A,Bの波長ごと及び系統ごとの受光角θに対する反射率Yのデータ(近似曲線)を、XYZ表色系における三刺激値X,Y,Zに変換し、さらに、この三刺激値X,Y,Zに基づいて、L,a,b,u,vを算出する。そして、ステップ(4)で、各部品A,BのLab空間における座標(L,a,b)間距離から、部品A,B間のLab空間における色差ΔEabを算出する。また、各部品A,BのLab空間における座標(L,u,v)間距離から、部品A,B間のLuv空間における色差ΔEuvを算出する。このとき、上記のステップ(2)による完全トレース曲線を用いて色差を算出することで、従来手法では実点を追従しきれず発生する近似曲線と実測定点間での差異が解消される。そのため既存機器の測定点も全てカバーしつつ点間補完を行う、互換性と拡張性を備えることになる。尚、分光反射率から三刺激値X,Y,Zを算出する具体的方法は、JIS Z8701:1999に記載の方法に準じる。また、刺激値X,Y,ZからL,a,b,u,vを算出する具体的方法は、JIS Z8781-4:2013及びJIS Z8781-5:2013に記載の方法に準じる。 Returning to FIG. 5, in step (3), the data (approximate curve) of the reflectance Y with respect to the light-receiving angle θ for each wavelength and system of each component A and B calculated in step (2) is converted to the XYZ color system. are converted into tristimulus values X, Y, and Z, and L * , a * , b * , u * , and v * are calculated based on the tristimulus values X, Y, and Z. Then, in step (4), the color difference ΔEab in the Lab space between the parts A and B is calculated from the distance between the coordinates (L * , a * , b * ) of the parts A and B in the Lab space. Also, the color difference ΔEuv between the parts A and B in the Luv space is calculated from the distance between the coordinates (L * , u * , v * ) of the parts A and B in the Lab space. At this time, by calculating the color difference using the complete trace curve obtained in step (2) above, the difference between the approximated curve and the actual measurement points, which occurs when the conventional method cannot follow the actual points, is eliminated. Therefore, it has compatibility and scalability to perform point-to-point interpolation while covering all measurement points of existing equipment. A specific method for calculating the tristimulus values X, Y, and Z from the spectral reflectance conforms to the method described in JIS Z8701:1999. Further, a specific method for calculating L * , a * , b * , u * , v * from the stimulus values X, Y, Z is the method described in JIS Z8781-4:2013 and JIS Z8781-5:2013. Comply.

ステップ(5)では、ステップ(4)で算出した色差ΔEab及びΔEuvの一方又は双方に基づいて、色差を評価する。例えば、各系統のΔEab及びΔEuvのそれぞれの最大値を求め、これらの最大値に基づいて色差を評価することができる。あるいは、各系統のΔEab及びΔEuvの積分値を算出し、これらの積分値に基づいて色差を評価することができる。そして、部品A,B間の色差が、予め設定された所定の範囲外であれば、これらの測定対象部位間の色差が異常であると判定する。この場合、塗料の配合や塗装条件の調整を行った上で塗装を施し、上記の手順で再び色差を測定する。そして、色差が所定範囲内となるまで以上を繰り返すことで、最適な塗料の配合や塗装条件を設定することができる。 In step (5), the color difference is evaluated based on one or both of the color differences ΔEab and ΔEuv calculated in step (4). For example, it is possible to obtain the maximum values of ΔE ab and ΔE uv for each system and evaluate the color difference based on these maximum values. Alternatively, the integrated values of ΔE ab and ΔE uv for each system can be calculated, and the color difference can be evaluated based on these integrated values. If the color difference between parts A and B is out of a predetermined range, it is determined that the color difference between these measurement target sites is abnormal. In this case, the coating is applied after adjusting the formulation of the coating material and the coating conditions, and the color difference is measured again according to the above procedure. By repeating the above process until the color difference falls within a predetermined range, it is possible to set the optimal paint composition and coating conditions.

1a,1b 照射部
2a,2b,2c 受光部
A,B 部品
C 初期近似曲線
F 系統
in 入射光
ref 反射光
ref0 正反射光
主平面
Y 受光量(反射率)
θ 正反射方向に対する受光角
λ 波長
1a, 1b Irradiation units 2a, 2b, 2c Light receiving units A, B Component C Initial approximate curve F System L In incident light L ref reflected light L ref0 regular reflected light P 0 principal plane Y Received light amount (reflectance)
θ Light-receiving angle with respect to specular reflection direction λ Wavelength

Claims (3)

複数の測定対象部位間の色差を算出するための方法であって、
多角度測色機器により、4つ以上の幾何光学系の波長ごとの受光量を取得し、波長ごとに設けられた座標上に、各幾何光学系の正反射方向に対する受光角と受光量との関係をプロットする工程と、
各座標上に設けられた4個以上のプロットのうち、3個のプロットを通る初期近似曲線を作成する工程と、
前記初期近似曲線の一部を、前記4個以上のプロットのうち、前記3個のプロット以外のプロットを通るように補正して近似曲線を作成する工程と、
各測定対象部位の前記近似曲線に基づいて、前記複数の測定対象部位間の色差を算出する工程とを有し、
前記初期近似曲線と前記3個のプロット以外のプロットとの乖離が、光輝材に起因する場合と、光輝材以外の要因に起因する場合とで、異なる方法で補正して前記近似曲線を作成する色差算出方法。
A method for calculating a color difference between a plurality of measurement target sites, comprising:
A multi-angle colorimetric instrument acquires the amount of light received for each wavelength of four or more geometrical optics systems, and plots the light-receiving angle and the light-receiving amount with respect to the regular reflection direction of each geometrical optics system on the coordinates provided for each wavelength. plotting the relationship;
A step of creating an initial approximation curve passing through three of the four or more plots provided on each coordinate;
Creating an approximate curve by correcting a portion of the initial approximate curve so that it passes through plots other than the three plots out of the four or more plots;
calculating the color difference between the plurality of measurement target sites based on the approximated curve of each measurement target site ;
The approximate curve is created by correcting the deviation between the initial approximate curve and the plots other than the three plots by different methods depending on whether it is caused by the luster material or by a factor other than the luster material. Color difference calculation method.
各座標上の前記3個のプロットが、正反射方向に対する受光角が最大のプロットと最小のプロットとを含む請求項1に記載の色差算出方法。 2. The color difference calculation method according to claim 1, wherein said three plots on each coordinate include a plot of maximum and a minimum of the light receiving angle with respect to the direction of specular reflection. 前記受光量が分光反射率である請求項1又は2に記載の色差算出方法。 3. The color difference calculation method according to claim 1, wherein the amount of received light is spectral reflectance.
JP2018122119A 2018-06-27 2018-06-27 Color difference calculation method Active JP7113680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018122119A JP7113680B2 (en) 2018-06-27 2018-06-27 Color difference calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018122119A JP7113680B2 (en) 2018-06-27 2018-06-27 Color difference calculation method

Publications (2)

Publication Number Publication Date
JP2020003302A JP2020003302A (en) 2020-01-09
JP7113680B2 true JP7113680B2 (en) 2022-08-05

Family

ID=69099530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018122119A Active JP7113680B2 (en) 2018-06-27 2018-06-27 Color difference calculation method

Country Status (1)

Country Link
JP (1) JP7113680B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113125117B (en) * 2021-03-18 2024-04-19 苏州华兴源创科技股份有限公司 Chromaticity detection method for display module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064048A (en) 2000-08-22 2002-02-28 Tokyo Electron Ltd Device and method for forming coated film
JP2006010508A (en) 2004-06-25 2006-01-12 Konica Minolta Sensing Inc Multi-angle type colorimeter
US20110234621A1 (en) 2009-04-24 2011-09-29 E. I. Du Pont De Nemours And Company Process for generating bidirectional reflectance distribution functions of gonioapparent materials with limited measurement data
JP2012042434A (en) 2010-08-23 2012-03-01 Canon Inc Light source determination device, color processor and method therefor
JP2016186437A (en) 2015-03-27 2016-10-27 セイコーエプソン株式会社 Circuit device, physical quantity detection device, electronic apparatus, mobile body, and method for manufacturing circuit device
JP2017090060A (en) 2015-11-02 2017-05-25 ダイハツ工業株式会社 Color difference measurement method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294251A (en) * 1985-10-17 1987-04-30 Toshiba Mach Co Ltd Device for controlling position

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064048A (en) 2000-08-22 2002-02-28 Tokyo Electron Ltd Device and method for forming coated film
JP2006010508A (en) 2004-06-25 2006-01-12 Konica Minolta Sensing Inc Multi-angle type colorimeter
US20110234621A1 (en) 2009-04-24 2011-09-29 E. I. Du Pont De Nemours And Company Process for generating bidirectional reflectance distribution functions of gonioapparent materials with limited measurement data
JP2012042434A (en) 2010-08-23 2012-03-01 Canon Inc Light source determination device, color processor and method therefor
JP2016186437A (en) 2015-03-27 2016-10-27 セイコーエプソン株式会社 Circuit device, physical quantity detection device, electronic apparatus, mobile body, and method for manufacturing circuit device
JP2017090060A (en) 2015-11-02 2017-05-25 ダイハツ工業株式会社 Color difference measurement method

Also Published As

Publication number Publication date
JP2020003302A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
EP2000794B1 (en) Apparatus and method for determining a spectral bi-directional appearance property of a surface
EP2130013B1 (en) Automatic selection of colorants and flakes for matching coating color and appearance
JP5039144B2 (en) Method for generating bi-directional reflection distribution function of gonio-appearance material with limited measurement data
CN104145178B (en) For the color formulas method of calculation of matt color standard
KR101922784B1 (en) Texture analysis of a coated surface using kepler's planetary motion laws
US10269173B2 (en) Layer data creation device and method, and design simulation device
US8407014B2 (en) Automatic selection of colorants and flakes for matching coating color and appearance
JP7113680B2 (en) Color difference calculation method
EP1893958B1 (en) Systems and methods for profiling and synchronizing a fleet of color measurement instruments
US6741260B2 (en) Method for color matching of bright paint
JP7261725B2 (en) Color difference measurement method
JP7054304B2 (en) Information processing method in color difference judgment
WO2016181746A1 (en) Spectroscopic color measurement device and method for calculating spectral reflectance
JP6639192B2 (en) Color difference measurement method
Takagi et al. Prediction of spectral reflectance factor distribution of automotive paint finishes
JP6393911B2 (en) Method for determining usage conditions of coloring materials
WO2006013320A1 (en) A method and apparatus for measuring lustre
JP2001242075A (en) Method and device for measuring light beam transmittance of applied matter
CN217358748U (en) Device for improving accuracy of spectral imager and spectral imaging system
JP7383792B2 (en) Method and system for robust color matching and adjustment process of effect colors
JP2012088265A (en) Method and device for measuring glossiness
Podobedov et al. Improving the performance of the nist five axis goniospectrometer for measurements of bidirectional reflectance distribution function
Brooks Quantifying Appearance for Opaque Surfaces Using Spectral Bidirectional Reflectivity
JP2006220554A (en) Method for estimating covering film thickness of paint film
WO2016181750A1 (en) Spectroscopic color measurement device and method for setting conversion rule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220726

R150 Certificate of patent or registration of utility model

Ref document number: 7113680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150