JP7099739B2 - Method for manufacturing porous silicon carbide ceramic carrier - Google Patents

Method for manufacturing porous silicon carbide ceramic carrier Download PDF

Info

Publication number
JP7099739B2
JP7099739B2 JP2020124050A JP2020124050A JP7099739B2 JP 7099739 B2 JP7099739 B2 JP 7099739B2 JP 2020124050 A JP2020124050 A JP 2020124050A JP 2020124050 A JP2020124050 A JP 2020124050A JP 7099739 B2 JP7099739 B2 JP 7099739B2
Authority
JP
Japan
Prior art keywords
silicon carbide
ceramic carrier
powder
producing
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020124050A
Other languages
Japanese (ja)
Other versions
JP2021176813A (en
Inventor
慢 徐
凡 沈
国蘇 韋
常連 陳
家友 季
武斌 戴
麗 朱
樹林 王
和彬 石
俊 薛
宏 曹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Publication of JP2021176813A publication Critical patent/JP2021176813A/en
Application granted granted Critical
Publication of JP7099739B2 publication Critical patent/JP7099739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • C04B38/106Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam by adding preformed foams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、機能材料の製造技術分野に属し、具体的に、多孔質炭化ケイ素セラミック担体の製造方法に関する。 The present invention belongs to the technical field of manufacturing functional materials, and specifically relates to a method for manufacturing a porous silicon carbide ceramic carrier.

近年、産業活動の頻度が高まるにつれ、ほとんどの産業排出物は厳格な処理なしに直接排出され、大気汚染や水質汚染等の深刻な問題を引き起こしている。例えば、中国華北の各省における微粒子状物質の排出量が基準を超えて、幅広いヘイズの天気を形成し、人々の交通出行に不便を引き起こし、人々の健康にも大きな被害を与えること、産業活動による廃水には、毒性が高く、分解しにくい重金属イオンが含まれており、河川や、土壌、環境に被害を与えること等がある。「省資源で環境にやさしい」社会構築を強く主張する中国の方針の下で、産業活動で発生する汚染物質による資源や環境へのダメージをいかに軽減するかが重要な課題となっている。 In recent years, as the frequency of industrial activities has increased, most industrial emissions are discharged directly without rigorous treatment, causing serious problems such as air pollution and water pollution. For example, the emission of particulate matter in each province of North China exceeds the standard, forms a wide range of haze weather, causes inconvenience to people's traffic, and causes great damage to people's health, due to industrial activities. Wastewater contains heavy metal ions that are highly toxic and difficult to decompose, and may damage rivers, soil, and the environment. Under China's policy of insisting on building a "resource-saving and environmentally friendly" society, how to reduce the damage to resources and the environment caused by pollutants generated in industrial activities has become an important issue.

上記の環境汚染問題への対応として、研究者たちは、膜分離技術を利用して産業汚染物質を処理することに徐々に焦点を合わせている。現在、無機セラミック膜は、膜材料開発のホットスポットであり、その安定した性能、高い実用性、高温耐性や耐食性等の優れた性能は、有機高分子膜では比類のないものである。現在、市販の無機セラミック膜は主にアルミナ膜であるが、工業廃水の最大の特徴は腐食性が強いことであり、このような過酷な環境では、アルミナ膜は、耐食性が弱く、フラックス(flux)が小さい等の問題により、効率が低く、使用寿命が短く、更新サイクルが短いという欠点がある。このような背景の下で、新しい無機セラミック膜のさらなる研究開発は、将来の産業発展にとって避けられない選択肢である。 In response to the above environmental pollution problems, researchers are gradually focusing on treating industrial pollutants using membrane separation techniques. At present, inorganic ceramic membranes are a hot spot for membrane material development, and their stable performance, high practicality, high temperature resistance, corrosion resistance, and other excellent performances are unmatched in organic polymer membranes. Currently, commercially available inorganic ceramic membranes are mainly alumina membranes, but the greatest feature of industrial wastewater is that they are highly corrosive. In such a harsh environment, alumina membranes have weak corrosion resistance and flux. ) Is small, which has the disadvantages of low efficiency, short service life, and short renewal cycle. Against this background, further research and development of new inorganic ceramic membranes is an unavoidable option for future industrial development.

新しい無機膜材料基体として、多孔質炭化ケイ素セラミック担体は、通気孔の数が多いため、炭化ケイ素材料の高温耐性、耐摩耗性や優れた化学的安定性だけでなく、低密度と良好な耐衝撃性も備えている。構造と機能性を兼ね備えたセラミック材料として、国防、航空宇宙、化学工業、バイオエネルギー等の分野で広く利用されている。 As a new inorganic film material substrate, the porous silicon carbide ceramic carrier has a large number of vents, so that the silicon carbide material not only has high temperature resistance, wear resistance and excellent chemical stability, but also low density and good resistance. It also has impact resistance. As a ceramic material that has both structure and functionality, it is widely used in fields such as national defense, aerospace, chemical industry, and bioenergy.

現在、ほとんど固相焼結法により炭化ケイ素セラミック担体を製造しているが、固相焼結による炭化ケイ素セラミックは高い脆性と高い硬度等の特性によって成形加工が困難であると共に、高コスト、複雑なプロセス、長い製造サイクル等の要因により複雑な形状のセラミック部品を製造することの困難さがさらに高まり、製造された炭化ケイ素セラミックは純度が低く、耐食性が比較的弱くなる。これは間違いなく、ある程度の炭化ケイ素セラミック技術の開発を妨げてしまう。成形プロセスは、セラミック製造の重要な技術であり、セラミック製造コストとセラミック製品の歩留まりに影響を与える基本的な要素として、成形プロセスの改善は特に重要である。 Currently, silicon carbide ceramic carriers are mostly manufactured by the solid phase sintering method, but the silicon carbide ceramics obtained by solid phase sintering are difficult to mold due to their characteristics such as high brittleness and high hardness, and are expensive and complicated. Due to factors such as various processes and long manufacturing cycles, it becomes more difficult to manufacture ceramic parts having complicated shapes, and the manufactured silicon carbide ceramics have low purity and relatively weak corrosion resistance. This undoubtedly hinders the development of some silicon carbide ceramic technology. The forming process is an important technique for ceramic manufacturing, and improvement of the forming process is particularly important as a basic factor affecting the ceramic manufacturing cost and the yield of ceramic products.

本発明の主な目的は、従来技術の欠点を考慮して、成形プロセスが単純で、操作が便利で、複雑な構造を有する多孔質炭化ケイ素セラミックを製造でき、且つ、得られた多孔質炭化ケイ素セラミック担体が効果的に高強度、高温耐性及び酸・アルカリに対する耐食性等の性能を兼ね備え、広い適用性を有する多孔質炭化ケイ素セラミック担体の製造方法を提供することである。 A main object of the present invention is to consider the drawbacks of the prior art, to be able to produce a porous silicon carbide ceramic having a simple molding process, convenient operation, and a complicated structure, and the obtained porous silicon carbide. It is an object of the present invention to provide a method for producing a porous silicon carbide ceramic carrier, in which the silicon ceramic carrier effectively has high strength, high temperature resistance, corrosion resistance to acids and alkalis, and the like, and has wide applicability.

上記目的を達成するために、本発明の技術手段は以下の通りである。 In order to achieve the above object, the technical means of the present invention is as follows.

多孔質炭化ケイ素セラミック担体の製造方法は、まず、混合炭化ケイ素粉末、シリカ粉末、発泡剤、分散剤、及び熱硬化性ポリマーエマルジョンを主原料とし、均一に混合して高固形分の炭化ケイ素スラリーを取得し、次に鋳込み、常圧焼結成形してなり、前記混合炭化ケイ素粉末は、粗粒炭化ケイ素粉末と細粒炭化ケイ素粉末とが混合してなる。 The method for producing a porous silicon carbide ceramic carrier is as follows, first, a mixed silicon carbide powder, a silica powder, a foaming agent, a dispersant, and a thermosetting polymer emulsion are used as main raw materials, and the silicon carbide slurry having a high solid content is uniformly mixed. Is then cast and subjected to atmospheric pressure sintering molding, and the mixed silicon carbide powder is a mixture of coarse-grained silicon carbide powder and fine-grained silicon carbide powder.

上記の解決策において、前記混合炭化ケイ素は、90~95:5~10の質量比に従って2種粒径の粗粒炭化ケイ素粉末と細粒炭化ケイ素粉末で構成される。また、粗粒炭化ケイ素粉末の粒度はD50=6.5~9.5μmであり、細粒炭化ケイ素の粒度はD50=3.0~5.0μmであり、2種粒径の炭化ケイ素粉末の純度はいずれも98wt%以上である。 In the above solution, the mixed silicon carbide is composed of coarse-grained silicon carbide powder and fine-grained silicon carbide powder having two particle sizes according to a mass ratio of 90 to 95: 5 to 10. The particle size of the coarse-grained silicon carbide powder is D 50 = 6.5 to 9.5 μm, and the particle size of the fine-grained silicon carbide is D 50 = 3.0 to 5.0 μm. The purity of each powder is 98 wt% or more.

上記の解決策において、前記シリカ粉末の粒度はD50=3.0~6.0μmであり、純度は98wt%以上である。 In the above solution, the particle size of the silica powder is D 50 = 3.0 to 6.0 μm, and the purity is 98 wt% or more.

上記の解決策において、前記発泡剤は、濃度25~35wt%の過酸化水素水溶液である。 In the above solution, the foaming agent is a hydrogen peroxide aqueous solution having a concentration of 25 to 35 wt%.

上記の解決策において、前記分散剤は、1:(1~2):(0.8~1.5)の質量比に従ってメチルセルロース、水酸化テトラメチルアンモニウム、ポリエチレンイミンを複合してなり、3者の複合により、系は非常に安定した分散状態になり、粒子間の吸着や凝集によって引き起こされる大粒子の沈降現象を回避できる。 In the above solution, the dispersant is composed of a composite of methyl cellulose, tetramethylammonium hydroxide and polyethyleneimine according to a mass ratio of 1: (1 to 2): (0.8 to 1.5). By combining these, the system becomes a very stable dispersed state, and the sedimentation phenomenon of large particles caused by adsorption and aggregation between particles can be avoided.

上記の解決策において、前記熱硬化性エマルジョンは、粘度80~2000mPa・s、固形分40~55%の乳白色の液体であるスチレン-アクリルエマルジョンである。 In the above solution, the thermosetting emulsion is a styrene-acrylic emulsion which is a milky white liquid having a viscosity of 80 to 2000 mPa · s and a solid content of 40 to 55%.

上記の解決策において、前記原料それぞれの質量百分率は、混合炭化ケイ素粉末60~85%、シリカ粉末8~15%、発泡剤0.5~1.5%、分散剤0.6~3%、及び熱硬化性ポリマーエマルジョン(溶剤)20~30%である。 In the above solution, the mass percentage of each of the raw materials is 60 to 85% of the mixed silicon carbide powder, 8 to 15% of the silica powder, 0.5 to 1.5% of the foaming agent, and 0.6 to 3% of the dispersant. And 20 to 30% of the thermosetting polymer emulsion (powder).

上記の解決策において、前記高固形分の炭化ケイ素スラリーを取得する方法は、まず混合炭化ケイ素粉末、分散剤、及びシリカ粉末を一部の秤量した熱硬化性ポリマーエマルジョンの溶剤に添加し、混合物を均一に撹拌して均一に分散した炭化ケイ素スラリーを取得するステップと、発泡剤と残りの熱硬化性ポリマーエマルジョンを発泡機に加えて均一に撹拌した後、得られた炭化ケイ素スラリーを発泡機に加えて均一に撹拌を続け、静置するステップと、を含み、これにより高固形分の炭化ケイ素スラリーが得られる。 In the above solution, the method for obtaining the high solid content silicon carbide slurry is to first add a mixed silicon carbide powder, a dispersant, and a silica powder to the solvent of a partially weighed thermosetting polymer emulsion, and then add the mixture. The step of uniformly stirring to obtain a uniformly dispersed silicon carbide slurry, and after adding the foaming agent and the remaining thermosetting polymer emulsion to the foaming machine and stirring uniformly, the obtained silicon carbide slurry is used in the foaming machine. In addition to the step of continuing uniform stirring and allowing to stand, a high solid content silicon carbide slurry is obtained.

上記の解決策において、前記焼結成形のプロセスは、高固形分の炭化ケイ素スラリーを鋳込んだ後、インキュベーションヒートランプで照射処理して炭化ケイ素セラミック担体のグリーン体を取得するステップと、次に炭化ケイ素焼結炉に移して1400~1500℃に加熱し、30~90min保温してから、2050~2250℃に加熱し、30~120min保温した後、最後に300~400℃に冷却し、20~60min保温して、炉と共に室温まで自然に冷却するステップと、を含む。 In the above solution, the sintering process involves casting a high solid content silicon carbide slurry and then irradiating it with an incubation heat lamp to obtain a green body of the silicon carbide ceramic carrier. Transfer to a silicon carbide sintering furnace, heat to 1400 to 1500 ° C, keep warm for 30 to 90 min, heat to 2050 to 2250 ° C, keep warm for 30 to 120 min, and finally cool to 300 to 400 ° C, 20. Includes a step of keeping warm for ~ 60 min and naturally cooling to room temperature with the furnace.

上記の解決策において、前記加熱速度は1~3℃/minであり、冷却速度は1~3℃/minである。 In the above solution, the heating rate is 1 to 3 ° C./min and the cooling rate is 1 to 3 ° C./min.

上記の解決策において、前記照射処理の時間は8~15時間である。 In the above solution, the irradiation treatment time is 8 to 15 hours.

上記の解決策により製造された多孔質炭化ケイ素セラミック担体によれば、強酸とアルカリに耐性があり、全てのpH範囲で利用可能であり、曲げ強度は70~90Mpaであり、気孔率が高く、純水フラックスが7700~8900L/(m・h・bar)であり、その作業環境が1500~1700℃の高温であり、150~250g/Lの硝酸と50~100g/Lのフッ化水素酸の混合溶液の媒体環境では、寿命を効果的に延ばすことができ、幅広い開発の見通しがある。 According to the porous silicon carbide ceramic carrier produced by the above solution, it is resistant to strong acids and alkalis, can be used in all pH ranges, has a bending strength of 70-90 MPa, and has a high porosity. The pure water flux is 7700 to 8900 L / (m 2 · h · bar), the working environment is a high temperature of 1500 to 1700 ° C., 150 to 250 g / L of nitric acid and 50 to 100 g / L of hydrofluoric acid. In the medium environment of the mixed solution of, the life can be effectively extended and there is a wide range of development prospects.

本発明の原理は以下の通りである。
1)本発明では、熱硬化性スチレン-アクリルエマルジョンを溶剤として、炭化ケイ素セラミック担体の製造に使用し、当該溶剤はベンゼン環とカルボン酸エステル基から構成された官能基系であり、構造が安定で、環境にやさしく、その低粘度及び熱硬化性能は、炭化ケイ素セラミック担体の製造時にグリーン体の成形速度と初期の機械的特性を確保するに役立ち、後の焼結に役立つ。使用されている従来の水溶媒と比較して、スチレン-アクリルエマルジョンはセラミック担体製品の靭性を改善すると同時に、グリーン体内の各原料の分散度を向上させるに役立ち、セラミック担体のグリーン体の内部の通気孔の均一分布を保証し、均一に分散された懸濁スラリーを形成する。従って、高温焼結時に、炭化ケイ素セラミックのグリーン体の内部のガスをスムーズに排出でき、過度の高温圧力によって製品の強度が低すぎたり破断されたりする現象の発生を回避し、結局、連通ボイド構造を有する高強度の炭化ケイ素製品を形成する。また、本発明によるスチレン-アクリルエマルジョンは、高温での炭化により生成した炭素と二酸化ケイ素が反応して炭化ケイ素を生成して、不純物の発生をさらに低減し、製品率を向上させることができる。同時に、上記の溶剤系では、粒径の異なる混合炭化ケイ素原料系がさらに使用され、高温再結晶中では、小さな炭化ケイ素粒子が昇華し、凝固して少量の残っている大きな粒子結晶を成長させ、最終的に高い結合強度を持つ3次元連通構造を形成して、得られた炭化ケイ素セラミック担体がさらに高い曲げ強度、純度、及び耐食性を表すようにする。
The principle of the present invention is as follows.
1) In the present invention, a thermosetting styrene-acrylic emulsion is used as a solvent for producing a silicon carbide ceramic carrier, and the solvent is a functional group system composed of a benzene ring and a carboxylic acid ester group, and the structure is stable. It is environmentally friendly, and its low viscosity and thermosetting performance help ensure the forming speed and initial mechanical properties of the green body during the manufacture of silicon carbide ceramic carriers, which is useful for later sintering. Compared to the conventional aqueous solvents used, the styrene-acrylic emulsion improves the toughness of the ceramic carrier product while at the same time helping to improve the dispersity of each ingredient in the green body, inside the green body of the ceramic carrier. It ensures a uniform distribution of vents and forms a uniformly dispersed suspension slurry. Therefore, during high-temperature sintering, the gas inside the green body of the silicon carbide ceramic can be smoothly discharged, and the phenomenon that the strength of the product is too low or the product is broken due to excessive high-temperature pressure is avoided, and in the end, the communication void is used. Form high-strength silicon carbide products with structure. Further, in the styrene-acrylic emulsion according to the present invention, carbon produced by carbonization at a high temperature reacts with silicon dioxide to produce silicon carbide, further reducing the generation of impurities and improving the product ratio. At the same time, in the above solvent system, mixed silicon carbide raw material systems having different particle sizes are further used, and in high temperature recrystallization, small silicon carbide particles are sublimated and solidified to grow a small amount of remaining large particle crystals. Finally, a three-dimensional communication structure with high bond strength is formed so that the obtained silicon carbide ceramic carrier exhibits higher bending strength, purity, and corrosion resistance.

2)本発明は、熱硬化性スチレン-アクリルエマルジョンを使用して発泡剤を直接発泡させ、発泡機に炭化ケイ素スラリーを直接導入してパルプ化する。これは、均一に分散した高固形分、高ボイドの炭化ケイ素スラリーの形成に役立ち、採用している「発泡機パルプ化+鋳込み成形」の成形プロセスは、得られた多孔質炭化ケイ素セラミック担体の機械的特性や、純水フラックス等の使用性能を効果的にバランスさせることができる。 2) In the present invention, a thermosetting styrene-acrylic emulsion is used to directly foam a foaming agent, and a silicon carbide slurry is directly introduced into a foaming machine to pulp it. This helps to form a uniformly dispersed high solid content, high void silicon carbide slurry, and the "foaming machine pulping + casting molding" molding process used is that of the obtained porous silicon carbide ceramic carrier. It is possible to effectively balance the mechanical properties and the usage performance of pure water flux and the like.

従来技術と比較して、本発明の有益な効果は以下の通りである。 Compared with the prior art, the beneficial effects of the present invention are as follows.

1)本発明は、従来の水溶媒の代わりに熱硬化性スチレン-アクリルエマルジョンを使用して炭化ケイ素担体を製造し、それを発泡剤と直接混合して発泡させ、発泡機で炭化ケイ素スラリーと直接混合することで、パルプ化中により多くの独立気泡を形成して、得られる炭化ケイ素スラリーの良好な分散性、気泡の均一性及び安定性を効果的に確保でき、高温焼結中に炭化ケイ素セラミックのグリーン体の内部のガスのスムーズな排出を促進することに役立ち、得られる炭化ケイ素セラミック担体が優れた機械的特性と純水フラックス等を効果的にバランスできる。採用している「発泡機パルプ化+鋳込み成形」プロセスは、生成サイクルを効果的に短縮し、得られる多孔質炭化ケイ素セラミック担体の使用性能を確保することができる。 1) In the present invention, a silicon carbide carrier is produced by using a thermosetting styrene-acrylic emulsion instead of a conventional aqueous solvent, and the silicon carbide carrier is directly mixed with a foaming agent to be foamed, and the silicon carbide slurry is prepared by a foaming machine. Direct mixing can form more closed cells during pulping, effectively ensuring good dispersibility, bubble uniformity and stability of the resulting silicon carbide slurry and carbonizing during high temperature sintering. It helps to promote the smooth discharge of gas inside the green body of silicon ceramic, and the obtained silicon carbide ceramic carrier can effectively balance excellent mechanical properties with pure water flux and the like. The adopted "foaming machine pulping + casting molding" process can effectively shorten the production cycle and ensure the use performance of the resulting porous silicon carbide ceramic carrier.

2)本発明では、粗粒及び細粒の混合炭化ケイ素を原料として採用しており、高温再結晶中に、小さな炭化ケイ素粒子が昇華し、凝固して少量の残っている大きな粒子結晶を成長させ、最終的に高い結合強度を持つ3次元連通構造を形成して、得られた炭化ケイ素セラミック担体の曲げ強度、純度、及び耐食性をさらに向上させることができる。 2) In the present invention, mixed silicon carbide of coarse particles and fine particles is used as a raw material, and small silicon carbide particles sublimate during high-temperature recrystallization and solidify to grow a small amount of remaining large particle crystals. Finally, a three-dimensional communication structure having high bond strength can be formed, and the bending strength, purity, and corrosion resistance of the obtained silicon carbide ceramic carrier can be further improved.

3)本発明により製造された多孔質炭化ケイ素セラミック担体は、高強度で、高温耐性や酸・アルカリに対する耐食性等の優れた特性を有し、プロセス要件に応じて仕様や、形状、構造が異なる分離膜材料のセラミック基体を設計することができ、大粒子状(>10μm)物質の分離フィルター材料として単独で使用することもでき、係る製造方法が簡単で、プロセスの制御が柔軟で、低コストで、成形プロセスサイクルが短く、重要なアプリケーションとプロモーションの価値がある。 3) The porous silicon carbide ceramic carrier produced by the present invention has high strength and excellent properties such as high temperature resistance and corrosion resistance to acids and alkalis, and the specifications, shapes and structures differ depending on the process requirements. A ceramic substrate for the separation membrane material can be designed and used alone as a separation filter material for large particulate (> 10 μm) substances, the manufacturing method is simple, the process control is flexible, and the cost is low. With a short molding process cycle, it is worth important applications and promotions.

実施例1による多孔質炭化ケイ素セラミック担体の断面走査型電子顕微鏡写真である。It is a cross-section scanning electron micrograph of a porous silicon carbide ceramic carrier according to Example 1. 比較例1による多孔質炭化ケイ素セラミック担体の断面走査型電子顕微鏡写真である。It is a cross-section scanning electron micrograph of a porous silicon carbide ceramic carrier according to Comparative Example 1.

本発明の目的、技術手段及び利点をさらに明らかにするために、以下に実施例を参照しながら、本発明をさらに詳細に説明する。ここで説明する具体的な実施例は本発明の解釈のために用いられ、本発明を限定するためのものではないことが理解されるべきである。 In order to further clarify the object, technical means and advantages of the present invention, the present invention will be described in more detail with reference to the following examples. It should be understood that the specific examples described herein are used for the interpretation of the present invention and are not intended to limit the present invention.

以下の実施例では、採用される粗粒炭化ケイ素の粒度はD50=8.5μmであり、細粒炭化ケイ素の粒度はD50=3.8μmであり、2種粒径の炭化ケイ素粉末の純度は98wt%以上であり、中国の安陽市開拓冶金耐材有限公司により提供され、使用前に、次のように別々に洗浄及び乾燥処理を行う。即ち、2種粒径の炭化ケイ素粉末を質量濃度8%のHF溶液にそれぞれ加え、13時間撹拌してから、以上の炭化ケイ素スラリーを脱イオン水で繰り返して洗浄及び濾過し、pH値が5~7に達したら、洗浄を停止し、その後、60℃の真空乾燥オーブンに入れて90min乾燥し、取り出して使用する。 In the following examples, the particle size of the coarse-grained silicon carbide used is D 50 = 8.5 μm, the particle size of the fine-grained silicon carbide is D 50 = 3.8 μm, and the particle size of the two kinds of particle size silicon carbide powder is used. Purity is 98 wt% or more, provided by Anyang City Pioneered Silicon Carbide Resistant Co., Ltd. in China, and before use, it is separately washed and dried as follows. That is, silicon carbide powder having a particle size of 2 types is added to an HF solution having a mass concentration of 8%, and the mixture is stirred for 13 hours, and then the above silicon carbide slurry is repeatedly washed and filtered with deionized water to have a pH value of 5. When it reaches ~ 7, the washing is stopped, and then the mixture is placed in a vacuum drying oven at 60 ° C., dried for 90 minutes, and taken out for use.

使用したシリカ粉末の粒度はD50=3.0μmであり、純度は98wt%以上であり、中国の上海晶練新材料有限公司により提供され、スチレン-アクリルエマルジョンは、PH値が8~9の乳白色の液体であり、密着性がよく、中国の広州栄東化工有限公司により提供される。
<実施例1>
The particle size of the silica powder used is D 50 = 3.0 μm, the purity is 98 wt% or more, and it is provided by Shanghai Crystal Kneading New Materials Co., Ltd. in China. The styrene-acrylic emulsion has a PH value of 8-9. It is a milky white liquid with good adhesion and is provided by Guangzhou Shengdong Chemical Co., Ltd. of China.
<Example 1>

多孔質炭化ケイ素セラミック担体の製造方法として、具体的なステップは次の通りである。 Specific steps as a method for producing a porous silicon carbide ceramic carrier are as follows.

1)90:10の質量比に従って粗粒炭化ケイ素及び細粒炭化ケイ素を混合し、均一に撹拌して、混合炭化ケイ素を用意し、1:1:0.8の質量比に従ってメチルセルロース、水酸化テトラメチルアンモニウム、ポリエチレンイミンを混合して、分散剤を取得する。 1) Coarse-grained silicon carbide and fine-grained silicon carbide are mixed according to a mass ratio of 90:10, and uniformly stirred to prepare mixed silicon carbide. Methyl cellulose and hydroxide are prepared according to a mass ratio of 1: 1: 0.8. Mix tetramethylammonium and polyethyleneimine to obtain a dispersant.

2)各原料を比率に従って秤量し、各原料の質量百分率は、混合炭化ケイ素65%、分散剤1%、シリカ粉末10%、発泡剤1%、スチレン-アクリルエマルジョン23%である。 2) Each raw material is weighed according to the ratio, and the mass percentage of each raw material is 65% of mixed silicon carbide, 1% of dispersant, 10% of silica powder, 1% of foaming agent, and 23% of styrene-acrylic emulsion.

3)秤量した混合炭化ケイ素、分散剤、及びシリカをスチレン-アクリルエマルジョン(全原料の13%)に加え、撹拌して均一に分散した炭化ケイ素スラリーを調製し、秤量した発泡剤と残りのスチレン-アクリルエマルジョンの溶剤を発泡機に加え、3min撹拌した後、上記で調製した炭化ケイ素スラリーを発泡機に加え、得られた気泡を内部に有するラテックスと混合させ、7min撹拌を続けた後、1min静置させて、分散性がよく、多数の気泡を有する炭化ケイ素スラリー(固形分は55~62%程度)を取得する。 3) Weighed mixed silicon carbide, dispersant, and silica were added to a styrene-acrylic emulsion (13% of the total raw material) and stirred to prepare a uniformly dispersed silicon carbide slurry, and the weighed foaming agent and the remaining styrene. -The solvent of the acrylic emulsion is added to the foaming machine and stirred for 3 minutes, then the silicon carbide slurry prepared above is added to the foaming machine, the obtained air bubbles are mixed with the latex having the inside, and stirring is continued for 7 minutes, and then 1 min. Allow to stand to obtain a silicon carbide slurry (solid content is about 55 to 62%) having good dispersibility and having a large number of bubbles.

4)ステップ3)で得られたスラリーを型に注入した後、インキュベーションヒートランプで10時間照射して、一定の強度を有する炭化ケイ素担体のグリーン体を取り出す。 4) After injecting the slurry obtained in step 3) into a mold, the slurry is irradiated with an incubation heat lamp for 10 hours to take out a green body of a silicon carbide carrier having a certain strength.

5)得られたグリーン体を高温炉に移し、2℃/minの速度で1400℃まで昇温させ、60min保温してから、2℃/minの速度で2150℃まで昇温させ、60min保温し、最後に、2℃/minの速度で300℃まで冷却させ、30min保温し、最後に、炉と共に室温まで自然に冷却し、取り出すと、高い曲げ強度で通気孔が内部に均一に分布された炭化ケイ素セラミック担体が得られる。 5) The obtained green body is transferred to a high temperature furnace, heated to 1400 ° C. at a rate of 2 ° C./min, kept warm for 60 min, then heated to 2150 ° C. at a rate of 2 ° C./min, and kept warm for 60 min. Finally, it was cooled to 300 ° C. at a rate of 2 ° C./min and kept warm for 30 minutes. Finally, it was naturally cooled to room temperature together with the furnace, and when it was taken out, the ventilation holes were uniformly distributed inside with high bending strength. A silicon carbide ceramic carrier is obtained.

本実施例におけるパルプ化操作は合理的であり、グリーン体の焼結温度及び時間も要件を満たし、反応系における炭素及び二酸化ケイ素は十分に反応して炭化ケイ素を生成し、調製された炭化ケイ素セラミック担体の純度は高く、98%にもなり、高温焼結により製造された炭化ケイ素結晶は、結合強度が高くなり、走査型電子顕微鏡テストから、担体内部の通気孔が比較的均一に分布され、孔径に大きな差がなく、密度は0.862g/cmであり、気孔率は27.1%に達し、純水フラックスは8269L/(m・h・bar)であり、濾過圧力が小さく、曲げ強度が80.6Mpaに達し、1650℃高温、200g/Lの硝酸と70g/Lのフッ化水素酸の混合溶液媒体環境の作業環境下で、寿命が80日以上に達することが分かる。
<実施例2>
The pulping operation in this example is rational, the sintering temperature and time of the green body also meet the requirements, and the carbon and silicon dioxide in the reaction system react sufficiently to produce silicon carbide, and the prepared silicon carbide is prepared. The purity of the ceramic carrier is as high as 98%, the silicon carbide crystals produced by high temperature sintering have high bond strength, and the vent holes inside the carrier are relatively evenly distributed from the scanning electron microscopic test. There is no big difference in pore diameter, the density is 0.862 g / cm 3 , the porosity reaches 27.1%, the pure water flux is 8269 L / (m 2 · h · bar), and the filtration pressure is small. It can be seen that the bending strength reaches 80.6 MPa, and the life reaches 80 days or more under the working environment of a mixed solution medium environment of 1650 ° C. high temperature, 200 g / L nitric acid and 70 g / L hydrofluoric acid.
<Example 2>

多孔質炭化ケイ素セラミック担体の製造方法として、具体的なステップは次の通りである。 Specific steps as a method for producing a porous silicon carbide ceramic carrier are as follows.

1)93:7の質量比に従って粗粒炭化ケイ素及び細粒炭化ケイ素を混合し、均一に撹拌して、混合炭化ケイ素を用意し、1:1.2:1の質量比に従ってメチルセルロース、水酸化テトラメチルアンモニウム、ポリエチレンイミンを混合して、分散剤を取得する。 1) Coarse-grained silicon carbide and fine-grained silicon carbide are mixed according to a mass ratio of 93: 7, and uniformly stirred to prepare mixed silicon carbide, and methylcellulose and hydroxylation are prepared according to a mass ratio of 1: 1.2: 1. Mix tetramethylammonium and polyethyleneimine to obtain a dispersant.

2)各原料を比率に従って秤量し、各原料の質量百分率は、混合炭化ケイ素粉末66%、分散剤1%、シリカ粉末8%、発泡剤1%、スチレン-アクリルエマルジョン24%である。 2) Each raw material is weighed according to the ratio, and the mass percentage of each raw material is 66% of mixed silicon carbide powder, 1% of dispersant, 8% of silica powder, 1% of foaming agent, and 24% of styrene-acrylic emulsion.

3)秤量した混合炭化ケイ素、分散剤、及びシリカをスチレン-アクリルエマルジョン(全原料の12%)に加え、撹拌して均一に分散した炭化ケイ素スラリーを調製し、秤量した発泡剤と残りのスチレン-アクリルエマルジョンの溶剤を発泡機に加え、5min撹拌した後、上記で調製した炭化ケイ素スラリーを発泡機に加え、得られた気泡を内部に有するラテックスと混合させ、5min撹拌を続けた後、2min静置させて、分散性がよく、多数の気泡を有する炭化ケイ素スラリー(固形分は55~62%程度)を取得する。 3) Weighed mixed silicon carbide, dispersant, and silica were added to a styrene-acrylic emulsion (12% of the total raw material) and stirred to prepare a uniformly dispersed silicon carbide slurry, and the weighed foaming agent and the remaining styrene. -Add the solvent of the acrylic emulsion to the foamer and stir for 5 minutes, then add the silicon carbide slurry prepared above to the foamer, mix the obtained air bubbles with the latex having inside, and continue stirring for 5 minutes, then 2 min. Allow to stand to obtain a silicon carbide slurry (solid content is about 55 to 62%) having good dispersibility and having a large number of bubbles.

4)ステップ3)で得られたスラリーを型に注入した後、インキュベーションヒートランプで10時間照射して、一定の強度を有する炭化ケイ素担体のグリーン体を取り出す。 4) After injecting the slurry obtained in step 3) into a mold, the slurry is irradiated with an incubation heat lamp for 10 hours to take out a green body of a silicon carbide carrier having a certain strength.

5)得られたグリーン体を高温炉に移し、2℃/minの速度で1500℃まで昇温させ、80min保温してから、2℃/minの速度で2180℃まで昇温させ、65min保温し、最後に、2℃/minの速度で300℃まで冷却させ、25min保温し、最後に、炉と共に室温まで自然に冷却し、取り出すと、高い曲げ強度で通気孔が内部に均一に分布された炭化ケイ素セラミック担体が得られる。 5) The obtained green body is transferred to a high temperature furnace, heated to 1500 ° C. at a rate of 2 ° C./min, kept warm for 80 min, then heated to 2180 ° C. at a rate of 2 ° C./min, and kept warm for 65 min. Finally, it was cooled to 300 ° C. at a rate of 2 ° C./min and kept warm for 25 min. Finally, it was naturally cooled to room temperature together with the furnace, and when it was taken out, the ventilation holes were uniformly distributed inside with high bending strength. A silicon carbide ceramic carrier is obtained.

本実施例におけるパルプ化操作は合理的であり、グリーン体の焼結温度及び時間も要件を満たし、反応系における炭素及び二酸化ケイ素は十分に反応して炭化ケイ素を生成し、調製された炭化ケイ素セラミック担体の純度は高く、97.6%にもなり、高温焼結により製造された炭化ケイ素結晶は、結合強度が高くなり、走査型電子顕微鏡テストから、担体内部の通気孔が比較的均一に分布され、孔径に大きな差がなく、密度は0.804g/cmであり、気孔率は27.5%に達し、純水フラックスは8357L/(m・h・bar)であり、濾過圧力が小さく、曲げ強度が78.9Mpaに達し、1650℃高温、180g/Lの硝酸と80g/Lのフッ化水素酸の混合溶液媒体環境の作業環境下で、寿命が80日以上に達することが分かる。
<実施例3>
The pulping operation in this example is rational, the sintering temperature and time of the green body also meet the requirements, and the carbon and silicon dioxide in the reaction system react sufficiently to produce silicon carbide, and the prepared silicon carbide is prepared. The purity of the ceramic carrier is as high as 97.6%, the silicon carbide crystals produced by high temperature sintering have high bond strength, and the vent holes inside the carrier are relatively uniform from the scanning electron microscopic test. It is distributed, there is no big difference in pore diameter, the density is 0.804 g / cm 3 , the porosity reaches 27.5%, the pure water flux is 8357 L / (m 2 · h · bar), and the filtration pressure. The bending strength reaches 78.9 Mpa, and the life can reach 80 days or more under the working environment of a mixed solution medium environment of 180 g / L nitrate and 80 g / L hydrofluoric acid at a high temperature of 1650 ° C. I understand.
<Example 3>

多孔質炭化ケイ素セラミック担体の製造方法として、具体的なステップは次の通りである。 Specific steps as a method for producing a porous silicon carbide ceramic carrier are as follows.

1)95:5の質量比に従って粗粒炭化ケイ素及び細粒炭化ケイ素を混合し、均一に撹拌して、混合炭化ケイ素を用意し、1:1:1の質量比に従ってメチルセルロース、水酸化テトラメチルアンモニウム、ポリエチレンイミンを混合して、分散剤を取得する。 1) Coarse-grained silicon carbide and fine-grained silicon carbide are mixed according to a mass ratio of 95: 5, and uniformly stirred to prepare mixed silicon carbide. Methyl cellulose and tetramethylammonium hydroxide are prepared according to a mass ratio of 1: 1: 1. Mix ammonium and polyethyleneimine to obtain a dispersant.

2)各原料を比率に従って秤量し、各原料の質量百分率は、混合炭化ケイ素粉末63%、分散剤1.5%、シリカ粉末11%、発泡剤1.5%、スチレン-アクリルエマルジョン23%である。 2) Weigh each raw material according to the ratio, and the mass percentage of each raw material is 63% mixed silicon carbide powder, 1.5% dispersant, 11% silica powder, 1.5% foaming agent, and 23% styrene-acrylic emulsion. be.

3)秤量した混合炭化ケイ素、分散剤、及びシリカをスチレン-アクリルエマルジョン(全原料の11%)に加え、撹拌して均一に分散した炭化ケイ素スラリーを調製し、秤量した発泡剤と残りのスチレン-アクリルエマルジョンの溶剤を発泡機に加え、5min撹拌した後、上記で調製した炭化ケイ素スラリーを発泡機に加え、得られた気泡を内部に有するラテックスと混合させ、6min撹拌を続けた後、2min静置させて、分散性がよく、多数の気泡を有する炭化ケイ素スラリー(固形分は55~62%程度)を取得する。 3) Weighed mixed silicon carbide, dispersant, and silica were added to the styrene-acrylic emulsion (11% of the total raw material) and stirred to prepare a uniformly dispersed silicon carbide slurry, and the weighed foaming agent and the remaining styrene. -The solvent of the acrylic emulsion is added to the foaming machine and stirred for 5 minutes, then the silicon carbide slurry prepared above is added to the foaming machine, the obtained air bubbles are mixed with the latex having the inside, and stirring is continued for 6 minutes, and then 2 min. Allow to stand to obtain a silicon carbide slurry (solid content is about 55 to 62%) having good dispersibility and having a large number of bubbles.

4)ステップ3)で得られたスラリーを型に注入した後、インキュベーションヒートランプで11時間照射して、一定の強度を有する炭化ケイ素担体のグリーン体を取り出す。 4) After injecting the slurry obtained in step 3) into a mold, the slurry is irradiated with an incubation heat lamp for 11 hours to take out a green body of a silicon carbide carrier having a certain strength.

5)得られたグリーン体を高温炉に移し、2℃/minの速度で1500℃まで昇温させ、80min保温してから、2℃/minの速度で2090℃まで昇温させ、90min保温し、最後に、2℃/minの速度で300℃まで冷却させ、35min保温し、最後に、炉と共に室温まで自然に冷却し、取り出すと、高い曲げ強度で通気孔が内部に均一に分布された炭化ケイ素セラミック担体が得られる。 5) The obtained green body is transferred to a high temperature furnace, heated to 1500 ° C. at a rate of 2 ° C./min, kept warm for 80 min, then heated to 2090 ° C. at a rate of 2 ° C./min, and kept warm for 90 min. Finally, it was cooled to 300 ° C. at a rate of 2 ° C./min and kept warm for 35 min. Finally, it was naturally cooled to room temperature together with the furnace, and when it was taken out, the ventilation holes were uniformly distributed inside with high bending strength. A silicon carbide ceramic carrier is obtained.

本実施例におけるパルプ化操作は合理的であり、グリーン体の焼結温度及び時間も要件を満たし、反応系における炭素及び二酸化ケイ素は十分に反応して炭化ケイ素を生成し、調製された炭化ケイ素セラミック担体の純度は高く、98.5%にもなり、高温焼結により製造された炭化ケイ素結晶は、結合強度が高くなり、走査型電子顕微鏡テストから、担体内部の通気孔が比較的均一に分布され、孔径に大きな差がなく、密度は0.891g/cmであり、気孔率は29.8%に達し、純水フラックスは8722L/(m・h・bar)であり、濾過圧力が小さく、曲げ強度が83.2Mpaに達し、1650℃高温、180g/Lの硝酸と80g/Lのフッ化水素酸の混合溶液媒体環境の作業環境下で、寿命が80日以上に達することが分かる。 The pulping operation in this example is rational, the sintering temperature and time of the green body also meet the requirements, and the carbon and silicon dioxide in the reaction system react sufficiently to produce silicon carbide, and the prepared silicon carbide is prepared. The purity of the ceramic carrier is as high as 98.5%, the silicon carbide crystals produced by high temperature sintering have high bond strength, and the vent holes inside the carrier are relatively uniform from the scanning electron microscopic test. It is distributed, there is no big difference in pore diameter, the density is 0.891 g / cm 3 , the porosity reaches 29.8%, the pure water flux is 8722 L / (m 2 · h · bar), and the filtration pressure. The bending strength reaches 83.2 Mpa, and the life can reach 80 days or more under the working environment of a mixed solution medium environment of 180 g / L nitrate and 80 g / L hydrogen fluoride at a high temperature of 1650 ° C. I understand.

比較例1Comparative Example 1

多孔質炭化ケイ素セラミック担体の製造方法として、その具体的なステップは、対応するスチレン-アクリルエマルジョンの代わりに水を採用したことを除いて、実施例1と実質的に同じである。 As a method for producing the porous silicon carbide ceramic carrier, the specific steps are substantially the same as in Example 1 except that water is used instead of the corresponding styrene-acrylic emulsion.

得られた炭化ケイ素セラミック担体の走査型電子顕微鏡テストから、担体内部のボイド分布が不均一で、密度が0.991g/cmであり、気孔率が10.4%と低すぎ、純水フラックスがただ5087L/(m・h・bar)であり、この条件下で製造された担体の曲げ強度はただ27.9Mpaであり、1650℃高温、180g/Lの硝酸と80g/Lのフッ化水素酸の混合溶液媒体環境の作業環境下で、寿命がただ26日であることが分かり、全体的にパフォーマンスが悪い。 From the scanning electron microscope test of the obtained silicon carbide ceramic carrier, the void distribution inside the carrier was non-uniform, the density was 0.991 g / cm 3 , the porosity was too low at 10.4%, and the pure water flux. Is only 5087 L / (m 2 · h · bar), the bending strength of the carrier produced under these conditions is only 27.9 Mpa, 1650 ° C. high temperature, 180 g / L nitrate and 80 g / L fluoride. It was found that the life was only 26 days under the working environment of the mixed solution medium environment of hydrogen acid, and the overall performance was poor.

比較例2Comparative Example 2

多孔質炭化ケイ素セラミック担体の製造方法として、その具体的なステップは、採用する粗粒炭化ケイ素の粒度がD50=3.5μmであり、細粒炭化ケイ素の粒度がD50=1.8μmであることを除いて、実施例2と実質的に同じである。 As a specific step as a method for producing a porous silicon carbide ceramic carrier, the grain size of the coarse-grained silicon carbide to be adopted is D 50 = 3.5 μm, and the particle size of the fine-grained silicon carbide is D 50 = 1.8 μm. It is substantially the same as Example 2 except that there is.

比較例により得られた炭化ケイ素セラミック担体の走査型電子顕微鏡テストから、担体内部のボイド分布が不均一で、密度が0.912g/cmであり、気孔率が11.8%と低すぎ、濾過効率が低いことが分かる。また、この焼結系は、焼結が不十分で、炭素とシリカが完全に反応しない等の問題が発生しやすく、結果として得られた炭化ケイ素セラミック担体の純度はただ82%であり、曲げ強度もただ50.3Mpaであり、1650℃高温、180g/Lの硝酸と80g/Lのフッ化水素酸の混合溶液媒体環境の作業環境下で、寿命がただ30日であり、全体的にパフォーマンスが悪い。 From the scanning electron microscope test of the silicon carbide ceramic carrier obtained by the comparative example, the void distribution inside the carrier was non-uniform, the density was 0.912 g / cm 3 , and the porosity was too low at 11.8%. It can be seen that the filtration efficiency is low. In addition, this sintering system is prone to problems such as insufficient sintering and complete reaction between carbon and silica, and the resulting silicon carbide ceramic carrier has a purity of only 82% and is bent. The strength is only 50.3 MPa, the life is only 30 days in the working environment of the mixed solution medium environment of 1650 ° C. high temperature, 180 g / L nitrate and 80 g / L hydrofluoric acid, and the overall performance. Is bad.

上記の実施例は明確に説明ために例示したものに過ぎず、実施形態を制限するためのものではない。本分野に属する当業者であれば、上記の説明に基づいて他の異なる形態の変更又は修正を行うことができ、ここに全ての実施形態を列挙する必要はない。従って、明示的な変更又は修正は、依然として本発明の保護範囲内である。 The above embodiments are merely examples for the sake of clarity and are not intended to limit embodiments. Those skilled in the art who belong to this field may make other different embodiments of changes or modifications based on the above description, and it is not necessary to list all the embodiments here. Therefore, explicit changes or modifications are still within the scope of the invention.

Claims (7)

多孔質炭化ケイ素セラミック担体の製造方法であって、
まず、混合炭化ケイ素粉末、シリカ粉末、発泡剤、分散剤、及び熱硬化性スチレン-アクリルエマルジョンを主原料とし、均一に混合して形分の炭化ケイ素スラリーを取得し、次に鋳込み、常圧焼結成形してなり、
前記熱硬化性スチレン-アクリルエマルジョンは、粘度80~2000mPa・s、固形分40~55%の乳白色の液体であり、
前記混合炭化ケイ素粉末は、粗粒炭化ケイ素粉末と細粒炭化ケイ素粉末とが混合してなり、90~95:5~10の質量比に従って2種粒径の前記粗粒炭化ケイ素粉末及び前記細粒炭化ケイ素粉末で構成され、前記粗粒炭化ケイ素粉末の粒度はD 50 =6.5~9.5μmであり、前記細粒炭化ケイ素粉末の粒度はD 50 =3.0~5.0μmであることを特徴とする多孔質炭化ケイ素セラミック担体の製造方法。
A method for producing a porous silicon carbide ceramic carrier.
First, mixed silicon carbide powder, silica powder, foaming agent, dispersant, and thermosetting styrene-acrylic emulsion are used as main raw materials, and the mixture is uniformly mixed to obtain a solid silicon carbide slurry, which is then cast and used. It is made by thermosetting.
The thermosetting styrene-acrylic emulsion is a milky white liquid having a viscosity of 80 to 2000 mPa · s and a solid content of 40 to 55%.
The mixed silicon carbide powder is a mixture of coarse-grained silicon carbide powder and fine-grained silicon carbide powder, and the coarse-grained silicon carbide powder having two kinds of particle diameters according to a mass ratio of 90 to 95: 5 to 10 and the above-mentioned coarse-grained silicon carbide powder. It is composed of fine-grained silicon carbide powder, and the particle size of the coarse-grained silicon carbide powder is D 50 = 6.5 to 9.5 μm, and the particle size of the fine-grained silicon carbide powder is D 50 = 3.0 to 5.0 μm. A method for producing a porous silicon carbide ceramic carrier.
前記シリカ粉末の粒度はD50=3.0~6.0μmであることを特徴とする請求項1に記載の多孔質炭化ケイ素セラミック担体の製造方法。 The method for producing a porous silicon carbide ceramic carrier according to claim 1, wherein the silica powder has a particle size of D 50 = 3.0 to 6.0 μm. 前記発泡剤は、濃度25~35wt%の過酸化水素水溶液であることを特徴とする請求項1に記載の多孔質炭化ケイ素セラミック担体の製造方法。 The method for producing a porous silicon carbide ceramic carrier according to claim 1, wherein the foaming agent is an aqueous hydrogen peroxide solution having a concentration of 25 to 35 wt%. 前記分散剤は、1:(1~2):(0.8~1.5)の質量比に従ってメチルセルロース、水酸化テトラメチルアンモニウム、ポリエチレンイミンを複合してなることを特徴とする請求項1に記載の多孔質炭化ケイ素セラミック担体の製造方法。 The dispersant according to claim 1, wherein the dispersant is composed of a composite of methylcellulose, tetramethylammonium hydroxide, and polyethyleneimine according to a mass ratio of 1: (1 to 2): (0.8 to 1.5). The method for producing a porous silicon carbide ceramic carrier according to the above method. 前記主原料それぞれの質量百分率は、混合炭化ケイ素粉末60~85%、シリカ粉末8~15%、発泡剤0.5~1.5%、分散剤0.6~3%、及び熱硬化性スチレン-アクリルエマルジョン20~30%であることを特徴とする請求項1に記載の多孔質炭化ケイ素セラミック担体の製造方法。 The mass percentages of each of the main raw materials are 60 to 85% of mixed silicon carbide powder, 8 to 15% of silica powder, 0.5 to 1.5% of foaming agent, 0.6 to 3% of dispersant, and thermosetting styrene. -The method for producing a porous silicon carbide ceramic carrier according to claim 1, wherein the acrylic emulsion is 20 to 30%. 前記形分の炭化ケイ素スラリーを取得する方法は、
まず混合炭化ケイ素粉末、分散剤、及びシリカ粉末を一部の秤量した熱硬化性スチレン-アクリルエマルジョンに添加し、混合物を均一に撹拌して均一に分散した炭化ケイ素スラリーを取得するステップと、
発泡剤と残りの熱硬化性スチレン-アクリルエマルジョンを発泡機に加えて均一に撹拌した後、得られた炭化ケイ素スラリーを発泡機に加えて均一に撹拌を続け、静置するステップと、を含み、
これにより形分の炭化ケイ素スラリーが得られることを特徴とする請求項1に記載の多孔質炭化ケイ素セラミック担体の製造方法。
The method for obtaining the solid silicon carbide slurry is as follows.
First, the mixed silicon carbide powder, dispersant, and silica powder are added to a partially weighed thermocurable styrene-acrylic emulsion, and the mixture is uniformly stirred to obtain a uniformly dispersed silicon carbide slurry.
Including a step of adding the foaming agent and the remaining thermosetting styrene-acrylic emulsion to the foaming machine and stirring uniformly, and then adding the obtained silicon carbide slurry to the foaming machine to continue stirring uniformly and allowing to stand. ,
The method for producing a porous silicon carbide ceramic carrier according to claim 1, wherein a solid silicon carbide slurry can be obtained as a result.
前記常圧焼結成形のプロセスは、
形分の炭化ケイ素スラリーを鋳込んだ後、インキュベーションヒートランプで照射処理して炭化ケイ素セラミック担体のグリーン体を取得するステップと、
次に炭化ケイ素焼結炉に移して1400~1500℃に加熱し、30~90min保温してから、2050~2250℃に加熱し、30~120min保温した後、最後に300~400℃に冷却し、20~60min保温して、炉と共に室温まで自然に冷却するステップと、を含むことを特徴とする請求項1に記載の多孔質炭化ケイ素セラミック担体の製造方法。
The normal pressure sintering process is
After casting the solid silicon carbide slurry, the step of irradiating with an incubation heat lamp to obtain a green body of the silicon carbide ceramic carrier, and
Next, it is transferred to a silicon carbide sintering furnace, heated to 1400 to 1500 ° C, kept warm for 30 to 90 min, heated to 2050 to 2250 ° C, kept warm for 30 to 120 min, and finally cooled to 300 to 400 ° C. The method for producing a porous silicon carbide ceramic carrier according to claim 1, further comprising a step of keeping the temperature for 20 to 60 minutes and naturally cooling the mixture together with the furnace to room temperature.
JP2020124050A 2020-05-08 2020-07-20 Method for manufacturing porous silicon carbide ceramic carrier Active JP7099739B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010382303.XA CN111533572B (en) 2020-05-08 2020-05-08 Preparation method of porous silicon carbide ceramic support
CN202010382303.X 2020-05-08

Publications (2)

Publication Number Publication Date
JP2021176813A JP2021176813A (en) 2021-11-11
JP7099739B2 true JP7099739B2 (en) 2022-07-12

Family

ID=71979274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020124050A Active JP7099739B2 (en) 2020-05-08 2020-07-20 Method for manufacturing porous silicon carbide ceramic carrier

Country Status (2)

Country Link
JP (1) JP7099739B2 (en)
CN (1) CN111533572B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533572B (en) 2020-05-08 2022-03-15 武汉工程大学 Preparation method of porous silicon carbide ceramic support
CN113511918B (en) * 2021-06-30 2022-09-27 武汉工程大学 SiC smoke particle collector and preparation method thereof
CN113582699B (en) * 2021-07-22 2023-03-17 武汉工程大学 Low-viscosity high-solid-content ceramic slurry and preparation method thereof
CN114149072B (en) * 2021-12-28 2023-10-13 华夏碧水环保科技股份有限公司 Preparation method of microorganism-loadable water treatment filler and filler system
CN114395458A (en) * 2022-01-24 2022-04-26 惠风酒业发展(上海)有限公司 Maotai-flavor liquor and production method thereof
CN115385692B (en) * 2022-08-03 2023-10-17 浙江师范大学 High-entropy carbide ceramic with multi-scale pore structure and preparation method thereof
CN115259889B (en) * 2022-08-09 2023-10-24 苏州拓瓷科技有限公司 Porous silicon carbide ceramic, preparation method and application thereof, and aluminum silicon carbide composite material
CN115340385B (en) * 2022-08-30 2023-05-16 武汉工程大学 Micron-aperture silicon carbide porous ceramic with controllable aperture and preparation method thereof
CN115611655B (en) * 2022-10-27 2023-08-11 河南厚德钻石科技有限公司 Near-density medium-low volume fraction silicon carbide ceramic body preparation process with low-grade diamond powder as pore-forming agent
CN115745618A (en) * 2022-11-21 2023-03-07 南京工业大学 Method for improving mechanical strength of porous silicon carbide film
CN115894072B (en) * 2022-12-29 2024-03-08 江苏省宜兴非金属化工机械厂有限公司 Corrosion-resistant ceramic filter plate and preparation method thereof
CN116239383B (en) * 2023-05-08 2023-08-15 苏州拓瓷科技有限公司 Silicon carbide ceramic preform and preparation method and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203952A (en) 1998-12-28 2000-07-25 Nichias Corp Dense slip casting refractory composition and its execution method
JP2009292708A (en) 2008-06-09 2009-12-17 Tokyo Yogyo Co Ltd Manufacturing method of silicon carbide porous body
JP2010013344A (en) 2008-06-23 2010-01-21 Imerys Kiln Furniture Hungary Ltd SILICON CARBIDE (SiC) CERAMIC MATERIAL, METHOD OF PRODUCING THE SAME, FIRING TOOL FOR FIRING DISH, HEAVY CLAY PRODUCT AND SANITARY WARE PRODUCT, AND COMPOSITE CERAMIC BODY
CN104446599A (en) 2014-10-30 2015-03-25 合肥诚信玻璃有限公司 Cold-resistant and impervious foamed brick and preparation method thereof
JP2017158916A (en) 2016-03-11 2017-09-14 三菱製紙株式会社 Filter medium for air filter
CN108864898A (en) 2018-06-28 2018-11-23 黄春梅 A kind of epoxy ceramic coating and preparation method thereof of anti-cracking
CN109534819A (en) 2017-09-22 2019-03-29 萍乡市普天高科实业有限公司 Filter plate ceramic membrane and preparation method thereof
JP2019527669A (en) 2016-07-25 2019-10-03 済南聖泉倍進陶瓷過濾器有限公司Jinan Shengquan Doublesurplus Ceramic Filter Co.,Ltd Foamed ceramic filter and manufacturing method thereof
CN111533572A (en) 2020-05-08 2020-08-14 武汉工程大学 Preparation method of porous silicon carbide ceramic support
CN113004494A (en) 2021-03-30 2021-06-22 金向红 Modified epoxy resin, preparation method and emulsion preparation method thereof, and application of waterproof coating

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936512B1 (en) * 2008-09-30 2010-09-17 Saint Gobain Ct Recherches PROCESS FOR MANUFACTURING POROUS MATERIAL IN SIC
CN102219543B (en) * 2011-04-26 2013-01-09 中钢集团洛阳耐火材料研究院有限公司 Preparation method of silicon carbide porous ceramic capable of serving as high-temperature smoke dust filter
CN109678522A (en) * 2018-12-20 2019-04-26 中国科学院上海硅酸盐研究所 A kind of normal pressure solid-phase sintered silicon carbide film support and preparation method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203952A (en) 1998-12-28 2000-07-25 Nichias Corp Dense slip casting refractory composition and its execution method
JP2009292708A (en) 2008-06-09 2009-12-17 Tokyo Yogyo Co Ltd Manufacturing method of silicon carbide porous body
JP2010013344A (en) 2008-06-23 2010-01-21 Imerys Kiln Furniture Hungary Ltd SILICON CARBIDE (SiC) CERAMIC MATERIAL, METHOD OF PRODUCING THE SAME, FIRING TOOL FOR FIRING DISH, HEAVY CLAY PRODUCT AND SANITARY WARE PRODUCT, AND COMPOSITE CERAMIC BODY
CN104446599A (en) 2014-10-30 2015-03-25 合肥诚信玻璃有限公司 Cold-resistant and impervious foamed brick and preparation method thereof
JP2017158916A (en) 2016-03-11 2017-09-14 三菱製紙株式会社 Filter medium for air filter
JP2019527669A (en) 2016-07-25 2019-10-03 済南聖泉倍進陶瓷過濾器有限公司Jinan Shengquan Doublesurplus Ceramic Filter Co.,Ltd Foamed ceramic filter and manufacturing method thereof
CN109534819A (en) 2017-09-22 2019-03-29 萍乡市普天高科实业有限公司 Filter plate ceramic membrane and preparation method thereof
CN108864898A (en) 2018-06-28 2018-11-23 黄春梅 A kind of epoxy ceramic coating and preparation method thereof of anti-cracking
CN111533572A (en) 2020-05-08 2020-08-14 武汉工程大学 Preparation method of porous silicon carbide ceramic support
CN113004494A (en) 2021-03-30 2021-06-22 金向红 Modified epoxy resin, preparation method and emulsion preparation method thereof, and application of waterproof coating

Also Published As

Publication number Publication date
CN111533572A (en) 2020-08-14
JP2021176813A (en) 2021-11-11
CN111533572B (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP7099739B2 (en) Method for manufacturing porous silicon carbide ceramic carrier
CN109650935B (en) Preparation method of porous alumina ceramic membrane with adjustable pore shape
JP7008990B2 (en) Method for Producing Separation Membrane Based on High Solid Silicon Carbide Slurry
CN110707265B (en) Aramid fiber coating liquid, preparation method thereof, diaphragm based on aramid fiber coating liquid and application
CN104876638A (en) Pore-forming agent for nanoscale porous ceramics as well as preparation method and application of pore-forming agent
CN102503538A (en) Continuously pore-forming silicon carbide ceramic material and preparation method for same
CN108706568A (en) A kind of preparation method of N doping Porous hollow carbon Nano capsule material and the material of preparation
CN110950421A (en) MgO micro-sphere with high specific surface area and preparation method and application thereof
CN107512902B (en) Multi-fiber reinforced magnesium-aluminum-carbon refractory material and preparation process thereof
CN102303978A (en) Method for preparing porous silicon carbide ceramic with high strength
KR101143145B1 (en) Alumina coated graphite, method for manufacturing the same, and refractory with low thermal conductivity
CN102617182B (en) Rare earth zirconate porous ceramic with hierarchical pore structure and preparation method thereof
CN108465772B (en) Preparation method of molding sand special for integral casting of large stainless steel parts
CN113773110B (en) Preparation method of carbon nano tube/leucite porous ceramic composite material converted from alkali-activated fly ash
CN113788683A (en) Preparation method of SiC ceramic powder
CN109912295B (en) Silicate-based biological filter material and preparation method and application thereof
CN108503380B (en) Preparation method of light heat insulation material
CN110845241A (en) Preparation method of porous aluminum nitride ceramic material
CN111960846A (en) Nano porous material and preparation method thereof
CN109485387A (en) A kind of preparation method of Environmental Barrier Coatings on Si-based Ceramics hollow ball shape BSAS powder
CN111849016A (en) Heat insulation material and preparation method thereof
CN113121247B (en) Nano foam mud for light silica bricks
CN110723719A (en) Method for preparing nitrogen-doped porous carbon material by using nano zinc oxide
CN110921656A (en) Microwave-expanded graphene material and application thereof in concrete
CN110734047A (en) method for preparing porous carbon material by using nano zinc oxide template

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220623

R150 Certificate of patent or registration of utility model

Ref document number: 7099739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150