JP7101556B2 - Eddy current damper - Google Patents

Eddy current damper Download PDF

Info

Publication number
JP7101556B2
JP7101556B2 JP2018140882A JP2018140882A JP7101556B2 JP 7101556 B2 JP7101556 B2 JP 7101556B2 JP 2018140882 A JP2018140882 A JP 2018140882A JP 2018140882 A JP2018140882 A JP 2018140882A JP 7101556 B2 JP7101556 B2 JP 7101556B2
Authority
JP
Japan
Prior art keywords
holding member
conductive member
magnet
eddy current
magnet holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018140882A
Other languages
Japanese (ja)
Other versions
JP2020016309A (en
Inventor
裕 野上
憲治 今西
泰隆 野口
亮介 増井
薫平 佐野
滋樹 中南
英範 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Aseismic Devices Co Ltd
Original Assignee
Nippon Steel Corp
Aseismic Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Aseismic Devices Co Ltd filed Critical Nippon Steel Corp
Priority to JP2018140882A priority Critical patent/JP7101556B2/en
Publication of JP2020016309A publication Critical patent/JP2020016309A/en
Application granted granted Critical
Publication of JP7101556B2 publication Critical patent/JP7101556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

本発明は、渦電流式ダンパに関する。 The present invention relates to an eddy current type damper.

地震等による振動から建築物を保護するために、建築物には制振装置が取り付けられる。制振装置は建築物に与えられた運動エネルギを熱エネルギ等の他のエネルギに変換することにより、振動を減衰させる。このような制振装置としてオイル式ダンパが知られている。オイル式ダンパは、シリンダ内に充填された粘性流体の抵抗を利用して振動を減衰させる。 In order to protect the building from vibration caused by an earthquake or the like, a vibration damping device is attached to the building. The vibration damping device attenuates vibration by converting the kinetic energy given to the building into other energy such as thermal energy. An oil type damper is known as such a vibration damping device. The oil damper utilizes the resistance of the viscous fluid filled in the cylinder to attenuate the vibration.

しかしながら、粘性流体の粘度は粘性流体の温度に依存するため、オイル式ダンパの減衰力は粘性流体の温度に依存する。したがって、オイル式ダンパを建築物に使用する際には、使用環境を考慮して適切な粘性流体を選択する必要がある。減衰力が温度に依存しないダンパとして、渦電流式ダンパがある。 However, since the viscosity of the viscous fluid depends on the temperature of the viscous fluid, the damping force of the oil type damper depends on the temperature of the viscous fluid. Therefore, when using an oil type damper in a building, it is necessary to select an appropriate viscous fluid in consideration of the usage environment. There is an eddy current type damper as a damper whose damping force does not depend on the temperature.

渦電流式ダンパはたとえば、特公平5-86496号公報(特許文献1)に開示されている。 The eddy current type damper is disclosed in, for example, Japanese Patent Publication No. 5-86496 (Patent Document 1).

特許文献1の渦電流式ダンパは、主筒に取り付けられた複数の永久磁石と、ねじ軸に接続されたヒステリシス材と、ねじ軸と噛み合うボールナットと、ボールナットに接続された副筒と、を備える。複数の永久磁石は、磁極の配置が交互に異なる。ヒステリシス材は、複数の永久磁石と対向し、相対回転可能である。この渦電流式ダンパに運動エネルギが与えられると、副筒及びボールナットが軸方向に往復移動し、ボールねじの作用によってヒステリシス材が回転する。これにより、ヒステリシス損が生じ、運動エネルギが消費される。また、ヒステリシス材に渦電流が発生するため、渦電流損により運動エネルギが消費される(減衰力が得られる)、と特許文献1には記載されている。 The eddy current type damper of Patent Document 1 includes a plurality of permanent magnets attached to a main cylinder, a hysteresis material connected to a screw shaft, a ball nut that meshes with the screw shaft, and a sub cylinder connected to the ball nut. To prepare for. The arrangement of the magnetic poles of the plurality of permanent magnets is different. The hysteresis material faces a plurality of permanent magnets and can rotate relative to each other. When kinetic energy is applied to this eddy current type damper, the auxiliary cylinder and the ball nut reciprocate in the axial direction, and the hysteresis material rotates due to the action of the ball screw. This causes a hysteresis loss and consumes kinetic energy. Further, it is described in Patent Document 1 that since an eddy current is generated in the hysteresis material, kinetic energy is consumed (damping force is obtained) due to the eddy current loss.

特公平5-86496号公報Special Fair No. 5-86496 Gazette

しかしながら、特許文献1の渦電流式ダンパでは、ヒステリシス材(導電部材)の永久磁石と対向する側の表面近傍に渦電流が発生するため、この領域が集中的に加熱され、局所的に高温化する。導電部材の温度が局所的に高温化すれば、導電部材自体及びその周辺部品の強度等に悪影響を与える可能性がある。また、局所的に高温化した導電部材の熱が永久磁石に伝達されることで、永久磁石が減磁し、渦電流式ダンパの減衰力が低下する可能性がある。 However, in the eddy current type damper of Patent Document 1, since an eddy current is generated near the surface of the hysteresis material (conductive member) on the side facing the permanent magnet, this region is intensively heated and the temperature is raised locally. do. If the temperature of the conductive member is locally increased, the strength of the conductive member itself and its peripheral parts may be adversely affected. Further, the heat of the locally heated conductive member is transferred to the permanent magnet, which may demagnetize the permanent magnet and reduce the damping force of the eddy current type damper.

本発明の目的は、導電部材の局所的な温度上昇を抑制できる渦電流式ダンパを提供することである。本発明のもう一つの目的は、永久磁石の温度上昇を抑制できる渦電流式ダンパを提供することである。 An object of the present invention is to provide an eddy current type damper capable of suppressing a local temperature rise of a conductive member. Another object of the present invention is to provide an eddy current type damper capable of suppressing a temperature rise of a permanent magnet.

本発明のねじ軸及びボールナットを用いて永久磁石と導電部材とを相対的に回転させることで減衰力を得る渦電流式ダンパは、磁石保持部材と、複数の永久磁石と、導電部材と、2つのシール部材と、磁石保護カバーと、熱吸収液と、を含む。磁石保持部材は、円筒形状である。複数の永久磁石は、磁石保持部材に固定され、磁石保持部材の周方向に磁極の配置を交互に反転して配列される。導電部材は、円筒形状であり、複数の永久磁石と隙間を空けて対向し、複数の永久磁石に対して相対的に回転可能である。2つのシール部材は、導電部材と磁石保持部材との隙間に設けられ、導電部材及び磁石保持部材と密閉空間を形成する。磁石保護カバーは、密閉空間を複数の永久磁石が収容された磁石収容室と、液体収容室とに仕切り、磁石保持部材に固定される。熱吸収液は、液体収容室に収容される。 The eddy current type damper that obtains a damping force by relatively rotating a permanent magnet and a conductive member using the screw shaft and ball nut of the present invention includes a magnet holding member, a plurality of permanent magnets, a conductive member, and the like. It includes two sealing members, a magnet protective cover, and a heat absorber. The magnet holding member has a cylindrical shape. The plurality of permanent magnets are fixed to the magnet holding member, and the arrangement of the magnetic poles is alternately inverted and arranged in the circumferential direction of the magnet holding member. The conductive member has a cylindrical shape, faces a plurality of permanent magnets with a gap, and is relatively rotatable with respect to the plurality of permanent magnets. The two sealing members are provided in the gap between the conductive member and the magnet holding member, and form a closed space with the conductive member and the magnet holding member. The magnet protective cover divides the sealed space into a magnet accommodating chamber in which a plurality of permanent magnets are accommodated and a liquid accommodating chamber, and is fixed to a magnet holding member. The heat absorbing liquid is stored in the liquid storage chamber.

本発明の渦電流式ダンパによれば、導電部材の局所的な温度上昇を抑制でき、かつ、永久磁石の温度上昇を抑制できる。 According to the eddy current type damper of the present invention, the local temperature rise of the conductive member can be suppressed, and the temperature rise of the permanent magnet can be suppressed.

図1は、第1実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。FIG. 1 is a cross-sectional view of the eddy current type damper of the first embodiment in a plane along the axial direction. 図2は、図1の一部拡大図である。FIG. 2 is a partially enlarged view of FIG. 図3は、図2中のIII-III線での断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 図4は、図3の一部拡大図である。FIG. 4 is a partially enlarged view of FIG. 図5は、第2実施形態の渦電流式ダンパの軸方向に沿った面での一部断面図である。FIG. 5 is a partial cross-sectional view of the eddy current type damper of the second embodiment in a plane along the axial direction. 図6は、第3実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。FIG. 6 is a cross-sectional view of the eddy current type damper of the third embodiment in a plane along the axial direction. 図7は、図6の一部拡大図である。FIG. 7 is a partially enlarged view of FIG. 図8は、第4実施形態の渦電流式ダンパの軸方向に沿った面での一部断面図である。FIG. 8 is a partial cross-sectional view of the eddy current type damper of the fourth embodiment in a plane along the axial direction.

(1)本実施形態のねじ軸及びボールナットを用いて永久磁石と導電部材とを相対的に回転させることで減衰力を得る渦電流式ダンパは、磁石保持部材と、複数の永久磁石と、導電部材と、2つのシール部材と、磁石保護カバーと、熱吸収液と、を含む。磁石保持部材は、円筒形状である。複数の永久磁石は、磁石保持部材に固定され、磁石保持部材の周方向に磁極の配置を交互に反転して配列される。導電部材は、円筒形状であり、複数の永久磁石と隙間を空けて対向し、複数の永久磁石に対して相対的に回転可能である。2つのシール部材は、導電部材と磁石保持部材との隙間に設けられ、導電部材及び磁石保持部材と密閉空間を形成する。磁石保護カバーは、密閉空間を複数の永久磁石が収容された磁石収容室と、液体収容室とに仕切り、磁石保持部材に固定される。熱吸収液は、液体収容室に収容される。 (1) An eddy current type damper that obtains a damping force by relatively rotating a permanent magnet and a conductive member using the screw shaft and ball nut of the present embodiment includes a magnet holding member, a plurality of permanent magnets, and the like. It includes a conductive member, two sealing members, a magnet protective cover, and a heat absorber. The magnet holding member has a cylindrical shape. The plurality of permanent magnets are fixed to the magnet holding member, and the arrangement of the magnetic poles is alternately inverted and arranged in the circumferential direction of the magnet holding member. The conductive member has a cylindrical shape, faces a plurality of permanent magnets with a gap, and is relatively rotatable with respect to the plurality of permanent magnets. The two sealing members are provided in the gap between the conductive member and the magnet holding member, and form a closed space with the conductive member and the magnet holding member. The magnet protective cover divides the sealed space into a magnet accommodating chamber in which a plurality of permanent magnets are accommodated and a liquid accommodating chamber, and is fixed to a magnet holding member. The heat absorbing liquid is stored in the liquid storage chamber.

このような構成の渦電流式ダンパによれば、液体収容室に充填された熱吸収液が導電部材と接するため、渦電流により導電部材に生じた熱を熱吸収液が奪うことができる。また、熱吸収液は磁石保護カバーとも接するため、永久磁石(磁石保持部材)が回転することに伴い、磁石保護カバーが回転すれば、熱吸収液は攪拌される。これにより、熱吸収液が導電部材から奪った熱が、熱吸収液中(特に軸方向)に拡散され、温度が均一になりやすい。熱吸収液の温度が均一になれば、熱吸収液と接する導電部材の温度も均一になりやすく、導電部材の局所的な温度上昇を抑制することができる。また、導電部材の局所的な温度上昇(導電部材の最高温度)が抑制されれば自動的に、導電部材からの輻射熱による永久磁石の温度上昇も抑制される。 According to the eddy current type damper having such a configuration, since the heat absorbing liquid filled in the liquid storage chamber comes into contact with the conductive member, the heat absorbing liquid can take away the heat generated in the conductive member by the eddy current. Further, since the heat absorbing liquid is also in contact with the magnet protective cover, the heat absorbing liquid is agitated if the magnet protective cover rotates as the permanent magnet (magnet holding member) rotates. As a result, the heat taken by the heat absorbing liquid from the conductive member is diffused in the heat absorbing liquid (particularly in the axial direction), and the temperature tends to be uniform. If the temperature of the heat absorbing liquid becomes uniform, the temperature of the conductive member in contact with the heat absorbing liquid tends to become uniform, and the local temperature rise of the conductive member can be suppressed. Further, if the local temperature rise of the conductive member (maximum temperature of the conductive member) is suppressed, the temperature rise of the permanent magnet due to the radiant heat from the conductive member is also automatically suppressed.

上記(1)の渦電流式ダンパは、以下の(2)~(5)のいずれかの構成とすることができる。 The eddy current type damper of (1) may have any of the following configurations (2) to (5).

(2)磁石保持部材は、ボールナットに固定され、複数の永久磁石は、磁石保持部材の外周面に固定され、導電部材の内周面が、複数の永久磁石と隙間を空けて対向する。 (2) The magnet holding member is fixed to the ball nut, the plurality of permanent magnets are fixed to the outer peripheral surface of the magnet holding member, and the inner peripheral surface of the conductive member faces the plurality of permanent magnets with a gap.

(3)導電部材は、ボールナットに固定され、複数の永久磁石は、磁石保持部材の内周面に固定され、導電部材の外周面が、複数の永久磁石と隙間を空けて対向する。 (3) The conductive member is fixed to the ball nut, the plurality of permanent magnets are fixed to the inner peripheral surface of the magnet holding member, and the outer peripheral surface of the conductive member faces the plurality of permanent magnets with a gap.

(4)導電部材は、ボールナットに固定され、複数の永久磁石は、磁石保持部材の外周面に固定され、導電部材の内周面が、複数の永久磁石と隙間を空けて対向する。 (4) The conductive member is fixed to the ball nut, the plurality of permanent magnets are fixed to the outer peripheral surface of the magnet holding member, and the inner peripheral surface of the conductive member faces the plurality of permanent magnets with a gap.

(5)磁石保持部材は、ボールナットに固定され、複数の永久磁石は、磁石保持部材の内周面に固定され、導電部材の外周面が、複数の永久磁石と隙間を空けて対向する。 (5) The magnet holding member is fixed to the ball nut, the plurality of permanent magnets are fixed to the inner peripheral surface of the magnet holding member, and the outer peripheral surface of the conductive member faces the plurality of permanent magnets with a gap.

(6)上記(1)~(5)のいずれかの渦電流式ダンパにおいて、磁石収容室には、断熱材が封入されるのが好ましい。 (6) In the eddy current type damper according to any one of (1) to (5) above, it is preferable that a heat insulating material is enclosed in the magnet accommodating chamber.

以下、図面を参照して、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the figure are designated by the same reference numerals and the description thereof will not be repeated.

[第1実施形態]
図1は、第1実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。渦電流式ダンパ1は、ねじ軸2と、ボールナット3と、を含む。なお、本明細書において「軸方向」とはねじ軸2の軸方向を意味する。
[First Embodiment]
FIG. 1 is a cross-sectional view of the eddy current type damper of the first embodiment in a plane along the axial direction. The eddy current type damper 1 includes a screw shaft 2 and a ball nut 3. In the present specification, the "axial direction" means the axial direction of the screw shaft 2.

[ねじ軸]
ねじ軸2は、直線状に延びる部材であり、建物に取り付けられた取付具21に固定される。建物が揺れるとその振動は、取付具21を介してねじ軸2に伝達され、ねじ軸2が軸方向に変位し、振動に同期して往復運動する。ねじ軸2の外周面にはねじ部が形成されている。
[Screw shaft]
The screw shaft 2 is a member that extends linearly and is fixed to a fixture 21 attached to the building. When the building shakes, the vibration is transmitted to the screw shaft 2 via the fixture 21, and the screw shaft 2 is displaced in the axial direction and reciprocates in synchronization with the vibration. A screw portion is formed on the outer peripheral surface of the screw shaft 2.

[ボールナット]
ボールナット3は、ねじ軸2とボールねじを構成し、ねじ軸2が軸方向に変位するとボールナット3は回転する。すなわち、ボールナット3はねじ軸2の並進運動を回転運動に変換する。
[Ball nut]
The ball nut 3 constitutes a screw shaft 2 and a ball screw, and when the screw shaft 2 is displaced in the axial direction, the ball nut 3 rotates. That is, the ball nut 3 converts the translational motion of the screw shaft 2 into a rotary motion.

ボールナット3は、貫通孔と、フランジ部と、を含む。貫通孔にはねじ軸2が通され、貫通孔の内周面には、ねじ軸2のねじ部と噛み合うねじ部が形成されている。フランジ部は、軸方向から見て、中空の円板形状である。 The ball nut 3 includes a through hole and a flange portion. The screw shaft 2 is passed through the through hole, and a screw portion that meshes with the screw portion of the screw shaft 2 is formed on the inner peripheral surface of the through hole. The flange portion has a hollow disk shape when viewed from the axial direction.

図2は、図1の一部拡大図である。渦電流式ダンパ1はさらに、磁石保持部材4と、複数の永久磁石5と、導電部材6と、2つのシール部材7と、磁石保護カバー8と、熱吸収液9と、を含む。 FIG. 2 is a partially enlarged view of FIG. The eddy current damper 1 further includes a magnet holding member 4, a plurality of permanent magnets 5, a conductive member 6, two sealing members 7, a magnet protective cover 8, and a heat absorbing liquid 9.

[磁石保持部材]
磁石保持部材4は、円筒形状であり、ボールナット3のフランジ部に固定される。したがって、ボールナット3が回転すると、磁石保持部材4も回転する。
[Magnet holding member]
The magnet holding member 4 has a cylindrical shape and is fixed to the flange portion of the ball nut 3. Therefore, when the ball nut 3 rotates, the magnet holding member 4 also rotates.

磁石保持部材4は、複数の永久磁石5を保持する。磁石保持部材4の材質は炭素鋼、鋳鉄等の磁性体であるのが好ましい。この場合、磁石保持部材4はヨークとしての役割を果たし、永久磁石5からの磁束が外部に漏れることを抑制する。磁石保持部材4は軸方向に垂直な断面形状が円形の外周面を含む。 The magnet holding member 4 holds a plurality of permanent magnets 5. The material of the magnet holding member 4 is preferably a magnetic material such as carbon steel or cast iron. In this case, the magnet holding member 4 serves as a yoke and suppresses the magnetic flux from the permanent magnet 5 from leaking to the outside. The magnet holding member 4 includes an outer peripheral surface having a circular cross-sectional shape perpendicular to the axial direction.

[永久磁石]
図3は、図2中のIII-III線での断面図である。複数の永久磁石5は、磁石保持部材4の外周面に固定される。複数の永久磁石5は、磁石保持部材4の円周方向に配列され、隣接する2つの永久磁石5の間には隙間が設けられる。
[permanent magnet]
FIG. 3 is a cross-sectional view taken along the line III-III in FIG. The plurality of permanent magnets 5 are fixed to the outer peripheral surface of the magnet holding member 4. The plurality of permanent magnets 5 are arranged in the circumferential direction of the magnet holding member 4, and a gap is provided between the two adjacent permanent magnets 5.

図4は、図3の一部拡大図である。複数の永久磁石5の磁極の配置は、円周方向に沿って交互に反転する。別の言葉で言えば、円周方向において隣接する永久磁石5同士は互いに磁極の配置が反転する。なお、図4では、永久磁石5の磁極の配置が磁石保持部材4の径方向である場合を示すが、磁極の配置はこれに限られず、軸方向であってもよい。 FIG. 4 is a partially enlarged view of FIG. The arrangement of the magnetic poles of the plurality of permanent magnets 5 is alternately inverted along the circumferential direction. In other words, the arrangement of magnetic poles of the permanent magnets 5 adjacent to each other in the circumferential direction are reversed. Note that FIG. 4 shows a case where the magnetic poles of the permanent magnet 5 are arranged in the radial direction of the magnet holding member 4, but the arrangement of the magnetic poles is not limited to this and may be in the axial direction.

[導電部材]
図2を参照して、導電部材6は、円筒形状であり、その内部に永久磁石5、磁石保持部材4、ねじ軸2及びボールナット3を収容する。導電部材6の内周面は、複数の永久磁石5と隙間を空けて対向する。「対向する」とは、対象とする部材のみを磁石保持部材4の径方向に投影したときに両者が重複することを意味する。隙間の大きさは、永久磁石5からの磁束を導電部材6に効率的に到達させるため、可能な限り小さいほうが好ましい。また、各永久磁石5と導電部材6の内周面との距離は一定であるのが好ましい。
[Conductive member]
With reference to FIG. 2, the conductive member 6 has a cylindrical shape, and houses a permanent magnet 5, a magnet holding member 4, a screw shaft 2, and a ball nut 3 inside the conductive member 6. The inner peripheral surface of the conductive member 6 faces the plurality of permanent magnets 5 with a gap. By "opposing", it means that when only the target member is projected in the radial direction of the magnet holding member 4, the two overlap each other. The size of the gap is preferably as small as possible in order to efficiently allow the magnetic flux from the permanent magnet 5 to reach the conductive member 6. Further, it is preferable that the distance between each permanent magnet 5 and the inner peripheral surface of the conductive member 6 is constant.

図1を参照して、導電部材6の一方の端部は取付具22に固定され、導電部材6の他方の端部は自由端となっている。導電部材6の両端部において、導電部材6と磁石保持部材4との間にはスラスト軸受18及びラジアル軸受19が設けられる。したがって、磁石保持部材4が回転しても、導電部材6は回転しない。 With reference to FIG. 1, one end of the conductive member 6 is fixed to the fixture 22 and the other end of the conductive member 6 is a free end. At both ends of the conductive member 6, a thrust bearing 18 and a radial bearing 19 are provided between the conductive member 6 and the magnet holding member 4. Therefore, even if the magnet holding member 4 rotates, the conductive member 6 does not rotate.

[シール部材]
図2を参照して、2つのシール部材7はそれぞれ、リング形状であり、磁石保持部材4の外周面と導電部材6の内周面との間を隙間なく埋める。2つのシール部材7は、軸方向に所定の間隔を空けて設けられる。つまり、2つのシール部材7、導電部材6の内周面及び磁石保持部材4の外周面によって密閉空間が形成される。2つのシール部材7は、後述するように密閉空間に封入された熱吸収液9が外部に漏れることを抑制する。また、2つのシール部材7はそれぞれ、軸受としての機能を有し、磁石保持部材4の回転を許容する。シール部材7はたとえば、内部にばねを有するオイルシールである。
[Seal member]
With reference to FIG. 2, each of the two sealing members 7 has a ring shape, and fills the space between the outer peripheral surface of the magnet holding member 4 and the inner peripheral surface of the conductive member 6 without a gap. The two sealing members 7 are provided at predetermined intervals in the axial direction. That is, a closed space is formed by the two sealing members 7, the inner peripheral surface of the conductive member 6, and the outer peripheral surface of the magnet holding member 4. The two sealing members 7 suppress the heat absorbing liquid 9 sealed in the closed space from leaking to the outside, as will be described later. Further, each of the two seal members 7 has a function as a bearing and allows the magnet holding member 4 to rotate. The seal member 7 is, for example, an oil seal having a spring inside.

[磁石保護カバー]
磁石保護カバー8は、筒状部13と、第1端部14と、第1取付部15と、第2端部16と、第2取付部17とを含む。
[Magnet protective cover]
The magnet protection cover 8 includes a cylindrical portion 13, a first end portion 14, a first mounting portion 15, a second end portion 16, and a second mounting portion 17.

筒状部13は、軸方向に垂直な断面形状が円形の外周面及び内周面を含み、軸方向に延びる。筒状部13は、複数の永久磁石5と導電部材6の内周面との間に位置する。第1端部14は、筒状部13の一方の端から磁石保持部材4の径方向に延びる。軸方向から見て、第1端部14はリング形状である。第1取付部15は、筒状であり、第1端部14の内周側の端から軸方向に延びる。第2端部16は筒状部13の他方の端に設けられ、第1端部14と同様の形状である。第2取付部17は第2端部16の内周側の端から軸方向に延び、第1取付部15と同様の形状である。 The tubular portion 13 includes an outer peripheral surface and an inner peripheral surface having a circular cross-sectional shape perpendicular to the axial direction, and extends in the axial direction. The tubular portion 13 is located between the plurality of permanent magnets 5 and the inner peripheral surface of the conductive member 6. The first end portion 14 extends in the radial direction of the magnet holding member 4 from one end of the tubular portion 13. When viewed from the axial direction, the first end portion 14 has a ring shape. The first mounting portion 15 has a cylindrical shape and extends axially from the inner peripheral end of the first end portion 14. The second end portion 16 is provided at the other end of the tubular portion 13 and has the same shape as the first end portion 14. The second mounting portion 17 extends in the axial direction from the inner peripheral end of the second end portion 16 and has the same shape as the first mounting portion 15.

第1取付部15及び第2取付部17は、磁石保持部材4の外周面に固定される。したがって、磁石保持部材4が回転すれば、磁石保護カバー8も回転する。 The first mounting portion 15 and the second mounting portion 17 are fixed to the outer peripheral surface of the magnet holding member 4. Therefore, if the magnet holding member 4 rotates, the magnet protection cover 8 also rotates.

このような構成により、磁石保護カバー8は、2つのシール部材7、導電部材6の内周面及び磁石保持部材4の外周面により形成された密閉空間を磁石収容室11と、液体収容室12とに仕切る。磁石収容室11は、磁石保持部材4の外周面及び磁石保護カバー8で構成され、密閉されている。磁石収容室11には、全ての永久磁石5が収容される。液体収容室12は、導電部材6の内周面、2つのシール部材7及び磁石保護カバー8で構成され、密閉されている。液体収容室12には、熱吸収液9が収容される。磁石保護カバー8の材質は非磁性であり、たとえばオーステナイト系ステンレス鋼等である。 With such a configuration, the magnet protective cover 8 forms a closed space formed by the two sealing members 7, the inner peripheral surface of the conductive member 6, and the outer peripheral surface of the magnet holding member 4, the magnet accommodating chamber 11 and the liquid accommodating chamber 12. Divide into and. The magnet accommodating chamber 11 is composed of an outer peripheral surface of the magnet holding member 4 and a magnet protective cover 8 and is hermetically sealed. All the permanent magnets 5 are accommodated in the magnet accommodating chamber 11. The liquid storage chamber 12 is composed of an inner peripheral surface of the conductive member 6, two sealing members 7, and a magnet protective cover 8, and is hermetically sealed. The heat absorbing liquid 9 is stored in the liquid storage chamber 12. The material of the magnet protective cover 8 is non-magnetic, for example, austenitic stainless steel or the like.

磁石保護カバー8の形状は、密閉空間を磁石収容室と液体収容室とに仕切ることができればよく、その形状は上述の説明の場合に限定されない。たとえば、筒状部13は、軸方向に沿って半径が変わる樽形状であってもよい。ただし、どのような形状であっても、磁石保護カバー8は磁石保持部材4に固定される。 The shape of the magnet protective cover 8 is limited to the case where the sealed space can be divided into a magnet storage chamber and a liquid storage chamber, and the shape is not limited to the case described above. For example, the tubular portion 13 may have a barrel shape whose radius changes along the axial direction. However, regardless of the shape, the magnet protective cover 8 is fixed to the magnet holding member 4.

[熱吸収液]
熱吸収液9は液体であり、たとえば、水、油、シリコーンオイル等である。熱吸収液9は、液体収容室12に充填される。そのため、熱吸収液9は導電部材6の内周面及び磁石保護カバー8の導電部材6側の面と接触する。
[Heat absorber]
The heat absorbing liquid 9 is a liquid, for example, water, oil, silicone oil, or the like. The heat absorbing liquid 9 is filled in the liquid storage chamber 12. Therefore, the heat absorbing liquid 9 comes into contact with the inner peripheral surface of the conductive member 6 and the surface of the magnet protective cover 8 on the conductive member 6 side.

[導電部材の局所的な温度上昇の抑制]
渦電流式ダンパ1に振動が加えられると、ねじ軸2が軸方向に変位し、ボールナット3、磁石保持部材4及び永久磁石5が回転する。永久磁石5が回転すると、導電部材6を通過する永久磁石5からの磁束が変化し、導電部材6に渦電流が発生する。渦電流が発生すると、新たな磁束(反磁界)が生じ、導電部材6の回転を妨げる(すなわちボールナット3の回転を妨げる)。ボールナット3の回転が妨げられると、ねじ軸2の軸方向への運動も妨げられ、振動が減衰する。これが渦電流式ダンパの減衰力となる。
[Suppression of local temperature rise of conductive member]
When vibration is applied to the eddy current type damper 1, the screw shaft 2 is displaced in the axial direction, and the ball nut 3, the magnet holding member 4, and the permanent magnet 5 rotate. When the permanent magnet 5 rotates, the magnetic flux from the permanent magnet 5 passing through the conductive member 6 changes, and an eddy current is generated in the conductive member 6. When an eddy current is generated, a new magnetic flux (demagnetizing field) is generated, which hinders the rotation of the conductive member 6 (that is, hinders the rotation of the ball nut 3). When the rotation of the ball nut 3 is hindered, the axial movement of the screw shaft 2 is also hindered and the vibration is damped. This is the damping force of the eddy current type damper.

一方で、渦電流が発生すると導電部材6の温度が上昇する。特に、渦電流は導電部材6の永久磁石と対向する部分に集中的に発生するため、この導電部材6の永久磁石5と対向する部分が局所的に高温になりやすい。 On the other hand, when an eddy current is generated, the temperature of the conductive member 6 rises. In particular, since the eddy current is concentrated in the portion of the conductive member 6 facing the permanent magnet, the portion of the conductive member 6 facing the permanent magnet 5 tends to have a high temperature locally.

この点、第1実施形態の渦電流式ダンパでは、液体収容室に熱吸収液9が充填される。熱吸収液9は導電部材6の内周面と接するため、渦電流により導電部材6に生じた熱を奪うことができる。また、液体は気体と比べて熱容量が大きいため、熱吸収液9と導電部材6とを接触させることで、気体と導電部材とが接触する場合に比べてより導電部材6の熱を奪いやすい。さらに、永久磁石5の回転とともに磁石保護カバー8も回転するため、磁石保護カバー8と接する熱吸収液9は液体収容室内で撹拌される。熱吸収液9は導電部材6の高温部分と接する部分が高温になりやすいが、攪拌されることで熱吸収液9の熱が液体収容室内で拡散され(特に軸方向に拡散され)、熱吸収液9の温度が液体収容室内で均一になりやすい。これにより、熱吸収液9が導電部材6の高温部分からさらに熱を奪いやすくなり、導電部材6の局所的な温度上昇が抑制される。 In this respect, in the eddy current type damper of the first embodiment, the liquid storage chamber is filled with the heat absorbing liquid 9. Since the heat absorbing liquid 9 is in contact with the inner peripheral surface of the conductive member 6, the heat generated in the conductive member 6 can be taken away by the eddy current. Further, since the liquid has a larger heat capacity than the gas, the heat absorption liquid 9 and the conductive member 6 are brought into contact with each other, so that the heat of the conductive member 6 is more easily taken away than when the gas and the conductive member are in contact with each other. Further, since the magnet protective cover 8 also rotates with the rotation of the permanent magnet 5, the heat absorbing liquid 9 in contact with the magnet protective cover 8 is agitated in the liquid storage chamber. The portion of the heat absorbing liquid 9 in contact with the high temperature portion of the conductive member 6 tends to have a high temperature, but the heat of the heat absorbing liquid 9 is diffused (particularly in the axial direction) in the liquid storage chamber by being stirred, and the heat is absorbed. The temperature of the liquid 9 tends to be uniform in the liquid storage chamber. As a result, the heat absorbing liquid 9 is more likely to take heat from the high temperature portion of the conductive member 6, and the local temperature rise of the conductive member 6 is suppressed.

導電部材6の局所的な温度上昇が抑制されることは、導電部材6の最高温度が低くなることを意味する。導電部材6の最高温度が低くなれば、導電部材6からの輻射熱の影響が弱くなる。したがって、導電部材6からの輻射熱による永久磁石5の温度上昇も抑制される。 Suppressing the local temperature rise of the conductive member 6 means that the maximum temperature of the conductive member 6 becomes lower. When the maximum temperature of the conductive member 6 becomes low, the influence of radiant heat from the conductive member 6 becomes weak. Therefore, the temperature rise of the permanent magnet 5 due to the radiant heat from the conductive member 6 is also suppressed.

また、液体収容室に充填された熱吸収液9は、回転する磁石保護カバー8と接する。そのため、磁石保護カバー8は熱吸収液9から粘性抵抗を受ける。この粘性抵抗は磁石保護カバー8の回転を妨げる方向に働く。すなわち、第1実施形態の渦電流式ダンパには、渦電流による減衰力に加えて、熱吸収液9の粘性抵抗による減衰力も働く。そのため、第1実施形態の渦電流式ダンパは、渦電流による減衰力のみ働く渦電流式ダンパに比べて、減衰力が高い。また、高い減衰力を発揮できることで、渦電流による減衰力のみ働く渦電流式ダンパと同じ減衰力を発揮するために必要な永久磁石の磁力は少なくて済む。そのため、第1実施形態の渦電流式ダンパは、渦電流による減衰力のみ働く渦電流式ダンパに比べて、永久磁石の大きさを小さくでき、ひいては渦電流式ダンパの軸方向長さをコンパクトにすることができる。 Further, the heat absorbing liquid 9 filled in the liquid storage chamber comes into contact with the rotating magnet protective cover 8. Therefore, the magnet protective cover 8 receives viscous resistance from the heat absorbing liquid 9. This viscous resistance acts in a direction that hinders the rotation of the magnet protective cover 8. That is, in the eddy current type damper of the first embodiment, in addition to the damping force due to the eddy current, the damping force due to the viscous resistance of the heat absorbing liquid 9 also acts. Therefore, the eddy current type damper of the first embodiment has a higher damping force than the eddy current type damper in which only the damping force due to the eddy current acts. Further, since a high damping force can be exerted, the magnetic force of the permanent magnet required to exert the same damping force as that of the eddy current type damper in which only the damping force due to the eddy current works can be reduced. Therefore, in the eddy current type damper of the first embodiment, the size of the permanent magnet can be made smaller than that of the eddy current type damper in which only the damping force due to the eddy current works, and the axial length of the eddy current type damper can be made compact. can do.

このような第1実施形態の渦電流式ダンパは、次のような構成とすることもできる。 The eddy current type damper of the first embodiment may have the following configuration.

[断熱材]
磁石収容室11には、断熱材が封入されるのが好ましい。断熱材は、導電部材6からの輻射熱が永久磁石5に伝わることを抑制する。断熱材は、繊維系又は発泡系の固体断熱材であってもよいし、空気等の熱伝導率の低い気体であってもよい。
[Insulation material]
It is preferable that the magnet accommodating chamber 11 is enclosed with a heat insulating material. The heat insulating material suppresses the transfer of radiant heat from the conductive member 6 to the permanent magnet 5. The heat insulating material may be a fiber-based or foam-based solid heat insulating material, or may be a gas having a low thermal conductivity such as air.

磁石保護カバーが設けられない渦電流式ダンパでは、永久磁石と導電部材との間の空間に断熱材として気体を封入した場合、相対的に回転する永久磁石と導電部材とによって発生する気流により断熱効果が十分に発揮されにくい。また、磁石保護カバーが設けられた渦電流式ダンパであっても、磁石保護カバーが導電部材に固定されれば、相対的に回転する永久磁石と磁石保護カバーとによって発生する気流により断熱効果が十分に発揮されにくい。 In an eddy current damper without a magnet protection cover, when gas is sealed as a heat insulating material in the space between the permanent magnet and the conductive member, it is insulated by the airflow generated by the relatively rotating permanent magnet and the conductive member. It is difficult for the effect to be fully exhibited. Even if the eddy current type damper is provided with a magnet protection cover, if the magnet protection cover is fixed to the conductive member, the heat insulating effect will be obtained by the airflow generated by the relatively rotating permanent magnet and the magnet protection cover. It is difficult to fully demonstrate.

この点、第1実施形態の渦電流式ダンパでは、磁石保護カバー8は磁石保持部材4に固定される。そのため、永久磁石5と導電部材6とが相対的に回転しても、永久磁石5と磁石保護カバーは同一角速度で回転する。すなわち、磁石収容室11内の気体断熱材は永久磁石5及び磁石保護カバー8と同一角速度での剛体回転に近い流動状態となり、気体断熱材は永久磁石5及び磁石保護カバー8に対して相対的に静止している状態とみなせる。したがって、第1実施形態の渦電流式ダンパでは断熱効果が十分に発揮される。 In this respect, in the eddy current type damper of the first embodiment, the magnet protection cover 8 is fixed to the magnet holding member 4. Therefore, even if the permanent magnet 5 and the conductive member 6 rotate relatively, the permanent magnet 5 and the magnet protective cover rotate at the same angular velocity. That is, the gas heat insulating material in the magnet accommodating chamber 11 is in a flow state close to the rigid body rotation at the same angular speed as the permanent magnet 5 and the magnet protective cover 8, and the gas heat insulating material is relative to the permanent magnet 5 and the magnet protective cover 8. It can be regarded as a stationary state. Therefore, the eddy current type damper of the first embodiment sufficiently exerts the heat insulating effect.

磁石収容室11に気体断熱材を封入する場合、磁石保護カバー8の筒状部13の内周面(永久磁石5と向き合う面)の少なくとも一部に、断熱塗膜が積層されていてもよい。断熱塗膜を積層することにより、気体断熱材の断熱効果をより高めることができる。断熱塗膜はたとえば次のようにして形成される。中空ガラスビーンズ、シリコーン樹脂、シリカ粉末及び溶剤を含む液体塗料を原料とし、この液体塗料を磁石保護カバー8の筒状部13の内周面の少なくとも一部に塗布し、乾燥させる。これにより、液体塗料から高温環境にも耐え得るゴム状の膜(断熱塗膜)が形成される。 When the gas heat insulating material is sealed in the magnet accommodating chamber 11, a heat insulating coating film may be laminated on at least a part of the inner peripheral surface (the surface facing the permanent magnet 5) of the tubular portion 13 of the magnet protective cover 8. .. By laminating the heat insulating coating film, the heat insulating effect of the gas heat insulating material can be further enhanced. The heat insulating coating film is formed, for example, as follows. A liquid paint containing hollow glass beans, silicone resin, silica powder and a solvent is used as a raw material, and this liquid paint is applied to at least a part of the inner peripheral surface of the tubular portion 13 of the magnet protective cover 8 and dried. As a result, a rubber-like film (heat insulating coating film) that can withstand a high temperature environment is formed from the liquid paint.

以上、第1実施形態の渦電流式ダンパについて説明した。しかしながら、本発明の渦電流式ダンパはこれに限定されず、以下のような実施形態とすることもできる。 The eddy current type damper of the first embodiment has been described above. However, the eddy current type damper of the present invention is not limited to this, and the following embodiments can be adopted.

[第2実施形態]
第2実施形態の渦電流式ダンパについて説明する。
[Second Embodiment]
The eddy current type damper of the second embodiment will be described.

図5は、第2実施形態の渦電流式ダンパの軸方向に沿った面での一部断面図である。第2実施形態の渦電流式ダンパ1は、導電部材6が永久磁石5の内側に配置され、回転する点で第1実施形態と相違する。以下の説明では、第1実施形態と異なる構成についてのみ説明し、同一の構成については説明を省略する。 FIG. 5 is a partial cross-sectional view of the eddy current type damper of the second embodiment in a plane along the axial direction. The eddy current type damper 1 of the second embodiment is different from the first embodiment in that the conductive member 6 is arranged inside the permanent magnet 5 and rotates. In the following description, only the configuration different from the first embodiment will be described, and the description of the same configuration will be omitted.

[磁石保持部材]
磁石保持部材4は、円筒形状であり、その内部に永久磁石5、導電部材6、ねじ軸2及びボールナット3を収容する。磁石保持部材4の一方の端部は取付具に固定され、磁石保持部材4の他方の端部は自由端となっている。したがって、磁石保持部材4は回転しない。
[Magnet holding member]
The magnet holding member 4 has a cylindrical shape, and houses a permanent magnet 5, a conductive member 6, a screw shaft 2, and a ball nut 3 inside the magnet holding member 4. One end of the magnet holding member 4 is fixed to the fixture, and the other end of the magnet holding member 4 is a free end. Therefore, the magnet holding member 4 does not rotate.

[永久磁石]
複数の永久磁石5は、磁石保持部材4の内周面に固定される。
[permanent magnet]
The plurality of permanent magnets 5 are fixed to the inner peripheral surface of the magnet holding member 4.

[導電部材]
導電部材6は、円筒形状であり、ボールナット3に固定される。したがって、ボールナット3が回転すると、導電部材6も回転する。導電部材6の外周面は、複数の永久磁石5と隙間を空けて対向する。
[Conductive member]
The conductive member 6 has a cylindrical shape and is fixed to the ball nut 3. Therefore, when the ball nut 3 rotates, the conductive member 6 also rotates. The outer peripheral surface of the conductive member 6 faces the plurality of permanent magnets 5 with a gap.

導電部材6の両端部において、導電部材6と磁石保持部材4との間にはスラスト軸受及びラジアル軸受が設けられる。したがって、導電部材6が回転しても、磁石保持部材4は回転しない。 Thrust bearings and radial bearings are provided between the conductive member 6 and the magnet holding member 4 at both ends of the conductive member 6. Therefore, even if the conductive member 6 rotates, the magnet holding member 4 does not rotate.

[シール部材]
2つのシール部材7は、磁石保持部材4の内周面と導電部材6の外周面との間を隙間なく埋める。つまり、2つのシール部材7、導電部材6の外周面及び磁石保持部材4の内周面によって密閉空間が形成される。
[Seal member]
The two sealing members 7 fill the space between the inner peripheral surface of the magnet holding member 4 and the outer peripheral surface of the conductive member 6 without a gap. That is, a closed space is formed by the two sealing members 7, the outer peripheral surface of the conductive member 6, and the inner peripheral surface of the magnet holding member 4.

[磁石保護カバー]
磁石保護カバー8の筒状部13は、複数の永久磁石5と導電部材6の外周面との間に位置する。磁石保護カバー8の第1取付部15及び第2取付部17は、磁石保持部材4の内周面に固定される。
[Magnet protective cover]
The tubular portion 13 of the magnet protective cover 8 is located between the plurality of permanent magnets 5 and the outer peripheral surface of the conductive member 6. The first mounting portion 15 and the second mounting portion 17 of the magnet protection cover 8 are fixed to the inner peripheral surface of the magnet holding member 4.

[熱吸収液]
熱吸収液9は液体収容室12に充填され、導電部材6の外周面と接触する。
[Heat absorber]
The heat absorbing liquid 9 is filled in the liquid storage chamber 12 and comes into contact with the outer peripheral surface of the conductive member 6.

このような構成の第2実施形態の渦電流式ダンパでは、振動が加えられれば、ボールナット3が回転し、それに伴い導電部材6が回転する。その一方で、永久磁石5は回転しない。つまり、導電部材6と永久磁石5とが相対的に回転するため、導電部材6には渦電流が発生する。 In the eddy current type damper of the second embodiment having such a configuration, when vibration is applied, the ball nut 3 rotates, and the conductive member 6 rotates accordingly. On the other hand, the permanent magnet 5 does not rotate. That is, since the conductive member 6 and the permanent magnet 5 rotate relatively, an eddy current is generated in the conductive member 6.

液体収容室12に充填された熱吸収液9は、回転する導電部材6の外周面と接する。したがって、第2実施形態の渦電流式ダンパでも、上述したように、導電部材6の局所的な温度の上昇を抑制できる。 The heat absorbing liquid 9 filled in the liquid storage chamber 12 comes into contact with the outer peripheral surface of the rotating conductive member 6. Therefore, even in the eddy current type damper of the second embodiment, as described above, the local temperature rise of the conductive member 6 can be suppressed.

[第3実施形態]
第3実施形態の渦電流式ダンパについて説明する。
[Third Embodiment]
The eddy current type damper of the third embodiment will be described.

図6は、第3実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。第3実施形態の渦電流式ダンパ1は、永久磁石5が導電部材6の内側に配置される点は第1実施形態と同じであるが、永久磁石5は回転せず、導電部材6が回転する点で第1実施形態と相違する。以下の説明では、第1実施形態と異なる構成についてのみ説明し、同一の構成については説明を省略する。 FIG. 6 is a cross-sectional view of the eddy current type damper of the third embodiment in a plane along the axial direction. The eddy current type damper 1 of the third embodiment is the same as the first embodiment in that the permanent magnet 5 is arranged inside the conductive member 6, but the permanent magnet 5 does not rotate and the conductive member 6 rotates. It differs from the first embodiment in that it does. In the following description, only the configuration different from the first embodiment will be described, and the description of the same configuration will be omitted.

[磁石保持部材]
図7は、図6の一部拡大図である。磁石保持部材4の一方の端部は取付具に固定され、磁石保持部材4の他方の端部は自由端となっている。したがって、磁石保持部材4は回転しない。
[Magnet holding member]
FIG. 7 is a partially enlarged view of FIG. One end of the magnet holding member 4 is fixed to the fixture, and the other end of the magnet holding member 4 is a free end. Therefore, the magnet holding member 4 does not rotate.

[導電部材]
導電部材6は、その内部に永久磁石5、磁石保持部材4、ねじ軸2及びボールナット3を収容する。導電部材6の一方の端部はボールナット3に固定される。したがって、ボールナット3が回転すると、導電部材6も回転する。導電部材6の他方の端部は自由端となっている。
[Conductive member]
The conductive member 6 houses a permanent magnet 5, a magnet holding member 4, a screw shaft 2, and a ball nut 3 inside the conductive member 6. One end of the conductive member 6 is fixed to the ball nut 3. Therefore, when the ball nut 3 rotates, the conductive member 6 also rotates. The other end of the conductive member 6 is a free end.

導電部材6の両端部において、導電部材6と磁石保持部材4との間にはスラスト軸受及びラジアル軸受が設けられる。したがって、導電部材6が回転しても、磁石保持部材4は回転しない。 Thrust bearings and radial bearings are provided between the conductive member 6 and the magnet holding member 4 at both ends of the conductive member 6. Therefore, even if the conductive member 6 rotates, the magnet holding member 4 does not rotate.

このような構成の第3実施形態の渦電流式ダンパでは、振動が加えられれば、ボールナット3が回転し、それに伴い導電部材6が回転する。その一方で、永久磁石5は回転しない。つまり、導電部材6と永久磁石5とが相対的に回転するため、導電部材6には渦電流が発生する。 In the eddy current type damper of the third embodiment having such a configuration, when vibration is applied, the ball nut 3 rotates, and the conductive member 6 rotates accordingly. On the other hand, the permanent magnet 5 does not rotate. That is, since the conductive member 6 and the permanent magnet 5 rotate relatively, an eddy current is generated in the conductive member 6.

液体収容室12に充填された熱吸収液9は、回転する導電部材6の内周面と接する。したがって、第3実施形態の渦電流式ダンパでも、上述したように、導電部材6の局所的な温度の上昇を抑制できる。 The heat absorbing liquid 9 filled in the liquid storage chamber 12 comes into contact with the inner peripheral surface of the rotating conductive member 6. Therefore, even with the eddy current type damper of the third embodiment, as described above, the local temperature rise of the conductive member 6 can be suppressed.

[第4実施形態]
第4実施形態の渦電流式ダンパについて説明する。
[Fourth Embodiment]
The eddy current type damper of the fourth embodiment will be described.

図8は、第4実施形態の渦電流式ダンパの軸方向に沿った面での一部断面図である。第4実施形態の渦電流式ダンパ1は、導電部材6が回転せず、永久磁石5が回転する点では第1実施形態と同じであるが、永久磁石5が導電部材6の外側に配置される点で第1実施形態と相違する。以下の説明では、第1実施形態と異なる構成についてのみ説明し、同一の構成については説明を省略する。 FIG. 8 is a partial cross-sectional view of the eddy current type damper of the fourth embodiment in a plane along the axial direction. The eddy current type damper 1 of the fourth embodiment is the same as the first embodiment in that the conductive member 6 does not rotate and the permanent magnet 5 rotates, but the permanent magnet 5 is arranged outside the conductive member 6. It differs from the first embodiment in that. In the following description, only the configuration different from the first embodiment will be described, and the description of the same configuration will be omitted.

[磁石保持部材]
磁石保持部材4の一方の端部はボールナット3に固定される。したがって、ボールナット3が回転すれば、磁石保持部材4も回転する。磁石保持部材4の他方の端部は自由端となっている。
[Magnet holding member]
One end of the magnet holding member 4 is fixed to the ball nut 3. Therefore, if the ball nut 3 rotates, the magnet holding member 4 also rotates. The other end of the magnet holding member 4 is a free end.

[導電部材]
導電部材6の一方の端部は取付具に固定され、他方の端部は自由端となっている。導電部材6の両端部において、導電部材6と磁石保持部材4との間にはスラスト軸受及びラジアル軸受が設けられる。したがって、ボールナット3が回転すると、磁石保持部材4は回転するが、導電部材6は回転しない。
[Conductive member]
One end of the conductive member 6 is fixed to the fixture and the other end is a free end. Thrust bearings and radial bearings are provided between the conductive member 6 and the magnet holding member 4 at both ends of the conductive member 6. Therefore, when the ball nut 3 rotates, the magnet holding member 4 rotates, but the conductive member 6 does not rotate.

このような構成の第4実施形態の渦電流式ダンパでは、振動が加えられれば、ボールナット3が回転し、それに伴い磁石保持部材4が回転する。その一方で、導電部材6は回転しない。つまり、導電部材6と永久磁石5とが相対的に回転するため、導電部材6には渦電流が発生する。 In the eddy current type damper of the fourth embodiment having such a configuration, when vibration is applied, the ball nut 3 rotates, and the magnet holding member 4 rotates accordingly. On the other hand, the conductive member 6 does not rotate. That is, since the conductive member 6 and the permanent magnet 5 rotate relatively, an eddy current is generated in the conductive member 6.

液体収容室に充填された熱吸収液9は、回転する導電部材6の外周面と接する。したがって、第4実施形態の渦電流式ダンパでも、上述したように、導電部材6の局所的な温度の上昇を抑制できる。 The heat absorbing liquid 9 filled in the liquid storage chamber comes into contact with the outer peripheral surface of the rotating conductive member 6. Therefore, even in the eddy current type damper of the fourth embodiment, as described above, the local temperature rise of the conductive member 6 can be suppressed.

以上、本実施形態の渦電流式ダンパについて説明した。その他、本発明は上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能であることは言うまでもない。 The eddy current type damper of this embodiment has been described above. In addition, the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

本発明の渦電流式ダンパは、建造物の制振装置及び免震装置に有用である。 The eddy current type damper of the present invention is useful for a vibration damping device and a seismic isolation device of a building.

1:渦電流式ダンパ
2:ねじ軸
3:ボールナット
4:磁石保持部材
5:永久磁石
6:導電部材
7:シール部材
8:磁石保護カバー
9:熱吸収液
11:磁石収容室
12:液体収容室
13:筒状部
14:第1端部
15:第1取付部
16:第2端部
17:第2取付部
18:スラスト軸受
19:ラジアル軸受
21:取付部
22:取付部
1: Eddy current type damper 2: Screw shaft 3: Ball nut 4: Magnet holding member 5: Permanent magnet 6: Conductive member 7: Sealing member 8: Magnet protective cover 9: Heat absorber 11: Magnet accommodating chamber 12: Liquid accommodating Room 13: Cylindrical part 14: First end part 15: First mounting part 16: Second end part 17: Second mounting part 18: Thrust bearing 19: Radial bearing 21: Mounting part 22: Mounting part

Claims (5)

ねじ軸及びボールナットを用いて永久磁石と導電部材とを相対的に回転させることで減衰力を得る渦電流式ダンパであって、
円筒形状の磁石保持部材と、
前記磁石保持部材に固定され、前記磁石保持部材の周方向に磁極の配置を交互に反転して配列された複数の永久磁石と、
前記複数の永久磁石と隙間を空けて対向し、前記複数の永久磁石に対して相対的に回転可能な円筒形状の導電部材と、
前記導電部材と前記磁石保持部材との隙間に設けられ、前記導電部材及び前記磁石保持部材と密閉空間を形成する2つのシール部材と、
前記密閉空間を前記複数の永久磁石が収容された磁石収容室と、液体収容室とに仕切り、前記磁石保持部材に固定された磁石保護カバーと、
前記液体収容室に収容された熱吸収液と、を備え
前記磁石収容室には、断熱材が封入される、渦電流式ダンパ。
An eddy current damper that obtains damping force by relatively rotating a permanent magnet and a conductive member using a screw shaft and a ball nut.
Cylindrical magnet holding member and
A plurality of permanent magnets fixed to the magnet holding member and arranged by alternately inverting the arrangement of magnetic poles in the circumferential direction of the magnet holding member.
A cylindrical conductive member that faces the plurality of permanent magnets with a gap and is rotatable relative to the plurality of permanent magnets.
Two sealing members provided in the gap between the conductive member and the magnet holding member to form a closed space with the conductive member and the magnet holding member,
The sealed space is divided into a magnet storage chamber in which the plurality of permanent magnets are housed and a liquid storage chamber, and a magnet protective cover fixed to the magnet holding member.
The heat absorbing liquid contained in the liquid storage chamber is provided .
An eddy current type damper in which a heat insulating material is enclosed in the magnet accommodating chamber .
請求項1に記載の渦電流式ダンパであって、
前記磁石保持部材は、前記ボールナットに固定され、
前記複数の永久磁石は、前記磁石保持部材の外周面に固定され、
前記導電部材の内周面が、前記複数の永久磁石と隙間を空けて対向する、渦電流式ダンパ。
The eddy current type damper according to claim 1.
The magnet holding member is fixed to the ball nut and
The plurality of permanent magnets are fixed to the outer peripheral surface of the magnet holding member, and the plurality of permanent magnets are fixed to the outer peripheral surface of the magnet holding member.
An eddy current type damper in which the inner peripheral surface of the conductive member faces the plurality of permanent magnets with a gap.
請求項1に記載の渦電流式ダンパであって、
前記導電部材は、前記ボールナットに固定され、
前記複数の永久磁石は、前記磁石保持部材の内周面に固定され、
前記導電部材の外周面が、前記複数の永久磁石と隙間を空けて対向する、渦電流式ダンパ。
The eddy current type damper according to claim 1.
The conductive member is fixed to the ball nut and
The plurality of permanent magnets are fixed to the inner peripheral surface of the magnet holding member, and the plurality of permanent magnets are fixed to the inner peripheral surface of the magnet holding member.
An eddy current type damper in which the outer peripheral surface of the conductive member faces the plurality of permanent magnets with a gap.
請求項1に記載の渦電流式ダンパであって、
前記導電部材は、前記ボールナットに固定され、
前記複数の永久磁石は、前記磁石保持部材の外周面に固定され、
前記導電部材の内周面が、前記複数の永久磁石と隙間を空けて対向する、渦電流式ダンパ。
The eddy current type damper according to claim 1.
The conductive member is fixed to the ball nut and
The plurality of permanent magnets are fixed to the outer peripheral surface of the magnet holding member, and the plurality of permanent magnets are fixed to the outer peripheral surface of the magnet holding member.
An eddy current type damper in which the inner peripheral surface of the conductive member faces the plurality of permanent magnets with a gap.
請求項1に記載の渦電流式ダンパであって、
前記磁石保持部材は、前記ボールナットに固定され、
前記複数の永久磁石は、前記磁石保持部材の内周面に固定され、
前記導電部材の外周面が、前記複数の永久磁石と隙間を空けて対向する、渦電流式ダンパ。
The eddy current type damper according to claim 1.
The magnet holding member is fixed to the ball nut and
The plurality of permanent magnets are fixed to the inner peripheral surface of the magnet holding member, and the plurality of permanent magnets are fixed to the inner peripheral surface of the magnet holding member.
An eddy current type damper in which the outer peripheral surface of the conductive member faces the plurality of permanent magnets with a gap.
JP2018140882A 2018-07-27 2018-07-27 Eddy current damper Active JP7101556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018140882A JP7101556B2 (en) 2018-07-27 2018-07-27 Eddy current damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018140882A JP7101556B2 (en) 2018-07-27 2018-07-27 Eddy current damper

Publications (2)

Publication Number Publication Date
JP2020016309A JP2020016309A (en) 2020-01-30
JP7101556B2 true JP7101556B2 (en) 2022-07-15

Family

ID=69581282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018140882A Active JP7101556B2 (en) 2018-07-27 2018-07-27 Eddy current damper

Country Status (1)

Country Link
JP (1) JP7101556B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387591B (en) * 2021-08-04 2022-12-09 江苏深盐达新能源科技有限公司 Glass section of thick bamboo coating film device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126177A (en) 2012-12-27 2014-07-07 Kozo Keikaku Engineering Inc Damping device, and vibration control device of structure
JP2014202234A (en) 2013-04-02 2014-10-27 株式会社東芝 Attenuation device
WO2016136702A1 (en) 2015-02-24 2016-09-01 新日鐵住金株式会社 Eddy-current heater
JP2017050915A (en) 2015-08-31 2017-03-09 新日鐵住金株式会社 Eddy current type heating device
JP2017511867A (en) 2014-09-15 2017-04-27 政清 陳 Outer cup rotating axial eddy current damper

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624937A (en) * 1985-06-28 1987-01-10 Sanwa Tekki Corp Buffering method employing hysteresis and damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126177A (en) 2012-12-27 2014-07-07 Kozo Keikaku Engineering Inc Damping device, and vibration control device of structure
JP2014202234A (en) 2013-04-02 2014-10-27 株式会社東芝 Attenuation device
JP2017511867A (en) 2014-09-15 2017-04-27 政清 陳 Outer cup rotating axial eddy current damper
WO2016136702A1 (en) 2015-02-24 2016-09-01 新日鐵住金株式会社 Eddy-current heater
JP2017050915A (en) 2015-08-31 2017-03-09 新日鐵住金株式会社 Eddy current type heating device

Also Published As

Publication number Publication date
JP2020016309A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
JP5999176B2 (en) Vacuum pump
JP6905594B2 (en) Eddy current damper
JP7101556B2 (en) Eddy current damper
JP6913648B2 (en) Mass damper
JP6926996B2 (en) Eddy current damper
JP7028692B2 (en) Mass damper
WO2019054278A1 (en) Eddy current-type damper
JP7185393B2 (en) Eddy current damper
JP6947224B2 (en) Eddy current damper
JPH1089406A (en) Damper using induction current
WO2020116344A1 (en) Eddy-current type damper
JP7040350B2 (en) Eddy current damper
JP7050619B2 (en) Eddy current damper
JP7135725B2 (en) Eddy current damper
JP6897523B2 (en) Eddy current damper
JP2019078331A (en) Eddy current-type damper
JP2017133428A (en) Motor-driven turbocompressor
JP2007146916A (en) Vibration control structure of flywheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220705

R150 Certificate of patent or registration of utility model

Ref document number: 7101556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150