JP7096482B2 - Means for Preventing Deterioration of Immunoassay Reagents Containing Sensitized Insoluble Carrier Particles - Google Patents

Means for Preventing Deterioration of Immunoassay Reagents Containing Sensitized Insoluble Carrier Particles Download PDF

Info

Publication number
JP7096482B2
JP7096482B2 JP2018029231A JP2018029231A JP7096482B2 JP 7096482 B2 JP7096482 B2 JP 7096482B2 JP 2018029231 A JP2018029231 A JP 2018029231A JP 2018029231 A JP2018029231 A JP 2018029231A JP 7096482 B2 JP7096482 B2 JP 7096482B2
Authority
JP
Japan
Prior art keywords
mass
reagent
betaine
insoluble carrier
carrier particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018029231A
Other languages
Japanese (ja)
Other versions
JP2019101011A (en
Inventor
善紀 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Original Assignee
Fujikura Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd filed Critical Fujikura Kasei Co Ltd
Publication of JP2019101011A publication Critical patent/JP2019101011A/en
Application granted granted Critical
Publication of JP7096482B2 publication Critical patent/JP7096482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、不溶性担体粒子を含有する免疫測定試薬の劣化防止手段に関する発明である。本発明に依ると、感作された不溶性担体粒子に関して、凍結・融解のプロセスに伴う不溶性担体粒子同士の非特異的な凝集による液状態様試薬の劣化を防止することができる。代表的な不溶性担体粒子として、ラテックス粒子がある。 The present invention relates to a means for preventing deterioration of an immunoassay reagent containing insoluble carrier particles. According to the present invention, with respect to the sensitized insoluble carrier particles, it is possible to prevent deterioration of the liquid mode reagent due to non-specific aggregation of the insoluble carrier particles due to the process of freezing and thawing. Latex particles are a typical insoluble carrier particle.

現在、ラテックス粒子等の不溶性担体粒子を用いる免疫測定試薬は、種々の臨床検査項目において用いられている。 Currently, immunoassay reagents using insoluble carrier particles such as latex particles are used in various clinical laboratory items.

例えば、ラテックス凝集法を用いる免疫測定試薬では、液相中において抗原又は抗体を感作させたラテックス、あるいは、未感作のラテックスを用い、抗体又は抗原を検出する測定系を形成する。免疫複合体の形成によりラテックス粒子が凝集する性質に基づき、凝集の程度を目視により確認するか、濁度の増加を吸光度又は散乱光強度の光学的な変化として測定を行うことができる。 For example, in an immunoassay reagent using a latex agglutination method, a latex sensitized with an antigen or an antibody in a liquid phase or an unsensitized latex is used to form a measurement system for detecting an antibody or an antigen. Based on the property that latex particles aggregate due to the formation of an immune complex, the degree of aggregation can be visually confirmed, or the increase in turbidity can be measured as an optical change in absorbance or scattered light intensity.

ラテックス凝集法は、操作が簡便であり、自動分析装置にも比較的容易に適用でき、現在盛んに用いられている検査方式の一つである。 The latex agglutination method is one of the inspection methods that are widely used at present because it is easy to operate and can be applied to an automatic analyzer relatively easily.

ラテックス粒子等の不溶性担体粒子を用いる免疫測定試薬は、販売時には凍結乾燥状態であったとしても、用時には不溶性担体粒子の分散液として用いられる。従って、予め分散液の態様であることが現場での取扱いの簡便性の観点から好適である。 An immunoassay reagent using insoluble carrier particles such as latex particles is used as a dispersion of insoluble carrier particles at the time of use, even if it is in a freeze-dried state at the time of sale. Therefore, it is preferable to use the dispersion liquid in advance from the viewpoint of ease of handling in the field.

WO2014/132833 国際公開パンフレットWO2014 / 132833 International Pamphlet

上記の分散液の態様のラテックス粒子等の不溶性担体粒子液を用いる免疫測定試薬(以下、液状態様試薬ともいう)は、2-8℃の適切な冷蔵環境で保存され、通常、凍結劣化は起こり難い。しかしながら、輸送時や温度制御が不十分な冷蔵設備では、過冷却や局所冷却により液状態様試薬の全部又は一部が凍結し、それが融解する際に不溶性担体粒子同士が非特異的に凝集してしまうことが問題となっている。このような非特異的な凝集が起こると試薬の反応性が変わってしまい、肝心な測定値の正確性が損なわれ、誤った診断結果に繋がることになり好ましくない。 An immunoassay reagent (hereinafter, also referred to as a liquid mode reagent) using an insoluble carrier particle solution such as latex particles in the above dispersion mode is stored in an appropriate refrigerated environment at 2-8 ° C., and freeze deterioration usually occurs. hard. However, in refrigerating equipment with insufficient temperature control during transportation, all or part of the liquid mode reagent freezes due to supercooling or local cooling, and when it melts, the insoluble carrier particles aggregate nonspecifically. The problem is that it ends up. When such non-specific aggregation occurs, the reactivity of the reagent changes, the accuracy of the important measured value is impaired, and it leads to an erroneous diagnostic result, which is not preferable.

液状態様試薬における凍結劣化の防止対策として、一般的にはグリセリンやエチレングリコール等の不凍アルコール、トレハロース等の糖類の添加が行われていたが、いずれも効果は不十分であった。近年では、ベタイン(トリメチルグリシン:以下、用語としてベタインを用いる)を5-30質量%添加することで、効果的に未感作ラテックス試薬における凍結劣化を防止する方法が報告されている(特許文献1)。感作ラテックス試薬は、ラテックス粒子の表面に付着している抗原又は抗体により一様な表面性状をしておらず、また表面の荷電状態も不均一な為、未感作ラテックス試薬に比べて凍結劣化の防止が難しいと推測される。 As a measure to prevent freezing deterioration in the liquid mode reagent, antifreeze alcohols such as glycerin and ethylene glycol and saccharides such as trehalose were generally added, but the effects were insufficient in either case. In recent years, a method of effectively preventing freeze deterioration in an unsensitized latex reagent by adding 5-30% by mass of betaine (trimethylglycine: hereinafter, betaine is used as a term) has been reported (Patent Documents). 1). The sensitized latex reagent does not have a uniform surface texture due to the antigen or antibody adhering to the surface of the latex particles, and the charged state of the surface is also non-uniform. It is presumed that it is difficult to prevent deterioration.

本発明者らは、感作されたラテックス粒子等の不溶性担体粒子に対するベタインの上記の劣化防止性能について検討を行った。その結果、驚くべきことに、従来知られている未感作のラテックス粒子のみならず、感作された上記不溶性担体粒子に関しても優れた劣化防止性能を、しかも比較的低濃度のベタインの使用であっても実現可能であることを見出した。 The present inventors have investigated the above-mentioned deterioration prevention performance of betaine with respect to insoluble carrier particles such as sensitized latex particles. As a result, surprisingly, not only the conventionally known unsensitized latex particles but also the sensitized insoluble carrier particles have excellent deterioration prevention performance, and the use of relatively low concentration betaine is used. I found that it was feasible even if it existed.

本発明では、第1に、溶媒中に、感作された不溶性担体粒子を含有する免疫測定試薬において、試薬の0.1-30質量%のベタイン(トリメチルグリシン)を含有することを特徴とする、免疫測定試薬(以下、本発明の免疫測定試薬ともいう)を提供する。 The present invention is characterized in that, firstly, in an immunoassay reagent containing sensitized insoluble carrier particles, 0.1-30% by mass of betaine (trimethylglycine) of the reagent is contained in the solvent. , An immunoassay reagent (hereinafter, also referred to as an immunoassay reagent of the present invention) is provided.

第2に、感作された不溶性担体粒子を含有する免疫測定試薬中に、試薬の0.1-30質量%のベタインを共存させることにより、当該不溶性担体粒子の非特異的な凝集を防止する、免疫測定試薬の劣化防止方法(以下、本発明の劣化防止方法ともいう)を提供する。 Second, non-specific aggregation of the insoluble carrier particles is prevented by coexisting 0.1-30% by mass of betaine of the reagent in the immunoassay reagent containing the sensitized insoluble carrier particles. , A method for preventing deterioration of an immunoassay reagent (hereinafter, also referred to as a method for preventing deterioration of the present invention) is provided.

なお、本発明において「感作」とは、不溶性担体粒子において抗原又は抗体を付着させる行為又は付着された状態であり、「担持」と同意義である。 In the present invention, "sensitization" is an act of attaching an antigen or an antibody to insoluble carrier particles or a state of being attached, and has the same meaning as "supporting".

上記本発明の免疫測定試薬と、本発明の劣化防止方法についての概要を説明する。 The outline of the immunoassay reagent of the present invention and the deterioration prevention method of the present invention will be described.

不溶性担体粒子は、免疫測定試薬として用いることが可能であれば限定されず、例えば、ラテックス粒子、シリカ粒子、金コロイド粒子等の無機粒子;ゼラチン粒子、赤血球等が挙げられる。これらの中でも、ラテックス粒子が特に代表的な不溶性担体粒子である。 The insoluble carrier particles are not limited as long as they can be used as an immunoassay reagent, and examples thereof include inorganic particles such as latex particles, silica particles, and colloidal gold particles; gelatin particles, erythrocytes, and the like. Among these, latex particles are particularly typical insoluble carrier particles.

ラテックスは、ポリマーエマルジョンとも呼ばれ、ポリマーが水等の水性溶媒に分散したものであり、当該水性溶媒が連続相となり、真球又は球に近い形のポリマー粒子が不連続相としてなるものである。ラテックス粒子とは、このラテックスの不連続相をなすポリマー粒子のことである。本明細書では、ラテックス粒子を含む総体的な表現として「ラテックス」を用いる場合もある。 Latex is also called a polymer emulsion, in which a polymer is dispersed in an aqueous solvent such as water, the aqueous solvent becomes a continuous phase, and polymer particles having a shape similar to a true sphere or a sphere become a discontinuous phase. .. Latex particles are polymer particles that form a discontinuous phase of this latex. In the present specification, "latex" may be used as a general expression including latex particles.

ラテックスの種類は、上記のように免疫測定試薬として用いることができるものであれば限定されない。例えば、ポリスチレンラテックス、極低カルボン酸変性ラテックス、親水基局在化ラテックス等の物理吸着用ラテックス;カルボン酸変性ラテックス、アミノ変性ラテックス、ヒドロキシ変性ラテックス、グリシジル変性ラテックス、アルデヒド変性ラテックス、アミド変性ラテックス等の化学結合用ラテックス;各種の着色ラテックス;高比重ポリスチレンラテックス等の血液凝集反応用ラテックス;磁性ラテックス等が挙げられる。 The type of latex is not limited as long as it can be used as an immunoassay reagent as described above. For example, latex for physical adsorption such as polystyrene latex, ultra-low carboxylic acid modified latex, hydrophilic group localized latex; carboxylic acid modified latex, amino modified latex, hydroxy modified latex, glycidyl modified latex, aldehyde modified latex, amide modified latex, etc. Latex for chemical bonding; various colored latex; latex for blood aggregation reaction such as high specific gravity polystyrene latex; magnetic latex and the like.

上記のように、感作された不溶性担体粒子とは、不溶性担体粒子表面に何らかの物質が感作されている不溶性担体粒子であり、具体的には、免疫測定に必要な抗原抗体反応を惹起するための、抗体又は抗原が感作されている不溶性担体粒子である。当該抗体は、モノクローナル抗体であっても、ポリクローナル抗体であってもよく、さらに、所望する抗原との抗原抗体反応を惹起することができる限り、免疫グロブリン分子の全部であっても、一部であってもよい。当該抗原は、所望する抗体と、抗原抗体反応により結合するものであれば特に限定されない。未感作の不溶性担体粒子とは、このような抗体又は抗原が感作されていない不溶性担体粒子である。 As described above, the sensitized insoluble carrier particles are insoluble carrier particles in which some substance is sensitized on the surface of the insoluble carrier particles, and specifically, they induce an antigen-antibody reaction necessary for immunoassay. Insoluble carrier particles for which an antibody or antigen has been sensitized. The antibody may be a monoclonal antibody or a polyclonal antibody, and may be a part of an immunoglobulin molecule as long as it can elicit an antigen-antibody reaction with a desired antigen. There may be. The antigen is not particularly limited as long as it binds to a desired antibody by an antigen-antibody reaction. Unsensitized insoluble carrier particles are insoluble carrier particles that have not been sensitized to such antibodies or antigens.

水性溶媒は、水を主体とする溶媒であり、水、あるいは各種の緩衝液等が挙げられる。ベタインは、常法により合成可能であり、市販品を用いることも可能である。免疫測定試薬の態様は、感作された不溶性担体粒子を用いており、かつ、免疫測定時以外の当該粒子の凝集が免疫測定値に悪影響を与えるものである限り、特に限定されないが、不溶性担体粒子の凝集を抗原抗体反応の指標とする「凝集法」であることが好適である。凝集法としては、スライドテスト法、光学測定法、マイクロタイター法、フィルター分離法等が挙げられる。凝集法以外の手法としては、サンドイッチ法、イムノクロマト法、ウエスタンブロット法等が挙げられる。免疫測定の標識も、ラジオアイソトープ、蛍光物質、着色物質、発色酵素、ビオチン等が挙げられるが、これらに限定されるものではない。 The aqueous solvent is a solvent mainly composed of water, and examples thereof include water and various buffer solutions. Betaine can be synthesized by a conventional method, and a commercially available product can also be used. The embodiment of the immunoassay reagent is not particularly limited as long as the sensitized insoluble carrier particles are used and the aggregation of the particles other than at the time of immunoassay adversely affects the immunoassay value, but the insoluble carrier is not particularly limited. It is preferable to use the "aggregation method" in which the aggregation of particles is used as an index of the antigen-antibody reaction. Examples of the agglomeration method include a slide test method, an optical measurement method, a microtiter method, a filter separation method and the like. Examples of the method other than the aggregation method include a sandwich method, an immunochromatography method, and a Western blotting method. Examples of the immunoassay label include, but are not limited to, radioisotopes, fluorescent substances, coloring substances, color-developing enzymes, biotin, and the like.

本発明により、免疫測定試薬において用いられるラテックス等の感作された不溶性担体粒子液の凍結・融解に伴う非特異的な凝集による当該試薬の劣化手段が、「免疫測定試薬」と「免疫測定試薬の劣化防止方法」として提供される。本発明の劣化防止成分であるベタインは、不溶性担体粒子が未感作である場合でも、比較的少量の配合であっても、不溶性担体粒子の凍結・融解に伴う非特異的な凝集を防止して、免疫測定試薬の劣化を防止することが可能である。 According to the present invention, the means for deteriorating the reagent due to non-specific aggregation associated with freezing and thawing of the sensitized insoluble carrier particle solution such as latex used in the immunoassay reagent are "immunosassay reagent" and "immunosassay reagent". It is provided as a "deterioration prevention method". Betaine, which is a deterioration-preventing component of the present invention, prevents non-specific aggregation of insoluble carrier particles due to freezing and thawing, even when the insoluble carrier particles are unsensitized or when the insoluble carrier particles are blended in a relatively small amount. Therefore, it is possible to prevent deterioration of the immunoassay reagent.

凍結・融解の回数(0,1,3,6,10回)に対する感作ラテックス試薬における非特異的なラテックス粒子の凝集を、「添加剤無し」(a)、及び、「ベタイン添加」(bは、0.1質量%ベタイン、cは、0.3質量%ベタイン、dは、1質量%ベタイン)として検討した結果を示す図面である。Sensitization to the number of freezes / thaws (0,1,3,6,10 times) Aggregation of non-specific latex particles in the latex reagent is "no additive" (a) and "betaine addition" (b). 1 is 0.1% by mass betaine, c is 0.3% by mass betaine, and d is 1% by mass betaine). 上記図1-1の続きとして、図中eは、3質量%ベタイン、fは、5質量%ベタイン、gは、7質量%ベタイン、hは、10質量%ベタインの場合である。Continuing from FIG. 1-1, in the figure, e is 3% by mass betaine, f is 5% by mass betaine, g is 7% by mass betaine, and h is 10% by mass betaine. 上記図1-1の続きとして、図中iは、15質量%ベタイン、jは、20質量%ベタイン、kは、25質量%ベタイン、lは、30質量%ベタインの場合である。Continuing from FIG. 1-1, in the figure, i is 15% by mass betaine, j is 20% by mass betaine, k is 25% by mass betaine, and l is 30% by mass betaine.

[免疫測定試薬]
本発明の免疫測定試薬における劣化防止成分は、上述のようにベタイン(トリメチルグリシン)であり、劣化防止の対象となる不溶性担体粒子は、「感作された不溶性担体粒子」である。
[Immunoassay reagent]
The deterioration-preventing component in the immunoassay reagent of the present invention is betaine (trimethylglycine) as described above, and the insoluble carrier particles targeted for deterioration prevention are "sensitized insoluble carrier particles".

試薬中のベタインの濃度の下限は試薬の0.1質量%であり、好ましくは同1質量%であり、さらに好ましくは同3質量%であり、最も好ましくは同5質量%である。ベタインを試薬の0.1質量%とすることにより劣化防止効果が認められ、同1質量%、3質量%、5質量%と、試薬中のベタイン量を増加させるにつれて、用量依存的にベタインによる劣化防止効果を向上させることができる。 The lower limit of the concentration of betaine in the reagent is 0.1% by mass, preferably 1% by mass, more preferably 3% by mass, and most preferably 5% by mass of the reagent. Deterioration prevention effect was recognized by setting betaine to 0.1% by mass of the reagent, and as the amount of betaine in the reagent was increased to 1% by mass, 3% by mass, and 5% by mass, the betaine was applied in a dose-dependent manner. The deterioration prevention effect can be improved.

試薬中のベタイン濃度の上限は、特に限定されず、試薬の30質量%であっても、試薬においてベタインによる劣化防止効果が発揮されるが、好ましくは試薬の20質量%であり、さらに好ましくは同15質量%であり、最も好ましくは同10質量%である。ベタイン量が試薬の10質量%を超えても、ベタイン量の増加に見合った劣化防止効果の向上は認められず、却ってベタイン量の増加に従って反応性の低下傾向が認められる。 The upper limit of the betaine concentration in the reagent is not particularly limited, and even if it is 30% by mass of the reagent, the deterioration prevention effect due to betaine is exhibited in the reagent, but it is preferably 20% by mass of the reagent, and more preferably. It is 15% by mass, and most preferably 10% by mass. Even if the amount of betaine exceeds 10% by mass of the reagent, the improvement of the deterioration prevention effect corresponding to the increase in the amount of betaine is not observed, and on the contrary, the reactivity tends to decrease as the amount of betaine increases.

従って、試薬中のベタイン濃度は、試薬の0.1-30質量%であり、さらに配合下限を引き上げて、同1-30質量%、3-30質量%、5-30質量%と、これらの配合下限量の増加につれてより好ましいものとなる。さらに試薬中のベタイン濃度の上限を好適量である試薬の20質量%、すなわち同0.1-20質量%とすることが好ましく、配合下限を引き上げて、同1-20質量%、3-20質量%、5-20質量%と、これらの配合下限量の増加につれて、より好ましいものとなる。さらに試薬中のベタイン濃度の上限をさらなる好適量である試薬の15質量%、すなわち同0.1-15質量%とすることが好ましく、配合下限を引き上げて、同1-15質量%、3-15質量%、5-15質量%と、これらの配合下限量の増加につれてより好ましいものとなる。さらに試薬中のベタイン濃度の上限を最適上限量である試薬の10質量%、すなわち同0.1-10質量%とすることが好ましく、配合下限を引き上げて、同1-10質量%、3-10質量%、5-10質量%と、これらの配合下限量の増加につれてより好ましいものとなる。劣化防止効果の十分な発揮、反応性の確認、及びコストの抑制、を勘案した、試薬中のベタイン濃度の最適範囲は、試薬の5-10質量%である。 Therefore, the betaine concentration in the reagent is 0.1-30% by mass of the reagent, and the lower limit of compounding is further raised to 1-30% by mass, 3-30% by mass, and 5-30% by mass. It becomes more preferable as the lower limit of compounding increases. Further, the upper limit of the betaine concentration in the reagent is preferably 20% by mass, that is, 0.1-20% by mass, which is a suitable amount, and the lower limit of the compounding is raised to 1-20% by mass and 3-20. It becomes more preferable as the lower limit of the compounding amount increases, such as% by mass and 5 to 20% by mass. Further, it is preferable that the upper limit of the betaine concentration in the reagent is 15% by mass, that is, 0.1-15% by mass, which is a more suitable amount, and the lower limit of the compounding is raised to 1-15% by mass, 3-. It becomes more preferable as the lower limit of blending amount increases to 15% by mass and 5-15% by mass. Further, it is preferable that the upper limit of the betaine concentration in the reagent is 10% by mass, that is, 0.1-10% by mass of the reagent which is the optimum upper limit amount, and the lower limit of compounding is raised to 1-10% by mass, 3- It becomes more preferable as the lower limit of blending amount increases to 10% by mass and 5-10% by mass. The optimum range of the betaine concentration in the reagent is 5-10% by mass of the reagent in consideration of sufficient exertion of the deterioration preventing effect, confirmation of reactivity, and cost reduction.

本発明の免疫測定試薬の水性溶媒としては、上記のように水又は各種の緩衝液が挙げられ、当該緩衝液としては、グリシン緩衝液、ホウ酸緩衝液、グッド緩衝液等が挙げられるが、これらに限定されるものではない。また、BSA、アラビアゴム、界面活性剤、コリン、キレート剤、防腐剤等の添加剤も、本発明の効果を実質的に損なわない質的、量的な限度で添加を行うことができる。当該水性溶媒のpHは抗原抗体反応に支障が無い範囲、具体的には4-9程度が好ましく、特に好ましくは6-9程度である。 Examples of the aqueous solvent of the immunoassay reagent of the present invention include water or various buffers as described above, and examples of the buffer include glycine buffer, boric acid buffer, Good's buffer and the like. It is not limited to these. Further, additives such as BSA, gum arabic, surfactant, choline, chelating agent, preservative and the like can also be added within a qualitative and quantitative limit that does not substantially impair the effects of the present invention. The pH of the aqueous solvent is in a range that does not interfere with the antigen-antibody reaction, specifically, about 4-9, and particularly preferably about 6-9.

不溶性担体粒子の平均粒子径は、免疫測定試薬に用いることができる限り特に限定されない。例えば、ラテックス粒子であれば、概ね0.01-1μmの平均粒子径から広く粒子径を選択することが可能である。 The average particle size of the insoluble carrier particles is not particularly limited as long as it can be used as an immunoassay reagent. For example, in the case of latex particles, it is possible to select a wide particle size from an average particle size of approximately 0.01-1 μm.

試薬中の「感作された不溶性担体粒子」の含有量は、当該不溶性担体粒子を含有する免疫測定用試薬の態様、例えば、不溶性担体粒子自体の種類、試薬の企画、等に応じて自由に選択することができる。 The content of the "sensitized insoluble carrier particles" in the reagent can be freely adjusted according to the mode of the immunoassay reagent containing the insoluble carrier particles, for example, the type of the insoluble carrier particles themselves, the planning of the reagent, and the like. You can choose.

「感作された不溶性担体粒子」は、感作された抗原又は抗体の結合方式、例えば、ラテックス粒子であれば、物理吸着又は化学結合はいずれであってもよい。また、感作抗原は、標的の体内抗体に応じて自由に選択することが可能である。例えば、梅毒抗原、ストレプトリジンO等が感作抗原として挙げられるが、全くこれらには限定されない。感作抗体は、捕捉する標的抗原に応じて自由に選択することができる。さらに、感作抗体は、モノクローナル抗体であっても、ポリクローナル抗体であってもよく、グロブリン分子は、IgG、IgM、IgA、IgD、IgEのいずれのクラスであってもよく、サブクラスも限定されず、さらにこれらのグロブリン分子の全部であっても一部のみの断片であってもよい。 The "sensitized insoluble carrier particles" may be any of sensitized antigen or antibody binding methods, for example, physical adsorption or chemical bonding as long as they are latex particles. In addition, the sensitizing antigen can be freely selected according to the target body antibody. For example, syphilis antigen, streptolysin O and the like can be mentioned as sensitizing antigens, but the antigens are not limited to these at all. The sensitized antibody can be freely selected depending on the target antigen to be captured. Further, the sensitizing antibody may be a monoclonal antibody or a polyclonal antibody, and the globulin molecule may be in any class of IgG, IgM, IgA, IgD, IgE, and the subclass is not limited. Further, these globulin molecules may be all or only a part of them.

[劣化防止方法]
本発明の劣化防止方法における、感作された不溶性担体粒子を含有する免疫測定試薬中における、上記のベタインの共存は、免疫測定試薬を作成する工程のいずれかの段階で、ベタインを試薬中に添加することにより行うことができる。このベタインの添加は、感作された不溶性担体粒子の添加に先立っていても、その後であってもよい。
[Deterioration prevention method]
The coexistence of the above-mentioned betaine in the immunoassay reagent containing the sensitized insoluble carrier particles in the deterioration prevention method of the present invention is the coexistence of betaine in the reagent at any stage of the step of preparing the immunoassay reagent. It can be done by adding. The addition of this betaine may be prior to or after the addition of the sensitized insoluble carrier particles.

試薬に対するベタインの添加量の下限は試薬の0.1質量%であり、好ましくは同1質量%であり、さらに好ましくは同3質量%であり、最も好ましくは同5質量%である。ベタインを試薬の0.1質量%添加することにより劣化防止効果が認められ、同1質量%、3質量%、5質量%と、試薬へのベタイン添加量を増加させるにつれて、用量依存的にベタインによる劣化防止効果を向上させることができる。 The lower limit of the amount of betaine added to the reagent is 0.1% by mass, preferably 1% by mass, more preferably 3% by mass, and most preferably 5% by mass of the reagent. Deterioration prevention effect was recognized by adding 0.1% by mass of betaine to the reagent, and betaine was dose-dependently increased to 1% by mass, 3% by mass, and 5% by mass as the amount of betaine added to the reagent was increased. It is possible to improve the deterioration prevention effect due to the above.

試薬に対するベタインの添加量の上限は、特に限定されず、試薬の30質量%であっても、試薬においてベタインによる劣化防止効果が発揮されるが、好ましくは試薬の20質量%であり、さらに好ましくは同15質量%であり、最も好ましくは同10質量%である。ベタイン添加量が試薬の10質量%を超えても、ベタイン量の増加に見合った劣化防止効果の向上は認められず、却ってベタイン添加量の増加に従って反応性の低下傾向が認められる。 The upper limit of the amount of betaine added to the reagent is not particularly limited, and even if it is 30% by mass of the reagent, the deterioration prevention effect due to betaine is exhibited in the reagent, but it is preferably 20% by mass of the reagent, which is more preferable. Is 15% by mass, most preferably 10% by mass. Even if the amount of betaine added exceeds 10% by mass of the reagent, the improvement of the deterioration prevention effect corresponding to the increase in the amount of betaine is not observed, and on the contrary, the reactivity tends to decrease as the amount of betaine added increases.

従って、試薬へのベタインの添加量は、試薬の0.1-30質量%であり、さらに添加量の下限を引き上げて、同1-30質量%、3-30質量%、5-30質量%と、添加下限量の増加につれてより好ましいものとなる。さらに試薬へのベタイン添加量の上限を好適量である試薬の20質量%、すなわち同0.1-20質量%とすることが好ましく、添加量の下限を引き上げて、同1-20質量%、3-20質量%、5-20質量%と、添加下限量の増加につれて、より好ましいものとなる。さらに試薬へのベタイン添加量の上限をさらなる好適量である試薬の15質量%、すなわち同0.1-15質量%とすることが好ましく、添加量の下限を引き上げて、同1-15質量%、3-15質量%、5-15質量%と、添加下限量の増加につれてより好ましいものとなる。さらに試薬へのベタインの添加量の上限を最適上限量である試薬の10質量%、すなわち同0.1-10質量%とすることが好ましく、試薬の添加量の下限を引き上げて、同1-10質量%、3-10質量%、5-10質量%と、これらの添加下限量の増加につれてより好ましいものとなる。劣化防止効果の十分な発揮、反応性の確認、及びコストの抑制、を勘案した、試薬へのベタイン添加量の最適範囲は、試薬の5-10質量%である。 Therefore, the amount of betaine added to the reagent is 0.1-30% by mass of the reagent, and the lower limit of the addition amount is further raised to 1-30% by mass, 3-30% by mass, 5-30% by mass. And, it becomes more preferable as the addition lower limit amount increases. Further, the upper limit of the amount of betaine added to the reagent is preferably 20% by mass, that is, 0.1-20% by mass, which is a suitable amount, and the lower limit of the amount of addition is raised to 1-20% by mass. It becomes more preferable as the addition lower limit amount increases to 3-20% by mass and 5-20% by mass. Further, the upper limit of the amount of betaine added to the reagent is preferably 15% by mass, that is, 0.1-15% by mass of the reagent, which is a more suitable amount, and the lower limit of the amount of addition is raised to 1-15% by mass. , 3-15% by mass and 5-15% by mass, which are more preferable as the lower limit of addition is increased. Further, it is preferable that the upper limit of the amount of betaine added to the reagent is 10% by mass, that is, 0.1-10% by mass of the reagent, which is the optimum upper limit, and the lower limit of the amount of the reagent added is raised to 1-. It becomes more preferable as the addition lower limit amount increases to 10% by mass, 3-10% by mass, and 5-10% by mass. The optimum range of the amount of betaine added to the reagent is 5 to 10% by mass of the reagent in consideration of sufficient exertion of the deterioration prevention effect, confirmation of reactivity, and cost reduction.

本発明の劣化防止方法が施された免疫測定試薬では、凍結・融解のプロセスにおける感作された不溶性担体粒子の不特異吸着が抑止され、これにより当該免疫測定試薬の劣化防止を行うことができる。 In the immunoassay reagent to which the deterioration prevention method of the present invention is applied, nonspecific adsorption of sensitized insoluble carrier particles in the process of freezing and thawing is suppressed, whereby deterioration of the immunoassay reagent can be prevented. ..

このようにして作成される免疫測定試薬が、本発明の免疫測定試薬である。 The immunoassay reagent thus produced is the immunoassay reagent of the present invention.

以下、本発明の具体例としての実施例を記載する。なお、「%」は特に断らない限り、配合対象に対する質量%である。 Hereinafter, examples of the present invention as specific examples will be described. Unless otherwise specified, "%" is the mass% with respect to the compounding target.

[実施例1] 感作ラテックスにおける検討
<第1試薬(検体希釈液)の調製>
50mMグリシンを含む緩衝液に、0.15mol/mLとなるように塩化ナトリウムを添加し、水酸化ナトリウム水溶液でpHを9.0となるように、検体希釈液を調製した。
[Example 1] Examination of sensitized latex <Preparation of first reagent (sample diluted solution)>
Sodium chloride was added to a buffer solution containing 50 mM glycine so as to be 0.15 mol / mL, and a sample diluted solution was prepared so that the pH was 9.0 with an aqueous sodium hydroxide solution.

<第2試薬(抗体感作ラテックス分散液)の調製>
50mMホウ酸緩衝液20mLに、抗ヒトLp(a)ヤギポリクローナル抗体(トリナバイオリアクティブス社製)を100mg添加して、さらに未感作のポリスチレンラテックス粒子(平均粒子径0.12μm:藤倉化成社製)の10%ラテックス分散液を12.5mL混合し、超音波装置VCX750(SONIC&MATERIALS INC.)を用いて、氷冷下で超音波処理を1分間行った。その後、5%BSA水溶液を7mL添加し、50℃で30分間攪拌した。その後、20000Gで20分間遠心し、上澄みを除いた後、10mmol/mL HEPESと共に、(1)ベタイン未添加(比較例)、(2)ベタイン(比較例:和光純薬工業社製)を、0.1%、0.3%、1%、3%、5%、7%、10%、15%、20%、25%、30%添加し、それぞれの系に上記感作のポリスチレンラテックス粒子(平均粒子径0.12μm:藤倉化成社製)を、0.3%となるように添加し、抗体感作ラテックス分散液8種類を調製した。
<Preparation of second reagent (antibody sensitized latex dispersion)>
To 20 mL of 50 mM borate buffer, 100 mg of anti-human Lp (a) goat polyclonal antibody (manufactured by Trina Bioreactives) was added, and unsensitized polystyrene latex particles (average particle diameter 0.12 μm: Fujikura Kasei Co., Ltd.) were added. 12.5 mL of 10% latex dispersion was mixed, and ultrasonic treatment was performed under ice-cooling for 1 minute using an ultrasonic device VCX750 (SONIC & MATERIALS INC.). Then, 7 mL of a 5% BSA aqueous solution was added, and the mixture was stirred at 50 ° C. for 30 minutes. Then, after centrifuging at 20000 G for 20 minutes to remove the supernatant, (1) betaine-free (comparative example) and (2) betaine (comparative example: manufactured by Wako Pure Chemical Industries, Ltd.) were added together with 10 mmol / mL HEEPS to 0. .1%, 0.3%, 1%, 3%, 5%, 7%, 10%, 15%, 20%, 25%, 30% were added to each system and the above-mentioned sensitized polystyrene latex particles ( An average particle size of 0.12 μm (manufactured by Fujikura Kasei Co., Ltd.) was added to prepare 8 types of antibody-sensitized latex dispersions.

<第1試薬と第2試薬を用いた凍結・融解による検量線の変動確認>
第2試薬を、それぞれ0-10回、上記の要領で凍結・融解を行い、凍結・融解回数による各試料の検量線を確認した。検量線は、Lp(a)値が0mg/dL、15mg/dL、30mg/dL、60mg/dL、100mg/dLに調製された、精製Lp(a)を検体として用いて、当該検体量2.1μLに対して第1試薬を210μL混合し、37℃で5分間反応させた後、これに第2試薬を70μL添加して、5分間における吸光度の変化量を測定することで行った。測定機器は、日立自動分析装置7180を用い、主波長600nmの2ポイントエンド法で行った。結果を図1[図1-1(ベタイン未添加、ベタイン0.1%、0.3%、1%添加)、図1-2(ベタイン3%、5%、7%、10%添加)、及び、図1-3(ベタイン15%、20%、25%、30%添加)]に示す。図1-3のベタインの多量添加の結果を検討すると、いずれの添加条件でも凍結融解による反応性の変化は認められなかったが、ベタインの添加量に依存して反応性の低下が認められた。具体的には、ベタイン10%添加に対して、15%添加では10-25%程度の反応性の低下が認められ、30%添加では20-30%程度の反応性の低下が認められた。
<Confirmation of calibration curve fluctuation due to freezing and thawing using the first and second reagents>
The second reagent was frozen and thawed 0 to 10 times in the same manner as described above, and the calibration curve of each sample was confirmed by the number of times of freezing and thawing. The calibration curve uses purified Lp (a) prepared to have Lp (a) values of 0 mg / dL, 15 mg / dL, 30 mg / dL, 60 mg / dL, and 100 mg / dL as a sample, and the sample amount is 2. 210 μL of the first reagent was mixed with 1 μL and reacted at 37 ° C. for 5 minutes, then 70 μL of the second reagent was added thereto, and the amount of change in absorbance in 5 minutes was measured. The measuring instrument was a Hitachi automated analyzer 7180, and the measurement was performed by the 2-point end method with a main wavelength of 600 nm. The results are shown in FIG. 1 [FIG. 1-1 (betaine not added, betaine 0.1%, 0.3%, 1% added), FIG. 1-2 (betaine 3%, 5%, 7%, 10% added). And FIG. 1-3 (15%, 20%, 25%, 30% betaine added)]. Examining the results of the large amount of betaine added in Fig. 1-3, no change in reactivity was observed due to freeze-thaw under any of the addition conditions, but a decrease in reactivity was observed depending on the amount of betaine added. .. Specifically, with respect to the addition of 10% betaine, a decrease in reactivity of about 10-25% was observed with the addition of 15%, and a decrease of about 20-30% was observed with the addition of 30%.

この結果より、ベタインを0.1-30質量%添加することにより、感作ラテックス粒子の凍結・融解による非特異的な凝集を抑制できることが明らかになった。この非特異的な凝集の抑制に対する添加量は、反応性も勘案すると、ベタイン1-20質量%添加において好ましく、3-15質量%添加においてさらに好ましく、5-10質量%において最も好ましかった。上記のようにベタインの添加量が10質量%を超えても、添加量の増加に見合った効果の向上は期待できないことが明らかになり、ベタインの多量添加による反応性に対する抑制が認められた。 From this result, it was clarified that by adding 0.1-30% by mass of betaine, non-specific aggregation due to freezing and thawing of the sensitized latex particles can be suppressed. The amount added to suppress non-specific aggregation was preferable in the addition of 1-20% by mass of betaine, more preferably in the addition of 3-15% by mass, and most preferably in the case of 5-10% by mass, considering the reactivity. .. As described above, it was clarified that even if the amount of betaine added exceeds 10% by mass, the improvement of the effect corresponding to the increase in the amount of betaine cannot be expected, and the inhibition of the reactivity by the addition of a large amount of betaine was observed.

本発明の免疫測定試薬ないし本発明の劣化防止方法が施された免疫測定試薬は、液状態様試薬が凍結するような過酷な保存環境や輸送時の不安定な温度制御下であっても、ラテックス粒子等の不溶性担体粒子が感作された場合の非特異的な凝集が抑制され、検出性能を劣化させずに保存が可能となることにより、免疫測定試薬の保存や輸送の便宜に著しく貢献する。 The immunoassay reagent of the present invention or the immunoassay reagent to which the deterioration prevention method of the present invention is applied is a latex even under a harsh storage environment such as freezing of a liquid state reagent or under unstable temperature control during transportation. Non-specific aggregation when insoluble carrier particles such as particles are sensitized is suppressed, and storage is possible without degrading detection performance, which significantly contributes to the convenience of storage and transportation of immunoassay reagents. ..

Claims (3)

感作された不溶性担体粒子を含有する免疫測定試薬中に、試薬の-30質量%のベタインを共存させることにより、当該不溶性担体粒子の凍結融解に伴う非特異的な凝集を防止する、免疫測定試薬の劣化防止方法。 By coexisting 1-30 % by mass of betaine of the reagent in an immunoassay reagent containing sensitized insoluble carrier particles, immunity that prevents non-specific aggregation associated with freezing and thawing of the insoluble carrier particles. How to prevent deterioration of measuring reagents. 免疫測定試薬は、凝集法による免疫測定試薬である、請求項に記載の劣化防止方法。 The deterioration prevention method according to claim 1 , wherein the immunoassay reagent is an immunoassay reagent by an agglutination method. 不溶性担体粒子は、ラテックス粒子である、請求項1又は2に記載の劣化防止方法。 The deterioration prevention method according to claim 1 or 2 , wherein the insoluble carrier particles are latex particles.
JP2018029231A 2017-12-05 2018-02-21 Means for Preventing Deterioration of Immunoassay Reagents Containing Sensitized Insoluble Carrier Particles Active JP7096482B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017233056 2017-12-05
JP2017233056 2017-12-05

Publications (2)

Publication Number Publication Date
JP2019101011A JP2019101011A (en) 2019-06-24
JP7096482B2 true JP7096482B2 (en) 2022-07-06

Family

ID=66976779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018029231A Active JP7096482B2 (en) 2017-12-05 2018-02-21 Means for Preventing Deterioration of Immunoassay Reagents Containing Sensitized Insoluble Carrier Particles

Country Status (1)

Country Link
JP (1) JP7096482B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258419A (en) 1999-03-10 2000-09-22 Hitachi Chem Co Ltd Immuno-measuring reagent and immuno-measuring method
WO2007074860A1 (en) 2005-12-28 2007-07-05 Sekisui Medical Co., Ltd. Reagent for measuring aggregation and method of measuring aggregation
JP2010156576A (en) 2008-12-26 2010-07-15 Tanaka Holdings Kk Chromatography vehicle
WO2014132833A1 (en) 2013-03-01 2014-09-04 富士レビオ株式会社 Method for preventing deterioration of unsensitized latex reagent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE196510T1 (en) * 1996-05-23 2000-10-15 Qiagen Gmbh USE OF AN OSMOLYTE TO REDUCE OR REMOVE NON-COVALENT BONDING OF BIOLOGICAL MOLECULES TO INERT SURFACES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258419A (en) 1999-03-10 2000-09-22 Hitachi Chem Co Ltd Immuno-measuring reagent and immuno-measuring method
WO2007074860A1 (en) 2005-12-28 2007-07-05 Sekisui Medical Co., Ltd. Reagent for measuring aggregation and method of measuring aggregation
JP2010156576A (en) 2008-12-26 2010-07-15 Tanaka Holdings Kk Chromatography vehicle
WO2014132833A1 (en) 2013-03-01 2014-09-04 富士レビオ株式会社 Method for preventing deterioration of unsensitized latex reagent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, W. et al.,Ultrastable core-shell structured nanoparticles directly made from zwitterionic polymers,Chemical Communications,2014年,Vol.50,p.15030-15033

Also Published As

Publication number Publication date
JP2019101011A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
CN105122062B (en) The deterioration preventing method of non-sensitizing latex reagent
WO2019026569A1 (en) Degradation preventing means for immunoassay reagent containing insoluble carrier particles
JP6919499B2 (en) Means for Preventing Deterioration of Immunoassay Reagents Containing Insoluble Carrier Particles
JP3899029B2 (en) Immunological analysis method
JP5786188B2 (en) Reagent for measuring C-reactive protein in sample, measuring method, and method for expanding measuring range
ES2440326T3 (en) Test reagent kit and use in a procedure to measure an analyte in a test sample
KR102075949B1 (en) Immunological analysis method and reagent
JP7096482B2 (en) Means for Preventing Deterioration of Immunoassay Reagents Containing Sensitized Insoluble Carrier Particles
JP4331073B2 (en) Antigen measurement method and reagent therefor
JP2004012434A (en) Method for measuring pepsinogen and measuring kit
JPH1123573A (en) Immunological measuring method
JP2004191332A (en) Immunological analysis reagent and immunological analysis method
JP4507439B2 (en) Latex immunoturbidimetric assay and kit used therefor
JPH05281229A (en) Method for measuring antigen or antibody under presence of immune complex
JP7438910B2 (en) Ferritin measurement reagent
JPH0712818A (en) Immunological detection
JP2012078161A (en) Measuring method of measuring target substance in sample, measuring reagent and method for improving measurement value difference
JP2001091516A (en) METHOD FOR DETERMINING QUANTITY OF HUMAN alpha-FETOPROTEIN AND MEASUREMENT KIT
JP2000275245A (en) Immunoassay reagent and immunoassay
JP5143046B2 (en) Test substance measurement method and kit for carrying out the measurement method
Insert UBA® IIELISA (Cytokeratin 8 and Cytokeratin 18)
JPH08233816A (en) Immunoassay
Insert TPAcyk™ ELISA (Cytokeratin 8 and Cytokeratin 18 kit)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7096482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150