JP7102832B2 - Biological information measuring device - Google Patents

Biological information measuring device Download PDF

Info

Publication number
JP7102832B2
JP7102832B2 JP2018057118A JP2018057118A JP7102832B2 JP 7102832 B2 JP7102832 B2 JP 7102832B2 JP 2018057118 A JP2018057118 A JP 2018057118A JP 2018057118 A JP2018057118 A JP 2018057118A JP 7102832 B2 JP7102832 B2 JP 7102832B2
Authority
JP
Japan
Prior art keywords
light
light emitting
wavelength
unit
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018057118A
Other languages
Japanese (ja)
Other versions
JP2019166149A (en
Inventor
友暁 小嶋
学 赤松
一宏 逆井
秀明 小澤
英之 梅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2018057118A priority Critical patent/JP7102832B2/en
Publication of JP2019166149A publication Critical patent/JP2019166149A/en
Application granted granted Critical
Publication of JP7102832B2 publication Critical patent/JP7102832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、生体情報測定装置に関する。 The present invention relates to a biological information measuring device.

特許文献1には、基板と、前記基板上に配置されており、波長の相異なる複数の光を、被検体に対し少なくとも部分的に相互に重なるように照射する照射部と、前記基板上に配置されており、前記照射された複数の光に起因する前記被検体からの光を、前記波長別に検出する受光部とを備えることを特徴とする自発光型センサ装置が開示されている。 Patent Document 1 describes a substrate, an irradiation unit arranged on the substrate, and an irradiation unit that irradiates a subject with a plurality of lights having different wavelengths so as to overlap each other at least partially, and on the substrate. Disclosed is a self-luminous sensor device that is arranged and includes a light receiving unit that detects light from the subject caused by the plurality of irradiated lights for each wavelength.

特許文献2には、呼吸の気流の時間変化を示す気流信号、及び、酸素飽和度の時間変化を示す酸素飽和度信号を取得する信号取得部と、前記気流信号における所定の第一時刻と、前記第一時刻での呼吸再開に対応した酸素飽和度の上昇を示す前記酸素飽和度信号における第二時刻との時間差に基づいて血液の酸素運搬循環時間を測定する循環時間算出部と、を有する循環時間測定装置が開示されている。 Patent Document 2 describes an air flow signal indicating a time change of a breathing air flow, a signal acquisition unit for acquiring an oxygen saturation signal indicating a time change of oxygen saturation, a predetermined first time in the air flow signal, and a predetermined first time. It has a circulation time calculation unit that measures the oxygen transport circulation time of blood based on the time difference from the second time in the oxygen saturation signal indicating an increase in oxygen saturation corresponding to the resumption of breathing at the first time. A circulation time measuring device is disclosed.

特許第4475601号公報Japanese Patent No. 4475601 国際公開第2015/190413号パンフレットInternational Publication No. 2015/190413 Pamphlet

循環器に関係する生体情報としては、光電脈波、酸素飽和度、心拍出量、及び血流量等が重要とされる。これらの生体情報は、生体に光を照射して測定することが可能である。 Photoelectric pulse waves, oxygen saturation, cardiac output, blood flow, and the like are important as biological information related to the circulatory system. These biological information can be measured by irradiating the living body with light.

また、これらの生体情報のうち、光電脈波、酸素飽和度、及び心拍出量については、光を生体の血液に照射した際の光吸収量の変化を測定することで算出することができる。従って、光電脈波、酸素飽和度、及び心拍出量については、血液を透過する光路の光路長が長くなる透過型の光学構成を備えた測定装置で測定することが好ましい。 In addition, among these biological information, the photoelectric pulse wave, oxygen saturation, and cardiac output can be calculated by measuring the change in the amount of light absorption when light is applied to the blood of the living body. .. Therefore, it is preferable to measure the photoelectric pulse wave, oxygen saturation, and cardiac output with a measuring device having a transmission type optical configuration in which the optical path length of the optical path through which blood is transmitted is long.

一方、血流量については、光吸収量の変化だけではなく、運動している赤血球による光のドップラーシフトを測定することで算出する。従って、血流量については、ドップラーシフトを受けた光が吸収されにくい反射型の光学構成を備えた測定装置で測定することが好ましい。 On the other hand, the blood flow is calculated by measuring not only the change in the amount of light absorption but also the Doppler shift of light due to moving red blood cells. Therefore, it is preferable to measure the blood flow volume with a measuring device having a reflective optical configuration in which the light subjected to the Doppler shift is hard to be absorbed.

このため、光電脈波、酸素飽和度、及び心拍出量を測定する場合と血流量を測定する場合とでは、別々の測定装置で測定する必要があり、両方測定したい場合には煩雑であった。 Therefore, it is necessary to measure the photoelectric pulse wave, oxygen saturation, and cardiac output and the blood flow by separate measuring devices, which is complicated when both are to be measured. rice field.

本発明は、複数種類の生体情報を1つの装置で測定することができる生体情報測定装置を提供することを目的とする。 An object of the present invention is to provide a biological information measuring device capable of measuring a plurality of types of biological information with one device.

上記目的を達成するために、請求項1記載の発明の生体情報測定装置は、第1の波長の光を発光する第1の発光部と、前記第1の波長と異なる第2の波長の光を発光する第2の発光部と、被測定者の被測定部を透過した前記第1の波長の光及び前記第2の波長の光を受光する位置に設けられ、前記第1の波長の光及び前記第2の波長の光を透過光として受光する受光部と、第3の波長の光を発光すると共に、前記第3の波長の光が前記被測定部で反射された反射光が前記受光部に入射する位置に設けられた第3の発光部と、前記透過光に基づいて第1の生体情報を測定する第1の測定部と、前記反射光に基づいて第2の生体情報を測定する第2の測定部と、前記被測定者の指を予め定めた向きで挿入するための筐体と、を備え、前記第1の発光部及び前記第2の発光部は、前記筐体の前記指の爪側に設けられ、前記受光部は、前記筐体の前記指の腹側に設けられ、前記第3の発光部は、前記筐体の前記指の腹側に設けられているIn order to achieve the above object, the biometric information measuring device of the invention according to claim 1 has a first light emitting unit that emits light having a first wavelength and light having a second wavelength different from the first wavelength. A second light emitting unit that emits light, and light of the first wavelength that is provided at a position that receives the light of the first wavelength and the light of the second wavelength that have passed through the unit to be measured of the person to be measured. And the light receiving unit that receives the light of the second wavelength as transmitted light, and the light receiving portion that emits the light of the third wavelength and the light of the third wavelength is reflected by the measured unit. A third light emitting unit provided at a position incident on the unit, a first measuring unit that measures the first biological information based on the transmitted light, and a second biological information that measures the second biological information based on the reflected light. A second measuring unit and a housing for inserting the finger of the person to be measured in a predetermined direction are provided, and the first light emitting unit and the second light emitting unit are of the housing. The light receiving portion is provided on the claw side of the finger, the light receiving portion is provided on the ventral side of the finger of the housing, and the third light emitting portion is provided on the ventral side of the finger of the housing .

請求項2記載の発明は、前記被測定者の指を予め定めた向きで挿入するための筐体を備え、前記第1の発光部及び前記第2の発光部は、前記筐体の前記指の爪側に設けられ、前記受光部は、前記筐体の前記指の腹側に設けられている。 The invention according to claim 2 includes a housing for inserting the finger of the person to be measured in a predetermined direction, and the first light emitting unit and the second light emitting unit are the fingers of the housing. The light receiving portion is provided on the claw side of the housing, and is provided on the ventral side of the finger of the housing.

請求項3記載の発明は、前記第1の波長の光及び前記第2の波長の光の進行方向に平面視した場合に、前記第1の発光部の出射領域及び前記第2の発光部の出射領域が、前記受光部の受光面に含まれるように、前記第1の発光部及び前記第2の発光部が配置されている。 The invention according to claim 3 relates to the emission region of the first light emitting unit and the second light emitting unit when viewed in a plan view in the traveling direction of the light having the first wavelength and the light having the second wavelength. The first light emitting unit and the second light emitting unit are arranged so that the emission region is included in the light receiving surface of the light receiving unit.

請求項記載の発明は、第1の波長の光を発光する第1の発光部と、前記第1の波長と異なる第2の波長の光を発光する第2の発光部と、被測定者の被測定部を透過した前記第1の波長の光及び前記第2の波長の光を受光する位置に設けられ、前記第1の波長の光及び前記第2の波長の光を透過光として受光する透過光受光部と、前記第1の波長の光が前記被測定部で反射された反射光が入射する位置に設けられた反射光受光部と、前記透過光に基づいて第1の生体情報を測定する第1の測定部と、前記反射光に基づいて第2の生体情報を測定する第2の測定部と、前記被測定者の指を予め定めた向きで挿入するための筐体と、を備え、前記第1の発光部及び前記第2の発光部は、前記筐体の前記指の腹側に設けられている
請求項3記載の発明は、第1の波長の光を発光する第1の発光部と、前記第1の波長と異なる第2の波長の光を発光する第2の発光部と、被測定者の被測定部を透過した前記第1の波長の光及び前記第2の波長の光を受光する位置に設けられ、前記第1の波長の光及び前記第2の波長の光を透過光として受光する透過光受光部と、前記第1の波長の光が前記被測定部で反射された反射光が入射する位置に設けられた反射光受光部と、前記透過光に基づいて第1の生体情報を測定する第1の測定部と、前記反射光に基づいて第2の生体情報を測定する第2の測定部と、前記被測定者の指を予め定めた向きで挿入するための筐体と、を備え、前記反射光受光部は、前記第1の発光部及び前記第2の発光部よりも前記筐体の前記指の先側に設けられている。
The invention according to claim 2 comprises a first light emitting unit that emits light having a first wavelength, a second light emitting unit that emits light having a second wavelength different from the first wavelength, and a subject to be measured. It is provided at a position to receive the light of the first wavelength and the light of the second wavelength transmitted through the part to be measured, and receives the light of the first wavelength and the light of the second wavelength as transmitted light. A transmitted light receiving unit, a reflected light receiving unit provided at a position where the reflected light reflected by the first wavelength light is incident, and a first biological information based on the transmitted light. A first measuring unit for measuring the light, a second measuring unit for measuring the second biological information based on the reflected light, and a housing for inserting the finger of the person to be measured in a predetermined direction. The first light emitting unit and the second light emitting unit are provided on the ventral side of the finger of the housing .
The invention according to claim 3 comprises a first light emitting unit that emits light having a first wavelength, a second light emitting unit that emits light having a second wavelength different from the first wavelength, and a subject to be measured. It is provided at a position to receive the light of the first wavelength and the light of the second wavelength transmitted through the part to be measured, and receives the light of the first wavelength and the light of the second wavelength as transmitted light. A transmitted light receiving unit, a reflected light receiving unit provided at a position where the reflected light reflected by the first wavelength light is incident, and a first biological information based on the transmitted light. A first measuring unit for measuring the light, a second measuring unit for measuring the second biological information based on the reflected light, and a housing for inserting the finger of the person to be measured in a predetermined direction. The reflected light receiving unit is provided on the tip side of the finger of the housing with respect to the first light emitting unit and the second light emitting unit.

請求項記載の発明は、前記反射光受光部の受光面の面積が、前記透過光受光部の受光面の面積よりも小さい。 In the invention according to claim 4 , the area of the light receiving surface of the reflected light receiving portion is smaller than the area of the light receiving surface of the transmitted light receiving portion.

請求項記載の発明は、前記第1の発光部と前記反射光受光部との距離が、前記第2の発光部と前記反射光受光部との距離よりも短い。 In the invention according to claim 5 , the distance between the first light emitting unit and the reflected light receiving unit is shorter than the distance between the second light emitting unit and the reflected light receiving unit.

請求項1~3記載の発明によれば、複数種類の生体情報を1つの装置で測定することができる、という効果を有する。 According to the inventions of claims 1 to 3 , it has an effect that a plurality of types of biological information can be measured by one device.

また、第1の発光部及び第2の発光部を筐体の指の腹側に設けると共に受光部を筐体の指の爪側に設けた場合と比較して、外光を入りにくくすることができる、という効果を有する。 Further , as compared with the case where the first light emitting portion and the second light emitting portion are provided on the ventral side of the finger of the housing and the light receiving portion is provided on the fingernail side of the housing, it is difficult for external light to enter. It has the effect of being able to.

請求項3記載の発明によれば、第1の波長の光及び第2の波長の光の進行方向に平面視した場合に、第1の発光部の出射領域及び第2の発光部の出射領域の少なくとも一部が、受光部の受光面に含まれない場合と比較して、第1の波長の光及び第2の波長の光を良好に受光することができる、という効果を有する。 According to the invention of claim 3, when the light of the first wavelength and the light of the second wavelength are viewed in a plan view in the traveling direction, the emission region of the first light emitting portion and the emission region of the second light emitting portion are obtained. It has an effect that at least a part of the light can be satisfactorily received by the light of the first wavelength and the light of the second wavelength as compared with the case where the light is not contained in the light receiving surface of the light receiving portion.

請求項記載の発明によれば、反射光受光部の受光面の面積が、透過光受光部の受光面の面積以上の場合と比較して、ノイズの影響を受けにくくすることができる、という効果を有する。 According to the invention of claim 4 , the area of the light receiving surface of the reflected light receiving portion can be made less susceptible to noise as compared with the case where the area of the light receiving surface of the transmitted light receiving portion is equal to or larger than the area of the light receiving surface of the transmitted light receiving portion. Has an effect.

請求項記載の発明によれば、第1の発光部と反射光受光部との距離が、第2の発光部と反射光受光部との距離より長い場合と比較して、反射光を良好に受光することができる、という効果を有する。 According to the invention of claim 5 , the reflected light is better than the case where the distance between the first light emitting unit and the reflected light receiving unit is longer than the distance between the second light emitting unit and the reflected light receiving unit. It has the effect of being able to receive light.

血流情報及び血中の酸素飽和度の測定例を示す模式図である。It is a schematic diagram which shows the measurement example of the blood flow information and the oxygen saturation in blood. 生体からの反射光による受光量の変化の一例を示すグラフである。It is a graph which shows an example of the change of the received light amount by the reflected light from a living body. 血管にレーザ光を照射した場合に生じるドップラーシフトの説明に供する模式図である。It is a schematic diagram which provides the explanation of the Doppler shift which occurs when a blood vessel is irradiated with a laser beam. 血管にレーザ光を照射した場合に生じるスペックルの説明に供する模式図である。It is a schematic diagram provided for the explanation of the speckle generated when a blood vessel is irradiated with a laser beam. 単位時間における周波数毎のスペクトル分布の一例を示すグラフである。It is a graph which shows an example of the spectrum distribution for each frequency in a unit time. 単位時間あたりの血流量の変化の一例を示すグラフである。It is a graph which shows an example of the change of the blood flow per unit time. 生体に吸収される光の吸光量の変化の一例を示すグラフである。It is a graph which shows an example of the change of the absorption amount of light absorbed by a living body. ヘモグロビンによる吸光度特性の一例を示すグラフである。It is a graph which shows an example of the absorbance characteristic by hemoglobin. 呼吸波形の測定原理の説明に供する模式図である。It is a schematic diagram which provides the explanation of the measurement principle of a respiratory waveform. LFCTの測定原理の説明に供する模式図である。It is a schematic diagram provided for the explanation of the measurement principle of LFCT. LFCTの測定方法の一例を説明するためのグラフである。It is a graph for demonstrating an example of the measurement method of LFCT. 第1実施形態に係る生体情報測定装置の電気的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the electric structure of the biological information measuring apparatus which concerns on 1st Embodiment. 第1実施形態に係る生体情報測定装置における発光素子及び受光素子の配置の一例を示す図である。It is a figure which shows an example of arrangement of a light emitting element and a light receiving element in the biological information measuring apparatus which concerns on 1st Embodiment. 平面視した場合の発光素子及び受光素子の配置の一例を示す図である。It is a figure which shows an example of arrangement of a light emitting element and a light receiving element in a plan view. 平面視した場合の発光素子及び受光素子の配置の他の例を示す図である。It is a figure which shows another example of arrangement of a light emitting element and a light receiving element in a plan view. 発光素子の発光タイミング及び受光素子におけるデータのサンプリングタイミングについて説明するためのタイミングチャートである。It is a timing chart for demonstrating the light emission timing of a light emitting element and the sampling timing of data in a light receiving element. 第1実施形態に係る生体情報測定装置における発光素子及び受光素子の配置の他の例を示す図である。It is a figure which shows another example of arrangement of a light emitting element and a light receiving element in the biological information measuring apparatus which concerns on 1st Embodiment. 第2実施形態に係る生体情報測定装置における発光素子及び受光素子の配置の一例を示す図である。It is a figure which shows an example of arrangement of a light emitting element and a light receiving element in the biological information measuring apparatus which concerns on 2nd Embodiment. 第2実施形態に係る生体情報測定装置の電気的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the electric structure of the biological information measuring apparatus which concerns on 2nd Embodiment. 第2実施形態に係る生体情報測定装置における発光素子及び受光素子の配置の他の例を示す図である。It is a figure which shows another example of arrangement of a light emitting element and a light receiving element in the biological information measuring apparatus which concerns on 2nd Embodiment.

以下、図面を参照して、本発明を実施するための形態の一例について詳細に説明する。 Hereinafter, an example of a mode for carrying out the present invention will be described in detail with reference to the drawings.

[第1の実施形態] [First Embodiment]

まず、図1を参照して、生体情報のうち、特に血液に関する生体情報の一例である血流情報及び血中の酸素飽和度の測定方法について説明する。 First, with reference to FIG. 1, a method for measuring blood flow information and blood oxygen saturation, which are examples of biological information related to blood in particular, will be described.

図1は、本実施形態に係る血流情報及び血中の酸素飽和度の測定例を示す模式図である。 FIG. 1 is a schematic diagram showing a measurement example of blood flow information and oxygen saturation in blood according to the present embodiment.

図1に示すように、血流情報及び血中の酸素飽和度は、被験者の体(生体8)に向けて発光素子1から光を照射し、受光素子3で受光した、生体8の体内に張り巡らされている動脈4、静脈5、及び毛細血管6等の反射又は透過した光の強さ、すなわち、反射光又は透過光の受光量を用いて測定される。 As shown in FIG. 1, the blood flow information and the oxygen saturation in the blood are measured in the body of the living body 8 by irradiating the subject's body (living body 8) with light from the light emitting element 1 and receiving the light by the light receiving element 3. It is measured using the intensity of reflected or transmitted light of the stretched arteries 4, veins 5, capillaries, etc., that is, the amount of reflected light or transmitted light received.

(血流情報の測定) (Measurement of blood flow information)

図2は、本実施形態に係る生体8からの反射光による受光量の変化の一例を示すグラフである。 FIG. 2 is a graph showing an example of a change in the amount of received light due to the reflected light from the living body 8 according to the present embodiment.

なお、図2において、グラフ80の横軸は時間の経過を表し、縦軸は受光素子3の受光量を表す。 In FIG. 2, the horizontal axis of the graph 80 represents the passage of time, and the vertical axis represents the amount of light received by the light receiving element 3.

図2に示すように、受光素子3の受光量は時間の経過に伴って変化するが、これは血管を含む生体8への光の照射に対して現われる3つの光学現象の影響を受けるためであると考えられる。 As shown in FIG. 2, the amount of light received by the light receiving element 3 changes with the passage of time because it is affected by three optical phenomena that appear when the living body 8 including blood vessels is irradiated with light. It is believed that there is.

1つ目の光学現象として、脈動によって、測定している血管内に存在する血液量が変化することによる光の吸収の変化が考えられる。血液には、例えば赤血球等の血球細胞が含まれ、毛細血管6等の血管内を移動するため、血液量が変化することによって血管内を移動する血球細胞の数も変化し、受光素子3での受光量に影響を与えることがある。 As the first optical phenomenon, a change in light absorption due to a change in the amount of blood existing in the blood vessel being measured due to pulsation can be considered. Blood contains blood cell cells such as erythrocytes and moves in blood vessels such as capillaries 6. Therefore, as the blood volume changes, the number of blood cell cells moving in blood vessels also changes, and the light receiving element 3 May affect the amount of light received.

2つ目の光学現象として、ドップラーシフトによる影響が考えられる。 As the second optical phenomenon, the influence of Doppler shift can be considered.

図3は、本実施形態に係る血管にレーザ光を照射した場合に生じるドップラーシフトの説明に供する模式図である。 FIG. 3 is a schematic view for explaining the Doppler shift that occurs when the blood vessel according to the present embodiment is irradiated with the laser beam.

図3に示すように、例えばレーザ光のような周波数ω0のコヒーレント光40を発光素子1から血管の一例である毛細血管6を含む領域に照射した場合、毛細血管6を移動する血球細胞で散乱した散乱光42は、血球細胞の移動速度により決まる差周波Δω0を有するドップラーシフトを生じることになる。一方、血球細胞等の移動体を含まない皮膚等の組織(静止組織)で散乱した散乱光42の周波数は、照射したレーザ光の周波数と同じ周波数ω0を維持する。したがって、毛細血管6等の血管で散乱したレーザ光の周波数ω0+Δω0と、静止組織で散乱したレーザ光の周波数ω0とが互いに干渉し、差周波Δω0を有するビート信号が受光素子3で観測され、受光素子3の受光量が時間の経過に伴って変化する。なお、受光素子3で観測されるビート信号の差周波Δω0は血球細胞の移動速度に依存するが、約数十kHzを上限とした範囲に含まれる。 As shown in FIG. 3, when a coherent light 40 having a frequency ω 0 such as a laser beam is irradiated from the light emitting element 1 to a region including a capillary 6 which is an example of a blood vessel, blood cells moving in the capillary 6 are used. The scattered scattered light 42 causes a Doppler shift having a difference frequency Δω 0 determined by the moving speed of blood cell cells. On the other hand, the frequency of the scattered light 42 scattered in a tissue (stationary tissue) such as skin that does not contain moving bodies such as blood cells maintains the same frequency ω 0 as the frequency of the irradiated laser light. Therefore, the frequency ω 0 + Δω 0 of the laser light scattered in the blood vessel such as the capillary 6 and the frequency ω 0 of the laser light scattered in the stationary tissue interfere with each other, and the beat signal having the difference frequency Δω 0 is the light receiving element 3. The amount of light received by the light receiving element 3 changes with the passage of time. The difference frequency Δω 0 of the beat signal observed by the light receiving element 3 depends on the moving speed of the blood cell cells, but is included in the range up to about several tens of kHz.

また、3つ目の光学現象として、スペックルによる影響が考えられる。 Further, as the third optical phenomenon, the influence of speckle can be considered.

図4は、本実施形態に係る血管にレーザ光を照射した場合に生じるスペックルの説明に供する模式図である。 FIG. 4 is a schematic diagram provided for explaining a speckle generated when a blood vessel according to the present embodiment is irradiated with a laser beam.

図4に示すように、レーザ光のようなコヒーレント光40を、発光素子1から血管中を矢印44の方向に移動する赤血球等の血球細胞7に照射した場合、血球細胞7にぶつかったレーザ光は様々な方向に散乱する。散乱光は位相が異なるためにランダムに干渉し合う。これによりランダムな斑点模様の光強度分布を生じる。このようにして形成される光強度の分布パターンは「スペックルパターン」と呼ばれる。 As shown in FIG. 4, when a coherent light 40 such as a laser beam is applied to a blood cell 7 such as an erythrocyte moving in the blood vessel in the direction of the arrow 44 from the light emitting element 1, the laser beam colliding with the blood cell 7 is emitted. Scatters in various directions. Scattered light interferes randomly because they are out of phase. This produces a random speckled light intensity distribution. The light intensity distribution pattern formed in this way is called a "speckle pattern".

既に説明したように、血球細胞7は血管中を移動するため、血球細胞7における光の散乱状態が変化し、スペックルパターンが時間の経過と共に変動する。したがって、受光素子3の受光量が時間の経過に伴って変化する。 As described above, since the blood cell 7 moves in the blood vessel, the light scattering state in the blood cell 7 changes, and the speckle pattern changes with the passage of time. Therefore, the amount of light received by the light receiving element 3 changes with the passage of time.

次に、血流情報の求め方の一例について説明する。図2に示す時間経過に伴う受光素子3の受光量が得られた場合、予め定めた単位時間T0の範囲に含まれるデータを切り出し、当該データに対して、例えば高速フーリエ変換(Fast Fourier Transform: FFT)を実行することで、周波数ω毎のスペクトル分布が得られる。 Next, an example of how to obtain blood flow information will be described. When the amount of light received by the light receiving element 3 with the passage of time shown in FIG. 2 is obtained, the data included in the predetermined unit time T 0 range is cut out, and the data is subjected to, for example, a Fast Fourier Transform. By executing: FFT), the spectral distribution for each frequency ω can be obtained.

図5は、本実施形態に係る単位時間T0における周波数ω毎のスペクトル分布の一例を示すグラフである。 FIG. 5 is a graph showing an example of the spectral distribution for each frequency ω at the unit time T 0 according to the present embodiment.

なお、図5において、グラフ82の横軸は周波数ωを表し、縦軸はスペクトル強度を表す。 In FIG. 5, the horizontal axis of the graph 82 represents the frequency ω, and the vertical axis represents the spectral intensity.

ここで、血液量はグラフ82の横軸と縦軸とで囲まれた斜線領域84で表されるパワースペクトルの面積を全光量で規格化した値に比例する。また、血流速度はグラフ82で表されるパワースペクトルの周波数平均値に比例するため、周波数ωと周波数ωにおけるパワースペクトルの積を周波数ωについて積分した値を斜線領域84の面積で除算した値に比例する。 Here, the blood volume is proportional to the value obtained by normalizing the area of the power spectrum represented by the shaded area 84 surrounded by the horizontal axis and the vertical axis of the graph 82 by the total amount of light. Further, since the blood flow velocity is proportional to the frequency average value of the power spectrum represented by the graph 82, the value obtained by integrating the product of the power spectrum at the frequency ω and the frequency ω with respect to the frequency ω is divided by the area of the shaded area 84. Is proportional to.

なお、血流量は血液量と血流速度の積で表わされるため、上記血液量と血流速度の算出式より求めることが可能である。血流量、血流速度、血液量は血流情報の一例であり、血流情報はこれに限定されない。 Since the blood flow volume is represented by the product of the blood volume and the blood flow velocity, it can be calculated from the above formula for calculating the blood volume and the blood flow velocity. Blood flow volume, blood flow velocity, and blood volume are examples of blood flow information, and blood flow information is not limited thereto.

図6は、本実施形態に係る単位時間T0あたりの血流量の変化の一例を示すグラフである。 FIG. 6 is a graph showing an example of a change in blood flow per unit time T 0 according to the present embodiment.

なお、図6において、グラフ86の横軸は時間を表し、縦軸は血流量を表す。 In FIG. 6, the horizontal axis of the graph 86 represents time, and the vertical axis represents blood flow rate.

図6に示すように、血流量は時間と共に変動するが、その変動の傾向は2つの種類に分類される。例えば図6の区間Tにおける血流量の変動幅88に比べて、区間Tにおける血流量の変動幅90は大きい。これは、区間Tにおける血流量の変化が、主に脈の動きに伴う血流量の変化であるのに対して、区間Tにおける血流量の変化は、例えばうっ血等の原因に伴う血流量の変化を示しているためであると考えられる。 As shown in FIG. 6, blood flow fluctuates with time, and the tendency of the fluctuation is classified into two types. For example, the fluctuation range 90 of the blood flow rate in the section T 2 is larger than the fluctuation range 88 of the blood flow rate in the section T 1 of FIG. This is because the change in blood flow in section T1 is mainly a change in blood flow due to the movement of the pulse, whereas the change in blood flow in section T2 is a change in blood flow due to a cause such as congestion. It is considered that this is because it shows the change of.

(酸素飽和度の測定) (Measurement of oxygen saturation)

次に、血中の酸素飽和度の測定について説明する。血中の酸素飽和度とは、血中酸素濃度の一例であり、血液中のヘモグロビンがどの程度酸素と結合しているかを示す指標であり、血中の酸素飽和度が低下するにつれ、貧血等の症状が発生しやすくなる。 Next, the measurement of oxygen saturation in blood will be described. The oxygen saturation in blood is an example of the oxygen concentration in blood, and is an index showing how much hemoglobin in blood is bound to oxygen. As the oxygen saturation in blood decreases, anemia, etc. Symptoms are more likely to occur.

図7は、本実施形態に係る生体8に吸収される光の吸光量の変化の一例を示すグラフである。 FIG. 7 is a graph showing an example of a change in the amount of light absorbed by the living body 8 according to the present embodiment.

なお、図7において、グラフ92の横軸は時間を表し、縦軸は吸光量を表す。 In FIG. 7, the horizontal axis of the graph 92 represents time, and the vertical axis represents the amount of absorbance.

図7に示すように、生体8における吸光量は、時間の経過と共に変動する傾向が見られる。 As shown in FIG. 7, the amount of absorbance in the living body 8 tends to fluctuate with the passage of time.

更に、生体8における吸光の変動に関する内訳について見てみると、主に動脈4によって吸光量が変動し、静脈5及び静止組織を含むその他の組織では、動脈4に比べて吸光量が変動しないとみなせる程度の変動量であることが知られている。これは、心臓から拍出された動脈血は脈波を伴って血管内を移動するため、動脈4が動脈4の断面方向に沿って経時的に伸縮し、動脈4の厚みが変化するためである。なお、図7において、矢印94で示される範囲が、動脈4の厚みの変化に対応した吸光量の変動量を示す。 Furthermore, looking at the breakdown of the fluctuation of the absorption in the living body 8, the absorption amount fluctuates mainly in the artery 4, and in other tissues including the vein 5 and the quiescent tissue, the absorption amount does not fluctuate as compared with the artery 4. It is known that the amount of fluctuation is such that it can be regarded. This is because the arterial blood pumped from the heart moves in the blood vessel with a pulse wave, so that the artery 4 expands and contracts with time along the cross-sectional direction of the artery 4, and the thickness of the artery 4 changes. .. In FIG. 7, the range indicated by the arrow 94 indicates the amount of fluctuation in the amount of absorption corresponding to the change in the thickness of the artery 4.

図7において、時刻taにおける受光量をIa、時刻tbにおける受光量をIbとすれば、動脈4の厚みの変化による光の吸光量の変化量ΔAは、(1)式で表される。 In FIG. 7, if the amount of light received at time t a is I a and the amount of light received at time t b is I b , the amount of change ΔA in the amount of light absorption due to the change in the thickness of the artery 4 is expressed by Eq. (1). Will be done.

(数1)
ΔA=ln(Ib/Ia)・・・(1)
(Number 1)
ΔA = ln (I b / I a ) ・ ・ ・ (1)

図8は、本実施形態に係るヘモグロビンによる吸光度特性の一例を示すグラフである。 FIG. 8 is a graph showing an example of the absorbance characteristics of hemoglobin according to the present embodiment.

なお、図8において、縦軸は吸光度を表し、横軸は波長を表す。 In FIG. 8, the vertical axis represents the absorbance and the horizontal axis represents the wavelength.

図8に示すように、動脈4を流れる酸素と結合したヘモグロビン(酸化ヘモグロビン)は、特に約880nm近辺の波長を有する赤外線(infrared: IR)領域の光を吸収しやすく、酸素と結合していないヘモグロビン(還元ヘモグロビン)は、特に約665nm近辺の波長を有する赤色領域の光を吸収しやすいことが知られている。更に、酸素飽和度は、異なる波長における吸光量の変化量ΔAの比率と比例関係があることが知られている。 As shown in FIG. 8, hemoglobin (hemoglobin oxide) bound to oxygen flowing through the artery 4 easily absorbs light in the infrared (IR) region having a wavelength of about 880 nm and is not bound to oxygen. Hemoglobin (reduced hemoglobin) is known to easily absorb light in the red region having a wavelength around about 665 nm. Further, it is known that the oxygen saturation is proportional to the ratio of the amount of change ΔA in the amount of absorption at different wavelengths.

したがって、他の波長の組み合わせに比べて、酸化ヘモグロビンと還元ヘモグロビンとで吸光量の差が現われやすい赤外光(IR光)と赤色光を用いて、IR光を生体8に照射した場合の吸光量の変化量ΔAIRと、赤色光を生体8に照射した場合の吸光量の変化量ΔARedとの比率をそれぞれ算出することで、(2)式によって酸素飽和度Sが算出される。なお、(2)式においてkは比例定数である。 Therefore, when the living body 8 is irradiated with IR light using infrared light (IR light) and red light, which are more likely to show a difference in absorption amount between oxidized hemoglobin and reduced hemoglobin than other wavelength combinations. The oxygen saturation S is calculated by Eq. (2) by calculating the ratio between the amount of change ΔA IR and the amount of change ΔA Red in the amount of absorption when the living body 8 is irradiated with red light. In equation (2), k is a constant of proportionality.

(数2)
S=k(ΔARed/ΔAIR)・・・(2)
(Number 2)
S = k (ΔA Red / ΔA IR ) ・ ・ ・ (2)

すなわち、血中の酸素飽和度を算出する場合、それぞれ異なる波長の光を照射する複数の発光素子1、具体的には、IR光を照射する発光素子1と赤色光を照射する発光素子1とを一部の発光期間が重複しても良いが、望ましくは発光期間が重複しないよう発光させる。そして、各々の発光素子1による反射光又は透過光を受光素子3で受光して、各受光時点における受光量から(1)式及び(2)式、又は、これらの式を変形して得られる公知の式から算出することで、酸素飽和度が測定される。 That is, when calculating the oxygen saturation in blood, a plurality of light emitting elements 1 that irradiate light having different wavelengths, specifically, a light emitting element 1 that irradiates IR light and a light emitting element 1 that irradiates red light. Although some of the light emitting periods may overlap, it is desirable that the light is emitted so that the light emitting periods do not overlap. Then, the reflected light or transmitted light from each light emitting element 1 is received by the light receiving element 3, and the equations (1) and (2) or these equations are modified from the amount of light received at each light receiving time. Oxygen saturation is measured by calculating from a known formula.

上記(1)式を変形して得られる公知の式として、例えば(1)式を展開して、光の吸光量の変化量ΔAを(3)式のように表してもよい。 As a known formula obtained by modifying the above formula (1), for example, the formula (1) may be developed and the amount of change ΔA in the amount of light absorption may be expressed as the formula (3).

(数3)
ΔA=lnIb-lnIa・・・(3)
(Number 3)
ΔA = lnI b −lnI a ··· (3)

また、(1)式は(4)式のように変形することができる。 Further, the equation (1) can be modified as the equation (4).

(数4)
ΔA=ln(Ib/Ia)=ln(1+(Ib-Ia)/Ia) ・・・(4)
(Number 4)
ΔA = ln (I b / I a ) = ln (1 + (I b -I a ) / I a ) ... (4)

通常、(Ib-Ia)≪Iaであることから、ln(Ib/Ia)≒(Ib-Ia)/Iaが成り立つため、(1)式の代わりに、光の吸光量の変化量ΔAとして(5)式を用いてもよい。 Normally, since (I b -I a ) << I a , ln (I b / I a ) ≒ (I b -I a ) / I a holds, so instead of equation (1), light Equation (5) may be used as the amount of change ΔA in the amount of absorption.

(数5)
ΔA≒(Ib-Ia)/Ia ・・・(5)
(Number 5)
ΔA ≒ (I b -I a ) / I a ... (5)

なお、詳細は後述するが、本実施形態では、透過光用のIR光を照射する発光素子1、反射光用のIR光を照射する発光素子1、及び赤色光を照射する発光素子1の3個の発光素子1を備えた構成について説明する。以下では、透過光用のIR光を照射する発光素子1を「発光素子LD1」と称し、赤色光を照射する発光素子1を「発光素子LD2」と称し、反射光用のIR光を照射する発光素子1を「発光素子LD3」と称する場合がある。また、本実施形態では、発光素子LD1及び発光素子LD2を、血中の酸素飽和度の算出で使用し、発光素子LD3を、血流量の算出で使用する。 Although details will be described later, in the present embodiment, the light emitting element 1 that irradiates IR light for transmitted light, the light emitting element 1 that irradiates IR light for reflected light, and the light emitting element 1 that irradiates red light 3 A configuration including the light emitting elements 1 will be described. Hereinafter, the light emitting element 1 that irradiates the IR light for transmitted light is referred to as "light emitting element LD1", the light emitting element 1 that irradiates red light is referred to as "light emitting element LD2", and the IR light for reflected light is irradiated. The light emitting element 1 may be referred to as a "light emitting element LD3". Further, in the present embodiment, the light emitting element LD1 and the light emitting element LD2 are used for calculating the oxygen saturation in blood, and the light emitting element LD3 is used for calculating the blood flow.

次に、図9を参照して、生体8の抹消部位から得られる脈波信号から呼吸波形を測定する原理について説明する。ここでいう抹消部位の一例としては、手の指先や、足の指先、耳朶等が挙げられる。なお、抹消部位には、手首よりも先の部位や、足首よりも先の部位等も含まれる。また、呼吸波形とは、生体8の呼吸状態を示す信号の波形であり、呼気及び吸気の時間変化を表す時系列信号の波形とされる。 Next, with reference to FIG. 9, the principle of measuring the respiratory waveform from the pulse wave signal obtained from the peripheral part of the living body 8 will be described. Examples of the peripheral portion referred to here include the fingertips of the hand, the toes, the earlobe, and the like. The peripheral part includes a part before the wrist, a part before the ankle, and the like. The respiratory waveform is a waveform of a signal indicating the respiratory state of the living body 8, and is a waveform of a time-series signal indicating a time change of exhalation and inspiration.

図9は、本実施形態に係る呼吸波形の測定原理の説明に供する模式図である。 FIG. 9 is a schematic diagram for explaining the measurement principle of the respiratory waveform according to the present embodiment.

図9に示すように、吸気時には以下に示すステップにより脈波信号の振幅が減少する。 As shown in FIG. 9, the amplitude of the pulse wave signal is reduced by the following steps during inspiration.

(S1)胸腔内圧が低下して陰圧となり、肺が拡張する。
(S2)静脈還流量が増加する。
(S3)右心房に流入する血液量が増加する。
(S4)肺の血管床が拡がり、肺が貯留する血液量が増加する。
(S5)肺から左心房に戻る血液量が減少する。
(S6)左心室の1回拍出量が減少する。
(S7)脈波信号の振幅が減少する。
(S1) The intrathoracic pressure decreases to negative pressure, and the lungs expand.
(S2) The amount of venous return increases.
(S3) The amount of blood flowing into the right atrium increases.
(S4) The vascular bed of the lung expands, and the amount of blood stored in the lung increases.
(S5) The amount of blood returning from the lungs to the left atrium decreases.
(S6) The stroke volume of the left ventricle decreases.
(S7) The amplitude of the pulse wave signal decreases.

一方、呼気時には以下に示すステップにより脈波信号の振幅が増加する。 On the other hand, at the time of exhalation, the amplitude of the pulse wave signal is increased by the following steps.

(S8)肺から絞り出た血液が左心室に流入する。
(S9)脈波信号の振幅が増加する。
(S8) Blood squeezed from the lungs flows into the left ventricle.
(S9) The amplitude of the pulse wave signal increases.

つまり、「心臓のポンプ動作」により生じる脈動に、呼吸により生じる「肺のポンプ動作」の影響が重畳されるため、生体8の抹消部位から得られる脈波信号から呼吸波形を測定することが可能となる。 That is, since the influence of the "lung pumping motion" caused by respiration is superimposed on the pulsation generated by the "heart pumping motion", it is possible to measure the respiratory waveform from the pulse wave signal obtained from the peripheral site of the living body 8. It becomes.

次に、図10を参照して、心臓からの血液の拍出量と相関がある指標の一例であるLFCT(Lung to Finger Circulation Time)を測定する原理について説明する。ここでいう拍出量には、上述の心拍出量に限らず、1回拍出量、心係数等も含まれる。なお、心拍出量とは、心臓の単位時間(例えば1分)当たりの収縮によって動脈へ拍出される血液量と定義される。1回拍出量とは、心臓の1回の収縮によって動脈へ拍出される血液量と定義される。心係数とは、心拍出量を被験者の体表面積で除して得られる係数と定義される。また、LFCTとは、呼吸で取り込まれた酸素が肺及び心臓を通り指先に到達するまでの時間と定義される。 Next, with reference to FIG. 10, the principle of measuring LFCT (Lung to Finger Circulation Time), which is an example of an index having a correlation with the amount of blood pumped from the heart, will be described. The stroke volume referred to here includes not only the cardiac output described above, but also a stroke volume, a cardiac index, and the like. The cardiac output is defined as the amount of blood pumped into an artery by the contraction of the heart per unit time (for example, 1 minute). Stroke volume is defined as the amount of blood pumped into an artery by a single contraction of the heart. Cardiac index is defined as the coefficient obtained by dividing cardiac output by the body surface area of the subject. In addition, LFCT is defined as the time required for oxygen taken in by breathing to reach the fingertips through the lungs and heart.

図10は、本実施形態に係るLFCTの測定原理の説明に供する模式図である。 FIG. 10 is a schematic diagram for explaining the measurement principle of LFCT according to the present embodiment.

図10に示すように、上記拍出量とLFCTとは相関がある。例えば、拍出量の一例である心拍出量COは、LFCTを測定することで算出される。 As shown in FIG. 10, there is a correlation between the above-mentioned pumping amount and LFCT. For example, cardiac output CO, which is an example of cardiac output, is calculated by measuring LFCT.

図11は、本実施形態に係るLFCTの測定方法の一例を説明するためのグラフである。 FIG. 11 is a graph for explaining an example of the LFCT measurement method according to the present embodiment.

なお、図11において、縦軸は酸素飽和度の逆数を表し、横軸は時間を表す。 In FIG. 11, the vertical axis represents the reciprocal of oxygen saturation, and the horizontal axis represents time.

図11に示すように、本実施形態に係るLFCTは、上述した血中の酸素飽和度から測定される。すなわち、LFCTは、一定期間呼吸を停止した後に呼吸を再開した時点から、酸素飽和度が回復したことを示す変曲点までの時間を測定することで得られる。 As shown in FIG. 11, the LFCT according to the present embodiment is measured from the oxygen saturation in blood described above. That is, the LFCT is obtained by measuring the time from the time when the breathing is stopped for a certain period of time and then the breathing is resumed to the inflection point indicating that the oxygen saturation has recovered.

図12は、本実施形態に係る生体情報測定装置10の電気的な構成の一例を示すブロック図である。 FIG. 12 is a block diagram showing an example of the electrical configuration of the biological information measuring device 10 according to the present embodiment.

図12に示すように、本実施形態に係る生体情報測定装置10は、発光制御部12、駆動回路14、増幅回路16、A/D(Analog/Digital)変換回路18、制御部20、表示部22、発光素子LD1、発光素子LD2、発光素子LD3、及び受光素子3を備えている。なお、発光素子LD1、発光素子LD2、発光素子LD3、受光素子3、及び増幅回路16は、センサ部を構成している。また、発光制御部12、駆動回路14、増幅回路16、A/D変換回路18、制御部20、表示部22、及び操作部24は、本体部を構成している。本実施形態では、これらのセンサ部と本体部とは別体で構成され、有線又は無線を介して通信可能とされている。なお、センサ部と本体部とが一体的に構成されていてもよい。また、センサ部は、外部光が入力しないように生体8に密着するように取り付けられる。本実施形態に係るセンサ部は、一例として、生体8の指先に取り付けられるが、耳朶等の他の抹消部位にも取り付け可能とされている。 As shown in FIG. 12, the biological information measuring device 10 according to the present embodiment includes a light emission control unit 12, a drive circuit 14, an amplifier circuit 16, an A / D (Analog / Digital) conversion circuit 18, a control unit 20, and a display unit. 22, a light emitting element LD1, a light emitting element LD2, a light emitting element LD3, and a light receiving element 3 are provided. The light emitting element LD1, the light emitting element LD2, the light emitting element LD3, the light receiving element 3, and the amplifier circuit 16 constitute a sensor unit. Further, the light emission control unit 12, the drive circuit 14, the amplifier circuit 16, the A / D conversion circuit 18, the control unit 20, the display unit 22, and the operation unit 24 constitute a main body unit. In the present embodiment, these sensor units and the main body unit are configured as separate bodies, and communication is possible via wired or wireless communication. The sensor unit and the main body unit may be integrally configured. Further, the sensor unit is attached so as to be in close contact with the living body 8 so that external light is not input. The sensor unit according to the present embodiment is attached to the fingertip of the living body 8 as an example, but can also be attached to other peripheral parts such as an earlobe.

発光制御部12は、発光素子LD1及び発光素子LD2に駆動電力を供給する電力供給回路を含む駆動回路14に、発光素子LD1及び発光素子LD2の発光周期及び発光期間を制御する制御信号を出力する。なお、発光制御部12は、制御部20の一部として実現してもよい。 The light emission control unit 12 outputs a control signal for controlling the light emission cycle and the light emission period of the light emitting element LD1 and the light emitting element LD2 to the drive circuit 14 including the power supply circuit for supplying the drive power to the light emitting element LD1 and the light emitting element LD2. .. The light emission control unit 12 may be realized as a part of the control unit 20.

駆動回路14は、発光制御部12からの制御信号を受け付けると、制御信号で指示された発光周期及び発光期間に従って、発光素子LD1、発光素子LD2、及び発光素子LD3に駆動電力を供給し、発光素子LD1、発光素子LD2、及び発光素子LD3を駆動する。 When the drive circuit 14 receives the control signal from the light emission control unit 12, it supplies drive power to the light emitting element LD1, the light emitting element LD2, and the light emitting element LD3 according to the light emitting cycle and the light emitting period instructed by the control signal, and emits light. It drives the element LD1, the light emitting element LD2, and the light emitting element LD3.

受光素子3は、受光部の一例であり、発光素子LD1から第1の波長の光を受光し、受光した第1の波長の光に対応する第1の受光信号と、発光素子LD2から第2の波長の光を受光し、受光した第2の波長の光に対応する第2の受光信号と、発光素子LD3から第3の波長の光を受光し、受光した第3の波長の光に対応する第3の受光信号と、を出力する。なお、本実施形態では、第1の波長及び第3の波長として赤外領域に対応する波長の範囲が適用され、第2の波長として赤色領域に対応する波長の範囲が適用される。また、第1の受光信号及び第3の受光信号にはIR光信号が適用され、第2の受光信号には赤色光信号が適用される。なお、第1の波長と第3の波長とは同一でもよいが、赤外領域の波長であれば異なっていても良い。 The light receiving element 3 is an example of a light receiving unit, and receives light of a first wavelength from the light emitting element LD1 and receives a first light receiving signal corresponding to the received light of the first wavelength, and a light emitting element LD2 to a second light receiving element 3. Corresponds to the second light receiving signal corresponding to the light of the second wavelength received by receiving the light of the wavelength of the above and the light of the third wavelength received by receiving the light of the third wavelength from the light emitting element LD3. A third light receiving signal is output. In the present embodiment, the wavelength range corresponding to the infrared region is applied as the first wavelength and the third wavelength, and the wavelength range corresponding to the red region is applied as the second wavelength. An IR optical signal is applied to the first light receiving signal and the third light receiving signal, and a red light signal is applied to the second light receiving signal. The first wavelength and the third wavelength may be the same, but may be different as long as they are wavelengths in the infrared region.

増幅回路16は、受光素子3で受光した光の強さに応じた電圧を、A/D変換回路18の入力電圧範囲として規定される電圧レベルまで増幅する。なお、ここでは一例として、受光素子3は受光した光の強さに応じた電圧を出力する素子とするが、受光素子3は受光した光の強さに応じた電流を出力してもよく、この場合、増幅回路16は、A/D変換回路18の入力電流範囲として規定される電流レベルまで、受光素子3が出力する電流を増幅する。 The amplifier circuit 16 amplifies the voltage corresponding to the intensity of the light received by the light receiving element 3 to a voltage level defined as the input voltage range of the A / D conversion circuit 18. Here, as an example, the light receiving element 3 is an element that outputs a voltage corresponding to the intensity of the received light, but the light receiving element 3 may output a current corresponding to the intensity of the received light. In this case, the amplifier circuit 16 amplifies the current output by the light receiving element 3 up to the current level defined as the input current range of the A / D conversion circuit 18.

A/D変換回路18は、増幅回路16で増幅した電圧を入力として、当該電圧の大きさで表される受光素子3の受光量を数値化して出力する。 The A / D conversion circuit 18 takes the voltage amplified by the amplifier circuit 16 as an input, and quantifies and outputs the amount of light received by the light receiving element 3 represented by the magnitude of the voltage.

制御部20は、CPU(Central Processing Unit)20A、ROM(Read Only Memory)20B、及びRAM(Random Access Memory)20Cを備えている。ROM20Bには、生体情報測定プログラムが記憶される。この生体情報測定プログラムは、例えば、生体情報測定装置10に予めインストールされていてもよい。生体情報測定プログラムは、不揮発性の記憶媒体に記憶して、又はネットワークを介して配布して、生体情報測定装置10に適宜インストールすることで実現してもよい。なお、不揮発性の記憶媒体の例としては、CD-ROM(Compact Disc Read Only Memory)、光磁気ディスク、HDD、DVD-ROM(Digital Versatile Disc Read Only Memory)、フラッシュメモリ、メモリカード等が想定される。 The control unit 20 includes a CPU (Central Processing Unit) 20A, a ROM (Read Only Memory) 20B, and a RAM (Random Access Memory) 20C. The biological information measurement program is stored in the ROM 20B. This biometric information measurement program may be pre-installed in, for example, the biometric information measuring device 10. The biometric information measurement program may be realized by storing it in a non-volatile storage medium or distributing it via a network and appropriately installing it in the biometric information measuring device 10. Examples of non-volatile storage media include CD-ROMs (Compact Disc Read Only Memory), magneto-optical disks, HDDs, DVD-ROMs (Digital Versatile Disc Read Only Memory), flash memories, memory cards, and the like. To.

表示部22は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)や有機EL(Electro Luminescence)ディスプレイ等が用いられる。なお、表示部22及び操作部24をタッチパネルとして一体的に構成してもよい。 As the display unit 22, for example, a liquid crystal display (LCD), an organic EL (Electro Luminescence) display, or the like is used. The display unit 22 and the operation unit 24 may be integrally configured as a touch panel.

図13は、本実施形態に係る生体情報測定装置10における発光素子LD1、発光素子LD2、LD3、及び受光素子3の配置の一例を示す図である。生体情報測定装置10は、複数種類の生体情報を測定するが、本実施形態では一例として酸素飽和度及び血流量を測定する場合について説明する。なお、測定する生体情報は、酸素飽和度及び血流量の組み合わせではなく、例えば光電脈波又は心拍出量と、血流量と、の組み合わせでもよい。また、光電脈波、酸素飽和度、及び心拍出量の少なくとも2つと、血流量と、の組み合わせでもよい。 FIG. 13 is a diagram showing an example of arrangement of the light emitting element LD1, the light emitting element LD2, LD3, and the light receiving element 3 in the biological information measuring device 10 according to the present embodiment. The biological information measuring device 10 measures a plurality of types of biological information, and in the present embodiment, a case of measuring oxygen saturation and blood flow will be described as an example. The biological information to be measured is not a combination of oxygen saturation and blood flow, but may be, for example, a combination of photoelectric pulse wave or cardiac output and blood flow. Further, at least two of the photoelectric pulse wave, the oxygen saturation, and the cardiac output may be combined with the blood flow.

図13に示すように、生体情報測定装置10は、生体8の一例として被測定者の指8Aを予め定めた向きで挿入するための筐体30を備えている。筐体30の内側には、IR光IRaを発光する発光素子LD1と、赤色光Redを発光する発光素子LD2と、生体8を透過したIR光IRa及び赤色光Redを受光する位置に設けられ、IR光IRa及び赤色光Redを透過光として受光する受光素子3と、IR光IRbを発光すると共に、IR光IRbが生体8で反射された反射光が受光素子3に入射する位置に設けられた発光素子LD3と、が設けられている。 As shown in FIG. 13, the biological information measuring device 10 includes a housing 30 for inserting the finger 8A of the person to be measured in a predetermined direction as an example of the living body 8. Inside the housing 30, a light emitting element LD1 that emits IR light IRa, a light emitting element LD2 that emits red light Red, and a position that receives IR light IRa and red light Red that have passed through the living body 8 are provided. A light receiving element 3 that receives IR light IRa and red light Red as transmitted light and a light receiving element 3 that emits IR light IRb and that the reflected light reflected by the living body 8 is incident on the light receiving element 3. A light emitting element LD3 is provided.

なお、発光素子LD1~LD3は、面発光レーザ素子でもよいし、端面発光レーザ素子であってもよい。また、発光素子LD1~LD3の各々から照射される光はレーザ光でなくてもよい。この場合、発光素子LD1~LD3の各々には、発光ダイオード(Light-Emitting Diode: LED)又は有機発光ダイオード(Organic Light-Emitting Diode: OLED)を用いてもよい。 The light emitting elements LD1 to LD3 may be a surface emitting laser element or an end surface emitting laser element. Further, the light emitted from each of the light emitting elements LD1 to LD3 does not have to be laser light. In this case, a light-emitting diode (LED) or an organic light-emitting diode (OLED) may be used for each of the light emitting elements LD1 to LD3.

そして、発光素子LD1及び発光素子LD2は、筐体30に被測定者の指8Aが挿入された場合に指8Aの爪側に配置される。また、受光素子3は、筐体30に指8Aが挿入された場合に指8Aの腹側に配置される。これは、指8Aの腹側の方が爪側と比べると筐体30に密着しやすいため、受光素子3に外光が照射されてしまうのが抑制されるからである。なお、発光素子LD1及び発光素子LD2が指8Aの爪側に配置され、発光素子LD3が指8Aの腹側に配置されるように、指8Aの向きを指示するマーク等を筐体30の表面に設けてもよい。 Then, the light emitting element LD1 and the light emitting element LD2 are arranged on the claw side of the finger 8A when the finger 8A of the person to be measured is inserted into the housing 30. Further, the light receiving element 3 is arranged on the ventral side of the finger 8A when the finger 8A is inserted into the housing 30. This is because the ventral side of the finger 8A is more likely to be in close contact with the housing 30 than the claw side, so that the light receiving element 3 is suppressed from being irradiated with external light. A mark or the like indicating the direction of the finger 8A is placed on the surface of the housing 30 so that the light emitting element LD1 and the light emitting element LD2 are arranged on the claw side of the finger 8A and the light emitting element LD3 is arranged on the ventral side of the finger 8A. It may be provided in.

また、図13、14に示すように、生体情報測定装置10をIR光IRa及び赤色光Redの進行方向であるZ方向に平面視した場合に、発光素子LD1の出射領域LD1A及び発光素子LD2の出射領域LD2Aが、受光素子3の受光面に含まれるように、発光素子LD1及び発光素子LD2が配置されている。これにより、発光素子LD1から発光されたIR光IRa及び発光素子LD2から発光された赤色光Redが受光素子3によって良好に受光される。なお、図13、14の例では、発光素子LD1、LD2が指8Aの長手方向であるX方向に沿って配置された例を示したが、これに限らず、図15に示すように、発光素子LD1、LD2が、X方向と直交するY方向に沿って配置されるようにしてもよい。また、「出射領域」とは、発光素子LD1及び発光素子LD2の出射側の領域のうち、実際に光が出射する領域をいい、例えば、面発光レーザ素子の場合は、メサ構造体の上面に形成された出射口の領域をいう。 Further, as shown in FIGS. 13 and 14, when the biological information measuring device 10 is viewed in a plan view in the Z direction, which is the traveling direction of the IR light IRa and the red light Red, the emission region LD1A and the light emitting element LD2 of the light emitting element LD1 The light emitting element LD1 and the light emitting element LD2 are arranged so that the light emitting region LD2A is included in the light receiving surface of the light receiving element 3. As a result, the IR light IRa emitted from the light emitting element LD1 and the red light Red emitted from the light emitting element LD2 are satisfactorily received by the light receiving element 3. In addition, in the example of FIGS. 13 and 14, the example in which the light emitting elements LD1 and LD2 are arranged along the X direction which is the longitudinal direction of the finger 8A is shown, but the present invention is not limited to this, and as shown in FIG. The elements LD1 and LD2 may be arranged along the Y direction orthogonal to the X direction. Further, the “emission region” refers to a region in which light is actually emitted from the regions on the emission side of the light emitting element LD1 and the light emitting element LD2. For example, in the case of a surface emitting laser element, it is on the upper surface of the mesa structure. The area of the formed outlet.

この場合、操作部24が操作されることにより酸素飽和度の測定が指示された場合は、CPU20Aは、受光素子3が透過光として受光したIR光IRa及び赤色光Redに基づいて酸素飽和度を測定する。また、CPU20Aは、操作部24が操作されることにより血流量の測定が指示された場合は、受光素子3が反射光として受光したIR光IRbに基づいて血流量を測定する。 In this case, when the operation unit 24 is operated to instruct the measurement of the oxygen saturation, the CPU 20A determines the oxygen saturation based on the IR light IRa and the red light Red received by the light receiving element 3 as transmitted light. Measure. Further, when the operation unit 24 is operated to instruct the measurement of the blood flow rate, the CPU 20A measures the blood flow rate based on the IR light IRb received by the light receiving element 3 as the reflected light.

なお、IR光IRaは第1の波長の光の一例であり、発光素子LD1は第1の発光部の一例である。また、赤色光Redは第2の波長の光の一例であり、発光素子LD2は第2の発光部の一例である。また、IR光IRbは第3の波長の光の一例であり、発光素子LD3は第3の発光部の一例である。また、CPU20Aは、第1の測定部及び第2の測定部の一例である。 The IR light IRa is an example of light having a first wavelength, and the light emitting element LD1 is an example of a first light emitting unit. Further, the red light Red is an example of light having a second wavelength, and the light emitting element LD2 is an example of a second light emitting unit. Further, the IR light IRb is an example of light having a third wavelength, and the light emitting element LD3 is an example of a third light emitting unit. The CPU 20A is an example of a first measuring unit and a second measuring unit.

次に、本実施形態に係る発光素子LD1~LD3の発光タイミング及び受光素子3におけるデータ、すなわち受光量のサンプリングタイミングについて説明する。図16には、発光素子LD1~LD3の発光タイミング及び受光素子3におけるデータのサンプリングタイミングの一例を示した。なお、図16において、縦軸は受光素子3の出力電圧を表し、横軸は時間を表す。 Next, the light emitting timing of the light emitting elements LD1 to LD3 and the data in the light receiving element 3, that is, the sampling timing of the light receiving amount will be described. FIG. 16 shows an example of the light emission timing of the light emitting elements LD1 to LD3 and the data sampling timing of the light receiving element 3. In FIG. 16, the vertical axis represents the output voltage of the light receiving element 3, and the horizontal axis represents time.

図16に示すように、発光素子LD1~LD3は、それぞれ予め定めた発光周期S1~S3で発光する。ここで、酸素飽和度を測定する場合、血流量を測定する場合と比較して発光周期は長くて良い。このため、酸素飽和度を測定するためのIR光IRaを発光する発光素子LD1の発光周期S1及び赤色光Redを発光する発光素子LD2の発光周期S2は、血流量を測定するためのIR光IRbを発光する発光素子LD3の発光周期S3よりも長い。また、発光素子LD1~LD3の何れも発光しない非発光期間Darkが予め定めた周期Sdで設けられている。これにより、発光の順序としては、発光素子LD3、発光素子LD2、発光素子LD1、非発光、発光素子LD3・・・、となる。受光素子3は、発光素子LD1~LD3の発光タイミング及び非発光のタイミングに同期してデータをサンプリングする。 As shown in FIG. 16, the light emitting elements LD1 to LD3 emit light in predetermined light emission cycles S1 to S3, respectively. Here, when measuring the oxygen saturation, the light emission cycle may be longer than when measuring the blood flow rate. Therefore, the light emitting cycle S1 of the light emitting element LD1 that emits IR light IRa for measuring the oxygen saturation and the light emitting cycle S2 of the light emitting element LD2 that emits red light Red are the IR light IRb for measuring the blood flow. It is longer than the light emission cycle S3 of the light emitting element LD3 that emits light. Further, a non-emission period Dark in which none of the light emitting elements LD1 to LD3 emits light is provided with a predetermined period Sd. As a result, the order of light emission is as follows: light emitting element LD3, light emitting element LD2, light emitting element LD1, non-light emitting, light emitting element LD3, and so on. The light receiving element 3 samples data in synchronization with the light emitting timing and the non-light emitting timing of the light emitting elements LD1 to LD3.

受光素子3が発光素子LD1から受光した光に対応する出力電圧をV1、受光素子3が発光素子LD2から受光した光に対応する出力電圧をV2、受光素子3が発光素子LD3から受光した光に対応する出力電圧をV3、受光素子3が非発光の期間に受光した光に対応する出力電圧をVdとした場合、出力電圧V1~V3を出力電圧Vdで次式により各々補正するようにしてもよい。これにより、外乱等の影響を考慮した出力電圧が得られる。 The output voltage corresponding to the light received by the light receiving element 3 from the light emitting element LD1 is V1, the output voltage corresponding to the light received by the light receiving element 3 from the light emitting element LD2 is V2, and the output voltage corresponding to the light received by the light receiving element 3 is the light received from the light emitting element LD3. When the corresponding output voltage is V3 and the output voltage corresponding to the light received by the light receiving element 3 during the non-emission period is Vd, the output voltages V1 to V3 may be corrected by the following equations with the output voltage Vd. good. As a result, an output voltage can be obtained in consideration of the influence of disturbance and the like.

V1=V1-Vd
V2-V2-Vd
V3=V3-Vd
V1 = V1-Vd
V2-V2-Vd
V3 = V3-Vd

このように、本実施形態では、酸素飽和度測定用の発光素子LD1及び血流量測定用の発光素子LD3を設けた構成とした。このため、酸素飽和度及び血流量の測定が1つの生体情報測定装置10で行われる。 As described above, in the present embodiment, the light emitting element LD1 for measuring the oxygen saturation and the light emitting element LD3 for measuring the blood flow are provided. Therefore, the oxygen saturation and the blood flow rate are measured by one biological information measuring device 10.

なお、第1実施形態では、発光素子LD3及び受光素子3が指8Aの腹側に配置され、発光素子LD1及び発光素子LD2が指8Aの爪側に配置された場合について説明したが、これに限られない。 In the first embodiment, the case where the light emitting element LD3 and the light receiving element 3 are arranged on the ventral side of the finger 8A and the light emitting element LD1 and the light emitting element LD2 are arranged on the claw side of the finger 8A has been described. Not limited.

図17には、第1実施形態の変形例に係る生体情報測定装置10Aの構成を示した。なお、図17では、筐体30は省略している。 FIG. 17 shows the configuration of the biological information measuring device 10A according to the modified example of the first embodiment. In FIG. 17, the housing 30 is omitted.

図17に示す生体情報測定装置10Aは、発光素子LD3及び受光素子3が指8Aの爪側に配置され、発光素子LD1及び発光素子LD2が指8Aの腹側に配置された構成である。そして、発光素子LD1~LD3の発光タイミング及び受光素子3によるデータのサンプリングのタイミングについては図13に示した生体情報測定装置10と同一である。 The biological information measuring device 10A shown in FIG. 17 has a configuration in which the light emitting element LD3 and the light receiving element 3 are arranged on the claw side of the finger 8A, and the light emitting element LD1 and the light emitting element LD2 are arranged on the ventral side of the finger 8A. The light emitting timing of the light emitting elements LD1 to LD3 and the timing of data sampling by the light receiving element 3 are the same as those of the biological information measuring device 10 shown in FIG.

[第2の実施形態] [Second Embodiment]

次に、第2実施形態について説明する。なお、第1実施形態と同一部分については同一符号を付し、詳細な説明は省略する。 Next, the second embodiment will be described. The same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

図18には、第2実施形態に係る生体情報測定装置10Bの構成を示した。なお、筐体30は省略している。 FIG. 18 shows the configuration of the biological information measuring device 10B according to the second embodiment. The housing 30 is omitted.

図18に示すように、生体情報測定装置10Bは、指8Aの爪側に発光素子LD1、発光素子LD2、及び受光素子3Aが設けられている。また、指8Aの腹側に受光素子3Bが設けられている。 As shown in FIG. 18, the biological information measuring device 10B is provided with a light emitting element LD1, a light emitting element LD2, and a light receiving element 3A on the claw side of the finger 8A. Further, a light receiving element 3B is provided on the ventral side of the finger 8A.

受光素子3Aは、発光素子LD1から発光されたIR光Raが指8A内で反射された反射光が入射する位置に設けられている。 The light receiving element 3A is provided at a position where the reflected light reflected from the IR light Ra emitted from the light emitting element LD1 is incident on the finger 8A.

受光素子3Bは、指8Aを透過したIR光IRa及び赤色光Redを受光する位置に設けられ、IR光IRa及び赤色光Redを透過光として受光する。 The light receiving element 3B is provided at a position where it receives the IR light IRa and the red light Red that have passed through the finger 8A, and receives the IR light IRa and the red light Red as transmitted light.

なお、発光素子LD1は第1の発光部の一例である。また、発光素子LD2は第2の発光部の一例である。受光素子3Aは反射光受光部の一例である。また、受光素子3Bは透過光受光部の一例である。 The light emitting element LD1 is an example of the first light emitting unit. The light emitting element LD2 is an example of a second light emitting unit. The light receiving element 3A is an example of a reflected light receiving unit. Further, the light receiving element 3B is an example of a transmitted light receiving unit.

図19は、本実施形態に係る生体情報測定装置10Bの電気的な構成の一例を示すブロック図である。図19に示すように、発光素子LD1及び発光素子LD2から発光され、指8Aを透過した透過光は受光素子3Bで受光され、発光素子LD1から発光され、指8Aで反射された反射光は受光素子3Aで受光される。 FIG. 19 is a block diagram showing an example of the electrical configuration of the biological information measuring device 10B according to the present embodiment. As shown in FIG. 19, the transmitted light emitted from the light emitting element LD1 and the light emitting element LD2 and transmitted through the finger 8A is received by the light receiving element 3B, emitted from the light emitting element LD1, and the reflected light reflected by the finger 8A is received. The light is received by the element 3A.

このような構成において、操作部24が操作されることにより血流量の測定が指示された場合は、CPU20Aは、受光素子3Aが反射光として受光したIR光IRaに基づいて血流量を測定する。また、CPU20Aは、操作部24が操作されることにより酸素飽和度の測定が指示された場合は、受光素子3Bが透過光として受光したIR光IRa及び赤色光Redに基づいて酸素飽和度を測定する。なお、血流量を測定する場合、第1実施形態と同様に、受光素子3Aが発光素子LD1から受光した反射光に対応する出力電圧を、受光素子3Aが非発光の期間に受光した光に対応する出力電圧で補正してもよい。酸素飽和度についても同様に、受光素子3Bが発光素子LD1、LD2から受光した透過光に対応する出力電圧を、受光素子3Bが非発光の期間に受光した光に対応する出力電圧で補正してもよい。 In such a configuration, when the operation unit 24 is operated to instruct the measurement of the blood flow rate, the CPU 20A measures the blood flow rate based on the IR light IRa received by the light receiving element 3A as the reflected light. Further, when the operation unit 24 is operated to instruct the measurement of the oxygen saturation, the CPU 20A measures the oxygen saturation based on the IR light IRa and the red light Red received by the light receiving element 3B as transmitted light. do. When measuring the blood flow, the output voltage corresponding to the reflected light received by the light receiving element 3A from the light emitting element LD1 corresponds to the light received by the light receiving element 3A during the non-light emitting period, as in the first embodiment. It may be corrected by the output voltage to be applied. Similarly, regarding the oxygen saturation, the output voltage corresponding to the transmitted light received by the light receiving element 3B from the light emitting elements LD1 and LD2 is corrected by the output voltage corresponding to the light received by the light receiving element 3B during the non-emission period. May be good.

ここで、図18に示すように、受光素子3Aの受光面3A1の面積が、受光素子3Bの受光面3B1の面積よりも小さくなっている。これは、血流量の測定に使用される受光素子3Aの受光面が大きいとノイズの影響を受けやすくなるためである。これに対し、酸素飽和度の測定に使用される受光素子3Bは、受光面が大きい方が精度良く酸素飽和度が測定されるため好ましい。 Here, as shown in FIG. 18, the area of the light receiving surface 3A1 of the light receiving element 3A is smaller than the area of the light receiving surface 3B1 of the light receiving element 3B. This is because if the light receiving surface of the light receiving element 3A used for measuring the blood flow rate is large, it is easily affected by noise. On the other hand, in the light receiving element 3B used for measuring the oxygen saturation, the larger the light receiving surface is, the more accurately the oxygen saturation is measured, which is preferable.

また、図18に示すように、発光素子LD1と受光素子3AとのX方向の距離が、発光素子LD2と受光素子3AとのX方向の距離よりも短くなっている。このため、発光素子LD1が照射したIR光IRaの反射光は、受光素子3Aによって良好に受光される。 Further, as shown in FIG. 18, the distance between the light emitting element LD1 and the light receiving element 3A in the X direction is shorter than the distance between the light emitting element LD2 and the light receiving element 3A in the X direction. Therefore, the reflected light of the IR light IRa irradiated by the light emitting element LD1 is satisfactorily received by the light receiving element 3A.

また、第2実施形態においても、第1実施形態で説明した図14に示す構成と同様に、生体情報測定装置10BをIR光IRa及び赤色光Redの進行方向であるZ方向に平面視した場合に、発光素子LD1の出射領域LD1A及び発光素子LD2の出射領域LD2Aが、受光素子3Bの受光面に含まれるように、発光素子LD1及び発光素子LD2が配置されていることが好ましい。これにより、発光素子LD1から発光されたIR光IRa及び発光素子LD2から発光された赤色光Redが受光素子3Bによって良好に受光される。さらに、第1実施形態で説明した図15に示す構成と同様に、発光素子LD1、LD2が、X方向と直交するY方向に沿って配置されるようにしてもよい。また、「出射領域」とは、発光素子LD1及び発光素子LD2の出射側の領域のうち、実際に光が出射する領域をいい、例えば、面発光レーザ素子の場合は、メサ構造体の上面に形成された出射口の領域をいう。 Further, also in the second embodiment, similarly to the configuration shown in FIG. 14 described in the first embodiment, when the biological information measuring device 10B is viewed in a plan view in the Z direction which is the traveling direction of the IR light IRa and the red light Red. It is preferable that the light emitting element LD1 and the light emitting element LD2 are arranged so that the light emitting region LD1A of the light emitting element LD1 and the light emitting region LD2A of the light emitting element LD2 are included in the light receiving surface of the light receiving element 3B. As a result, the IR light IRa emitted from the light emitting element LD1 and the red light Red emitted from the light emitting element LD2 are satisfactorily received by the light receiving element 3B. Further, the light emitting elements LD1 and LD2 may be arranged along the Y direction orthogonal to the X direction, as in the configuration shown in FIG. 15 described in the first embodiment. Further, the “emission region” refers to a region in which light is actually emitted from the regions on the emission side of the light emitting element LD1 and the light emitting element LD2. For example, in the case of a surface emitting laser element, it is on the upper surface of the mesa structure. The area of the formed outlet.

また、第2実施形態では、発光素子LD1、発光素子LD2、及び受光素子3Aが指8Aの爪側に配置され、受光素子3Bが指8Aの腹側に配置された場合について説明したが、これに限られない。図20に示す生体情報測定装置10Cのように、受光素子3Bが指8Aの爪側に配置され、発光素子LD1、発光素子LD2、及び受光素子3Aが指8Aの腹側に配置された構成としてもよい。 Further, in the second embodiment, the case where the light emitting element LD1, the light emitting element LD2, and the light receiving element 3A are arranged on the claw side of the finger 8A and the light receiving element 3B is arranged on the ventral side of the finger 8A has been described. Not limited to. As in the biological information measuring device 10C shown in FIG. 20, the light receiving element 3B is arranged on the claw side of the finger 8A, and the light emitting element LD1, the light emitting element LD2, and the light receiving element 3A are arranged on the ventral side of the finger 8A. May be good.

以上、各実施の形態を用いて本発明について説明したが、本発明は各実施の形態に記載の範囲には限定されない。本発明の要旨を逸脱しない範囲で各実施の形態に多様な変更又は改良を加えることができ、当該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。 Although the present invention has been described above using each embodiment, the present invention is not limited to the scope described in each embodiment. Various changes or improvements can be made to each embodiment without departing from the gist of the present invention, and the modified or improved forms are also included in the technical scope of the present invention.

例えば、上記各実施形態では、指8Aの爪の上に発光素子及び受光素子の少なくとも1つが配置される構成について説明したが、発光素子及び受光素子の全てが指8Aの爪を避けた位置に配置されるように構成してもよい。 For example, in each of the above embodiments, the configuration in which at least one of the light emitting element and the light receiving element is arranged on the fingernail of the finger 8A has been described, but all of the light emitting element and the light receiving element are located at positions avoiding the fingernail of the finger 8A. It may be configured to be arranged.

1 発光素子
3、3A、3B 受光素子
4 動脈
5 静脈
6 毛細血管
7 血球細胞
8 生体
10、10A、10B、10C 生体情報測定装置
12 発光制御部
14 駆動回路
16 増幅回路
18 A/D変換回路
20 制御部
20A CPU
20B ROM
20C RAM
22 表示部
24 操作部
1 Light emitting element 3, 3A, 3B Light receiving element 4 Artery 5 Vein 6 Capillaries 7 Blood cell 8 Living body 10, 10A, 10B, 10C Biological information measuring device 12 Light emitting control unit 14 Drive circuit 16 Amplifier circuit 18 A / D conversion circuit 20 Control unit 20A CPU
20B ROM
20C RAM
22 Display unit 24 Operation unit

Claims (5)

第1の波長の光を発光する第1の発光部と、
前記第1の波長と異なる第2の波長の光を発光する第2の発光部と、
被測定者の被測定部を透過した前記第1の波長の光及び前記第2の波長の光を受光する位置に設けられ、前記第1の波長の光及び前記第2の波長の光を透過光として受光する受光部と、
第3の波長の光を発光すると共に、前記第3の波長の光が前記被測定部で反射された反射光が前記受光部に入射する位置に設けられた第3の発光部と、
前記透過光に基づいて第1の生体情報を測定する第1の測定部と、
前記反射光に基づいて第2の生体情報を測定する第2の測定部と、
前記被測定者の指を予め定めた向きで挿入するための筐体と、
を備え、
前記第1の発光部及び前記第2の発光部は、前記筐体の前記指の爪側に設けられ、
前記受光部は、前記筐体の前記指の腹側に設けられ、
前記第3の発光部は、前記筐体の前記指の腹側に設けられた
生体情報測定装置。
A first light emitting unit that emits light of the first wavelength,
A second light emitting unit that emits light having a second wavelength different from the first wavelength,
It is provided at a position where it receives the light of the first wavelength and the light of the second wavelength that have passed through the part to be measured of the person to be measured, and transmits the light of the first wavelength and the light of the second wavelength. The light receiving part that receives light as light and the light receiving part
A third light emitting portion provided at a position where the light of the third wavelength is emitted and the reflected light reflected by the third wavelength light is incident on the light receiving portion.
A first measuring unit that measures first biological information based on the transmitted light,
A second measuring unit that measures the second biological information based on the reflected light,
A housing for inserting the finger of the person to be measured in a predetermined direction, and
With
The first light emitting unit and the second light emitting unit are provided on the fingernail side of the housing.
The light receiving portion is provided on the ventral side of the finger of the housing.
The third light emitting portion is provided on the ventral side of the finger of the housing.
Biological information measuring device.
第1の波長の光を発光する第1の発光部と、
前記第1の波長と異なる第2の波長の光を発光する第2の発光部と、
被測定者の被測定部を透過した前記第1の波長の光及び前記第2の波長の光を受光する位置に設けられ、前記第1の波長の光及び前記第2の波長の光を透過光として受光する透過光受光部と、
前記第1の波長の光が前記被測定部で反射された反射光が入射する位置に設けられた反射光受光部と、
前記透過光に基づいて第1の生体情報を測定する第1の測定部と、
前記反射光に基づいて第2の生体情報を測定する第2の測定部と、
前記被測定者の指を予め定めた向きで挿入するための筐体と、
を備え、
前記第1の発光部及び前記第2の発光部は、前記筐体の前記指の腹側に設けられた
生体情報測定装置。
A first light emitting unit that emits light of the first wavelength,
A second light emitting unit that emits light having a second wavelength different from the first wavelength,
It is provided at a position where it receives the light of the first wavelength and the light of the second wavelength that have passed through the part to be measured of the person to be measured, and transmits the light of the first wavelength and the light of the second wavelength. A transmitted light receiving part that receives light as light, and a transmitted light receiving part
A reflected light receiving unit provided at a position where the reflected light reflected by the measured unit receives the light of the first wavelength, and a reflected light receiving unit.
A first measuring unit that measures first biological information based on the transmitted light,
A second measuring unit that measures the second biological information based on the reflected light,
A housing for inserting the finger of the person to be measured in a predetermined direction, and
With
The first light emitting portion and the second light emitting portion are provided on the ventral side of the finger of the housing.
Biological information measuring device.
第1の波長の光を発光する第1の発光部と、
前記第1の波長と異なる第2の波長の光を発光する第2の発光部と、
被測定者の被測定部を透過した前記第1の波長の光及び前記第2の波長の光を受光する位置に設けられ、前記第1の波長の光及び前記第2の波長の光を透過光として受光する透過光受光部と、
前記第1の波長の光が前記被測定部で反射された反射光が入射する位置に設けられた反射光受光部と、
前記透過光に基づいて第1の生体情報を測定する第1の測定部と、
前記反射光に基づいて第2の生体情報を測定する第2の測定部と、
前記被測定者の指を予め定めた向きで挿入するための筐体と、
を備え、
前記反射光受光部は、前記第1の発光部及び前記第2の発光部よりも前記筐体の前記指の先側に設けられた
生体情報測定装置。
A first light emitting unit that emits light of the first wavelength,
A second light emitting unit that emits light having a second wavelength different from the first wavelength,
It is provided at a position where it receives the light of the first wavelength and the light of the second wavelength that have passed through the part to be measured of the person to be measured, and transmits the light of the first wavelength and the light of the second wavelength. A transmitted light receiving part that receives light as light, and a transmitted light receiving part
A reflected light receiving unit provided at a position where the reflected light reflected by the measured unit receives the light of the first wavelength, and a reflected light receiving unit.
A first measuring unit that measures first biological information based on the transmitted light,
A second measuring unit that measures the second biological information based on the reflected light,
A housing for inserting the finger of the person to be measured in a predetermined direction, and
With
The reflected light receiving unit is a biological information measuring device provided on the fingertip side of the housing with respect to the first light emitting unit and the second light emitting unit .
前記反射光受光部の受光面の面積が、前記透過光受光部の受光面の面積よりも小さい
請求項2又は請求項3記載の生体情報測定装置。
The biometric information measuring device according to claim 2 or 3 , wherein the area of the light receiving surface of the reflected light receiving unit is smaller than the area of the light receiving surface of the transmitted light receiving unit.
前記第1の発光部と前記反射光受光部との距離が、前記第2の発光部と前記反射光受光部との距離よりも短い
請求項2~4の何れか1項に記載の生体情報測定装置。
The biometric information according to any one of claims 2 to 4 , wherein the distance between the first light emitting unit and the reflected light receiving unit is shorter than the distance between the second light emitting unit and the reflected light receiving unit. measuring device.
JP2018057118A 2018-03-23 2018-03-23 Biological information measuring device Active JP7102832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018057118A JP7102832B2 (en) 2018-03-23 2018-03-23 Biological information measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018057118A JP7102832B2 (en) 2018-03-23 2018-03-23 Biological information measuring device

Publications (2)

Publication Number Publication Date
JP2019166149A JP2019166149A (en) 2019-10-03
JP7102832B2 true JP7102832B2 (en) 2022-07-20

Family

ID=68105747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018057118A Active JP7102832B2 (en) 2018-03-23 2018-03-23 Biological information measuring device

Country Status (1)

Country Link
JP (1) JP7102832B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299085A (en) 2006-04-28 2007-11-15 Nec Corp Image reading apparatus, and image reading method
JP2017176267A (en) 2016-03-28 2017-10-05 富士ゼロックス株式会社 Biological information measurement device and light-emitting device
WO2017202847A1 (en) 2016-05-25 2017-11-30 Osram Opto Semiconductors Gmbh Sensor device
JP2018143746A (en) 2017-03-08 2018-09-20 京セラ株式会社 Measuring device and measuring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3273284B2 (en) * 1994-03-30 2002-04-08 日本光電工業株式会社 Oxygen saturation and blood flow measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299085A (en) 2006-04-28 2007-11-15 Nec Corp Image reading apparatus, and image reading method
JP2017176267A (en) 2016-03-28 2017-10-05 富士ゼロックス株式会社 Biological information measurement device and light-emitting device
WO2017202847A1 (en) 2016-05-25 2017-11-30 Osram Opto Semiconductors Gmbh Sensor device
JP2018143746A (en) 2017-03-08 2018-09-20 京セラ株式会社 Measuring device and measuring method

Also Published As

Publication number Publication date
JP2019166149A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
US9788727B2 (en) Physiological information measuring apparatus
US11160461B2 (en) Blood pressure measurement using a wearable device
CN108778105B (en) Method for measuring cardiovascular and respiratory parameters based on multi-wavelength photoplethysmography
EP2194842B1 (en) Blood oximeter
US10646145B2 (en) Reflective SpO2 measurement system and method
US10631741B2 (en) Heart activity measurement
US20200214579A1 (en) Sensor and methods for continuous non-invasive blood pressure measurement and cardiovascular hemodynamics monitoring in healthcare, rehabilitation and wearable wellness monitors
CN107233089B (en) Living body information measuring device
JP2023532318A (en) Method and apparatus for assessing peripheral arterial tone
US10492695B2 (en) Living-body information measuring device and light-emitting element
US20140187992A1 (en) System and method for non-invasively determining cardiac output
JP7102832B2 (en) Biological information measuring device
JP7091763B2 (en) Biometric information measuring device and biometric information measuring program
JP7106893B2 (en) Biological information measuring device
CN209863834U (en) Muscle oxygenation detection equipment based on NIRS technique
JP7024261B2 (en) Optical measuring device and optical measuring program
JP2019166145A (en) Biological information measurement device and biological information measurement program
JP7247671B2 (en) Biological information measuring device and biological information measuring program
JP2023043576A (en) Biological information measurement device and biological information measurement program
US20230071410A1 (en) Biological information measurement apparatus and non-transitory computer readable medium
JP2017176263A (en) Apparatus and program for measuring biological information
JP2017176264A (en) Apparatus and program for measuring biological information
Alzahrani A reflectance opto-electronic patch sensor for physiological monitoring with motion artefacts reduction
Davies et al. Haemodynamic Optimisation of the Critically Injured Patient
JP2019141410A (en) Biological information measurement device and biological information measurement program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7102832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150