JP7109222B2 - Coated metal powder, method for producing the same, and laminate-molded article using the metal powder - Google Patents

Coated metal powder, method for producing the same, and laminate-molded article using the metal powder Download PDF

Info

Publication number
JP7109222B2
JP7109222B2 JP2018059869A JP2018059869A JP7109222B2 JP 7109222 B2 JP7109222 B2 JP 7109222B2 JP 2018059869 A JP2018059869 A JP 2018059869A JP 2018059869 A JP2018059869 A JP 2018059869A JP 7109222 B2 JP7109222 B2 JP 7109222B2
Authority
JP
Japan
Prior art keywords
metal powder
content
laminate
wtppm
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018059869A
Other languages
Japanese (ja)
Other versions
JP2019173058A (en
Inventor
裕文 渡邊
義孝 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018059869A priority Critical patent/JP7109222B2/en
Publication of JP2019173058A publication Critical patent/JP2019173058A/en
Priority to JP2022076010A priority patent/JP7317177B2/en
Application granted granted Critical
Publication of JP7109222B2 publication Critical patent/JP7109222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、被膜が形成された金属粉及びその製造方法並びに該金属粉を用いた積層造形物に関する。 TECHNICAL FIELD The present invention relates to a metal powder having a film formed thereon, a method for producing the same, and a laminate-molded article using the metal powder.

近年3Dプリンタ技術を用いて、複雑形状で造形が難しいとされる立体構造の金属部品を作製する試みが行われている。3Dプリンタは積層造形(AM)法とも呼ばれ、基板上に金属粉を薄く敷き詰めて金属粉末層を形成し、この金属粉末層に電子ビームやレーザー光を走査させて溶融、凝固させ、その上に新たな粉末を薄く敷き詰め、同様に溶融、凝固させ、これを繰り返し行うことで、複雑形状の金属造形物を作製していく方法である。 In recent years, attempts have been made to use 3D printer technology to fabricate metal parts with three-dimensional structures, which are said to be complicated and difficult to model. A 3D printer is also called an additive manufacturing (AM) method. Metal powder is spread thinly on a substrate to form a metal powder layer, which is scanned with an electron beam or laser beam to melt and solidify, and then In this method, a new powder is spread thinly on the surface, melted and solidified in the same manner, and by repeating this process, a metal model with a complicated shape is produced.

電子ビーム(EB)方式による積層造形に用いる金属粉として、たとえば、特許文献1には表面処理を施した金属粉が開示されている。具体的には、金属粉の表面にシランカップリング剤などを用いて有機被膜を形成し、それによって、予備加熱によっても部分焼結することがなく、堆積した状態で金属粉に直接、電子ビームを照射することを可能とする技術が記載されている。 As a metal powder used for layered manufacturing by an electron beam (EB) method, for example, Patent Document 1 discloses a metal powder subjected to a surface treatment. Specifically, an organic film is formed on the surface of the metal powder using a silane coupling agent or the like, thereby preventing partial sintering even by preheating, and the electron beam is applied directly to the metal powder in the deposited state. A technique is described which allows to irradiate the

特開2017-25392公報Japanese Patent Application Laid-Open No. 2017-25392

本発明の実施形態は、電子ビーム(EB)方式による積層造形において、予備加熱等による部分焼結を抑制すると共に、炭素(C)による、造形機の汚染やコンタミの発生が抑制された、被膜が形成された金属粉及びその製造方法、並びに該金属粉を用いた積層造形物を提供することを課題とする。 An embodiment of the present invention is a coating that suppresses partial sintering due to preheating and the like in layered manufacturing by the electron beam (EB) method, and suppresses the generation of contamination and contamination of the modeling machine due to carbon (C). It is an object of the present invention to provide a metal powder in which is formed, a method for producing the same, and a laminate-molded article using the metal powder.

本発明の実施形態は、
1)Siの被膜が形成された金属粉であって、Si含有量が5~500wtppm、C含有量が15wtppm未満であることを特徴とする金属粉。
2)前記金属粉の平均粒子径D50(メジアン径)が10~200μmであることを特徴とする上記1)記載の金属粉。
3)前記金属粉が、純銅又は銅合金からなることを特徴とする上記1)又は2)記載の金属粉。
4)前記銅合金が、銅に対する固溶量が0.2at%未満である合金元素を含有することを特徴とする上記3)記載の金属粉。
5)前記合金元素が、W、Zr、Nb、Y、Gd、Ho、Lu、Mo、Os、Re、Ru、Tb、Tc、Th、Tm、U、V、Rh、Hf、La、Ce、Pr、Pm、又はSmからなる群から選択される少なくとも1種であることを特徴とする上記4)記載の金属粉。
6)前記合金元素を0.1~12at%含有し、残部がCu及び不可避的不純物からなることを特徴とする上記5)記載の金属粉。
Embodiments of the present invention include:
1) A metal powder coated with Si, which has a Si content of 5 to 500 wtppm and a C content of less than 15 wtppm.
2) The metal powder according to 1) above, wherein the average particle diameter D50 (median diameter) of the metal powder is 10 to 200 μm.
3) The metal powder according to 1) or 2) above, wherein the metal powder is made of pure copper or a copper alloy.
4) The metal powder according to 3) above, wherein the copper alloy contains an alloying element whose solid solution amount in copper is less than 0.2 at%.
5) the alloying elements are W, Zr, Nb, Y, Gd, Ho, Lu, Mo, Os, Re, Ru, Tb, Tc, Th, Tm, U, V, Rh, Hf, La, Ce, Pr; , Pm, or Sm.
6) The metal powder according to 5) above, which contains 0.1 to 12 at % of the alloying element, with the balance being Cu and unavoidable impurities.

また、本発明の実施形態は、
7)上記1)~6)のいずれか一に記載の金属粉の製造方法であって、ケイ酸イオンを含む溶液に金属粉を浸漬させて、該金属粉にSiの被膜を形成して、Si含有量が5~500wtppm、C含有量が15wtppm未満の金属粉を製造することを特徴とする金属粉の製造方法。
8)ケイ酸イオンを含む溶液が、ケイ酸ナトリウム溶液、又はケイ酸カリウム溶液のいずれか1種以上であることを特徴とする上記7)記載の金属粉の製造方法。
Further, embodiments of the present invention are
7) The method for producing a metal powder according to any one of 1) to 6) above, wherein the metal powder is immersed in a solution containing silicate ions to form a Si coating on the metal powder, A method for producing a metal powder, comprising producing a metal powder having a Si content of 5 to 500 wtppm and a C content of less than 15 wtppm.
8) The method for producing metal powder according to 7) above, wherein the solution containing silicate ions is at least one of a sodium silicate solution and a potassium silicate solution.

また、本発明の実施形態は、
9)1)~6)のいずれか一に記載の金属粉を用いた、EB方式による積層造形物であって、相対密度が97%以上であることを特徴とする積層造形物。
10)導電率が70(%IACS)以上であることを特徴とする上記9)記載の積層造形物。
Further, embodiments of the present invention are
9) An EB method laminate-molded article using the metal powder according to any one of 1) to 6), wherein the laminate-molded article has a relative density of 97% or more.
10) The layered product according to 9) above, which has an electrical conductivity of 70 (%IACS) or more.

本発明の実施形態によれば、電子ビーム(EB)方式による積層造形において、予備加熱等による部分焼結を抑制することができると共に、炭素(C)による、造形機の汚染やコンタミの発生を抑制することが可能となる。 According to the embodiment of the present invention, in layered manufacturing by the electron beam (EB) method, partial sintering due to preheating or the like can be suppressed, and contamination and contamination of the modeling machine due to carbon (C) can be prevented. can be suppressed.

電子ビーム(EB)方式による積層造形で用いられる金属粉は、通常、チャージアップを抑制する等の目的で予備加熱が行われる。予備加熱は、比較的低温で行われるが、金属粉同士が部分的に焼結してしまい、複雑形状の積層造形物が適切に作製できなかったり、また、利用されずに残存した金属粉を再度利用できないという問題があった。以上のような事情から、特許文献1では、金属粉に表面処理を施すことで、予備加熱を行っても部分焼結がないようにすることが行われている。 Metal powder used in layered manufacturing by an electron beam (EB) method is usually preheated for the purpose of suppressing charge-up. Preheating is performed at a relatively low temperature. There was a problem that it could not be used again. In view of the circumstances described above, in Patent Document 1, the metal powder is subjected to a surface treatment so that partial sintering does not occur even if preheating is performed.

特許文献1には、金属粉の表面処理手段について、アミノチタネートやジアミノシランなどの有機物によって表面処理を行って、金属粉の表面に被膜を形成することが記載されている。しかしながら、このような被膜の形成は、予備加熱による部分焼結を抑制するのに有効であるものの、そのような有機被膜が形成された金属粉を用いた場合、積層造形時に真空度が低下して、EBによる加熱が不十分となったり、予期せぬコンタミが発生することがあった。 Patent Literature 1 describes a method for surface treatment of metal powder, in which surface treatment is performed with an organic substance such as aminotitanate or diaminosilane to form a coating on the surface of the metal powder. However, although the formation of such a coating is effective in suppressing partial sintering due to preheating, when metal powder having such an organic coating formed thereon is used, the degree of vacuum decreases during additive manufacturing. As a result, the EB heating may be insufficient and unexpected contamination may occur.

本発明者らは、このような問題について鋭意研究したところ、有機物を用いた表面処理を施した場合、被膜を形成する有機物が予備加熱やEB照射の熱によって分解し、それにより生じたC(炭素)が、真空度を低下させたり、コンタミの原因となっているとの知見を得た。このような事情に鑑み、本発明者らは、C(炭素)の量を低く維持したままSiの被膜を形成することで、予備加熱等による部分焼結を抑制すると共に、真空度の低下やコンタミの発生を抑制できる、金属粉を提供するものである。 As a result of intensive research on such problems, the present inventors found that when a surface treatment using an organic substance is applied, the organic substance forming the film decomposes due to the heat of preheating or EB irradiation, resulting in C ( It was found that carbon) lowers the degree of vacuum and causes contamination. In view of such circumstances, the present inventors have found that by forming a Si film while maintaining a low amount of C (carbon), partial sintering due to preheating or the like is suppressed, and the degree of vacuum is reduced. A metal powder capable of suppressing the generation of contamination is provided.

本発明の実施形態に係る金属粉は、Siの被膜が形成された金属粉であって、Si含有量が5~500wtppmであり、C含有量が15wtppm未満であることを特徴とする。金属粉の表面にSiの被膜を形成することで、予備加熱等による部分焼結を抑制することができ、複雑形状の積層物を作製が可能となる。Siの含有量は5wtppm未満の場合、部分焼結を十分に抑制することができず、Siの含有量が500wtppm超の場合、積層造形物において、その導電性が低下するため、好ましくない。 A metal powder according to an embodiment of the present invention is a metal powder coated with Si, and is characterized by having a Si content of 5 to 500 wtppm and a C content of less than 15 wtppm. By forming a film of Si on the surface of the metal powder, partial sintering due to preheating or the like can be suppressed, making it possible to produce a laminate with a complicated shape. If the Si content is less than 5 wtppm, partial sintering cannot be sufficiently suppressed, and if the Si content exceeds 500 wtppm, the electroconductivity of the laminate-molded product is lowered, which is not preferable.

本発明の実施形態において重要なことは、C含有量が15wtppm未満であることである。C含有量が15wtppm超であると、真空装置である造形機を汚染したり、予期せぬコンタミが発生したりする。さらに、金属粉からのCの脱離によって真空度が低下して、EB照射による加熱が不十分となり、積層造形物の密度が低下し、また、欠陥が生じるおそれがある。したがって、被膜が形成された金属粉において、C含有量は、15wtppm未満とする。 Importantly in embodiments of the present invention, the C content is less than 15 wtppm. If the C content exceeds 15 wtppm, the molding machine, which is a vacuum device, may be contaminated, or unexpected contamination may occur. Furthermore, the detachment of C from the metal powder lowers the degree of vacuum, making heating by EB irradiation insufficient, which may reduce the density of the laminate-molded product and cause defects. Therefore, the C content in the coated metal powder should be less than 15 wtppm.

また、本発明の実施形態において、前記金属粉の平均粒子径D50(メジアン径)を10μm以上200μm以下とすることが好ましい。平均粒子径D50を10μm以上とすることにより造形時に粉末が舞い難くなり、粉末の取り扱いが容易になる。一方、平均粒子径D50を200μ以下とすることにより、高精細な積層造形物の製造が容易となる。なお、本発明の実施形態において、平均粒子径D50とは画像分析測定された粒度分布において、積算値50%での平均粒子径を意味する。 Moreover, in the embodiment of the present invention, the average particle diameter D50 (median diameter) of the metal powder is preferably 10 μm or more and 200 μm or less. By setting the average particle diameter D50 to 10 μm or more, the powder is less likely to scatter during molding, and the handling of the powder is facilitated. On the other hand, by setting the average particle diameter D50 to 200 μm or less, it becomes easy to manufacture a high-definition laminate-molded product. In the embodiment of the present invention, the average particle size D50 means the average particle size at the integrated value of 50% in the particle size distribution measured by image analysis.

また、本発明の実施形態において、純銅(純度99.9%以上)又は銅合金からなる金属粉であることが好ましい。純銅又は銅合金は高い導電性を有する(純銅の導電率は95%IACSである)ことから、電子ビーム(EB)の吸収率が高く、効率よく溶融が可能であり、EB方式による積層造形物の作製効率を高めることができる。 Moreover, in the embodiment of the present invention, the metal powder is preferably pure copper (purity of 99.9% or more) or a copper alloy. Pure copper or copper alloys have high conductivity (the conductivity of pure copper is 95% IACS), so they have a high absorption rate of electron beams (EB) and can be melted efficiently, and laminate-molded products by the EB method production efficiency can be increased.

前記銅合金は、銅に対する固溶量が0.2at%未満である合金元素を含有することが好ましい。前述の通り、銅は高い導電率を有するものであるが、合金元素が固溶すると、その優れた導電性を維持できないという問題がある。したがって、合金元素として用いる材料としては、銅に固溶しないか、或いは、固溶し難い材料を選択する。ここで、銅に対する固溶量は、金属元素の固有の性質であり、一般的に相図と呼ばれる二つの元素の温度に対する相関係を示す図から材料を抽出することができる。本発明の実施形態は、相図において、銅側の固溶量を参照して液相以下の温度で最大の固溶量が0.2at%以下の金属材料を用いる。 The copper alloy preferably contains an alloying element having a solid solution amount in copper of less than 0.2 at %. As described above, copper has a high electrical conductivity, but there is a problem that the excellent electrical conductivity cannot be maintained when an alloying element is solid-dissolved. Therefore, as a material to be used as an alloying element, a material that does not dissolve in copper or hardly dissolves in copper is selected. Here, the amount of solid solution in copper is an inherent property of a metal element, and the material can be extracted from a diagram generally called a phase diagram, which shows the phase relationship of two elements with respect to temperature. The embodiment of the present invention uses a metal material having a maximum solid solution amount of 0.2 at % or less at a temperature below the liquid phase with reference to the solid solution amount on the copper side in the phase diagram.

前記の銅に対する固溶量が0.2at%以下の金属材料として、Gd、Ho、Lu、Mo、Nb、Os、Re、Ru、Tb、Tc、Th、Tm、U、V、W、Y、Zr、Cr、Rh、Hf、La、Ce、Pr、Nd、Pm、Smのいずれか一種以上を用いることが好ましい。 As the metal material having a solid solution amount of 0.2 at % or less with respect to copper, Gd, Ho, Lu, Mo, Nb, Os, Re, Ru, Tb, Tc, Th, Tm, U, V, W, Y, It is preferable to use at least one of Zr, Cr, Rh, Hf, La, Ce, Pr, Nd, Pm and Sm.

また、前記銅合金は、前記合金元素を0.1~12at%含有し、残部がCu及び不可避的不純物からなることが好ましい。合金化することにより導電率は低下するものの、力学特性(引張強度など)が向上する。合金元素を0.1at%以上とすることにより、力学特性の向上といった合金元素の機能を十分に発揮させることができ、一方、12at%以下とすることにより、銅合金の導電率を高く維持することができる。用途として求められる特性によって、純銅あるいは銅合金を使い分けることが好ましい。 Also, the copper alloy preferably contains 0.1 to 12 at % of the alloying elements, with the balance being Cu and unavoidable impurities. Alloying reduces electrical conductivity, but improves mechanical properties (tensile strength, etc.). By setting the content of the alloying element to 0.1 at% or more, the function of the alloying element such as improvement of mechanical properties can be sufficiently exhibited, while by setting the content to 12 at% or less, the electrical conductivity of the copper alloy can be maintained at a high level. be able to. It is preferable to selectively use pure copper or a copper alloy depending on the properties required for the application.

本発明の他の実施形態は、上述の金属粉を用いたEB方式による積層造形物であって、相対密度が97%以上であることを特徴とする積層造形物である。本発明の実施形態に係る金属粉を用いることで、相対密度が97%以上と、欠陥の少ない積層造形物を作製することができる。さらに、本発明の実施形態に係る金属粉を用いた場合には、導電率が70(%IACS)以上と、高い導電率を有する積層造形物を作製することができる。 Another embodiment of the present invention is a laminate-molded article by the EB method using the metal powder described above, wherein the laminate-molded article has a relative density of 97% or more. By using the metal powder according to the embodiment of the present invention, it is possible to produce a laminate-molded article with a relative density of 97% or more and few defects. Furthermore, when the metal powder according to the embodiment of the present invention is used, a laminate-molded article having a high electrical conductivity of 70 (%IACS) or more can be produced.

次に、本発明の実施形態に係る金属粉の製造方法について、説明する。
まず、必要量の金属粉(例えば、純銅又は銅合金)を準備する。金属粉は、平均粒子径D50(メジアン径)が10~200μmのものを用いることが好ましい。平均粒子径は、篩別することで目標とする粒度のものを得ることができる。金属粉は、アトマイズ法を用いて作製することができるが、本発明の実施形態に係る金属粉は、他の方法で作製されたものでもよく、これに限定されるものではない。
Next, a method for producing metal powder according to an embodiment of the present invention will be described.
First, a required amount of metal powder (for example, pure copper or copper alloy) is prepared. It is preferable to use metal powder having an average particle diameter D50 (median diameter) of 10 to 200 μm. A target average particle size can be obtained by sieving. Metal powder can be produced using an atomizing method, but the metal powder according to the embodiment of the present invention may be produced by other methods, and is not limited to this.

次に、金属粉に前処理を行う。金属粉には通常、自然酸化膜が形成されているため、目的とするシロキサン結合が形成され難いことがある。したがって、事前にこの酸化膜を除去しておくことが好ましい。除去方法としては、例えば、銅粉末の場合、希硫酸水溶液に銅粉を浸漬することで自然酸化膜を除去することができる。但し、この前処理は金属粉に自然酸化膜が形成されている場合にする処理であって、全ての金属粉に対してこの前処理を施す必要はない。 Next, the metal powder is pretreated. Since the metal powder usually has a natural oxide film formed thereon, it may be difficult to form the intended siloxane bond. Therefore, it is preferable to remove this oxide film in advance. As a removal method, for example, in the case of copper powder, the natural oxide film can be removed by immersing the copper powder in a diluted sulfuric acid aqueous solution. However, this pretreatment is a treatment performed when a natural oxide film is formed on the metal powder, and it is not necessary to apply this pretreatment to all metal powder.

次に、金属粉の表面にシロキサン結合を形成するために、ケイ酸イオンを含む溶液に前記金属粉を浸漬させる。溶液の温度は10~40℃とするのが好ましく、浸漬時間は目的とするSi含有量を合わせて調整する。上記のケイ酸イオンを含む溶液としては、ケイ酸ナトリウム溶液、ケイ酸カリウム溶液等が挙げられる。この溶液を純水で希釈した1~30%の水溶液を用いることができるが、溶液の濃度は、目的とするSi含有量に合わせて調整するのが好ましい。浸漬処理後は、吸引濾過し、それを加熱乾燥させることで、所望のSi被膜が形成された金属粉を得ることができる。 Next, in order to form siloxane bonds on the surface of the metal powder, the metal powder is immersed in a solution containing silicate ions. The temperature of the solution is preferably 10 to 40° C., and the immersion time is adjusted according to the desired Si content. Examples of the solution containing silicate ions include a sodium silicate solution and a potassium silicate solution. A 1 to 30% aqueous solution obtained by diluting this solution with pure water can be used, but the concentration of the solution is preferably adjusted according to the desired Si content. After the immersion treatment, the metal powder having the desired Si film formed thereon can be obtained by performing suction filtration and drying by heating.

実施例や比較例を含め、本発明の実施形態に係る評価方法等は、以下の通りとした。 Evaluation methods and the like according to embodiments of the present invention, including examples and comparative examples, were as follows.

(平均粒子径D50について)
平均粒子径D50(体積基準)は、以下の装置及び条件で測定した。
メーカー:スペクトリス株式会社(マルバーン事業部)
装置名:乾式粒子画像分析装置 Morphologi G3
測定条件:
粒子導入量:11mm
射出圧:0.8bar
測定粒径範囲:3.5-210μm
測定粒子数:20000個
(Regarding average particle size D50)
The average particle diameter D50 (by volume) was measured using the following apparatus and conditions.
Manufacturer: Spectris Co., Ltd. (Malvern Division)
Device name: Dry particle image analyzer Morphologi G3
Measurement condition:
Particle introduction amount: 11 mm 3
Injection pressure: 0.8bar
Measurement particle size range: 3.5-210 μm
Number of particles measured: 20000

(Si含有量について)
メーカー:SII社製
装置名:SPS3500DD
分析法:ICP-OES(高周波誘導結合プラズマ発光分析法)
(About Si content)
Manufacturer: SII Device name: SPS3500DD
Analysis method: ICP-OES (High Frequency Inductively Coupled Plasma Emission Spectrometry)

(C含有量について)
メーカー:LECO社製
装置名:TCH600
分析法:不活性ガス融解法
(About C content)
Manufacturer: LECO Device name: TCH600
Analysis method: Inert gas fusion method

(焼結抑制効果の検証について)
加熱により焼結が進行した粉は、粉末同士が結合してサイズが大きくなるため、所定サイズの篩を通ることができない。したがって、篩を通ることができれば、加熱による焼結抑制効果の発現があると判断した。その検証として、φ50mmのアルミナ坩堝に50gの金属粉を入れ、真空度1×10-3Pa以下の雰囲気で、500℃、4時間、加熱し、加熱後の金属粉が目開き250μmの篩を通過するかどうかを確認し、通過したものを〇、通過しなかったものを×、と判定した。
(Verification of sintering suppression effect)
The powder that has been sintered by heating has a larger size due to bonding between powders, and cannot pass through a sieve of a predetermined size. Therefore, it was determined that if the material could pass through the sieve, the effect of suppressing sintering due to heating was exhibited. As a verification, 50 g of metal powder was placed in a φ50 mm alumina crucible and heated at 500 ° C. for 4 hours in an atmosphere with a degree of vacuum of 1 × 10 -3 Pa or less. It was checked whether or not they passed, and those that passed were judged as 〇, and those that did not pass were judged as ×.

(Cによる汚染の検証)
C(炭素)の多い金属粉では、真空中で加熱したとき、表面に付着するCが分解して、装置内に飛散するため、真空度が一時的に低下する。低い真空度では、EB(電子ビーム)による加熱が不十分になり、積層造形物に欠陥が生じることにもつながる。Cによる汚染の検証として、造形時に真空度(1×10-3Pa)が変化しなかったものを〇、真空度が5×10-3Paよりも悪くなったものを×、と判定した。
(Verification of contamination by C)
When metal powder containing a large amount of C (carbon) is heated in a vacuum, the C adhering to the surface decomposes and scatters in the apparatus, resulting in a temporary decrease in the degree of vacuum. At a low degree of vacuum, heating by EB (electron beam) becomes insufficient, which leads to defects in the laminate-molded article. As a verification of contamination by C, a case where the degree of vacuum (1×10 −3 Pa) did not change during molding was judged as ◯, and a case where the degree of vacuum became worse than 5×10 −3 Pa was judged as ×.

(相対密度について)
積層造形物からサンプルを20mm四方で切り出し、アルキメデス法にて測定密度を算出した。そして、見掛け密度を理論密度で除して100倍したものを相対密度とした。金属粉として銅合金を用いた場合、合金の成分組成を考慮して理論密度を算出することとした。例えば、W(タングステン)を5.0wt%含有する銅合金の場合、{(Cuの理論密度×95)+(Wの理論密度×5)}/100として、算出する。
(Regarding relative density)
A 20 mm square sample was cut out from the laminate-molded product, and the measured density was calculated by the Archimedes method. The apparent density was divided by the theoretical density and multiplied by 100 to obtain the relative density. When a copper alloy was used as the metal powder, the theoretical density was calculated in consideration of the composition of the alloy. For example, in the case of a copper alloy containing 5.0 wt % of W (tungsten), it is calculated as {(theoretical density of Cu×95)+(theoretical density of W×5)}/100.

(導電率について)
積層造形物からサンプルを200mm四方で切り出して、市販の渦電流式導電率計で導電率を測定した。
(Conductivity)
A 200 mm square sample was cut out from the laminate-molded product, and the conductivity was measured with a commercially available eddy current conductivity meter.

以下、実施例及び比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例により何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。 Hereinafter, description will be made based on examples and comparative examples. It should be noted that this embodiment is merely an example, and the present invention is not limited by this example. That is, the present invention is limited only by the scope of the claims, and includes various modifications other than the examples included in the present invention.

(実施例1-12:純銅粉)
金属粉として、アトマイズ法で作製した平均粒子径(D50)65μm程度の純銅(純度99.9%以上)粉を準備した後、この純銅粉を希硫酸水溶液に浸漬して、表面の自然酸化膜を除去した。
(Example 1-12: Pure copper powder)
As metal powder, after preparing pure copper (99.9% or more purity) powder with an average particle size (D50) of about 65 μm produced by atomization, this pure copper powder is immersed in a dilute sulfuric acid aqueous solution to form a natural oxide film on the surface. removed.

次に、純水で希釈した濃度4%のケイ酸ナトリウム水溶液(実施例1-5)、及びケイ酸カリウム水溶液(実施例6-10)、を用意し、これらの水溶液に純銅粉を浸漬して、所望量のSi被膜を形成した。なお、水溶液の温度は20~30℃とし、浸漬時間を変化させてSi量を制御した。浸漬後、吸引濾過を施した後、80℃、15時間、加熱して乾燥させた。 Next, a 4% sodium silicate aqueous solution (Examples 1-5) and a potassium silicate aqueous solution (Examples 6-10) diluted with pure water were prepared, and the pure copper powder was immersed in these aqueous solutions. to form a desired amount of Si film. The temperature of the aqueous solution was set at 20 to 30° C., and the amount of Si was controlled by changing the immersion time. After being immersed, it was filtered by suction, and then dried by heating at 80° C. for 15 hours.

以上の処理によりSiの被膜が形成された純銅粉の、Si含有量とC含有量をまとめたものを表1に示す。表1の通り、Si含有量を増加させても、C含有量が増加していないことが分かる。また、これら実施例の純銅粉について、上記「焼結抑制効果の検証」及び「Cによる汚染の検証」を行った結果、いずれも良好な結果(〇)であった。 Table 1 shows a summary of the Si content and C content of the pure copper powder on which the Si film was formed by the above treatment. As shown in Table 1, even if the Si content is increased, the C content is not increased. Moreover, as a result of performing the above-mentioned "verification of sintering suppression effect" and "verification of contamination by C" for the pure copper powders of these examples, both were good results (◯).

次に、上記実施例に係る純銅粉を用いて、電子ビーム(EB)方式により積層造形物を作製し、それぞれについて、上述の方法にて、相対密度(%)と導電率(%IACS)を測定した。その結果、いずれの実施例においても、相対密度が97%以上であり、また、導電率が70%IACSと良好な結果を示した。以上の結果を表1に示す。 Next, using the pure copper powder according to the above example, a laminate-molded article was produced by an electron beam (EB) method, and the relative density (%) and conductivity (%IACS) were measured for each by the above-described method. It was measured. As a result, the relative density was 97% or more and the electrical conductivity was 70% IACS, which were good results in any of the examples. Table 1 shows the above results.

(実施例11-41:銅合金粉)
金属粉として、アトマイズ法で作製した平均粒子径(D50)65μm程度の銅合金粉を準備した後、これらの銅合金粉をそれぞれ希硫酸水溶液に浸漬して、表面の自然酸化膜を除去した。なお、銅合金の種類は、表1に示す通りである。次に、純水で希釈した濃度4%のケイ酸ナトリウム水溶液に、それぞれの銅合金粉を浸漬して、所望量のSi被膜を形成した。なお、水溶液の温度は20~30℃とし、浸漬時間は1時間とした。浸漬後、吸引濾過を施した後、80℃、15時間、加熱して乾燥させた。
(Example 11-41: Copper alloy powder)
Copper alloy powders having an average particle size (D50) of about 65 μm produced by atomization were prepared as metal powders, and then each of these copper alloy powders was immersed in a dilute sulfuric acid aqueous solution to remove the natural oxide film on the surface. The types of copper alloys are as shown in Table 1. Next, each copper alloy powder was immersed in a 4% sodium silicate aqueous solution diluted with pure water to form a desired amount of Si film. The temperature of the aqueous solution was 20 to 30° C., and the immersion time was 1 hour. After being immersed, it was filtered by suction, and then dried by heating at 80° C. for 15 hours.

以上の処理によってSiの被膜が形成された銅合金粉の、Si含有量とC含有量をまとめたものを表1に示す。そして、これら実施例の銅合金粉について、上記「焼結抑制効果の検証」及び「Cによる汚染の検証」を行った結果、いずれの実施例においても、良好な結果(〇)であった。 Table 1 shows a summary of the Si content and C content of the copper alloy powder on which the Si film was formed by the above treatment. As a result of performing the above-mentioned "verification of sintering suppression effect" and "verification of contamination by C" for the copper alloy powders of these examples, good results (◯) were obtained in all the examples.

次に、上記実施例に係る銅合金粉を用いて、電子ビーム(EB)方式により積層造形物を作製し、それぞれについて、上述の方法にて、相対密度(%)と導電率(%IACS)を測定した。その結果、いずれの実施例においても、相対密度が97%以上であり、また、導電率が70%IACSと良好な結果を示した。以上の結果を表1に示す。 Next, using the copper alloy powder according to the above example, a laminate-molded article is produced by an electron beam (EB) method, and the relative density (%) and conductivity (%IACS) are measured for each by the above-described method. was measured. As a result, the relative density was 97% or more and the electrical conductivity was 70% IACS, which were good results in all the examples. Table 1 shows the above results.

(比較例1:未処理粉)
実施例1で用いた純銅粉について、表面処理を行わないものを比較例1とした。これについて、上記「焼結抑制効果の検証」及び「Cによる汚染の検証」を行った結果、焼結作用によって、金属粉のサイズが大きくなっていることが確認された。つまり、Siの被膜が形成されていない場合には、予備加熱等による焼結抑制効果がないことが分かる。
(Comparative Example 1: Untreated powder)
The pure copper powder used in Example 1 was used as Comparative Example 1 without surface treatment. As a result of the above "verification of sintering suppression effect" and "verification of contamination by C", it was confirmed that the size of the metal powder was increased by the sintering action. In other words, it can be seen that when the Si film is not formed, there is no effect of suppressing sintering by preheating or the like.

(比較例2-4:有機表面処理)
金属粉として、アトマイズ法で作製した平均粒子径(D50)100μmの純銅(純度99.9%以上)粉を準備した後、この純銅粉を希硫酸水溶液に浸漬して、表面の自然酸化膜を除去した。次に、濃度0.5%、1%、5%のジアミノシランカップリング剤水溶液を用意し、この水溶液に金属粉を浸漬して、所望量のSi被膜を形成した。なお、水溶液の温度は20~30℃とし、濃度を調整することでSi量を制御した。浸漬後、吸引濾過を施した後、80℃、15時間、加熱して乾燥させた。
(Comparative Example 2-4: Organic surface treatment)
As the metal powder, after preparing pure copper (99.9% or more purity) powder with an average particle size (D50) of 100 μm produced by the atomization method, this pure copper powder is immersed in a dilute sulfuric acid aqueous solution to remove the natural oxide film on the surface. Removed. Next, diaminosilane coupling agent aqueous solutions with concentrations of 0.5%, 1%, and 5% were prepared, and metal powder was immersed in these aqueous solutions to form a desired amount of Si film. The temperature of the aqueous solution was set at 20 to 30° C., and the amount of Si was controlled by adjusting the concentration. After being immersed, it was filtered by suction, and then dried by heating at 80° C. for 15 hours.

以上の処理によりSiの被膜が形成された純銅粉の、Si含有量とC含有量をまとめたものを表1に示す。表1の通り、Si含有量を増加するに伴い、C含有量が増加していることが分かる。また、これら比較例の純銅粉について、上記「焼結抑制効果の検証」及び「Cによる汚染の検証」を行った結果、比較例2(Si含有量が2wtppm)は、Si含有量が十分でなく、焼結抑制の効果が得られなかった(×)。一方、比較例3、4(C含有量がそれぞれ15wtppm、120wtppm)は、焼結抑制効果は発現するものの、Cの脱離によると思われる真空度の変化が見られた。 Table 1 shows a summary of the Si content and C content of the pure copper powder on which the Si film was formed by the above treatment. As shown in Table 1, it can be seen that the C content increases as the Si content increases. In addition, as a result of the above "verification of sintering suppression effect" and "verification of contamination by C" for the pure copper powders of these comparative examples, Comparative Example 2 (Si content is 2 wtppm) has a sufficient Si content. The effect of suppressing sintering was not obtained (×). On the other hand, in Comparative Examples 3 and 4 (the C content was 15 wtppm and 120 wtppm, respectively), although the effect of suppressing sintering was exhibited, a change in the degree of vacuum was observed, which was thought to be due to desorption of C.

(比較例5-6:無機表面処理)
金属粉として、アトマイズ法で作製した平均粒子径(D50)65μm程度の純銅(純度99.9%以上)粉を準備した後、この純銅粉を希硫酸水溶液に浸漬して、表面の自然酸化膜を除去した。
(Comparative Example 5-6: Inorganic surface treatment)
As metal powder, after preparing pure copper (99.9% or more purity) powder with an average particle size (D50) of about 65 μm produced by atomization, this pure copper powder is immersed in a dilute sulfuric acid aqueous solution to form a natural oxide film on the surface. removed.

次に、純水で希釈した濃度4%のケイ酸ナトリウム水溶液を用意し、これらの水溶液に純銅粉を浸漬し、浸漬時間を変化させて、所定量のSi被膜を形成した。Si含有量は、それぞれ4wtppm(比較例5)、650wtppm(比較例6)であった。なお、水溶液の温度は、20~30℃とした。浸漬後は、吸引濾過を施した後、80℃、15時間、加熱して乾燥させた。 Next, 4% sodium silicate aqueous solutions diluted with pure water were prepared, pure copper powder was immersed in these aqueous solutions, and the immersion time was varied to form a predetermined amount of Si film. The Si content was 4 wtppm (Comparative Example 5) and 650 wtppm (Comparative Example 6), respectively. The temperature of the aqueous solution was 20-30°C. After the immersion, it was subjected to suction filtration and then dried by heating at 80° C. for 15 hours.

これら比較例の純銅粉について、上記「焼結抑制効果の検証」及び「Cによる汚染の検証」を行った結果、比較例5(Si含有量が2wtppm)は、Si含有量が十分でなく、焼結抑制の効果が得られなかった(×)。 As a result of the above "verification of sintering suppression effect" and "verification of contamination by C" for the pure copper powders of these comparative examples, Comparative Example 5 (Si content is 2 wtppm) has an insufficient Si content, No effect of suppressing sintering was obtained (x).

次に、上記比較例に係る純銅粉を用いて、電子ビーム(EB)方式により積層造形物を作製し、それぞれについて、上述の方法にて、相対密度(%)と導電率(%IACS)を測定した。その結果、比較例6(Si含有量が650wtppm)の積層造形物については、導電性(%IACS)が低下した。 Next, using the pure copper powder according to the comparative example, a laminate-molded article was produced by an electron beam (EB) method, and the relative density (%) and conductivity (%IACS) were measured for each by the above-described method. It was measured. As a result, the electroconductivity (%IACS) of the laminate-molded product of Comparative Example 6 (Si content of 650 wtppm) decreased.

Figure 0007109222000001
Figure 0007109222000001

本発明の実施形態によれば、電子ビーム(EB)方式による積層造形において、予備加熱等による部分焼結を抑制することができると共に、炭素(C)による、造形機の汚染やコンタミの発生を抑制することが可能となる。これにより、複雑形状の積層造形物を作製することができ、さらに、金属粉末層を形成するものの、電子ビームが照射されずに残存した場合であっても、再度利用することができるという優れた効果を有する。本発明の実施形態に係る金属粉は、金属3Dプリンタ用の金属粉として特に有用である。 According to the embodiment of the present invention, in layered manufacturing by the electron beam (EB) method, partial sintering due to preheating or the like can be suppressed, and contamination and contamination of the modeling machine due to carbon (C) can be prevented. can be suppressed. As a result, it is possible to produce a laminate-molded article with a complicated shape, and furthermore, although the metal powder layer is formed, even if it remains without being irradiated with the electron beam, it is excellent in that it can be reused. have an effect. Metal powders according to embodiments of the present invention are particularly useful as metal powders for metal 3D printers.

Claims (4)

Siの被膜が形成された金属粉であって、Si含有量が5~500wtppm、C含有量が15wtppm未満であり、前記金属粉が銅合金からなり、前記合金元素が、W、Zr、Nb、Y、Gd、Ho、Lu、Mo、Os、Re、Ru、Tb、Tc、Th、Tm、U、V、Rh、Hf、La、Ce、Pr、Pm、及びSmからなる群から選択される少なくとも1種であり、前記金属粉の平均粒子径D50(メジアン径)が10~200μmであることを特徴とする積層造形用金属粉。 A metal powder coated with Si, wherein the Si content is 5 to 500 wtppm and the C content is less than 15 wtppm, the metal powder is made of a copper alloy , and the alloy elements are W, Zr, Nb, Y, Gd, Ho, Lu, Mo, Os, Re, Ru, Tb, Tc, Th, Tm, U, V, Rh, Hf, La, Ce, Pr, Pm, and at least selected from the group consisting of Sm 1, and the average particle diameter D50 (median diameter) of the metal powder is 10 to 200 μm. 前記合金元素を0.1~12at%含有し、残部がCu及び不可避的不純物からなることを特徴とする請求項1記載の積層造形用金属粉。 2. The metal powder for additive manufacturing according to claim 1 , containing 0.1 to 12 at % of said alloying element, with the balance being Cu and unavoidable impurities. 請求項1又は2に記載の金属粉の製造方法であって、ケイ酸イオンを含む溶液に金属粉を浸漬させて、該金属粉にSiの被膜を形成して、Si含有量が5~500wtppm、C含有量が15wtppm未満の金属粉を製造することを特徴とする積層造形用金属粉の製造方法。 3. The method for producing a metal powder according to claim 1 or 2 , wherein the metal powder is immersed in a solution containing silicate ions to form a Si film on the metal powder so that the Si content is 5 to 500 wtppm. , a method for producing a metal powder for additive manufacturing, which comprises producing a metal powder having a C content of less than 15 wtppm. ケイ酸イオンを含む溶液が、ケイ酸ナトリウム溶液及び/又はケイ酸カリウム溶液であることを特徴とする請求項3記載の積層造形用金属粉の製造方法。 4. The method for producing metal powder for additive manufacturing according to claim 3 , wherein the solution containing silicate ions is a sodium silicate solution and/or a potassium silicate solution.
JP2018059869A 2018-03-27 2018-03-27 Coated metal powder, method for producing the same, and laminate-molded article using the metal powder Active JP7109222B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018059869A JP7109222B2 (en) 2018-03-27 2018-03-27 Coated metal powder, method for producing the same, and laminate-molded article using the metal powder
JP2022076010A JP7317177B2 (en) 2018-03-27 2022-05-02 Coated metal powder, method for producing the same, and laminate-molded article using the metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018059869A JP7109222B2 (en) 2018-03-27 2018-03-27 Coated metal powder, method for producing the same, and laminate-molded article using the metal powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022076010A Division JP7317177B2 (en) 2018-03-27 2022-05-02 Coated metal powder, method for producing the same, and laminate-molded article using the metal powder

Publications (2)

Publication Number Publication Date
JP2019173058A JP2019173058A (en) 2019-10-10
JP7109222B2 true JP7109222B2 (en) 2022-07-29

Family

ID=68166502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018059869A Active JP7109222B2 (en) 2018-03-27 2018-03-27 Coated metal powder, method for producing the same, and laminate-molded article using the metal powder

Country Status (1)

Country Link
JP (1) JP7109222B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6722838B1 (en) * 2018-12-27 2020-07-15 Jx金属株式会社 Pure copper powder having Si coating, method for producing the same, and layered model using the pure copper powder
KR102330100B1 (en) * 2018-12-27 2021-12-01 제이엑스금속주식회사 Method for manufacturing a laminated object using pure copper powder having a Si film
JP2021098887A (en) * 2019-12-20 2021-07-01 Jx金属株式会社 Metal powder for lamination molding, and lamination molding made using the metal powder
TWI765758B (en) * 2020-06-26 2022-05-21 日商Jx金屬股份有限公司 Copper alloy powder with Si coating and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345201A (en) 1999-05-31 2000-12-12 Mitsui Mining & Smelting Co Ltd Composite copper fine powder and its production
US6679937B1 (en) 1997-02-24 2004-01-20 Cabot Corporation Copper powders methods for producing powders and devices fabricated from same
JP2004217952A (en) 2003-01-09 2004-08-05 Mitsui Mining & Smelting Co Ltd Surface-treated copper powder, method for manufacturing surface-treated copper powder, and electroconductive paste using the surface-treated copper powder
JP2017036508A (en) 2016-09-23 2017-02-16 株式会社ダイヘン Metal powder, manufacturing method of laminate molded article and laminate molded article
WO2017217302A1 (en) 2016-06-14 2017-12-21 コニカミノルタ株式会社 Powder material, method for manufacturing powder material, method for manufacturing solid model, and solid modeling apparatus

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332903A (en) * 1986-07-25 1988-02-12 Kanegafuchi Chem Ind Co Ltd Flame-retardant bonded magnet
US4177089A (en) * 1976-04-27 1979-12-04 The Arnold Engineering Company Magnetic particles and compacts thereof
JPS58161725A (en) * 1982-03-20 1983-09-26 Hitachi Maxell Ltd Production of magnetic metallic iron powder
JPS58161708A (en) * 1982-03-20 1983-09-26 Hitachi Maxell Ltd Production of magnetic metallic iron powder
JPH0913102A (en) * 1995-06-29 1997-01-14 Nippon Tungsten Co Ltd Metallic particle sintered compact with diffusion preventing film and its production
JP3737617B2 (en) * 1997-10-30 2006-01-18 日鉄鉱業株式会社 Method for producing film-coated powder
JP3725712B2 (en) * 1998-10-28 2005-12-14 日鉄鉱業株式会社 Method for producing film-coated powder
JP3719492B2 (en) * 1999-02-26 2005-11-24 日亜化学工業株式会社 Rare earth magnetic powder, surface treatment method thereof, and rare earth bonded magnet using the same
JP4480884B2 (en) * 1999-12-22 2010-06-16 三井金属鉱業株式会社 Method for producing surface-modified silver powder
JP3740552B2 (en) * 2001-04-27 2006-02-01 Tdk株式会社 Magnet manufacturing method
CN1206065C (en) * 2003-06-27 2005-06-15 南京大学 High magnetization intensity and stability iron nanometer particle with SiO coated on surface and preparing method thereof
JP4561988B2 (en) * 2005-04-07 2010-10-13 戸田工業株式会社 Method for producing soft magnetic metal powder for soft magnetic metal dust core, and soft magnetic metal dust core
JP2007254768A (en) * 2006-03-20 2007-10-04 Aisin Seiki Co Ltd Soft magnetic powder material, its production method, soft magnetic compact and its production method
JP5381220B2 (en) * 2009-03-25 2014-01-08 セイコーエプソン株式会社 Insulator-coated soft magnetic powder, dust core and magnetic element
JP5361784B2 (en) * 2010-04-15 2013-12-04 日本マテリアル株式会社 Method for protecting metallic calcium and protected metallic calcium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679937B1 (en) 1997-02-24 2004-01-20 Cabot Corporation Copper powders methods for producing powders and devices fabricated from same
JP2000345201A (en) 1999-05-31 2000-12-12 Mitsui Mining & Smelting Co Ltd Composite copper fine powder and its production
JP2004217952A (en) 2003-01-09 2004-08-05 Mitsui Mining & Smelting Co Ltd Surface-treated copper powder, method for manufacturing surface-treated copper powder, and electroconductive paste using the surface-treated copper powder
WO2017217302A1 (en) 2016-06-14 2017-12-21 コニカミノルタ株式会社 Powder material, method for manufacturing powder material, method for manufacturing solid model, and solid modeling apparatus
JP2017036508A (en) 2016-09-23 2017-02-16 株式会社ダイヘン Metal powder, manufacturing method of laminate molded article and laminate molded article

Also Published As

Publication number Publication date
JP2019173058A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP7109222B2 (en) Coated metal powder, method for producing the same, and laminate-molded article using the metal powder
JP7377324B2 (en) Copper powder, method for manufacturing a stereolithographic object using the same, and stereolithographic object using copper
CN109843479A (en) Metal increasing material manufacturing metal powder and the molding made using the metal powder
US11377358B2 (en) Method for producing porous carbon material
JP2014224296A (en) Metal paste for bonding
JP6001578B2 (en) Method for producing core / shell type nanoparticles and method for producing sintered body using the method
JP7317177B2 (en) Coated metal powder, method for producing the same, and laminate-molded article using the metal powder
JP2019108587A (en) Metal powder and method for producing the same, and lamination-molded article and method for producing the same
JP6626572B2 (en) Metal bonding material, method of manufacturing the same, and method of manufacturing metal bonded body using the same
KR102330100B1 (en) Method for manufacturing a laminated object using pure copper powder having a Si film
JP7086514B2 (en) Cobalt or cobalt-based alloy sputtering target and its manufacturing method
TWI726557B (en) Pure copper powder with Si film and its manufacturing method
KR102023711B1 (en) A silver nano powder of high purity
KR102017177B1 (en) A method for preparing high-purity silver nano powder using wet process
TW201704482A (en) Cu-Ga alloy sputtering target, and method for producing Cu-Ga alloy sputtering target
JP2008095183A (en) Oxide-coated copper fine particle and method for producing the same
JP2021529885A (en) Use of highly reflective metal powders in additional manufacturing
TW201416457A (en) Manufacturing method of high purity Au powder using drying method
JP7377337B2 (en) Copper alloy powder with Si coating and method for producing the same
EP3892400A1 (en) Copper powder for 3d printing, method for producing copper powder for 3d printing, method for producing 3d printed article, and 3d printed article
US20210387255A1 (en) Copper powder for 3d printing, method for producing copper powder for 3d printing, method for producing 3d printed article, and 3d printed article
JP5440647B2 (en) Oxide coated nickel fine particles
JP2021134423A (en) Copper alloy powder for laminated molding, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220719

R150 Certificate of patent or registration of utility model

Ref document number: 7109222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150