JP7104492B2 - Magnetic refrigeration work material - Google Patents

Magnetic refrigeration work material Download PDF

Info

Publication number
JP7104492B2
JP7104492B2 JP2016178588A JP2016178588A JP7104492B2 JP 7104492 B2 JP7104492 B2 JP 7104492B2 JP 2016178588 A JP2016178588 A JP 2016178588A JP 2016178588 A JP2016178588 A JP 2016178588A JP 7104492 B2 JP7104492 B2 JP 7104492B2
Authority
JP
Japan
Prior art keywords
magnetic refrigeration
refrigeration work
magnetic
composition
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016178588A
Other languages
Japanese (ja)
Other versions
JP2018046102A (en
Inventor
直也 森岡
裕彰 藏
麻哉 藤田
公洋 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Denso Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Denso Corp
Priority to JP2016178588A priority Critical patent/JP7104492B2/en
Publication of JP2018046102A publication Critical patent/JP2018046102A/en
Application granted granted Critical
Publication of JP7104492B2 publication Critical patent/JP7104492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁気熱量効果を発現する磁気冷凍作業物質に関する。 The present invention relates to a magnetic refrigeration working substance that exhibits a magnetic calorific value effect.

La(FeSi)13系磁気冷凍作業物質は、比較的、エントロピー変化量ΔSが大きく、磁気ヒートポンプ用材料として期待されている。La(FeSi)13系材料のキュリー温度を制御する手法としては、水素吸蔵による制御と元素の置換による制御とが知られている。例えば、特許文献1では、セリウム、マンガンにより元素を複合的に置換する技術が提案されている。 The La (FeSi) 13 -based magnetic refrigeration work material has a relatively large entropy change amount ΔS, and is expected as a material for a magnetic heat pump. As a method for controlling the Curie temperature of the La (FeSi) 13 -based material, control by hydrogen storage and control by element substitution are known. For example, Patent Document 1 proposes a technique for complexly substituting elements with cerium and manganese.

特表2015-517023号公報Japanese Patent Application Laid-Open No. 2015-517823

0℃近傍にキュリー温度を設定したい場合、特許文献1の技術では、ΔSが大きく減少してしまうという問題があった。
本開示は、磁気冷凍作業物質の磁気エントロピー変化量の減少を抑制する技術を提供する。
When it is desired to set the Curie temperature in the vicinity of 0 ° C., the technique of Patent Document 1 has a problem that ΔS is greatly reduced.
The present disclosure provides a technique for suppressing a decrease in the amount of change in magnetic entropy of a magnetic refrigeration work substance.

本開示の第1の態様は、La1-xCe(Fe1-y-zMnSi13で示される磁気冷凍作業物質であって、n≧1.5であり、La、Ce、Mn、及びSiの組成ムラを示す3σが1%以下である、磁気冷凍作業物質である。 The first aspect of the present disclosure is a magnetic refrigeration working material represented by La 1-x Cex (Fe 1-yz Mn y Si z ) 13 H n , where n ≧ 1.5 and La. , Ce, Mn, and Si, which is a magnetic refrigeration work substance having 3σ of 1% or less, which indicates uneven composition.

このような構成によれば、セリウムやマンガンにより元素を置換してキュリー温度を調整した場合であっても、磁気熱量効果による磁気エントロピー変化量が減少してしまうこと抑制することができる。また水素の吸蔵量を高めることで磁気熱量効果の経時劣化を抑制することができる。 According to such a configuration, even when the Curie temperature is adjusted by substituting the elements with cerium or manganese, it is possible to suppress the decrease in the amount of change in magnetic entropy due to the magnetic calorific value effect. Further, by increasing the occluded amount of hydrogen, it is possible to suppress the deterioration of the magnetic calorific value effect with time.

実施例1~3の試験片のΔSmの温度依存性を示すグラフである。It is a graph which shows the temperature dependence of ΔSm of the test piece of Examples 1 to 3. 実施例1の磁気冷凍作業物質のM-Hカーブを示すグラフである。It is a graph which shows the MH curve of the magnetic refrigeration work substance of Example 1. 実施例2の磁気冷凍作業物質のM-Hカーブを示すグラフである。It is a graph which shows the MH curve of the magnetic refrigeration work substance of Example 2. 実施例3の磁気冷凍作業物質のM-Hカーブを示すグラフである。It is a graph which shows the MH curve of the magnetic refrigeration work substance of Example 3. 実施例1の磁気冷凍作業物質の経時劣化の程度を示すグラフである。It is a graph which shows the degree of deterioration with time of the magnetic refrigeration work substance of Example 1. 実施例2の磁気冷凍作業物質の経時劣化の程度を示すグラフである。It is a graph which shows the degree of deterioration with time of the magnetic refrigeration work substance of Example 2. 外部磁場に対する実施例1~3及び比較例のΔSmの半値を示すグラフである。It is a graph which shows the half value of ΔSm of Examples 1 to 3 and a comparative example with respect to an external magnetic field. 外部磁場に対する実施例1~3及び比較例の半値全幅を示すグラフである。It is a graph which shows the full width at half maximum of Examples 1 to 3 and Comparative Example with respect to an external magnetic field.

[1-1.実施形態]
以下、本開示の磁気冷凍作業物質について説明する。
本開示の磁気冷凍作業物質は、NaZn13結晶構造であるLa1-xCe(Fe1-y-zMnSi13で示される磁気冷凍作業物質である。
[1-1. Embodiment]
Hereinafter, the magnetic refrigeration working substance of the present disclosure will be described.
The magnetic refrigeration work substance of the present disclosure is a magnetic refrigeration work substance represented by La 1-x Cex (Fe 1-yz Mn y Siz ) 13 Hn having a NaZn 13 crystal structure.

この磁気冷凍作業物質は、LaFeSi系の磁気冷凍作業物質のLa、Feの一部をCe、Mnにて置換した構成とすることでキュリー温度(以下、単にTcとも記載する)を変化させることができる。キュリー温度とは、磁気冷凍作業物質においては磁気熱量効果を発現する温度である。また水素を吸蔵させることでもキュリー温度を変化させることができる。 This magnetic refrigeration work substance can change the Curie temperature (hereinafter, also simply referred to as Tc) by having a structure in which a part of La and Fe of the LaFeSi-based magnetic refrigeration work substance is replaced with Ce and Mn. can. The Curie temperature is a temperature at which a magnetic calorific value effect is exhibited in a magnetic refrigeration work substance. The Curie temperature can also be changed by occluding hydrogen.

上述した一般式で表されるように、Laの一部はCeにて置換することができる。またFeの一部はMnにて置換することができる。上述した一般式におけるx、y及びzは、以下に示す範囲であるときに、磁気冷凍作業物質が良好な磁気熱量効果を発現する。
0≦x≦0.35
0≦y≦0.03
0.05≦z≦0.2
但し、上記x及びyの少なくとも一方は0ではない。
As expressed by the general formula described above, a part of La can be replaced with Ce. Further, a part of Fe can be replaced with Mn. When x, y and z in the above general formula are in the range shown below, the magnetic refrigeration working substance exhibits a good magnetic calorific value effect.
0 ≦ x ≦ 0.35
0 ≦ y ≦ 0.03
0.05 ≤ z ≤ 0.2
However, at least one of the above x and y is not 0.

なお、x及びyを以下の範囲とすることで、大きな磁気エントロピー変化量(以下、単にΔSとも記載する)を有しつつTcを0℃に近づけることができる。
0.15≦x≦0.35
0.01≦y≦0.03
またzについても、好ましくは以下の範囲である。
0.08≦z≦0.14
また上述したように、水素吸蔵量を変化させることでTcを変化させることができる。なお、吸蔵される水素量が少ない場合、経時劣化によりΔSのピークが低下してしまうおそれがあるため、経時劣化を抑制するために、
n≧1.5
とすることが望ましい。
By setting x and y in the following ranges, Tc can be brought close to 0 ° C. while having a large amount of change in magnetic entropy (hereinafter, also simply referred to as ΔS).
0.15 ≤ x ≤ 0.35
0.01 ≤ y ≤ 0.03
Further, z is also preferably in the following range.
0.08 ≤ z ≤ 0.14
Further, as described above, Tc can be changed by changing the hydrogen storage amount. If the amount of hydrogen occluded is small, the peak of ΔS may decrease due to deterioration over time.
n ≧ 1.5
Is desirable.

本開示の磁気冷凍作業物質は、例えば、次のようにして製造することができる。
単体元素の粉末またはバルクを所定の割合で調合して混合した磁気冷凍作業物質の粉末原料を用いて、溶融急冷法によりインゴットを作製する。このインゴットを、真空中で1200℃、10日間熱処理することでNaZn13結晶構造とする。その後、インゴットを適当な形状に切り出す。切り出した材料片を、水素雰囲気の熱処理炉に投入してヒータにより270℃に加熱し、材料片に水素を吸収させる。このようにして、磁気冷凍作業物質の試験片を製造する。
The magnetic refrigeration working substance of the present disclosure can be produced, for example, as follows.
An ingot is prepared by a melt quenching method using a powder raw material of a magnetic refrigeration work substance in which a powder or bulk of a simple substance element is mixed in a predetermined ratio and mixed. This ingot is heat-treated in vacuum at 1200 ° C. for 10 days to obtain a NaZn 13 crystal structure. After that, the ingot is cut into an appropriate shape. The cut out material piece is put into a heat treatment furnace having a hydrogen atmosphere and heated to 270 ° C. by a heater so that the material piece absorbs hydrogen. In this way, a test piece of a magnetic refrigeration work substance is produced.

なお、熱処理温度、熱処理時間、雰囲気圧力など、製造方法は上述した内容に限定されず公知の様々な方法を用いることができる。
以下に、具体的な実施例を説明する。
The production method such as heat treatment temperature, heat treatment time, and atmospheric pressure is not limited to the above-mentioned contents, and various known methods can be used.
Specific examples will be described below.

[1-2.実施例]
<実施例の磁気冷凍作業物質の組成>
原料の割合を変更して、以下の3つの磁気冷凍作業物質の試験片を作製した。なお、インゴットを切り出して形成した試験片は、3mm×1mm×0.5mmの短冊状体とした。
実施例1:La0.8Ce0.2(Fe0.87Mn0.02Si0.1113-H1.5
実施例2:La0.7Ce0.3(Fe0.87Mn0.02Si0.1113-H1.5
実施例3:La0.7Ce0.3(Fe0.86Mn0.025Si0.11513-H1.5
上記実施例1~3の組成比は一般的な組成分析法で求めることができる。一般的な組成分析法とは、例えば、電子線プローブマイクロ分析(即ちEPMA)やX線蛍光分析(即ちXRF)で求めることができる。水素の吸蔵量は水素化後の重量変化より見積もった。
[1-2. Example]
<Composition of Magnetic Refrigeration Working Material of Examples>
By changing the ratio of raw materials, test pieces of the following three magnetic refrigeration working substances were prepared. The test piece formed by cutting out the ingot was a strip of 3 mm × 1 mm × 0.5 mm.
Example 1: La 0.8 Ce 0.2 (Fe 0.87 Mn 0.02 Si 0.11 ) 13 -H 1.5
Example 2: La 0.7 Ce 0.3 (Fe 0.87 Mn 0.02 Si 0.11 ) 13 -H 1.5
Example 3: La 0.7 Ce 0.3 (Fe 0.86 Mn 0.025 Si 0.115 ) 13 -H 1.5
The composition ratios of Examples 1 to 3 can be obtained by a general composition analysis method. The general composition analysis method can be obtained by, for example, electron probe microanalysis (that is, EPMA) or X-ray fluorescence analysis (that is, XRF). The occlusal amount of hydrogen was estimated from the weight change after hydrogenation.

<組成ムラの見積もり>
集束イオンビーム(即ち、FIB)加工により、実施例2に示す磁気冷凍作業物質の試験片を100nm程度にまで薄片化し、走査透過電子顕微鏡(即ち、STEM)に付属のエネルギー分散型X線分光分析装置(即ち、EDX)を用いて組成分析を行い、組成ムラを見積もった。
<Estimation of composition unevenness>
By focusing ion beam (that is, FIB) processing, the test piece of the magnetic refrigeration work substance shown in Example 2 is sliced to about 100 nm, and the energy dispersive X-ray spectroscopic analysis attached to the scanning transmission electron microscope (that is, STEM) is performed. Composition analysis was performed using an apparatus (that is, EDX), and composition unevenness was estimated.

STEM-EDXの測定条件として、加速電圧300kV、倍率10万倍とし、ビーム径100pmの電子線を用いて積算時間30秒間として点分析を行った。測定点として、2μm角の視野に対し、それぞれ200nm以上離れた複数の点について上記の分析を行った。 As the measurement conditions of STEM-EDX, an acceleration voltage of 300 kV, a magnification of 100,000 times, and an electron beam having a beam diameter of 100 pm were used to perform point analysis with an integration time of 30 seconds. As measurement points, the above analysis was performed on a plurality of points separated by 200 nm or more with respect to a field of view of 2 μm square.

ここでいう組成ムラとは、磁気冷凍作業物質を構成する元素組成の空間的均一性の程度ということができ、さらに言い換えると、磁気冷凍作業物質における部分ごとの元素組成のバラツキの程度ということができる。 The composition unevenness referred to here can be said to be the degree of spatial uniformity of the elemental composition constituting the magnetic refrigeration work substance, and in other words, the degree of variation in the elemental composition of each part of the magnetic refrigeration work substance. can.

求められた複数の原子組成比を元素ごとに統計解析を行い、標準偏差σを求めた。その値の三倍の値3σを材料の組成ムラとした。STEM-EDXは日本電子株式会社製 JEM-ARM300Fを使用した。 The obtained atomic composition ratios were statistically analyzed for each element, and the standard deviation σ was obtained. A value of 3σ, which is three times that value, was defined as material composition unevenness. As STEM-EDX, JEM-ARM300F manufactured by JEOL Ltd. was used.

ここで、組成ムラの測定は、同一の試験片について異なる2つの視野で行った。表1には視野1での異なる6箇所の原子組成比の測定結果を示す。また表2には視野2での異なる4箇所の原子組成比の測定結果を示す。また、表1,2から算出される各元素の組成ムラの3σを表3に示す。値はいずれも原子パーセント[at.%]である。 Here, the measurement of the composition unevenness was carried out for the same test piece from two different visual fields. Table 1 shows the measurement results of the atomic composition ratios at 6 different locations in the visual field 1. Table 2 shows the measurement results of the atomic composition ratios at four different locations in the visual field 2. Table 3 shows the 3σ of the composition unevenness of each element calculated from Tables 1 and 2. All values are atomic percentages [at. %].

Figure 0007104492000001
Figure 0007104492000001

Figure 0007104492000002
Figure 0007104492000002

Figure 0007104492000003
表3に示されるように、実施例1~3において、La,Ce,Fe,Mn,Siの3σはいずれも1at.%以下となった。
Figure 0007104492000003
As shown in Table 3, in Examples 1 to 3, the 3σ of La, Ce, Fe, Mn, and Si are all 1 at. It became less than%.

<ΔSmの測定>
ΔSmは、外部磁場H印加時と無磁場状態の材料の重量当たりの磁気エントロピーの差である。この値が大きいほど磁気冷凍作業物質として優れているといえる。ΔSmは以下のマクスウェルの式を用いて求めることができる。下記式において、Mは磁化、Tは温度である。Mの測定にはカンタムデザイン社製Versalabを用いた。磁場の印加方向は切り出したインゴットの長手方向とした。
<Measurement of ΔSm>
ΔSm is the difference in magnetic entropy per weight of the material when the external magnetic field H is applied and in the non-magnetic field state. It can be said that the larger this value is, the more excellent the magnetic refrigeration work substance is. ΔSm can be calculated using Maxwell's equations below. In the following formula, M is magnetization and T is temperature. Versalab manufactured by Quantum Design Co., Ltd. was used for the measurement of M. The direction of application of the magnetic field was the longitudinal direction of the cut out ingot.

Figure 0007104492000004
<Tcの見積もり、及び半値全幅の算出>
図1のグラフに示される、実施例1~3の3つの試験片の上記マクスウェルの式により見積もられるΔSmの温度依存性において、-ΔSmが急激に立ち上がり始める部分をTcとした。図1のグラフからは、実施例1ではTc=6.0℃、実施例2ではTc=-1.5℃、実施例3ではTc=-16.6℃と判断できる。
Figure 0007104492000004
<Estimation of Tc and calculation of full width at half maximum>
In the temperature dependence of ΔSm estimated by Maxwell's equations for the three test pieces of Examples 1 to 3 shown in the graph of FIG. 1, the portion where −ΔSm suddenly starts to rise was defined as Tc. From the graph of FIG. 1, it can be determined that Tc = 6.0 ° C. in Example 1, Tc = −1.5 ° C. in Example 2, and Tc = −16.6 ° C. in Example 3.

また、-ΔSmの最大値の半分の値を有する温度幅を-ΔSmの半値全幅とした。この値が大きい材料ほど、広い温度範囲にわたって高い磁気熱量効果を発揮できるため好ましい材料であるといえる。磁気冷凍作業物質としては、ΔSが大きく、半値全幅が大きな材料が望ましいが、実施例1~3の磁気冷凍作業物質は、同等のTcを有するこれまでの材料に比べて優れた特性を有している。例えば、特表2015-517023号公報に記載される磁気熱量素子ではTc=0℃のとき-ΔSm=7J/kg・Kであるのに対し、本開示に実施例ではTc=-1.5℃のとき-ΔSm=16J/kg・Kである。 Further, the temperature width having a half value of the maximum value of −ΔSm was defined as the full width at half maximum of −ΔSm. It can be said that a material having a larger value is a preferable material because a higher magnetic calorific value effect can be exhibited over a wide temperature range. As the magnetic refrigeration work substance, a material having a large ΔS and a large full width at half maximum is desirable, but the magnetic refrigeration work substances of Examples 1 to 3 have excellent properties as compared with the conventional materials having the same Tc. ing. For example, in the magnetic calorific device described in Japanese Patent Application Laid-Open No. 2015-517023, when Tc = 0 ° C., −ΔSm = 7J / kg · K, whereas in the present disclosure, Tc = −1.5 ° C. When −ΔSm = 16J / kg · K.

<M-Hカーブ特性>
図2~4に示される実施例1~3の磁気冷凍作業物質のM-Hカーブから明らかなように、外部磁場Hを大きくしていった時にMが急激に上昇した。このような磁気冷凍作業物質は、比較的小さな磁場でも大きな熱量を取り出すことができるため、冷凍システムを構成する上で都合がよい。
<MH curve characteristics>
As is clear from the MH curves of the magnetic refrigeration working substances of Examples 1 to 3 shown in FIGS. 2 to 4, M increased sharply as the external magnetic field H was increased. Since such a magnetic refrigeration work substance can extract a large amount of heat even with a relatively small magnetic field, it is convenient for constructing a refrigeration system.

<磁化の温度依存性の経時変化>
図5、図6に示されるグラフは、試験片に水素化処理を施した直後と、約15日間、Tc付近で保管した後と、の磁化の温度依存性を測定したものである。仮に経時劣化が生じていた場合、グラフの波形が大きく変化するが、保管前後での差異は非常に小さい。即ち、実施例1~3の磁気冷凍作業物質は経時劣化が抑制されていることを示している。
<Temperature-dependent change in magnetization over time>
The graphs shown in FIGS. 5 and 6 measure the temperature dependence of the magnetization immediately after the test piece was hydrogenated and after being stored in the vicinity of Tc for about 15 days. If deterioration over time occurs, the waveform of the graph changes significantly, but the difference before and after storage is very small. That is, it is shown that the magnetic refrigeration working substances of Examples 1 to 3 are suppressed from deteriorating with time.

<半値全幅の比較>
図7、図8に示されるグラフは、ΔSmの半値と半値全幅が外部磁場の大きさによりどのように変化するかを示したグラフである。比較的小さな磁場、例えば1テスラでも高いΔSmを有していることがわかる。半値全幅は、Ce、Mnにより置換された、実施例1~3の構成の方が、比較例として示すCe、Mnに置換されていない構成のものよりも大きいため、優れているといえる。
<Comparison of full width at half maximum>
The graphs shown in FIGS. 7 and 8 are graphs showing how the full width at half maximum and the full width at half maximum of ΔSm change depending on the magnitude of the external magnetic field. It can be seen that even a relatively small magnetic field, for example, 1 Tesla, has a high ΔSm. It can be said that the full width at half maximum is superior because the configurations of Examples 1 to 3 substituted with Ce and Mn are larger than those not substituted with Ce and Mn shown as Comparative Examples.

[1-3.効果]
以上詳述したように、本開示の磁気冷凍作業物質は、La,Ce,Fe,Mn,Siのそれぞれについて、組成ムラを示す3σをいずれも1at.%以下とすることで、高いΔSを有するものとなった。特に、実施例1,2の磁気冷凍作業物質は、キュリー温度が-12~10℃の範囲であり、かつ励磁磁場が1テスラの場合にエントロピー変化量が10J/kg・K以上であるため、磁気熱量効果に優れ、0℃近傍での冷凍システム構築に都合のよい、優れた磁気冷凍作業物質であると言える。なお本開示の磁気冷凍作業物質は、実施例3に示されるように、Ce,Mnの置換量を変化させてTcを変化させても、優れた磁気熱量効果を奏する。
[1-3. effect]
As described in detail above, the magnetic refrigeration working substance of the present disclosure has 1 at. By setting it to% or less, it has a high ΔS. In particular, the magnetic refrigeration working substances of Examples 1 and 2 have an entropy change amount of 10 J / kg · K or more when the curry temperature is in the range of −12 to 10 ° C. and the exciting magnetic field is 1 Tesla. It can be said that it is an excellent magnetic refrigeration work substance that has an excellent magnetic calorific value effect and is convenient for constructing a refrigeration system near 0 ° C. As shown in Example 3, the magnetic refrigeration working substance of the present disclosure exhibits an excellent magnetic calorific value effect even if the substitution amount of Ce and Mn is changed to change Tc.

特表2015-517023号公報に記載される磁気熱量素子は、0℃近傍において本開示の実施例のような高い-ΔSmを示していない。この理由は、組成ムラが大きく材料均一性が低いためであると推測できる。 The magnetic calorific value device described in JP-A-2015-517023 does not show a high −ΔSm as in the examples of the present disclosure in the vicinity of 0 ° C. It can be inferred that the reason for this is that the composition unevenness is large and the material uniformity is low.

なお上記実施例では、La,Ce,Fe,Mn,Siの全てについて、3σを1at.%以下とした結果、上述した優れた磁気冷凍作業物質を製造することができた。しかしながら、本願の発明者らは、更なる試験により、Feについては、組成ムラが大きくても磁気冷凍作業物質のΔS、半値全幅に与える影響が小さいという知見を得た。よって、Feについては、3σが1at.%を超えていてもよい。 In the above embodiment, 3σ is set to 1 at. For all of La, Ce, Fe, Mn, and Si. As a result of% or less, the above-mentioned excellent magnetic refrigeration working substance could be produced. However, the inventors of the present application have obtained from further tests that Fe has a small effect on ΔS and the full width at half maximum of the magnetic refrigeration working substance even if the composition unevenness is large. Therefore, for Fe, 3σ is 1 at. It may exceed%.

また、Laについては、組成ムラの3σを0.45at.%以下とすることで、より優れた磁気冷凍作業物質とすることができる。
また、Ceについては、組成ムラの3σを0.50at.%以下とすることで、より優れた磁気冷凍作業物質とすることができる。
For La, the composition unevenness of 3σ was set to 0.45 at. By setting the content to% or less, a more excellent magnetic refrigeration working substance can be obtained.
For Ce, the composition unevenness of 3σ was set to 0.50 at. By setting the content to% or less, a more excellent magnetic refrigeration working substance can be obtained.

また、Mnについては、組成ムラの3σを0.40at.%以下とすることで、より優れた磁気冷凍作業物質とすることができる。
また、Siについては、組成ムラの3σを0.60at.%以下とすることで、より優れた磁気冷凍作業物質とすることができる。
Regarding Mn, the composition unevenness of 3σ was set to 0.40 at. By setting the content to% or less, a more excellent magnetic refrigeration working substance can be obtained.
For Si, the composition unevenness of 3σ was set to 0.60 at. By setting the content to% or less, a more excellent magnetic refrigeration working substance can be obtained.

Claims (8)

La1-xCe(Fe1-y-zMnSi13で示される磁気冷凍作業物質であって、
n≧1.5であり、
La、Ce、Mn、及びSiのそれぞれについて、組成ムラを示す3σが1at.%以下であり、
0≦x≦0.35、0≦y≦0.03、かつ、0.05≦z≦0.2であり、x及びyの少なくとも一方は0ではなく、
Feの組成ムラを示す3σが1at.%を超えており、
前記組成ムラとは、磁気冷凍作業物質を構成する元素組成の空間的均一性の程度である、磁気冷凍作業物質。
La 1-x Ce x (Fe 1-y-z Mn y Si z ) A magnetic refrigeration work substance represented by 13 Hn.
n ≧ 1.5
For each of La, Ce, Mn, and Si, 3σ indicating compositional unevenness is 1 at. % Or less
0 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.03, and 0.05 ≦ z ≦ 0.2, and at least one of x and y is not 0.
3σ, which indicates uneven composition of Fe, is 1 at. Over%,
The composition unevenness is a degree of spatial uniformity of the elemental composition constituting the magnetic refrigeration work substance, which is a magnetic refrigeration work substance.
請求項1に記載の磁気冷凍作業物質であって、
La、Ce、Mn、及びSiのそれぞれについて、走査透過電子顕微鏡に付属のエネルギー分散型X線分光分析装置組成により分析される、組成ムラを示す3σが1at.%以下である、磁気冷凍作業物質。
The magnetic refrigeration work substance according to claim 1.
For each of La, Ce, Mn, and Si, 3σ indicating compositional unevenness, which is analyzed by the energy dispersive X-ray spectroscopic analyzer composition attached to the scanning transmission electron microscope, is 1 at. % Or less, magnetic refrigeration work material.
請求項1又は請求項2に記載の磁気冷凍作業物質であって、
0.15≦x、かつ、0.01≦yである、磁気冷凍作業物質。
The magnetic refrigeration working substance according to claim 1 or 2 .
A magnetic refrigeration work substance having 0.15 ≦ x and 0.01 ≦ y.
請求項1から請求項3のいずれか1項に記載の磁気冷凍作業物質であって、
Laの組成ムラを示す3σが0.45at.%以下である、磁気冷凍作業物質。
The magnetic refrigeration working substance according to any one of claims 1 to 3 .
3σ indicating uneven composition of La is 0.45 at. % Or less, magnetic refrigeration work material.
請求項1から請求項4のいずれか1項に記載の磁気冷凍作業物質であって、
Ceの組成ムラを示す3σが0.50at.%以下である、磁気冷凍作業物質。
The magnetic refrigeration working substance according to any one of claims 1 to 4 .
3σ indicating uneven composition of Ce is 0.50 at. % Or less, magnetic refrigeration work material.
請求項1から請求項5のいずれか1項に記載の磁気冷凍作業物質であって、
Mnの組成ムラを示す3σが0.40at.%以下である、磁気冷凍作業物質。
The magnetic refrigeration working substance according to any one of claims 1 to 5 .
3σ indicating uneven composition of Mn is 0.40 at. % Or less, magnetic refrigeration work material.
請求項1から請求項6のいずれか1項に記載の磁気冷凍作業物質であって、
Siの組成ムラを示す3σが0.60at.%以下である、磁気冷凍作業物質。
The magnetic refrigeration working substance according to any one of claims 1 to 6 .
3σ indicating uneven composition of Si is 0.60 at. % Or less, magnetic refrigeration work material.
請求項1から請求項7のいずれか1項に記載の磁気冷凍作業物質であって、
キュリー温度が-12~10℃の範囲であり、励磁磁場が1テスラの場合にエントロピー変化量が10J/kg・K以上である、磁気冷凍作業物質。
The magnetic refrigeration working substance according to any one of claims 1 to 7 .
A magnetic refrigeration work substance having a Curie temperature in the range of -12 to 10 ° C. and an entropy change amount of 10 J / kg · K or more when the exciting magnetic field is 1 tesla.
JP2016178588A 2016-09-13 2016-09-13 Magnetic refrigeration work material Active JP7104492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016178588A JP7104492B2 (en) 2016-09-13 2016-09-13 Magnetic refrigeration work material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016178588A JP7104492B2 (en) 2016-09-13 2016-09-13 Magnetic refrigeration work material

Publications (2)

Publication Number Publication Date
JP2018046102A JP2018046102A (en) 2018-03-22
JP7104492B2 true JP7104492B2 (en) 2022-07-21

Family

ID=61695085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016178588A Active JP7104492B2 (en) 2016-09-13 2016-09-13 Magnetic refrigeration work material

Country Status (1)

Country Link
JP (1) JP7104492B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486469B (en) * 2018-05-03 2020-01-14 南京工程学院 Nanocrystalline La1-xRxFeySizMethod for producing magnetocaloric effect material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517023A (en) 2012-03-16 2015-06-18 エラスティール Method of manufacturing magnetocaloric element and magnetocaloric element obtained thereby

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089839A (en) * 2004-09-27 2006-04-06 Tohoku Univ Magnetic refrigeration working substance and magnetic refrigeration system
JP4282707B2 (en) * 2006-09-29 2009-06-24 株式会社東芝 Alloy and magnetic refrigeration material particle manufacturing method
JP2009068077A (en) * 2007-09-13 2009-04-02 Tohoku Univ Alloy material, magnetic material, method for manufacturing magnetic material, and magnetic material manufactured by the method
GB2475985B (en) * 2009-05-06 2012-03-21 Vacuumschmelze Gmbh & Co Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517023A (en) 2012-03-16 2015-06-18 エラスティール Method of manufacturing magnetocaloric element and magnetocaloric element obtained thereby

Also Published As

Publication number Publication date
JP2018046102A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6849023B2 (en) Manufacturing method of nanocrystal alloy magnetic core
US10748683B2 (en) R-T-B based sintered magnet
Wang et al. Effect of Ti content on the microstructure and mechanical behavior of (Fe36Ni18Mn33Al13) 100− xTix high entropy alloys
KR101147570B1 (en) Magnetic alloy, amorphous alloy ribbon, and magnetic part
Salvador et al. Transport and mechanical property evaluation of (AgSbTe) 1− x (GeTe) x (x= 0.80, 0.82, 0.85, 0.87, 0.90)
JP5739270B2 (en) A method of producing working components for magnetic heat exchange and working components for magnetic cooling.
JP6094612B2 (en) Method for producing RTB-based sintered magnet
SE439399B (en) PROCEDURE FOR REDUCING THE MAGNETIC LOSSES OF MAGNETIC MAGNETIC AMORFA METAL ALLOYS
JPWO2018047787A1 (en) Fe-based shape memory alloy material and method of manufacturing the same
JP7104492B2 (en) Magnetic refrigeration work material
JP5737299B2 (en) Semiconductor ceramic and semiconductor ceramic element
Anwar et al. Enhanced refrigeration capacity and magnetic entropy change in La 0.55 Ce 0.15 Sr 0.3 MnO 3 manganite
JP2015135935A (en) Rare earth based magnet
JP5316922B2 (en) Method for producing semi-hard magnetic material
Wu et al. Martensitic and magnetic transformation behaviours in Mn50Ni42− xSn8Cox polycrystalline alloys
Kwon et al. Effects of Fe substitution for Co on the thermal, magnetic, and mechanical properties of the Co-Fe-B-Si-Mo alloy system
Wu et al. Reversible magnetocaloric effects and critical behaviors in Ce1-xPrxFe2
JP7081617B2 (en) Hard magnetic compounds and permanent magnets containing them
Li et al. Microstructure and phase transformation temperatures of two-phase FeAl (B2)+ FeAl2 alloys
JP4930226B2 (en) Rare earth sintered magnet
Gębara et al. The evolution of microstructure in annealed LaFeSi-type alloys
Mitra et al. Crystallization and magnetic properties of Fe40Co40Cu0. 5Al2Zr9Si4B4. 5 and Fe62Co9. 5Gd3. 5Si10B15 amorphous alloys
Varga et al. Magnetoimpedance Effect in Field Annealed (FeNi)_78Nb_7B_15 Amorphous and Nanocrystalline Bilayer Ribbons
Jen et al. Structural and magneto-mechanical properties of Fe-Ni-Ga alloys
Yokoyama et al. Effects of carbon content on microstructures and magnetic properties of annealed or solution treated Fe-Cr-Ni-C alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210317

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210317

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210507

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210511

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210709

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210713

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210907

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220524

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220628

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220708

R150 Certificate of patent or registration of utility model

Ref document number: 7104492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150