JP7097583B2 - 炭素同位体分析装置および炭素同位体分析方法 - Google Patents

炭素同位体分析装置および炭素同位体分析方法 Download PDF

Info

Publication number
JP7097583B2
JP7097583B2 JP2018562448A JP2018562448A JP7097583B2 JP 7097583 B2 JP7097583 B2 JP 7097583B2 JP 2018562448 A JP2018562448 A JP 2018562448A JP 2018562448 A JP2018562448 A JP 2018562448A JP 7097583 B2 JP7097583 B2 JP 7097583B2
Authority
JP
Japan
Prior art keywords
isotope
light
carbon
carbon dioxide
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018562448A
Other languages
English (en)
Other versions
JPWO2018135619A1 (ja
Inventor
哲夫 井口
英生 富田
典彦 西澤
フォルカ ゾンネンシャイン
稜平 寺林
利成 大原
晃 井手野
淳史 佐藤
研太 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Medical Co Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Sekisui Medical Co Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Medical Co Ltd, Tokai National Higher Education and Research System NUC filed Critical Sekisui Medical Co Ltd
Publication of JPWO2018135619A1 publication Critical patent/JPWO2018135619A1/ja
Application granted granted Critical
Publication of JP7097583B2 publication Critical patent/JP7097583B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Description

本発明は、炭素同位体分析装置および炭素同位体分析方法に関する。より詳しくは、放射性炭素同位体14C等の測定に有用な放射性炭素同位体分析装置および放射性炭素同位体分析方法に関する。
炭素同位体は、従来より炭素循環に基づく環境動態評価や年代測定による歴史学の実証研究など、文理に渡る広範な応用展開がなされている。炭素同位体は、地域・環境によりわずかに異なるものの、安定同位体元素である12Cと13Cはそれぞれ98.89%と1.11%、放射性同位体14Cは1×10-10%天然に存在している。同位体は重量の相違があるだけで、化学的には同じ挙動を示すため、存在比の低い同位体の濃度を人工的な操作により高くし、精度よく測定を行うことで様々な反応過程の観測が可能となる。
特に、臨床の分野においては医薬品体内動態評価を行うために、標識化合物として、例えば放射性炭素同位体14Cを生体に投与し分析することは極めて有用であり、例えばPhase I、Phase IIaにおいて実際に分析されている。ヒトにおいて薬理作用を発現すると推定される投与量(薬効発現量)を超えない用量(以下「マイクロドーズ」ともいう)の標識化合物として、極微量の放射性炭素同位体14C(以下「14C」ともいう)を人体に投与し、分析することは、体内動態の問題に起因する医薬品の薬効・毒性についての知見が得られるため、創薬プロセスにおける開発リードタイムを大幅に短縮するものとして期待されている。
特許第6004412号公報
本発明者等は、簡易、かつ迅速な14Cの分析が可能な炭素同位体分析装置およびそれを用いた炭素同位体分析方法を提案した(特許文献1参照)。これにより、14Cを用いたマイクロドーズの研究を簡易かつ安価に行なえることとなった。
ここで、14Cの分析に用いられ得る中赤外(MIR)レーザの1態様として、分布帰還型(DFB)量子カスケードレーザ(以下「QCL」ともいう。)システムの要望が高まっている。その理由は、それらのシステムは市販されており、数ナノメートルの広いモードホップフリー同調範囲と数MHzの典型的な線幅の単一モード発光で簡単に取り扱えるからである。
ところが、QCLシステムは、多くの分光用途においては上記の性能で十分であるが、レーザーとCRDSで使用される高フィネス光共振器(反射率R>99.9%)とのカップリングにおいては、線幅100kHz以下が求められていた。この線幅を減少させるという課題を解決する手段としては、例えば周波数弁別器を用いた高速の電気信号フィードバック(例えば、PDHロック)があるが、高速な信号処理系が必要であり、また高価であるという問題があった。さらに、レーザー光源に高帯域幅変調が必要であった。
このように、14Cの分析を行なうに当たっては、光源の安定性の更なる改善が求められていた。そこで、本発明は、光源の安定性が改善された、炭素同位体分析装置およびそれを用いた炭素同位体分析方法を提供することを課題とする。
(1)炭素同位体から二酸化炭素同位体を含むガスを生成する燃焼部、二酸化炭素同位体精製部を備える二酸化炭素同位体生成装置と;1組のミラーを有する光共振器、光共振器からの透過光の強度を検出する光検出器を備える分光装置と;光源、光源からの光を分岐させる分岐手段、分岐手段からの光を集光する集光レンズ、集光レンズからの光を反射して集光レンズと分岐手段を介して光源に光を送り返すミラーを備える光発生装置と;を備える炭素同位体分析装置。
(2)光源は、中赤外量子カスケードレーザーである(1)に記載の炭素同位体分析装置。
(3)炭素同位体は放射性炭素同位体14Cであり、二酸化炭素同位体は放射性二酸化炭素同位体14COである(1)または(2)に記載の炭素同位体分析装置。
(4)二酸化炭素同位体の吸収波長を有する光は、4.5μm帯の光である(1)~(3)のいずれか1項に記載の炭素同位体分析装置。
(5)分光装置は、光共振器を冷却する冷却装置をさらに備える(1)~(4)のいずれか1つに記載の炭素同位体分析装置。
(6)分光装置は、光共振器を収容する真空装置をさらに備える(1)~(5)のいずれか1つに記載の炭素同位体分析装置。
(7)分光装置は、振動吸収手段をさらに備える(1)~(6)のいずれか1つに記載の炭素同位体分析装置。
(8)放射性炭素同位体14Cに対する検出感度は、0.1dpm/ml程度である(1)~(7)のいずれか1つに記載の炭素同位体分析装置。
(9)二酸化炭素同位体生成装置と光共振器をつなぐ導入管と、導入管の二酸化炭素同位体生成装置側に配置されたスリーポート弁と、導入管の光共振器側に配置された導入弁と、光共振器とポンプをつなぐ排出管と、排出管上に設けられた排出弁と、を備える二酸化炭素同位体導入排出制御装置をさらに備える請求項1~8のいずれか1つに記載の炭素同位体分析装置。
(10)炭素同位体から二酸化炭素同位体を生成する工程と、二酸化炭素同位体を1対のミラーを有する光共振雰囲気内に充填する工程と;光源から二酸化炭素同位体の吸収波長を有する照射光を発生させる工程と;光源からの光を分岐手段を用いて分岐させ、分岐させた光を集光レンズに集光し、集光させた光をミラーを用いて反射させ、ミラーと分岐手段を介して光源に送り返すフィードバック工程と;二酸化炭素同位体に照射光を照射し共振させた際に得られる透過光の強度を測定する工程と;透過光の強度から炭素同位体濃度を計算する工程と;を有する炭素同位体分析方法。
(11)炭素同位体は放射性炭素同位体14Cであり、二酸化炭素同位体は放射性二酸化炭素同位体14COである(10)に記載の炭素同位体分析方法。
(12)二酸化炭素生成雰囲気内の圧力を大気圧よりも高くし、光共振雰囲気内の圧力を大気圧よりも低くする第一の工程と;二酸化炭素生成雰囲気内の温度を閾値温度以上まで加熱する第二の工程と;二酸化炭素生成雰囲気内の温度が閾値温度に到達してから数秒後に、二酸化炭素同位体を光共振雰囲気内に導入する第三の工程と;二酸化炭素生成雰囲気内の圧力を大気圧よりも高くし、光共振雰囲気内の圧力を下げる第四の工程と;光共振雰囲気内の圧力を10~40Torrとする第五の工程と;を有する(10)又は(11)に記載の炭素同位体分析方法。
(13)光源、光源からの光を分岐させる分岐手段、分岐手段からの光を集光する集光レンズ、集光レンズからの光を反射して集光レンズと分岐手段を介して光源に光を送り返すミラーを備える光発生装置。
(14)二酸化炭素同位体生成装置と光共振器をつなぐ導入管と;導入管の二酸化炭素同位体生成装置側に配置されたスリーポート弁と;導入管の光共振器側に配置された導入弁と;光共振器とポンプをつなぐ排出管と;排出管上に設けられた排出弁と;を備える二酸化炭素同位体導入排出制御装置。
(15)1組のミラーを有する光共振器、光共振器からの透過光の強度を検出する光検出器を備える分光装置と;光源、光源からの光を分岐させる分岐手段、分岐手段からの光を集光する集光レンズ、集光レンズからの光を反射して集光レンズと分岐手段を介して光源に光を送り返すミラーを備える光発生装置と;を備える炭素同位体分析装置。
図1は炭素同位体分析装置の概念図である。 図2は14COと競合ガスの4.5μm帯吸収スペクトルを示す図である。 図3A、図3Bはレーザー光を用いた高速走査型のキャビティーリングダウン吸収分光法の原理を示す図である。 図4はCRDSにおける13CO14COの吸収量Δβの温度依存性を示す図である。 図5は分析試料の吸収波長と吸収強度の関係を示す図である。 図6は光共振器の変形例の概念図である。 図7は炭素同位体分析装置の実施態様を示す概念図である。 図8(a)は、傾斜三角波で電流を変調する場合におけるフィードバックの出力に及ぼす効果を示す図であり、図8(b)は電流増加中の発振閾値近くのフィードバックの出力に及ぼす効果を示す図である。 図9はフィードバックの有無による出力で規格化された低フィネスFPI伝送信号を示す図である。 図10はキャビティ伝送線全域走査中のCRDキャビティからの伝送のフォトダイオード信号を示す図である。 図11はペリオドグラムを用いて平均化されたフォトダイオード信号の出力スペクトル密度を示す図である。 図12(a)、図12(b)は試料ガスをガスセルに導入する際の自動バルブ開閉動作方法の違いによる、リングダウンレートおよびセル内圧力の時間変化を示す図である。
本発明者等は研究の結果、周波数弁別器を用いた高速の電気信号フィードバックの代替案として、遅延自己注入として知られている光フィードバックを用いる方法に着目した。この受動フィードバックをQCLに応用することにより、最小限の費用でレーザ線幅を低減することができることを知見した。以下詳述する。
なお、実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。図中同一の機能又は類似の機能を有するものについては、同一又は類似の符号を付して説明を省略する。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(炭素同位体分析装置)
図1は、炭素同位体分析装置の概念図である。炭素同位体分析装置1は、二酸化炭素同位体生成装置40と、光発生装置20と、分光装置10と、さらに演算装置30とを備える。ここでは、分析対象として、炭素同位体である放射性同位体14Cを例にあげて説明する。なお、放射性同位体14Cから生成される二酸化炭素同位体14COの吸収波長を有する光は4.5μm帯の光である。詳細は後述するが、測定対象物質の吸収線、光発生装置、及び光共振器モードの複合による選択性により、高感度化を実現することが可能となる。
本明細書において「炭素同位体」とは、特に断りのない限り安定炭素同位体12C、13C、及び放射性炭素同位体14Cを意味する。また、単に元素記号「C」と表示される場合、天然存在比での炭素同位体混合物を意味する。
酸素の安定同位体は16O、17O及び18Oが存在するが、元素記号「O」と表示される場合、天然存在比での酸素同位体混合物を意味する。
「二酸化炭素同位体」とは、特に断りのない限り12CO13CO及び14COを意味する。また、単に「CO」と表示される場合、天然存在比の炭素及び酸素同位体により構成される二酸化炭素分子を意味する。
本明細書において「生体試料」とは、血液、血漿、血清、尿、糞便、胆汁、唾液、その他の体液や分泌液、呼気ガス、口腔ガス、皮膚ガス、その他の生体ガス、さらには、肺、心臓、肝臓、腎臓、脳、皮膚などの各種臓器およびこれらの破砕物など、生体から採取し得るあらゆる試料を意味する。さらに、当該生体試料の由来は、動物、植物、微生物を含むあらゆる生物が挙げられ、好ましくは哺乳動物、より好ましくはヒトの由来である。哺乳動物としては、ヒト、サル、マウス、ラット、モルモット、ウサギ、ヒツジ、ヤギ、ウマ、ウシ、ブタ、イヌ、ネコなどが挙げられるが、これらに限定されない。
〈二酸化炭素同位体生成装置〉
二酸化炭素同位体生成装置40は、炭素同位体を二酸化炭素同位体に変換可能であれば特に制限されることなく種々の装置を用いることができる。二酸化炭素同位体生成装置40としては、試料を酸化させ、試料中に含まれる炭素を二酸化炭素にする機能を有していることが好ましい。
例えば全有機炭素(total organic carbon 以下「TOC」という)発生装置、ガスクロマトグラフィー用の試料ガス発生装置、燃焼イオンクロマトグラフィー用の試料ガス発生装置、元素分析装置(Elemental Analyzer:EA)等の二酸化炭素生成装置(G)41を用いることができる。
なお、有機元素分析計を用いる場合のキャリアガスは、少なくとも炭素、窒素及び硫黄元素をできるだけ含まないガスが好ましく、ヘリウムガス(He)が例示できる。キャリアガスの流量は、50mL/minから500mL/minの範囲が好ましく、100mL/minから300mL/minの範囲がより好ましい。
図2に、273K、CO分圧20%、CO分圧1.0×10-4%、NO分圧3.0×10-8%の条件下における14COと競合ガス13CO,CO,及びNOの4.5μm帯吸収スペクトルを示す。
前処理後の生体試料を燃焼させることにより、二酸化炭素同位体14CO(以下、「14CO」ともいう)を含むガスを生成できる。しかし、14COの発生と共に、CO、NOといった夾雑ガスも発生する。これらCO、NOは、図2に示すように、それぞれ4.5μm帯の吸収スペクトルを有するので、14COが有する4.5μm帯の吸収スペクトルと競合する。そのため、分析感度を向上させるために、CO、NOを除去することが好ましい。
CO、NOの除去方法としては、以下のように14COを捕集・分離する方法が挙げられる。また、酸化触媒や白金触媒により、CO、NOを除去・低減する方法、及び捕集・分離方法との併用が挙げられる。
〈分光装置〉
図1に示すように、分光装置10は、光共振器11と、光共振器11からの透過光の強度を検出する光検出器15とを備える。光共振器(Optical resonator or Optical cavity)11は、分析対象の二酸化炭素同位体が封入される筒状の本体と、本体の内部の長手方向の一端と他端に凹面が向かい合うように配置された高反射率の1対のミラー12a、12b(反射率:99.99%以上)と、本体内部の他端に配置されたミラー12a、12b間隔を調整するピエゾ素子13と、分析対象ガスが充填されるセル16と、を備える。なお、ここでは図示を省略しているが、本体の側部に二酸化炭素同位体を注入するためのガス注入口や、本体内の気圧を調整する気圧調整口を設けておくことが好ましい。
光共振器内部11にレーザー光を入射し閉じ込めると、レーザー光はミラーの反射率に対応した強度の光を出力しながら、数千回~一万回というオーダーで多重反射を繰り返す。そのため実効的な光路が数10kmにも及ぶため、光共振器内部に封入された分析対象のガスが極微量であっても大きな吸収量を得ることができる。
図3A、図3Bはレーザー光を用いたキャビティーリングダウン分光法(Cavity Ring-Down Spectroscopy 以下「CRDS」ともいう)の原理を示す図である。
図3Aに示すように、ピエゾ素子13を作動させてミラー間隔が共鳴条件を満たすようになったときは、高強度の信号が光共振器から透過される。一方、入射光を遮断すると、光共振器内に蓄積された光は時間に対し指数関数的に減少する。光共振器からの出力光強度を測定することで、図3Aに示すような指数関数的な減衰信号[リングダウン信号(Ringdown signal)]を観測することができる。リングダウン信号を観測する別の方法として、入力レーザー光を光学スイッチにて素早く遮断する方法が挙げられる。
光共振器の内部に吸収物質が充填されていない場合、透過してくる時間依存のリングダウン信号は図3Bの点線で示すような曲線となる。一方、光共振器内に吸光物質が充填されている場合、図3Bの実線で示すように、レーザー光が光共振器内で往復するごとに吸収されるため、光の減衰時間が短くなる。この光の減衰時間は、光共振器内の吸光物質濃度及び入射レーザー光の波長に依存しているため、Beer-Lambertの法則iiを適用することで吸収物質の絶対濃度を算出することができる。また光共振器内の吸収物質濃度と比例関係にある減衰率(リングダウンレート)の変化量を測定することにより、光共振器内の吸収物質濃度を測定することができる。
光共振器から漏れ出た透過光を光検出器により検知し、演算装置を用いて14CO濃度を算出した後、14CO濃度から14C濃度を算出することができる。
光共振器11のミラー12a、12b間隔、ミラー12a、12bの曲率半径、本体の長手方向長さや幅等は、分析対象である二酸化炭素同位体が持つ吸収波長により変化させることが好ましい。想定される光共振器長は1mm~10mが挙げられる。
二酸化炭素同位体14Cの場合、光共振器長が長いことは光路長を確保するのに有効であるが、光共振器長が長くなるとガスセルの体積が増え、必要な試料量が増えるため、光共振器長は10cm~60cmの間が好ましい。またミラー12a、12bの曲率半径は、光共振器長と同じか、長くすることが好ましい。
なおミラー間隔は、ピエゾ素子13を駆動することにより、一例として数マイクロメートルから数十マイクロメートルのオーダーで調整することが可能である。最適な共鳴条件を作り出すために、ピエゾ素子13による微調整を行うこともできる。
なお、1対のミラー12a、12bとしては、1対の凹面鏡を図示して説明してきたが、十分な光路が得られるのであれば、その他にも凹面鏡と平面鏡の組み合わせや、平面鏡同士の組み合わせであっても構わない。
ミラー12a、12bを構成する材料としては、サファイアガラスを用いることができる。
分析対象ガスを充填するセル16は、容積がより小さいことが好ましい。少ない分析試料であっても効果的に光の共振効果を得ることができるからである。セル16の容量は、8mL~1000mLが例示できる。セル容量は、例えば測定に供することができる14C源の量に応じて適宜好ましい容量を選択でき、尿のように大量に入手できる14C源では80mL~120mLのセルが好適であり、血液や涙液のように入手量が限られる14C源では8mL~12mLのセルが好適である。
光共振器の安定性条件の評価
CRDSにおける14CO吸収量と検出限界を評価するため、分光データに基づく計算を行った。12CO13COなどに関する分光データは大気吸収線データベース(HITRAN)を利用し、14COに関しては文献値(「S. Dobos et al., Z. Naturforsch, 44a, 633-639 (1989)」)を使用した。
ここで、14COの吸収によるリングダウンレート(指数関数的減衰の割合)の変化量Δβ(=β-β0、β:試料有りの減衰率、β0:試料なしの減衰率)は、14COの光吸収断面積σ14、分子数密度N、光速cにより以下のように表せる。
Δβ=σ14(λ,T,P)N(T,P,X14)c
(式中、σ14、Nは、レーザー光波長λ、温度T、圧力P、X14=14C/TotalC比の関数である。)
図4は、計算で求められた13CO14COの吸収によるΔβの温度依存性を示す図である。図4より、14C/TotalCが10-10、10-11、10-12では、室温300Kでの13COによる吸収が14COの吸収量を超えるか同程度となるため、冷却を行う必要があることが分かった。
一方、光共振器由来のノイズ成分であるリングダウンレートのばらつきΔβ0~10-1が実現できれば、14C/TotalC比~10-11の測定を実現できることが分かる。これにより、分析時の温度として摂氏-40度程度の冷却が必要であることが明らかとなった。例えば、定量下限として14C/TotalCを10-11とすると、COガスの濃縮によるCOガス分圧の上昇(例えば20%)と、前記温度条件とが必要であることが示唆される。
光共振器11について説明したが、光共振器の具体的態様の概念図(一部切欠図)を図6に示す。図6に示すように、光共振器51は、真空装置としての円筒状の断熱用チャンバー58と、断熱用チャンバー58内に配置された測定用ガスセル56と、測定用ガスセル56の両端に配置された1対の高反射率ミラー52と、測定用ガスセル56の一端に配置されたミラー駆動機構55と、測定用ガスセル56の他端に配置されたリングピエゾアクチュエーター53と、測定用ガスセル56を冷却するペルチェ素子59と、循環冷却器(図示せず)に接続された冷却パイプ54aを有する水冷ヒートシンク54と、を備える。なお、水冷ヒートシンク54により、ペルチェ素子59から出る熱を放熱させることができる。
〈冷却装置〉
図5(Applied Physics Vol.24, pp.381-386, 1981より引用)は、分析試料1216131813161416の吸収波長と吸収強度の関係を示す。図5に示すように、それぞれの炭素同位体を含む二酸化炭素は、固有の吸収線を有している。実際の吸収では、各吸収線は試料の圧力や温度に起因する拡がりによって有限の幅を持つ。このため、試料の圧力は大気圧以下、温度は273K(0℃)以下にすることが好ましい。
14COの吸収強度は温度依存性があるため、光共振器11内の設定温度を、できるだけ低く設定することが好ましい。具体的な光共振器11内の設定温度は273K(0℃)以下が好ましい。下限値は特に制限はないが、冷却効果と経済的観点から、173K~253K(-100℃~-20℃)、特に233K(-40℃)程度に冷却することが好ましい。
図1に図示されてはいないが、分光装置10内に、光共振器11を冷却する冷却装置を設けてもよい。14COの光吸収は温度依存性を有するため、冷却装置により光共振器11内の設定温度を低くすることで、14COの吸収線と13CO12COの吸収線との区別が容易になり、14COの吸収強度が強くなるからである。光共振器11を冷却する冷却装置としては、ペルチェ素子が挙げられる。ペルチェ素子の他にも、例えば、液体窒素槽、ドライアイス槽などを用いることができる。分光装置11を小型化できる観点からはペルチェ素子を用いることが好ましく、装置の製造コストを下げる観点からは液体窒素水槽もしくはドライアイス槽を用いることが好ましい。
〈除湿装置〉
図1の光共振器11を冷却する際、除湿装置により、光共振器11内を除湿することが好ましい。
除湿条件は、CRDS分析セルを-40℃以下(233K以下)に冷却した場合に、その温度条件下で結露・凍結しないガス条件(水分量)になることが好ましい。ペルチェ素子等の冷却手段により除湿してもよいが、フッ素系イオン交換樹脂膜といった水蒸気除去用高分子膜を使用した膜分離法により除湿することもできる。また二酸化炭素生成部(試料導入部ユニット)内に、吸湿剤もしくはガスドライヤーを配置してもよい。
吸湿剤としては、例えば、CaH、CaSO4、Mg(ClO)、モレキュラーシーブ、HSO、シカサイド(Sicacide)、五酸化リン、シカペント(Sicapent)(登録商標)またはシリカゲルを用いることができる。なかでも、五酸化リン、シカペント(登録商標)、CaH、Mg(ClO)またはモレキュラーシーブが好ましく、シカペント(登録商標)がより好ましい。ガスドライヤーとしては、ナフィオン(登録商標)ドライヤー(Nafion dryers:Perma Pure Inc.製)が好ましい。吸湿剤とガスドライヤーはそれぞれ単独で用いてもよいし、併用してもよい。上述の「その温度条件下で結露・凍結しないガス条件(水分量)」は、露点を測定して確認した。言い換えると、-40℃以下(233K以下)の露点となるように、除湿できることが好ましい。露点の表示は、瞬間露点であっても、単位時間当たりの平均露点であってもよい。露点の測定は、市販の露点センサーを用いて測定することができ、例えば、ゼントール露点センサーHTF Al2O3(登録商標)(三菱化学アナリテック社製)、ヴァイサラDRYCAP(登録商標)DM70ハンディタイプ露点計(ヴァイサラ社製)が使用できる。
〈真空装置〉
図1に図示されてはいないが、光共振器11を真空装置内に配置してもよい。光共振器11が外気に晒されることを防止して外部温度の影響を軽減することにより分析精度が向上するからである。
真空装置としては、光共振器11を収納でき、また光発生装置20からの照射光を光共振器11内に照射でき、透過光を光検出器に透過できるものであれば、特に制限なく様々な真空装置を用いることができる。
〈二酸化炭素同位体導入排出制御装置〉
図1の二酸化炭素同位体生成装置40で生成された二酸化炭素同位体を分光装置10に導入する方法としては、フロースルー法(Flow through)とストップドフロー法(Stopped flow)とがある。フロースルー法は、複雑な導入機構が不要なので比較的簡易に試料解析ができるが、高感度測定に不向きである。一方、ストップドフロー法は、高感度測定が可能であるが、導入制御が必要であり、サンプルのロスが生じ易いという欠点がある。そこで、本発明者等は、高感度測定が可能なストップドフロー法において、導入制御の課題について検討した。その結果、自動バルブ開閉系デザインの最適化と、ガス封入方法を最適化することにより、上述の課題を解決するに至った。
自動バルブ開閉系デザインの1つとしては、図1に示されるような、二酸化炭素同位体導入排出装置60を用いることができる。図1の二酸化炭素同位体導入排出制御装置60は、二酸化炭素同位体生成装置40と光共振器11をつなぐ導入管61aと、導入管61aの川上側(二酸化炭素同位体生成装置40側)に配置されたスリーポート弁63aと、導入管61aの川下側(光共振器11側)に配置された導入弁63bと、光共振器11とポンプ65をつなぐ排出管61bと、排出管61b上に設けられた排出弁63cと、を備える。
二酸化炭素同位体導入排出装置60のスリーポート弁63a等の開放タイミングを図ることにより、ガスをセル内に封入することができる。具体的には以下のタイミングで制御することができる。
まず第一の工程において、スリーポート弁63aを閉じ、二酸化炭素生成装置内の圧力を大気圧よりも高くする。また、導入弁63bと排出弁63cを開放し、セル内の圧力を大気圧よりも低くする。具体的には30Torr以下、より好ましくは10Torr以下とする。
次に、第二の工程においてカラム温度を閾値温度以上まで加熱する。閾値温度は、具体的には80℃~200℃、好ましくは90℃~120℃、より好ましくは90℃~110℃である。
カラム温度が一定の温度を超えるとCOガスがパルス状に放出されるため、どのタイミングでCOガスが放出されるかを把握することにより、パルス状に放出されたCOガスがガスセルに到達するまでの時間がわかる。本発明者らは、カラム温度を監視することにより、カラム温度が所定の温度(閾値温度)を超えてから数秒後にCOガスがガスセルに到達することを知見した。具体的には、閾値温度が100℃の場合、20秒から30秒、好ましくは25秒から27秒後にCOガスがガスセルに到達することを知見した。
第三の工程において、カラム温度が閾値温度に到達してから数秒後に、スリーポート弁63aを開放し、また導入弁63bを閉じ、ガス(二酸化炭素同位体)をガスセル内に導入する。導入時間はガスセルの大きさ等により変化するものであるが1秒未満が好ましい。なお、出弁63cは閉じておく。
第四の工程において、導入弁63bを閉じたままで、スリーポート弁63aを閉じ、二酸化炭素生成装置内の圧力を大気圧よりも高くし、ガスセル内の圧力を下げる。
第三の工程において、ガス圧は、スリーポート弁63aを開放してガスを二酸化炭素生成装置からガスセルに導入し、その後、導入弁を閉じるまでの1秒間で0Torrから60Torrまで上昇する。このままではガスセル圧力が高すぎ、吸収線の測定に向かない。そのため、第四の工程においてガスセル内の圧力を下げる。
第五の工程において、ガスセル内の圧力が10~40Torr程度になるまで排出弁63cを開放し(約1秒間)、その後、排出弁63cを閉じる。ガスセル内の圧力は、好ましくは18~22Torrである。
導入弁63bが閉じられた状態で排出弁63cを開放すると、ガスセル内のガスが排出されるために、ガスセル内の圧力が徐々に低下する。ガスセル内の圧力が20Torr程度まで低下した後に、排出弁63cを閉じる。
なお、図12(a)、図12(b)に、本発明の二酸化炭素同位体導入排出制御装置を用いた場合の、光共振器内におけるリングダウンレートとガスセル圧力変化の関係を示す。
上段(図12(a))はスリーポート弁63aと導入弁63bと排出弁63cを開放し、CO2ガスが放出される前の二酸化炭素生成装置からのキャリアガスをガスセルに導入しておき、CO2ガスが放出さてガスセルに到達した瞬間にスリーポート弁63aと導入弁63bと排出弁63cを同時に閉じた場合のリングダウンレートとガスセル圧力変化の関係である。CO2ガスの導入後のセル内の圧力は約60Torrと高く、吸収線の測定に向かない。また、CO2ガスがガスセルに到達した際にセル内にキャリアガスが存在するため、CO2ガスをガスセルに閉じ込めるとキャリアガスで希釈され、セル内のCO2ガス濃度が低下し、CO2ガスの吸収量に比例するリングダウン信号が小さくなる。
これと比較し、下段(図12(b))に示すように、本発明の二酸化炭素同位体導入排出制御装置を用いて適切にバルブを自動開閉した場合は、CO2ガスの導入後のセル内の圧力は約20Torrであり、吸収線の測定に適しており、キャリアガスとの希釈もほぼ起こらないため、セル内のCO2ガス濃度が減少せず、リングダウン信号は減少しない。
なお、図12に示すデータを得る際に、レーザーの波長を常に掃引し、およそ5秒に1回ずつにCO2の吸収線スペクトルを取得した。
〈光発生装置〉
図1の光発生装置20としては、二酸化炭素同位体の吸収波長を有する光を発生できる装置であれば特に制限されることなく種々の装置を用いることができる。ここでは、放射性炭素同位体14Cの吸収波長である4.5μm帯の光を簡易に発生させ、しかも装置サイズがコンパクトな光発生装置を例に挙げて説明する。
光発生装置20は、光源23と、光源23からの光を分岐させる分岐手段(ディレイライン)28と、分岐手段28からの光を集光する集光レンズ25b、集光レンズ25からの光を反射して集光レンズ25と分岐手段28を介して光源23に光を送り返すミラー25aからなるキャットアイ25とを備える。光発生装置20は、さらに光学分離器29を備える。
キャットアイ25により角度調整に及ぼす後方反射の依存性が小さくなることで、QCLへの容易な再入射が可能となる。光学分離器29により光の遮断が可能となる。
光源23としては、中赤外量子カスケードレーザー(Quantum Cascade Laser: QCL)を用いることができる。
光ファイバー21としては、生成した高強度な超短パルス光の特性を劣化させずに伝送できる光ファイバーを用いることが好ましい。材料は、溶融石英でできたファイバーを用いることが好ましい。
〈演算装置〉
図1の演算装置30としては、上述の減衰時間やリングダウンレートから光共振器内の吸収物質濃度を測定し、吸収物質濃度から炭素同位体濃度を測定できるものであれば特に制限されることなく種々の装置を用いることができる。
演算制御部31としては、CPU等の通常のコンピュータシステムで用いられる演算手段等で構成すればよい。入力装置32としては、例えばキーボード、マウス等のポインティングデバイスが挙げられる。表示装置33としては、例えば液晶ディスプレイ、モニタ等の画像表示装置等が挙げられる。出力装置34としては、例えばプリンタ等が挙げられる。記憶装置35としてはROM、RAM、磁気ディスクなどの記憶装置が使用可能である。
上述の炭素同位体分析装置1をマイクロドーズに用いる場合、サンプル中の放射性炭素同位体14Cに対する検出感度は「0.1dpm/ml」程度が想定される。この検出感度「0.1dpm/ml」を達成するためには、光源として「狭帯域レーザー」を用いるだけでは不十分であり、光源の波長(周波数)の安定性が求められる。即ち、吸収線の波長からずれないこと、線幅が狭いことが要件となる。この点、炭素同位体分析装置1は、低濃度の放射性炭素同位体を含む検体に対しても測定が可能であるという有利な作用効果を奏する。
炭素同位体分析装置1のサンプル中の放射性炭素同位体14Cの検出感度は「0.1dpm/ml」程度、より好ましくは「0.1dpm/ml」以下である。
なお、先行文献(廣本 和郎等、「キャビティーリングダウン分光に基づく14C連続モニタリングの設計検討」、日本原子力学会春の年会予稿集、2010年3月19日、P432)には、原子力発電関連の使用済み燃料の濃度モニタリングに関連して、CRDSにより二酸化炭素中の14C濃度を測定する旨が開示されている。しかし、先行文献に記載された、高速フーリエ変換(FFT)を用いた信号処理方法は、データ処理が早くなるものの、ベースラインのゆらぎが大きくなるため、検出感度「0.1dpm/ml」を達成することは困難である。
以上、炭素同位体分析装置について実施形態を挙げて説明してきたが、炭素同位体分析装置は、上述の実施形態に係る装置に限定されることなく、種々の変更を加えることができる。以下に炭素同位体分析装置の変形例について変更点を中心に説明する。
分光装置は、振動吸収手段をさらに備えてもよい。分光装置の外部からの振動によりミラー間隔がずれることを防止して、測定精度を上げることができるからである。振動吸収手段としては、例えば衝撃吸収剤(高分子ゲル)や免震装置を用いることができる。免震装置としては外部振動の逆位相の振動を分光装置に与えることができる装置を用いることができる。
上述の実施形態においては、リングダウン信号の取得手段として、分光装置10内においてピエゾ素子13によるミラー間隔の調整を用いたが、リングダウン信号を得るために、光発生装置20内において光共振器11への光を遮断する光遮断装置を設けて光共振器に照射される照射光のオンオフ制御を行う構成としてもよい。光遮断装置としては、二酸化炭素同位体の吸収波長の光をすばやく遮断できる装置であれば特に制限されることなく種々の装置を用いることができ、例えば光学スイッチを用いることができる。なお、光共振器内の光の減衰時間よりも十分にすばやく光を遮断する必要がある。
(生体試料の前処理)
生体試料の前処理は、広義には、生体由来の炭素源除去工程と、夾雑ガス除去(分離)工程とが含まれる。が、ここでは、生体由来の炭素源除去工程を中心に説明する。
マイクロドーズ試験では極微量の14C標識化合物が含まれる生体試料(例えば、血液、血漿、尿、糞、胆汁など)について分析が行われる。そのため、分析効率を上げるためには、生体試料の前処理を行うことが好ましい。CRDS装置の特性上、生体試料中14Cと全炭素との比(14C/TotalC)が測定の検出感度を決定する要素の一つであるため、生体試料中から生体由来の炭素源を除去することが好ましい。
(炭素同位体分析方法)
分析対象として放射性同位体14Cを例にあげて説明する。
(イ)まず図1に示すような炭素同位体分析装置1を用意する。また放射性同位体14C源として、14Cを含む生体試料、例えば、血液、血漿、尿、糞、胆汁などを用意する。
(ロ)生体試料の前処理として除タンパクを行うことにより、生体由来炭素源を除去する。除タンパクの方法としては、酸や有機溶媒によりタンパク質の不溶化させる除タンパク法、分子サイズの違いを利用する限外濾過または透析による除タンパク法、固相抽出による除タンパク法等が例示できる。後述するように、14C標識化合物の抽出が行えることや、有機溶媒自身の除去が容易であることから、有機溶媒による除タンパク法が好ましい。
有機溶媒を用いた除タンパク法の場合、まず生体試料に有機溶媒を添加し、タンパク質を不溶化する。このとき、タンパク質に吸着している14C標識化合物が、有機溶媒含有溶液へ抽出される。14C標識化合物の回収率を高めるために、前記有機溶媒含有溶液を別の容器に採取後、残差にさらに有機溶媒を添加し、抽出する操作を行ってもよい。前記抽出操作は複数回繰り返してもよい。なお、生体試料が糞である場合、肺など臓器である場合等、有機溶媒と均一に混合しにくい形態の場合には、該生体試料をホモジネートする等、生体試料と有機溶媒とが均一に混合されるための処理をすることが好ましい。また必要に応じて、不溶化したタンパク質を、遠心操作、フィルターによるろ過等により除去してもよい。
その後、有機溶媒を蒸発させることにより14C標識化合物を含む抽出物を乾固させ、有機溶媒由来の炭素源を取り除く。前記有機溶媒は、メタノール(MeOH)、エタノール(EtOH)、またはアセトニトリル(ACN)が好ましく、アセトニトリルがさらに好ましい。
(ハ)前処理後の生体試料を加熱・燃焼させて、放射性同位体14C源から二酸化炭素同位体14COを含むガスを生成する。そして、得られたガスからN2O、COを除去する。
(ニ)得られた14COから水分を取り除く。例えば二酸化炭素同位体生成装置40内にて、14COを炭酸カルシウム等の乾燥剤上を通過させたり、14COを冷却して水分を結露させることにより水分を除去することが好ましい。14COに含まれる水分に起因する光共振器11の着氷・着霜によるミラー反射率低下が検出感度を低下させるため、水分を除去しておくことで分析精度が上がるからである。なお、分光工程を考慮すると、分光装置10へ14COを導入する前に14COを冷却しておくことが好ましい。室温の14COを導入すると、共振器の温度が大きく変化し、分析精度が低下するためである。
(ホ)14COを、図1に示すような1対のミラー12a、12bを有する光共振器11内に充填する。そして14COを273K(0℃)以下に冷却することが好ましい。照射光の吸収強度が高まるからである。また光共振器11を真空雰囲気に保つことが好ましい。外部温度の影響を軽減させることで、測定精度が高まるからである。
(ヘ)光源23からレーザー光を発生させ、得られた光を光ファイバー21に伝送する。光源としてはQCLを用いることが好ましい。光源23からの光を分岐手段28を用いて分岐させ、分岐させた光を集光レンズ25bに集光し、集光させた光をミラー25aを用いて反射させ、ミラー25aと分岐手段28を介して光源23に送り返す(フィードバック工程)。
以上のようにして、二酸化炭素同位体14COの吸収波長の4.5μm帯の光を照射光として発生させる。
(ト)二酸化炭素同位体14COに照射光を照射し共振させる。その際、測定精度を上げるためには、光共振器11の外部からの振動を吸収し、ミラー12a、12b間隔にずれが生じないようにすることが好ましい。また照射光が空気に触れないように、光ファイバー21の下流側の他端をミラー12aに当接させながら照射することが好ましい。そして光共振器11からの透過光の強度を測定する。なお、リングダウン信号を得るためには、共鳴から非共鳴となるように、共振器長を高速に変化させるか、光共振器11に入射する光を遮断する方法がある。ここでは、光学分離器(スイッチ)29により、光共振器11に入射する光を遮断している。
(チ)透過光の強度から炭素同位体14C濃度を計算する。
(その他の実施形態)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
実施形態に係る炭素同位体分析装置においては、分析対象である炭素同位体として放射性同位体14Cを中心に説明した。放射性同位体14Cの他にも、安定同位体元素である12C、13Cを分析することができる。その場合の照射光としては、例えば、12C及び13C 分析を12CO及び13COの吸収線分析として行う場合は、2μm帯や1.6μm帯の光を用いることが好ましい。
12CO、及び13COの吸収線分析を行う場合、ミラー間隔は10~60cm、ミラーの曲率半径はミラー間隔と同じかそれ以上、とすることが好ましい。
なお、12C、13C、14Cはそれぞれ化学的には同じ挙動を示すが、安定同位体元素12C、13Cよりも放射性同位体14Cの天然存在比が低いことから、放射性同位体14Cはその濃度を人工的な操作により高くし、精度よく測定を行うことで様々な反応過程の観測が可能となる。
その他にも、例えば、実施形態において説明した構成を一部に含む医療診断装置、環境測定装置も同様に製造することができる。また実施形態において説明した光発生装置を測定装置として用いることができる。
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
以下に実施例を挙げて本発明をより詳しく説明する。なお、実施例において用いられた装置は特に限定されることなく、同様の機能を有するものであれば、他の装置を用いることができる。
図7はQCLシステムの模式図である。このシステムは光フィードバックの研究に加えてCRDS測定用に設計されている。FPI(光共振器)、音響光学変調器(AOM)および光ファイバ結合を含む全レーザシステムは60×60cm光学実験用光学台に組み込まれ、光ファイバ結合は60×60cm別の光学実験用光学台に組み込まれており、再調整なしに持ち運びが簡単にできる。
2.実験手順
図7に光学レイアウトの模式図を示す。DFB・QCL(浜松ホトニクス社製、L12004-2209H-C)を低ノイズ電流駆動装置(Teamwavelength,QCL・LAB1000)により操作し、印加電流を操作することでレーザ波長を変調した。帰還のために50/50ビーム分割器(実際の反射率測定値R=40%)を用いてレーザ光の一部を取り出した。25cmから4mの可変遅延パスの後、この光を金鏡(いわゆる「キャットアイ」反射鏡として機能する)に集光させる。このキャットアイにより角度調整に及ぼす後方反射の依存性が小さくなることで、QCLへの容易な再入射が可能となる。
レーザー出力と周波数変化に対するフィードバックの効果を検証するために、2つの50:50ビームスプリッタで構成されたファブリペロー共振器(FSR=1.86 GHz、フィネス4.5)を導入した。
低コストで広帯域であり(>1MHz)、室温で動作可能な、2つのInAsSbフォトダイオード(浜松ホトニクス、P13243-011MA)を使用した。一方は出力パワーの参照用として、他方は低フィネスFPIからの透過光を検出用として使用した。これらの結果から、QCL電流スキャン中の、出力光強度で規格化されたFPI透過光信号が得られた。
シングルモードファイバーにカップリングされた後、レーザー光はCRD共振器(反射率>99.98、長さ=30cm、実験的に評価されたフィネスは約10,000)に導入された。CRD共振器の共振器長はピエゾ素子によりスキャンした。光は、共振器の共鳴条件が、共振器長L=nλ/2(n=1,2...、λ:波長)に近い場合にのみ、共振器を透過した。
典型的なリングダウン信号の測定においては、レーザーは音響光学変調器(AOM、高速光スイッチとして動作)を用いてすばやく遮断される。ここで、後に示すレーザー線幅の評価の際にはAOMは常にonとなっていた。透過光は、液体窒素冷却型InSb検出器で測定され、高速電流アンプにて増幅された。
3.フィードバックの効果
傾斜三角波電圧を電流駆動装置の変調入力に印加することによりQCL電流を変調した。光フィードバックのない場合のために、キャットアイ反射装置の集束レンズの真後ろにビームブロックを取り付けた。
図8は出力の印加電流依存性を示す。フィードバックの影響が一目瞭然である。電流の減少中にフィードバックの強いヒステリシス効果に加え、QCLのモードホッピングによる出力の揺れは図8(a)におけるフィードバックによる外部キャビティのFSRごとに起こっている。さらに、図8(b)に示すように、電流の発振閾値は数パーセント減少する。この減少を監視することでフィードバックのレベルを最適化が容易になる、というのはフィードバックがより強いと発振閾値はより小さくなるからである。
図9は印加電流とFPI伝送信号の出力に及ぼす依存性を示す。QCLのモードホッピングはFPI波形により明確に観測されている。FPIの結果に、僅かな通例の振動数シフトが見られるが、再注入された出力からの熱の影響によるものと思われる。
レーザー線幅に対するフィードバックの効果は、CRD共振器の透過光をモニタリングすることで評価した。このために、QCLの電流は850mAに固定され、透過光ピークの範囲で共振器長をゆっくりとスキャンした。
図10に、CRD共振器の透過光ピークを示す。共鳴近傍の急峻な周波数依存性のために、信号の強度変調より、レーザー光源の発振周波数拡がりの情報が得られる。フィードバックがない場合、信号には多くのスパイクが広い範囲に渡って存在する。これは、QCLの周波数が高速に変動していることを示しており、おそらく使用したQCL電流ドライバのノイズに起因している。一方で、フィードバックがある場合のQCLの透過光信号は、明瞭なシングルピークを示しており、わずかな変動しかないと言える。フィードバックありの場合の線幅は、およそCRD共振器の透過特性ピークの幅と同程度、約50kHz、であると見積もられる。このことから、フィードバックは、線幅を劇的に減少させることと言える。ノイズのパワー密度は、100回の透過イベントの平均として示されている(図11)。高周波数領域における強度変動は共振器のローパス特性によって一般的には減少されるが、100kHz以上の周波数領域で、光フィードバックにより30dBほどノイズレベルが減少した。より長いフィードバックパスはさらなるレーザーの安定化をもたらすようにみえるが、低周波数領域(音響周波数領域<5kHz)でのノイズは増加した。この低周波数領域の増加は、フィードバックパスの音響振動や空気の流れ、温度の不安定性に起因するものと思われる。
1 炭素同位体分析装置
10 分光装置
11 光共振器
12 ミラー
13 ピエゾ素子
15 光検出器
16 セル
20 光発生装置
21 光ファイバー
23 光源
25 キャットアイ
25a ミラー
25b 集光レンズ
29 光学分離器
30 演算装置
40 二酸化炭素同位体生成装置
60 二酸化炭素同位体導入排出制御装置
61a 導入管
61b 排出管61b
63a スリーポート弁
63b 導入弁
63c 排出弁
65 ポンプ

Claims (12)

  1. 炭素同位体から二酸化炭素同位体を含むガスを生成する燃焼部、二酸化炭素同位体精製部を備える二酸化炭素同位体生成装置と、
    1組のミラーを有する光共振器、前記光共振器からの透過光の強度を検出する光検出器を備える分光装置と、
    光源、前記光源からの光を分岐させる分岐手段、前記分岐手段からの光を集光する集光レンズ、前記集光レンズからの光を反射して前記集光レンズと前記分岐手段を介して前記光源に光を送り返すミラーを備える光発生装置と、を備え
    前記炭素同位体は放射性炭素同位体 14 Cであり、前記二酸化炭素同位体は放射性二酸化炭素同位体 14 CO である炭素同位体分析装置。
  2. 前記光源は、中赤外量子カスケードレーザーである請求項1に記載の炭素同位体分析装置。
  3. 前記二酸化炭素同位体の吸収波長を有する光は、4.5μm帯の光である請求項1又は2に記載の炭素同位体分析装置。
  4. 前記分光装置は、前記光共振器を冷却する冷却装置をさらに備える請求項1又は2に記載の炭素同位体分析装置。
  5. 前記分光装置は、前記光共振器を収容する真空装置をさらに備える請求項1又は2に記載の炭素同位体分析装置。
  6. 前記分光装置は、振動吸収手段をさらに備える請求項1又は2に記載の炭素同位体分析装置。
  7. 前記放射性炭素同位体14Cに対する検出感度は、0.1dpm/ml程度である請求項1又は2に記載の炭素同位体分析装置。
  8. 二酸化炭素同位体生成装置と光共振器をつなぐ導入管と、
    前記導入管の二酸化炭素同位体生成装置側に配置されたスリーポート弁と、
    前記導入管の光共振器側に配置された導入弁と、
    前記光共振器とポンプをつなぐ排出管と、
    前記排出管上に設けられた排出弁と、を備える二酸化炭素同位体導入排出制御装置をさらに備える請求項1又は2に記載の炭素同位体分析装置。
  9. 炭素同位体から二酸化炭素同位体を生成する工程と、
    前記二酸化炭素同位体を1対のミラーを有する光共振雰囲気内に充填する工程と、
    光源から前記二酸化炭素同位体の吸収波長を有する照射光を発生させる工程と、
    前記光源からの光を分岐手段を用いて分岐させ、分岐させた光を集光レンズに集光し、
    集光させた光をミラーを用いて反射させ、前記ミラーと前記分岐手段を介して前記光源に送り返すフィードバック工程と、
    前記二酸化炭素同位体に前記照射光を照射し共振させた際に得られる透過光の強度を測定する工程と、
    前記透過光の強度から炭素同位体濃度を計算する工程と、を有し、
    前記炭素同位体は放射性炭素同位体 14 Cであり、前記二酸化炭素同位体は放射性二酸化炭素同位体 14 CO である炭素同位体分析方法。
  10. 二酸化炭素生成雰囲気内の圧力を大気圧よりも高くし、光共振雰囲気内の圧力を大気圧よりも低くする第一の工程と、
    二酸化炭素生成雰囲気内の温度を閾値温度以上まで加熱する第二の工程と、
    二酸化炭素生成雰囲気内の温度が閾値温度に到達してから数秒後に、二酸化炭素同位体を光共振雰囲気内に導入する第三の工程と、
    二酸化炭素生成雰囲気内の圧力を大気圧よりも高くし、光共振雰囲気内の圧力を下げる第四の工程と、
    光共振雰囲気内の圧力を10~40Torrとする第五の工程と、を有する請求項に記載の炭素同位体分析方法。
  11. 光源、前記光源からの光を分岐させる分岐手段、前記分岐手段からの光を集光する集光レンズ、前記集光レンズからの光を反射して前記集光レンズと前記分岐手段を介して前記光源に光を送り返すミラーを備える光発生装置。
  12. 1組のミラーを有する光共振器、前記光共振器からの透過光の強度を検出する光検出器を備える分光装置と、
    光源、前記光源からの光を分岐させる分岐手段、前記分岐手段からの光を集光する集光レンズ、前記集光レンズからの光を反射して前記集光レンズと前記分岐手段を介して前記光源に光を送り返すミラーを備える光発生装置と、を備える炭素同位体分析装置であって、
    前記炭素同位体は放射性炭素同位体 14 Cであり、前記二酸化炭素同位体は放射性二酸化炭素同位体 14 CO である炭素同位体分析装置。
JP2018562448A 2017-01-20 2018-01-19 炭素同位体分析装置および炭素同位体分析方法 Active JP7097583B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017008937 2017-01-20
JP2017008937 2017-01-20
JP2017076595 2017-04-07
JP2017076595 2017-04-07
PCT/JP2018/001590 WO2018135619A1 (ja) 2017-01-20 2018-01-19 炭素同位体分析装置および炭素同位体分析方法

Publications (2)

Publication Number Publication Date
JPWO2018135619A1 JPWO2018135619A1 (ja) 2019-11-07
JP7097583B2 true JP7097583B2 (ja) 2022-07-08

Family

ID=62908663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018562448A Active JP7097583B2 (ja) 2017-01-20 2018-01-19 炭素同位体分析装置および炭素同位体分析方法

Country Status (6)

Country Link
US (1) US20200033256A1 (ja)
EP (1) EP3572795A1 (ja)
JP (1) JP7097583B2 (ja)
KR (1) KR20190108594A (ja)
CN (1) CN110402384A (ja)
WO (1) WO2018135619A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142944A1 (ja) * 2018-01-22 2019-07-25 積水メディカル株式会社 炭素同位体分析装置及び炭素同位体分析方法
FI128390B (en) * 2018-09-26 2020-04-15 Teknologian Tutkimuskeskus Vtt Oy Method for the selective catalytic oxidation of nitrous oxide, method for the detection of radiocarbon, equipment and use of a NiO catalyst
US20210389235A1 (en) * 2018-11-20 2021-12-16 Shimadzu Corporation Gas measurement device and gas measurement method
WO2020106557A1 (en) * 2018-11-21 2020-05-28 Thermo Fisher Scientific Inc. System and method for rapid and accurate trace gas measurement
JP6973419B2 (ja) * 2019-01-11 2021-11-24 横河電機株式会社 ガス分析装置
FI128319B (en) * 2019-02-12 2020-03-13 Teknologian Tutkimuskeskus Vtt Oy Method for detection of carbon dioxide in a gaseous sample, apparatus and use of anion exchange resin
WO2020184474A1 (ja) * 2019-03-08 2020-09-17 積水メディカル株式会社 分析装置
JP7406766B2 (ja) 2020-03-26 2023-12-28 国立研究開発法人産業技術総合研究所 ガス分析装置
JP7454754B2 (ja) 2020-06-19 2024-03-25 国立大学法人東海国立大学機構 吸収分光システムおよび吸収分光方法
CN113252421B (zh) * 2021-06-17 2021-09-21 西南石油大学 一种测量天然气中微量碳同位素和重组分的装置及方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012955A (ja) 1998-06-19 2000-01-14 Yokogawa Electric Corp 自己注入同期型半導体レーザ
JP2001296570A (ja) 2000-02-09 2001-10-26 Hitachi Ltd 紫外レーザ光発生装置並びに欠陥検査装置およびその方法
JP2004505455A (ja) 2000-07-26 2004-02-19 サウスウエスト サイエンシーズ インコーポレーテッド 波長鋭敏外部キャビティ・ダイオードレーザ
JP2004226103A (ja) 2003-01-20 2004-08-12 Seiko Epson Corp 赤外吸収測定方法および赤外吸収測定装置、ならびに半導体装置の製造方法
JP2005331309A (ja) 2004-05-19 2005-12-02 Taiyo Nippon Sanso Corp 排気ガス測定装置
JP2013521504A (ja) 2010-03-02 2013-06-10 リ−コール インコーポレーティッド 気体または液体の媒体中の分析対象種の光音響的な識別および定量化のための方法および装置
JP2014504380A (ja) 2010-12-22 2014-02-20 イムラ アメリカ インコーポレイテッド 中および遠赤外線用小型高輝度光源
WO2014189724A1 (en) 2013-05-20 2014-11-27 Mks Instruments, Inc. Gas analyzer system with one or more retroreflectors
WO2015122475A1 (ja) 2014-02-12 2015-08-20 積水メディカル株式会社 炭素同位体分析装置および炭素同位体分析方法
JP2016156752A (ja) 2015-02-25 2016-09-01 国立大学法人名古屋大学 炭素同位体分析装置および炭素同位体分析方法
JP2016156706A (ja) 2015-02-25 2016-09-01 国立大学法人名古屋大学 炭素同位体分析装置および炭素同位体分析方法
WO2016140254A1 (ja) 2015-03-04 2016-09-09 国立大学法人名古屋大学 炭素同位体分析装置および炭素同位体分析方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604412B2 (ja) 1971-12-24 1985-02-04 日産自動車株式会社 機関吸入空気重量測定装置
JPS604412A (ja) 1983-06-21 1985-01-10 Mitsubishi Heavy Ind Ltd 自動車用空調装置
JP2823870B2 (ja) * 1988-10-14 1998-11-11 東京航空計器株式会社 半導体レーザのスペクトル線幅狭窄化装置
CN1249036A (zh) * 1997-03-11 2000-03-29 菲舍尔分析仪器有限公司 碳同位素分析仪
US6914917B2 (en) * 2001-07-24 2005-07-05 Southwest Sciences Incorporated Discrete wavelength-locked external cavity laser
CN201053951Y (zh) * 2007-06-14 2008-04-30 于科岐 一种13c呼气试验分析仪
CN106062533A (zh) * 2015-01-20 2016-10-26 株式会社东芝 呼气测量装置和呼气测量方法以及气室

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012955A (ja) 1998-06-19 2000-01-14 Yokogawa Electric Corp 自己注入同期型半導体レーザ
JP2001296570A (ja) 2000-02-09 2001-10-26 Hitachi Ltd 紫外レーザ光発生装置並びに欠陥検査装置およびその方法
JP2004505455A (ja) 2000-07-26 2004-02-19 サウスウエスト サイエンシーズ インコーポレーテッド 波長鋭敏外部キャビティ・ダイオードレーザ
JP2004226103A (ja) 2003-01-20 2004-08-12 Seiko Epson Corp 赤外吸収測定方法および赤外吸収測定装置、ならびに半導体装置の製造方法
JP2005331309A (ja) 2004-05-19 2005-12-02 Taiyo Nippon Sanso Corp 排気ガス測定装置
JP2013521504A (ja) 2010-03-02 2013-06-10 リ−コール インコーポレーティッド 気体または液体の媒体中の分析対象種の光音響的な識別および定量化のための方法および装置
JP2014504380A (ja) 2010-12-22 2014-02-20 イムラ アメリカ インコーポレイテッド 中および遠赤外線用小型高輝度光源
WO2014189724A1 (en) 2013-05-20 2014-11-27 Mks Instruments, Inc. Gas analyzer system with one or more retroreflectors
WO2015122475A1 (ja) 2014-02-12 2015-08-20 積水メディカル株式会社 炭素同位体分析装置および炭素同位体分析方法
JP2016156752A (ja) 2015-02-25 2016-09-01 国立大学法人名古屋大学 炭素同位体分析装置および炭素同位体分析方法
JP2016156706A (ja) 2015-02-25 2016-09-01 国立大学法人名古屋大学 炭素同位体分析装置および炭素同位体分析方法
WO2016140254A1 (ja) 2015-03-04 2016-09-09 国立大学法人名古屋大学 炭素同位体分析装置および炭素同位体分析方法

Also Published As

Publication number Publication date
KR20190108594A (ko) 2019-09-24
CN110402384A (zh) 2019-11-01
US20200033256A1 (en) 2020-01-30
JPWO2018135619A1 (ja) 2019-11-07
EP3572795A1 (en) 2019-11-27
WO2018135619A1 (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
JP7097583B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
CN107454937B (zh) 碳同位素分析装置和碳同位素分析方法
Wojtas et al. Ultrasensitive laser spectroscopy for breath analysis
JP7256501B2 (ja) 光発生装置並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法
JP6004412B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
WO2019142944A1 (ja) 炭素同位体分析装置及び炭素同位体分析方法
JP7393767B2 (ja) 光発生装置並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法
JP6802963B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
JP2016156706A (ja) 炭素同位体分析装置および炭素同位体分析方法
JP6792778B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
WO2020184474A1 (ja) 分析装置
JP2022168861A (ja) 炭素同位体分析装置及び炭素同位体分析方法
JP2020076783A (ja) 炭素同位体分析装置および炭素同位体分析方法
Harde et al. New optical analyzer for 13C-breath test

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210428

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7097583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150